The invention relates to a catheter for providing a vascular pressure measurement.
The severity of a stenosis or lesion in a blood vessel may be assessed by obtaining proximal and distal pressure measurements relative to the given stenosis and using those measurements for calculating a value of the Fractional Flow Reserve (FFR). FFR is defined as the ratio of a distal pressure measurement (Pd) taken on the distal side of the stenosis and a proximal pressure measurement taken on the proximal side of the stenosis usually within the aorta (Pa). Conventionally, a sensor placed on the distal portion of a flexible interventional device, such as a guide wire, is utilized to obtain the distal pressure measurement Pd, while an external pressure transducer is fluidly connected via tubing to a guide catheter for obtaining the proximal or aortic pressure measurement Pa. Calculation of the FFR value provides a lesion specific index of functional severity of the stenosis in order to determine whether the blockage limits blood flow within the vessel to an extent that treatment is needed. An optimal or normal value of RR in a healthy vessel is 1.00, while values less than about 0.80 are generally deemed significant and in need of an interventional treatment. Common interventional treatment options include balloon angioplasty and/or stent implantation.
Blood flow through the coronary arteries is affected by fluctuations in the pressure arising proximally of the lesion, e.g., in the aorta, as well as fluctuations in pressure arising distally of the lesion, e.g., in the microcirculation. Accordingly, it is not possible to accurately assess the severity of a coronary lesion by simply measuring the pressure differential across the lesion because the pressure measurement taken on the distal side of the lesion is not purely a residual of the pressure transmitted from the aortic end of the vessel. As a result, for an effective calculation of FFR within the coronary arteries, it is necessary to reduce the vascular resistance within the vessel. Currently, pharmacological hyperemic agents, such as adenosine, are administered to reduce and stabilize the resistance within the coronary arteries. These vasodilator agents reduce the dramatic fluctuation in resistance to obtain a relatively stable and minimal resistance value,
Although various solutions have been proposed for providing the proximal and distal pressure measurements (Pa, Pd) for calculating an FFR value, there remains a need in the art for alternative devices and methods for obtaining pressure measurements suitable for use in calculating an FFR value for a given stenosis.
Embodiments hereof are directed to a catheter for providing pressure measurements at a vascular lesion. The catheter includes an outer component having a side opening for providing transverse access to a lumen thereof and an inner component slidably disposed within the lumen. The inner component has a guidewire lumen with a proximal side port. When the inner component is longitudinally translated relative to the outer component, the side port of the inner component is accessible through the side opening of the outer tubular component for providing transverse access to a guidewire. A first pressure sensor is disposed proximate of a distal end of the outer component and a second pressure sensor is disposed proximate of a distal end of the inner component, such that relative longitudinal translation between the inner and outer components permits a distance between the first and second pressure sensors to be varied.
The foregoing and other features and advantages of the invention will be apparent from the following description of embodiments thereof as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention. The drawings are not to scale.
Specific embodiments of the present invention are now described with reference to the figures, wherein like reference numbers indicate identical or functionally similar elements. The terms “distal” and “proximal” are used in the following description with respect to a position or direction relative to the treating clinician. “Distal” or “distally” are a position distant from or in a direction away from the clinician. “Proximal” and “proximally” are a position near or in a direction toward the clinician.
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of embodiments hereof are in the context of treatment of blood vessels such as the coronary, carotid and renal arteries, the invention may also be used to measure the pressure gradient over heart valves and may also be used in any other body passageways where it is deemed useful. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Inner shaft 104 slidably extends within lumen 105 of outer shaft 102. A proximal end 107 of inner shaft 104 is operably coupled to an actuation mechanism 108 of handle component 106. An atraumatic distal tip 124 forms a distal end 109 and a distal port 123 of inner shaft 104. Distal tip 124 has a second pressure sensor 122 attached thereto such that pressure sensor 122 is disposed proximate of or adjacent to distal end 109 of inner shaft 104. Inner shaft 104 includes an elongate proximal portion or segment 112 and a distal portion or segment 114. Proximal portion 112 is configured to have columnar strength for pushability and in accordance with embodiments hereof may be at least partially formed by a push wire or hypotube. Distal portion 114 is a polymeric tube extending from proximal portion 112 that is sized to have a minimal outer diameter for enabling inner shaft 104 to be disposed across a stenosis or lesion without undesirably disrupting the blood flow therethrough. A distal end 121 of distal portion 114 is secured to distal tip 124. A proximal end 119 of distal portion 114 is configured to form a side port or opening 116 of inner shaft 104. As shown in
In the embodiment shown in
More particularly in an alternate embodiment shown in
In the embodiment shown in
In a method in accordance herewith, a guide catheter (not shown) is tracked through the vasculature until a distal end thereof is disposed within the aorta proximal of an ostium of a branch vessel within which a lesion or stenosis of interest is located. With reference to
In embodiments hereof, an elongate shaft or tubular component and/or portions or layers thereof may be formed of polymeric materials, non-exhaustive examples of which include polyethylene terephthalate (PET), polypropylene, polyethylene, polyether block amide copolymer (PEBA), polyamide, fluoropolymers, and/or combinations thereof, either laminated, blended or co-extruded. In other embodiments of an elongate shaft or tubular component in accordance herewith, a proximal portion thereof may be a hypotube of a medical grade stainless steel with a distal portion thereof being formed from any of the polymeric materials listed above.
Electrical connections for the first and second pressure sensors, such as power leads, extend from the respective sensors to the handle component of the catheter. In other embodiments of an elongate shaft or tubular component in accordance herewith, the shaft or a portion thereof may be formed by a tubular polymeric inner liner overlaid with a power lead layer and a polymeric outer jacket. In one such embodiment, the power leads for the respective pressure sensors of the inner and outer shafts may be wrapped around the inner liner of the respective shaft for all or at least a portion of the shaft and secured in position by the polymeric outer jacket so as to be embedded within the shaft. In another such embodiment, the power leads for the respective pressure sensors of the inner and outer shafts may be straight for a section or for the entire length of the shaft and secured in position against the inner liner by the polymeric outer jacket so as to be embedded within the shaft.
Pressure-sensing catheters in accordance with embodiments hereof may be used for other than providing proximal and distal pressure measurements (Pa, Pd) for calculating an FFR value. For instance, pressure-sensing catheters in accordance with embodiments hereof may be used to provide an in vivo pressure measurement anywhere along the vasculature, or a particular lesion therein. As well, embodiments hereof may be used to provide in vivo pressure measurements, across a heart valve, venous valve or other valvular location within the body where it may be deemed useful.
While various embodiments have been described above, it should be understood that they have been presented only as illustrations and examples of the present invention, and not by way of limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4718425 | Tanaka et al. | Jan 1988 | A |
4771782 | Millar | Sep 1988 | A |
4796641 | Mills et al. | Jan 1989 | A |
4815472 | Wise et al. | Mar 1989 | A |
4850358 | Millar | Jul 1989 | A |
4901731 | Millar | Feb 1990 | A |
4924877 | Brooks | May 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4936310 | Engstrom et al. | Jun 1990 | A |
4941473 | Tenerz et al. | Jul 1990 | A |
4966148 | Millar | Oct 1990 | A |
4966156 | Perry et al. | Oct 1990 | A |
5029585 | Lieber et al. | Jul 1991 | A |
5046497 | Millar | Sep 1991 | A |
5050297 | Metzger | Sep 1991 | A |
5085223 | Lars et al. | Feb 1992 | A |
5125058 | Tenerz et al. | Jun 1992 | A |
5195375 | Tenerz et al. | Mar 1993 | A |
5267958 | Buchbinder et al. | Dec 1993 | A |
5280786 | Wlodarczyk et al. | Jan 1994 | A |
5427114 | Colliver et al. | Jun 1995 | A |
5451233 | Yock | Sep 1995 | A |
5466222 | Ressemann et al. | Nov 1995 | A |
5526820 | Khoury | Jun 1996 | A |
5542434 | Imran et al. | Aug 1996 | A |
5564425 | Tonokura | Oct 1996 | A |
5569219 | Hakki et al. | Oct 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5591129 | Shoup | Jan 1997 | A |
5637091 | Hakky et al. | Jun 1997 | A |
RE35648 | Tenerz et al. | Nov 1997 | E |
5694946 | Tenerz et al. | Dec 1997 | A |
5701905 | Esch | Dec 1997 | A |
5715827 | Corl | Feb 1998 | A |
5813997 | Imran et al. | Sep 1998 | A |
5827243 | Palestrant | Oct 1998 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5902248 | Millar et al. | May 1999 | A |
5964714 | Lafontaine | Oct 1999 | A |
6033366 | Brockway et al. | Mar 2000 | A |
6056719 | Mickley | May 2000 | A |
6089103 | Smith | Jul 2000 | A |
6106476 | Corl et al. | Aug 2000 | A |
6106486 | Tenerz et al. | Aug 2000 | A |
6112598 | Tenerz et al. | Sep 2000 | A |
6142958 | Hammarstrom et al. | Nov 2000 | A |
6167763 | Tenerz et al. | Jan 2001 | B1 |
6182513 | Stemme et al. | Feb 2001 | B1 |
6193669 | Degany et al. | Feb 2001 | B1 |
6224585 | Pfeiffer | May 2001 | B1 |
6248083 | Smith et al. | Jun 2001 | B1 |
6296615 | Brockway et al. | Oct 2001 | B1 |
6312380 | Hoek et al. | Nov 2001 | B1 |
6336906 | Hammarstrom et al. | Jan 2002 | B1 |
6354999 | Dgany et al. | Mar 2002 | B1 |
6379308 | Brockway et al. | Apr 2002 | B1 |
6394986 | Millar | May 2002 | B1 |
6409677 | Tulkki | Jun 2002 | B1 |
6471656 | Shalman et al. | Oct 2002 | B1 |
6517481 | Hoek et al. | Feb 2003 | B2 |
6546804 | Stemme et al. | Apr 2003 | B2 |
6551250 | Khalil | Apr 2003 | B2 |
6565514 | Svanerudh et al. | May 2003 | B2 |
6585660 | Dorando et al. | Jul 2003 | B2 |
6615667 | Smith | Sep 2003 | B2 |
6659957 | Vardi et al. | Dec 2003 | B1 |
6659959 | Brockway et al. | Dec 2003 | B2 |
6663570 | Mott et al. | Dec 2003 | B2 |
6716178 | Kilpatrick et al. | Apr 2004 | B1 |
6733459 | Atsumi | May 2004 | B1 |
6754608 | Svanerudh et al. | Jun 2004 | B2 |
6767327 | Corl et al. | Jul 2004 | B1 |
6821287 | Jang | Nov 2004 | B1 |
6860851 | Knudson | Mar 2005 | B2 |
6868736 | Sawatari et al. | Mar 2005 | B2 |
6926674 | Tenerz et al. | Aug 2005 | B2 |
6938474 | Melvangs | Sep 2005 | B2 |
6966890 | Coyle et al. | Nov 2005 | B2 |
6974422 | Millar | Dec 2005 | B1 |
6976965 | Corl et al. | Dec 2005 | B2 |
6993974 | Tenerz et al. | Feb 2006 | B2 |
6994695 | Millar | Feb 2006 | B1 |
7017416 | Liu et al. | Mar 2006 | B1 |
7021152 | Tenerz | Apr 2006 | B2 |
7025727 | Brockway et al. | Apr 2006 | B2 |
7060038 | Letort et al. | Jun 2006 | B2 |
7097620 | Corl et al. | Aug 2006 | B2 |
7112170 | Schock et al. | Sep 2006 | B2 |
7134994 | Alpert et al. | Nov 2006 | B2 |
7137953 | Eigler et al. | Nov 2006 | B2 |
7211048 | Najafi et al. | May 2007 | B1 |
7222539 | Tulkki | May 2007 | B2 |
7229403 | Schock et al. | Jun 2007 | B2 |
7245789 | Bates et al. | Jul 2007 | B2 |
7263894 | Tenerz | Sep 2007 | B2 |
7274956 | Mott et al. | Sep 2007 | B2 |
RE39863 | Smith | Oct 2007 | E |
7294117 | Provost-tine et al. | Nov 2007 | B2 |
7329223 | Ainsworth et al. | Feb 2008 | B1 |
7331236 | Smith et al. | Feb 2008 | B2 |
7343811 | Tenerz et al. | Mar 2008 | B2 |
7347822 | Brockway et al. | Mar 2008 | B2 |
7447388 | Bates et al. | Nov 2008 | B2 |
7450989 | Svanerudh | Nov 2008 | B2 |
7454244 | Kassab et al. | Nov 2008 | B2 |
7458938 | Patel et al. | Dec 2008 | B2 |
7472601 | Tenerz et al. | Jan 2009 | B1 |
7481774 | Brockway et al. | Jan 2009 | B2 |
7527594 | Vardi et al. | May 2009 | B2 |
7532920 | Ainsworth et al. | May 2009 | B1 |
7599588 | Eberle et al. | Oct 2009 | B2 |
7645233 | Tulkki et al. | Jan 2010 | B2 |
7660492 | Bates et al. | Feb 2010 | B2 |
7724148 | Samuelsson et al. | May 2010 | B2 |
7731664 | Millar | Jun 2010 | B1 |
7775988 | Pijls | Aug 2010 | B2 |
7783338 | Ainsworth et al. | Aug 2010 | B2 |
7837650 | Cox et al. | Nov 2010 | B1 |
7881573 | Eberle et al. | Feb 2011 | B2 |
7931603 | Von Malmborg et al. | Apr 2011 | B2 |
7946997 | Hubinette | May 2011 | B2 |
7967761 | Smith | Jun 2011 | B2 |
7967762 | Corl et al. | Jun 2011 | B2 |
7998089 | Smith | Aug 2011 | B2 |
8025623 | Millar | Sep 2011 | B1 |
8029447 | Kanz et al. | Oct 2011 | B2 |
8059923 | Bates et al. | Nov 2011 | B2 |
8140146 | Kim et al. | Mar 2012 | B2 |
8157742 | Taylor | Apr 2012 | B2 |
8162856 | Williams et al. | Apr 2012 | B2 |
8174395 | Samuelsson et al. | May 2012 | B2 |
8187195 | Tulkki | May 2012 | B2 |
8216151 | Smith | Jul 2012 | B2 |
8231537 | Ahmed et al. | Jul 2012 | B2 |
8249815 | Taylor | Aug 2012 | B2 |
8277386 | Ahmed et al. | Oct 2012 | B2 |
8282565 | Mahapatra et al. | Oct 2012 | B2 |
8298156 | Manstrom et al. | Oct 2012 | B2 |
8311747 | Taylor | Nov 2012 | B2 |
8311748 | Taylor et al. | Nov 2012 | B2 |
8311750 | Taylor | Nov 2012 | B2 |
8315812 | Taylor | Nov 2012 | B2 |
8315813 | Taylor et al. | Nov 2012 | B2 |
8315814 | Taylor et al. | Nov 2012 | B2 |
8317715 | Belleville et al. | Nov 2012 | B2 |
8320723 | Eberle et al. | Nov 2012 | B2 |
8321150 | Taylor | Nov 2012 | B2 |
8410940 | Samuelsson et al. | Apr 2013 | B2 |
8419647 | Corl et al. | Apr 2013 | B2 |
8419648 | Corl et al. | Apr 2013 | B2 |
8461997 | Samuelsson et al. | Jun 2013 | B2 |
8485985 | Manstrom et al. | Jul 2013 | B2 |
8556520 | Elenbaas et al. | Oct 2013 | B2 |
8562537 | Alpert et al. | Oct 2013 | B2 |
8636659 | Alpert et al. | Jan 2014 | B2 |
8696584 | Kassab | Apr 2014 | B2 |
8698638 | Samuelsson et al. | Apr 2014 | B2 |
8714021 | Gamage | May 2014 | B2 |
8797155 | Huennekens et al. | Aug 2014 | B2 |
8857264 | Gamage | Oct 2014 | B2 |
8958863 | Huennekens et al. | Feb 2015 | B2 |
8977336 | Huennekens et al. | Mar 2015 | B2 |
8998823 | Manstrom et al. | Apr 2015 | B2 |
9011342 | Manstrom et al. | Apr 2015 | B2 |
9113843 | Manstrom et al. | Aug 2015 | B2 |
9186072 | Manstrom et al. | Nov 2015 | B2 |
9220461 | Samuelsson et al. | Dec 2015 | B2 |
9259161 | Suchecki et al. | Feb 2016 | B2 |
9289137 | Corl | Mar 2016 | B2 |
9314584 | Riley et al. | Apr 2016 | B1 |
9332916 | Kassab | May 2016 | B2 |
9339348 | Davies et al. | May 2016 | B2 |
20010051769 | Hoek et al. | Dec 2001 | A1 |
20020013527 | Hoek et al. | Jan 2002 | A1 |
20020035331 | Brockway et al. | Mar 2002 | A1 |
20020059827 | Smith | May 2002 | A1 |
20020065472 | Brockway et al. | May 2002 | A1 |
20020072880 | Svanerudh et al. | Jun 2002 | A1 |
20020157473 | Stemme et al. | Oct 2002 | A1 |
20020173724 | Dorando et al. | Nov 2002 | A1 |
20030018273 | Corl et al. | Jan 2003 | A1 |
20030032886 | Dgany et al. | Feb 2003 | A1 |
20030033095 | Svanerudh et al. | Feb 2003 | A1 |
20030040674 | Corl et al. | Feb 2003 | A1 |
20030159518 | Sawatari et al. | Aug 2003 | A1 |
20030163052 | Mott et al. | Aug 2003 | A1 |
20030176850 | Melvas | Sep 2003 | A1 |
20030195428 | Brockway et al. | Oct 2003 | A1 |
20030216621 | Alpert et al. | Nov 2003 | A1 |
20040067000 | Bates et al. | Apr 2004 | A1 |
20040082844 | Vardi et al. | Apr 2004 | A1 |
20040082866 | Mott et al. | Apr 2004 | A1 |
20040116816 | Tenerz et al. | Jun 2004 | A1 |
20040143240 | Armstrong et al. | Jul 2004 | A1 |
20040143261 | Hartley et al. | Jul 2004 | A1 |
20040157790 | Herweijer et al. | Aug 2004 | A1 |
20040162548 | Reiser | Aug 2004 | A1 |
20040167385 | Rioux et al. | Aug 2004 | A1 |
20040176790 | Coyle | Sep 2004 | A1 |
20040230131 | Kassab et al. | Nov 2004 | A1 |
20040254442 | Williams et al. | Dec 2004 | A1 |
20050000294 | Tenerz et al. | Jan 2005 | A1 |
20050011272 | Tenerz | Jan 2005 | A1 |
20050043670 | Rosenberg | Feb 2005 | A1 |
20050049451 | Schock et al. | Mar 2005 | A1 |
20050187487 | Azizkhan et al. | Aug 2005 | A1 |
20050268724 | Tenerz | Dec 2005 | A1 |
20050268725 | Tulkki | Dec 2005 | A1 |
20060052700 | Svanerudh | Mar 2006 | A1 |
20060074318 | Ahmed et al. | Apr 2006 | A1 |
20060094966 | Brockway et al. | May 2006 | A1 |
20060094982 | Corl et al. | May 2006 | A1 |
20060142756 | Davies et al. | Jun 2006 | A1 |
20060207335 | Tenerz et al. | Sep 2006 | A1 |
20060241505 | Ahmed et al. | Oct 2006 | A1 |
20060287569 | Schock et al. | Dec 2006 | A1 |
20070060820 | Lofgren et al. | Mar 2007 | A1 |
20070060822 | Alpert et al. | Mar 2007 | A1 |
20070078352 | Pijls | Apr 2007 | A1 |
20070106142 | Von Malmborg et al. | May 2007 | A1 |
20070106165 | Tulkki | May 2007 | A1 |
20070116408 | Eberle et al. | May 2007 | A1 |
20070133925 | Bates et al. | Jun 2007 | A1 |
20070135718 | Corl et al. | Jun 2007 | A1 |
20070191717 | Rosen et al. | Aug 2007 | A1 |
20070220986 | Smith et al. | Sep 2007 | A1 |
20070255144 | Tulkki et al. | Nov 2007 | A1 |
20070255145 | Smith et al. | Nov 2007 | A1 |
20080119739 | Vardi et al. | May 2008 | A1 |
20080119758 | Samuelsson et al. | May 2008 | A1 |
20080132806 | Smith | Jun 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080146993 | Krishna | Jun 2008 | A1 |
20080200770 | Hubinette | Aug 2008 | A1 |
20080255471 | Naghavi et al. | Oct 2008 | A1 |
20080262470 | Lee et al. | Oct 2008 | A1 |
20080269572 | Kanz et al. | Oct 2008 | A1 |
20090059727 | Bates et al. | Mar 2009 | A1 |
20090082678 | Smith | Mar 2009 | A1 |
20090088609 | Schmitz-Rode et al. | Apr 2009 | A1 |
20090088650 | Corl | Apr 2009 | A1 |
20090124880 | Smith | May 2009 | A1 |
20090125007 | Splinter | May 2009 | A1 |
20090248049 | Perkins | Oct 2009 | A1 |
20090281394 | Russell et al. | Nov 2009 | A1 |
20100014810 | Eberle et al. | Jan 2010 | A1 |
20100087732 | Eberle et al. | Apr 2010 | A1 |
20100109104 | Tlensuu et al. | May 2010 | A1 |
20100113942 | Eberle | May 2010 | A1 |
20100135111 | Bates et al. | Jun 2010 | A1 |
20100152607 | Kassab | Jun 2010 | A1 |
20100234698 | Manstrom et al. | Sep 2010 | A1 |
20100241008 | Belleville et al. | Sep 2010 | A1 |
20100280330 | Samuelsson et al. | Nov 2010 | A1 |
20100286536 | Samuelsson et al. | Nov 2010 | A1 |
20100286537 | Pijls | Nov 2010 | A1 |
20110004198 | Hoch | Jan 2011 | A1 |
20110060229 | Hulvershorn et al. | Mar 2011 | A1 |
20110066047 | Belleville et al. | Mar 2011 | A1 |
20110071407 | Hubinette et al. | Mar 2011 | A1 |
20110083521 | Hollander et al. | Apr 2011 | A1 |
20110123154 | Eberle et al. | May 2011 | A1 |
20110137140 | Tearney et al. | Jun 2011 | A1 |
20110178383 | Kassab | Jul 2011 | A1 |
20110178413 | Schmitt et al. | Jul 2011 | A1 |
20110178417 | Kassab | Jul 2011 | A1 |
20110196255 | Kassab | Aug 2011 | A1 |
20110245693 | Hastings et al. | Oct 2011 | A1 |
20110251497 | Corl et al. | Oct 2011 | A1 |
20110306867 | Gopinathan et al. | Dec 2011 | A1 |
20110319773 | Kanz et al. | Dec 2011 | A1 |
20120053918 | Taylor | Mar 2012 | A1 |
20120071782 | Patil et al. | Mar 2012 | A1 |
20120072190 | Sharma et al. | Mar 2012 | A1 |
20120101355 | Gopinathan et al. | Apr 2012 | A1 |
20120101369 | Patil et al. | Apr 2012 | A1 |
20120108943 | Bates et al. | May 2012 | A1 |
20120136244 | Manstrom et al. | May 2012 | A1 |
20120172731 | Smith | Jul 2012 | A1 |
20120172732 | Meyer | Jul 2012 | A1 |
20120203118 | Samuelsson et al. | Aug 2012 | A1 |
20120220836 | Alpert et al. | Aug 2012 | A1 |
20120220837 | Alpert et al. | Aug 2012 | A1 |
20120220883 | Manstrom et al. | Aug 2012 | A1 |
20120227505 | Belleville et al. | Sep 2012 | A1 |
20120271178 | Smith | Oct 2012 | A1 |
20120278008 | Davies et al. | Nov 2012 | A1 |
20120316419 | Chevalier | Dec 2012 | A1 |
20130015975 | Huennekens et al. | Jan 2013 | A1 |
20130023762 | Huennekens et al. | Jan 2013 | A1 |
20130023763 | Huennekens et al. | Jan 2013 | A1 |
20130046190 | Davies | Feb 2013 | A1 |
20130060133 | Kassab et al. | Mar 2013 | A1 |
20130090555 | Kassab | Apr 2013 | A1 |
20130096409 | Hiltner et al. | Apr 2013 | A1 |
20130109980 | Teo | May 2013 | A1 |
20130116579 | Svanerudh | May 2013 | A1 |
20130131523 | Suchecki et al. | May 2013 | A1 |
20130190633 | Dorando et al. | Jul 2013 | A1 |
20130216481 | Rosenmeier | Aug 2013 | A1 |
20130303914 | Hiltner | Nov 2013 | A1 |
20130324864 | Manstrom et al. | Dec 2013 | A1 |
20140024235 | Russell | Jan 2014 | A1 |
20140024950 | Hiltner et al. | Jan 2014 | A1 |
20140086461 | Yao et al. | Mar 2014 | A1 |
20140180140 | Alpert | Jun 2014 | A1 |
20140180141 | Millet | Jun 2014 | A1 |
20140187980 | Burkett | Jul 2014 | A1 |
20140187984 | Burkett | Jul 2014 | A1 |
20140276142 | Dorando | Sep 2014 | A1 |
20140379269 | Schmitt | Dec 2014 | A1 |
20150032011 | McGowan et al. | Jan 2015 | A1 |
20150074995 | Patil et al. | Mar 2015 | A1 |
20150105673 | Gregorich | Apr 2015 | A1 |
20150112191 | Gilboa et al. | Apr 2015 | A1 |
20150141853 | Miller et al. | May 2015 | A1 |
20150148693 | Burkett | May 2015 | A1 |
20150157216 | Stigall et al. | Jun 2015 | A1 |
20150173722 | Huennekens et al. | Jun 2015 | A1 |
20150223707 | Ludoph | Aug 2015 | A1 |
20150265167 | McGowan et al. | Sep 2015 | A1 |
20150272449 | Meyer | Oct 2015 | A1 |
20150282765 | Goshen et al. | Oct 2015 | A1 |
20150313479 | Stigall et al. | Nov 2015 | A1 |
20150359438 | McCaffrey et al. | Dec 2015 | A1 |
20150359439 | Manstrom et al. | Dec 2015 | A1 |
20160022153 | Dorando | Jan 2016 | A1 |
20160066802 | Keller | Mar 2016 | A1 |
20160106321 | Sharma et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
102008045878 | Mar 2010 | DE |
0263190 | Oct 1986 | EP |
1658808 | Aug 1995 | EP |
1419796 | May 2004 | EP |
1493381 | Jan 2005 | EP |
1514512 | Mar 2005 | EP |
1702641 | Sep 2006 | EP |
10-33488 | Feb 1998 | JP |
10-137199 | May 1998 | JP |
2004-194996 | Jul 2004 | JP |
2006-204378 | Aug 2006 | JP |
2009285 | Aug 2012 | NL |
WO9700641 | Jan 1997 | WO |
WO9958059 | Nov 1999 | WO |
WO03022122 | Mar 2003 | WO |
WO2006037082 | Apr 2006 | WO |
WO2006117154 | Nov 2006 | WO |
WO2011120565 | Oct 2011 | WO |
WO2011161212 | Dec 2011 | WO |
WO2012093260 | Jul 2012 | WO |
WO2012173697 | Dec 2012 | WO |
WO2013061281 | May 2013 | WO |
WO2014025255 | Feb 2014 | WO |
WO2014176448 | Oct 2014 | WO |
WO2015150128 | Oct 2015 | WO |
WO2016001017 | Jan 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20150196210 A1 | Jul 2015 | US |