The present invention is generally related to medical catheters and procedures for using the same, and more particularly to catheters adapted to be inserted into body vessels including access vessels having a limited diameter with respect to the cannula diameter.
In the medical profession, the use of catheters to deliver and vent fluids from body vessels is becoming more pervasive due to the advancement of minimally invasive procedures. It is often desired to insert a catheter into a body vessel such as the aorta, urethra etc. via an access vessel having a restricted diameter. The catheter usually has a plurality of lumens, for instance, one lumen to infuse a fluid such as a medicant or oxygenated blood, and another lumen for inflating a balloon to selectively occlude the body vessel. The number of lumens, and particularly the aggregate cross sectional area of the lumens, substantially determines the overall catheter diameter. It is desired to keep the overall diameter of the catheter as small as possible, especially with respect to the access vessel and the vessel for which it is intended to be placed to reduce trauma to the vessel.
With respect to aortic balloon catheters in particular, these catheters may be percutaneously inserted into a patient's femoral artery, serving as an access vessel, and advanced upwardly into the aorta of the patient. According to one conventional method, a first catheter is inserted into the femoral artery and advanced into the ascending aorta. The catheter may include a balloon for selectively occluding the aorta and have multiple lumens terminating at the distal end thereof for delivering cardioplegia to the aortic root and/or venting fluid from the aorta above the aortic root. Other lumens may provide for instrumentation to be inserted into the aorta, which may be advanced through the aortic valve into the heart. The proximal end of the catheter may be provided with a lumen terminating proximate the point of insertion to provide arterial return of oxygenated blood. Alternatively, a separate second catheter may be inserted into the patient's other femoral artery to provide arterial return of oxygenated blood. This second catheter is used to reduce the overall diameter of the first catheter body advanced into the aorta, thus reducing trauma to the aorta lining. The distal end of this second catheter is also advanced only to proximate the point of insertion since it is semi-rigid and has a relatively large diameter to provide the required arterial return of oxygenated blood into the aorta. By using a second catheter, a rather large diameter first catheter is not necessary to be inserted into the aorta which may cause trauma to the lining of the artery. However, returning oxygenated blood well below the aorta requires oxygenated blood to flow counter to typical arterial blood flow, upwardly into the ascending aorta to the various arteries branching therefrom.
The disadvantages of this approach include the fact that returning oxygenated blood to the aorta upwardly in a direction counter to normal flow has been found in some studies to be damaging to the artery lining, and which may create aortic dissection, aneurysms, and in some cases death. In addition, this method requires a second infusion catheter to be inserted and manipulated which can be cumbersome.
The present invention achieves technical advantages as a single catheter having a relatively large inflatable/collapsible lumen suited for insertion via smaller access vessels into larger vessels. The larger lumen is collapsed during insertion, and inflated during fluid delivery. The catheter can be inserted via an access artery and provide arterial return of oxygenated blood into the ascending aorta. This inflatable/collapsible lumen is secured to the main catheter body distal end., and surrounds the main catheter body having multiple lumens for facilitating other functions, such as pressure sensing at the catheter distal end, balloon inflation, and delivery of cardioplegia/venting at the catheter distal end.
In one embodiment, the catheter derives technical advantages as being adapted to be percutaneously positioned into the aorta via a femoral artery with the large lumen in the collapsed position. This large lumen has a very thin wall facilitating inflation/collapsing about the main catheter body, preferably being comprised of polyethylene. Subsequently, by infusing a fluid, such as oxygenated blood, into the large lumen, the large lumen self expands due to fluid pressure of the fluid flowing therethrough to the lumen distal end. In another embodiment, the catheter can be inserted into other access vessels such as a subclavian artery.
The catheter derives technical advantages as a single catheter having multiple lumens and a reduced overall diameter. The catheter has a relatively small overall diameter during insertion through access arteries to the aorta with the large lumen in the collapsed position during advancement. This small diameter provides good control of the catheter during insertion, reducing the risk of damaging or traumatizing the lining of the artery. The catheter main body provides advancement of the large lumen within the vessel, and the catheter is sufficiently rigid to avoid kinking during insertion.
The catheter has other numerous uses and advantages in the surgical field whereby a large catheter lumen is required for exchanging a fluid to a body vessel, but the body vessel has a relatively small diameter and is difficult to navigate in and is susceptible to trauma. For instance, the catheter is ideally suited for use as a ureter catheter as well.
Another embodiment uses a single catheter having a single large cannula with a collapsible lumen attached to the distal end. The cannula body in this embodiment can be any of an number of embodiments having a distal end coupled to collapsible lumen. The catheter may be used for different procedures by varying the length of the collapsible lumen. For instance, if the collapsible lumen is relatively short (approximately 1 inch), the catheter may be used to perfuse blood in the ascending aorta or directly inserted in the distal aortic arch to perfuse blood in the descending aorta On the other hand, if the collapsible lumen is relatively long, the catheter may be inserted from the femoral artery. The collapsible lumen is soft and pliable so that once it is in the blood vessel it is unlikely to cause trauma to the interior lining of the blood vessel. The collapsible lumen may have a larger diameter than the catheter body which allows for a more diffused and gentler flow. The distal end of the collapsible lumen may have a variety of openings.
The collapsible lumen may be folded inside the catheter body or rolled up near the distal end of the catheter. Once the catheter is connected to a heart lung machine, the fluid flow from the machine expands the catheter to its full width and diameter.
In another embodiment, a dilator may be used to insert the collapsible lumen into the artery. The catheter can be inserted in the usual manner, then the collapsible lumen maybe expanded to the desired length by inserting the dilator through the cannula body and into the expanded section. Alternatively, the collapsible lumen can also be expanded simply by the fluid pressure from a roller pump once the catheter is attached to an extracorporeal circuit.
In yet another embodiment, with the aid of a semi-rigid tube, the collapsible lumen can also be folded inside an insertion cover of a relatively small diameter. After insertion, the cover can simply be peeled off, allowing the collapsible lumen to be expanded by fluid pressure produced by the extracorporeal circuit.
The use of dilator or insertion cover allows insertion and positioning of a thin, flexible cannula without the trauma to the inside of the artery associated with conventional devices. In either case, the flexible lumen can expanded to the full diameter by the pressure of the fluids flowing during perfusion. Furthermore, the use of the diffused nozzles causes a gentler flow during perfusion, which is also significantly reduces the risk of trauma to the aorta.
a is an isometric side view of one embodiment of the catheter with a tapered distal end;
b is an isometric side view of another embodiment of the catheter with a tapered distal end;
c is an isometric side view of another embodiment of the catheter with a tapered distal end;
d is an isometric side view of another embodiment of the catheter with a tapered distal end;
a is an isometric drawing of another embodiment showing the flexible lumen in a collapsed position inside a cover;
b is an isometric drawing of the embodiment illustrated in
c is a detailed isometric drawing of a diffused nozzle used in some embodiments;
d is a detailed isometric drawing of another diffused nozzle used in some embodiments;
e is a transverse cross-sectional drawing of the embodiment shown in FIG 9a;
a is a view of one embodiment inserted into the aorta via the left subclavian artery;
b is a view of the embodiment shown in
c is a view of the embodiment shown in
d is a view of the embodiment shown in
a is an isometric side view of one embodiment showing an expanded lumen;
b is an isometric side view of one embodiment showing an expanded lumen in a partially expanded position;
c is an isometric side view of one embodiment showing an expanded lumen folded back into the body of a catheter;
d is an isometric side view of one embodiment showing a lumen rolled into the body of a catheter; and
e is an isometric side view of one embodiment showing an expanded lumen having a large diameter.
Referring now to
The catheter derives technical advantages as a catheter having a large lumen 22 that can be collapsed when inserted through a smaller access artery, such as the femoral artery, and into the ascending aorta. The catheter has a reduced overall diameter during insertion, thereby reducing trauma to the artery and improving control during insertion. The fluid pressure of the oxygenated blood delivered through lumen 22 causes sleeve member 40 to self expand from a collapsed state within the artery, whereby the diameter of the large lumen 22 is sufficient to provide oxygenated blood at a sufficient rate and pressure to perfuse the human body. As shown, a single catheter 10 is suitable for providing multiple functions during aortic perfusion, without requiring a second catheter and minimizing damage to the lining of the aorta.
Referring now to FIG. 2 and
Catheter 10 is seen to have the main catheter body 24 which may be comprised of a conventional material such as polyvinylchloride (PVC), polyurethane, and polyethylene, although limitation to these materials is not to be inferred as catheter body 24 can be comprised of elastomeric materials as well, such as silicone. Extending within catheter body 24 is a plurality of lumens including a first lumen 26 extending to distal port 18, a second lumen 28 extending to distal port 20, and third lumen 30 extending to a balloon inflation port 32 within balloon member 14. Also shown is balloon member 14 being sealingly disposed about the distal end of the catheter body 24 to form a cavity 36 therewithin. When used as an aortic perfusion catheter, aortic root pressure is sensed via lumen 28 and port 20 above the aortic valve 16 to determine if the balloon member 14 is properly occluding the ascending aorta 11. Then, cardioplegia is delivered to the aorta proximate the aortic valve 16 via the lumen 26 and port 18 while sensing pressure at the aortic root to maintain a pressure of about 50-100 mm Hg.
The integral expandable/collapsible lumen 22 is formed by the thin-walled flexible lumen member 40 secured about and carried by the main catheter body 24. Lumen member 40 is preferably secured only at the distal end thereof at 41, but may alternatively be secured along a line to the outer surface of the main catheter body 24, either intermittently or continuously along catheter body 24 if desired. Securing lumen member 40 to catheter body 24 ensures that the distal end of member 40 is carried with main catheter body 24 of catheter 10 during insertion.
Lumen member 40 preferably has a plurality of circumferentially extending openings 42 disposed at the member distal end 44, whereby lumen 22 terminates at a distal lumen opening at 46. Lumen opening 46 and sidewall openings 42 facilitate infusing fluid out the distal end of the large lumen 22 when expanded by the fluid pressure. Advantageously, lumen member 40 has a very thin wall thickness to maintain a low profile when collapsed about catheter body 24, as shown in FIG. 2 and FIG. 4. The collapsed lumen member 40 is folded and wrapped about the catheter body 24 and heated during manufacturing to keep the member close to catheter body 24, as shown in
In the preferred embodiment, the inner diameter of lumen 22 in the expanded position, as shown in FIG. 3 and
Cessation of fluid flow from the pump (not shown) through the lumen 22 will cause the lumen member 40 to collapse about the catheter body 24. Removal of catheter 10 from the body vessel, generally after fluid flow through lumen 22 has ceased, will further constrict lumen member 40 to cause any remaining fluid in lumen 22 to be dispensed out the distal opening 46 of the lumen 22. The lumen member 40 having a very flexible and thin wall will collapse about catheter body 24 as forces from the body vessel compress the lumen member 40 into its collapsed position, thus facilitating the easy removal of catheter 10 from the body vessel. The reduced catheter diameter during withdrawal further reduces trauma to the body vessel, which is a further technical advantage.
Still referring to FIG. 2 and
A flanged connector 62 is seen to form a Y connection in combination with proximal end 58 and has a passageway 64 extending therethrough in fluid communication with passageway 56. An oxygenated blood source 66 is fluidly coupled to member 62 and provides oxygenated blood to the catheter 10 via the passageway 64, lumen 56, and ultimately to the expandable/collapsible passageway 22 for delivery to the artery via the opening 46 and openings 42. The proximal end of catheter 10 is seen to have extending therefrom three separate passageways, namely, a passage 70 in fluid communication with lumen 30 and coupled to an inflation source 72, a passageway 74 in fluid communication with lumen 28 and coupled to a pressure sensor device 76, and a passageway 78 in fluid communication with lumen 26 and coupled to a fluid delivery source 80. Each passageway connects to a respective connector, as shown in FIG. 1.
The outer diameter of main catheter body 24 is significantly smaller than the outer diameter of passageway 56 extending through body member 50. This creates a sufficient passageway 56 about main catheter body 24 for oxygenated blood to be communicated therethrough at a sufficient rate and pressure to perfuse the human body as shown in FIG. 1. It is noted that the outer diameter of passageway 56 is less than the diameter of passageway 22 formed by the fully inflated lumen member 40, and thus, the fluid pressure will be higher through passageway than the fluid pressure within passageway 22 during use. However, the short catheter portion that the blood is at a higher pressure is relatively short in relation to the overall length of the catheter 10. Thus, the required pressure for the oxygenated blood source 66 is suitable for delivery of oxygenated blood to an artery of the body, such as the aorta illustrated in FIG. 1. As shown in
Referring now to
It is intended that other arteries are suitable as access sites for the catheter as well, such as the left carotid artery 92 and the right carotid artery 94 as shown in FIG. 6. The desired insertion artery is left to the choice of the surgeon and will depend upon many criteria and will vary from patient.
Referring to
The collapsible lumen 1102 preferably has a diameter sufficient to infuse oxygenated blood into an aorta at a suitable flow rate and flow pressure to perfuse a human body. Advantageously, collapsible lumen 1102 has a very thin wall thickness to maintain a low profile when collapsed, preferably in the range of 0.003 inches or less. The collapsible lumen 1102 is preferably comprised of a strong and resilient material such as polyurethane. However, other dimensions and other conventional materials can be utilized as well, and limitation to polyurethane is not to be inferred. For instance, PVC, and polyethylene are suitable as well. In one embodiment, the material chosen for collapsible lumen 1102 could be the same as the catheter body 1108 to facilitate a secure attachment thereto using conventional mechanical, chemical or thermal bonding techniques.
In
In another embodiment, illustrated in
In another embodiment, the collapsible lumen could have a smaller cross-sectional diameter or a reduced cross-sectional diameter at the distal end of the member. Referring to
In embodiments incorporating the end opening 720, the tapered shape of nozzle 718 causes a reduction in the cross-sectional area of the lumen, which increases the pressure forcing fluid out side openings 716. In another embodiment illustrated in
The openings 716 shown in
The collapsible lumen member can be attached to a variety of cannulae and catheter bodies. Turning back to
The main body section 707 is used to clamp the cannula. The larger diameter of the main body section 707 reduces the pressure drop across the cannula. At the proximal end of the main body section 707 is a connection 710. The connection 710 is attached to the arterial line of a an extracorporeal bypass machine.
The reinforced section 704 has a smaller diameter than the main body section 707. The smaller diameter allows for a smaller insertion site. The reinforced section 704 is reinforced by a semi-rigid support member comprising a helical spring or coil which keeps reinforced section 704 from kinking during insertion and use. The spring is made from wire which has a relatively small cross-sectional diameter and helically extends within the body of reinforced section 704. The wire is preferably integrated into the body of reinforced section 704 during a manufacturing extrusion process forming the catheter body 708. A transition section 706 couples the reinforced section 704 to a main body section 707. Both the reinforced section 704 and main body section 707 are cylindrical in shape. Main body section 707 has a larger diameter and wall thickness than reinforced section 704. Transition section 706 is tapered which allows for a smooth transition between the main body section 707 and reinforced section 704.
The main body section 707 is used to clamp the cannula. The larger diameter of the main body section 707 reduces the pressure drop across the cannula. At the proximal end of the main body section 707 is a connection 710. The connection 710 is attached to the arterial line of a an extracorporeal bypass machine, The catheter 700 may be used for different medical procedures by varying the length of the collapsible lumen 702. For instance, if the collapsible lumen member is relatively short (approximately 1 inch) as illustrated by a collapsible lumen 722 in
Referring to
Referring back to
In this embodiment, catheter 700 is inserted into the body using standard insertion procedures and techniques. After the catheter 700 is inserted, a collapsible lumen 702 would be pushed out by the dilator 730 as illustrated in
Referring now to
Referring to
Referring to
Referring to
Referring to
In another embodiment, illustrated in
e is a transverse cross-section view through the cover 904, the tube member 906, and the collapsible lumen 902. At the center is the tube member 906. Surrounding the tube member 906 is the collapsible lumen 902 which in a collapsed state and is folded around tube member 906. The cover 904 encapsulates and surrounds the collapsible lumen 902. The cover 904 can be made from PVC, polyurethane or another suitable material. As shown in
The tube member 906 may be manufactured by any wide variety of stainless or other medical grade materials. If a guide wire is used, the tube member 906 may be hollow which allows it to slide over a guide wire. The interior diameter of tube member 906 is sufficient to allow the tube member 906 to slide over the guide wire. If a guide wire is not used, tube member 906 may be either solid or hollow. At the distal end, the tube member 906 is coupled to a rounded end member 910 as illustrated in
In operation, catheter 900 is inserted into the femoral artery or another suitable insertion point. At the surgeon's option, a guide wire (not shown) may be used to assist in positioning catheter 900. If a guide wire is used, tube member 906 may be slid over the guide wire until the catheter is in position. Once the catheter is in position, the guide wire may be removed by pulling it through side port 908.
The surgeon may also choose to position catheter 900 without the aid of a guide wire. Compared to the collapsible lumen 902, the cover 904 is relatively rigid and allows for the insertion and accurate positioning of the collapsible lumen 902 within the artery. Because collapsible lumen 902 is in a collapsed position inside of cover 904, the collapsible lumen 902 has an extremely low profile which significantly reduces the chances of trauma or dislodging plaque. Once the collapsible lumen 902 is in position, cover 904 may be removed by pulling the sheath longitudinally toward the catheter body 900, as illustrated in FIG 9b. Cover 904 may then be discarded and the collapsible lumen 902 is inflated by fluid pressure created by a roller up (not shown) once connecting member 912 is connected to an extracorporeal circuit (not shown).
Cessation of fluid flow from the pump in the extracorporeal circuit through the collapsible lumen will cause the collapsible lumen to collapse. Removal of the catheter from the body vessel can take place generally after fluid flow through the collapsible lumen has ceased. The removal will further constrict the collapsible lumen and cause any remaining fluid in the collapsible lumen to be dispensed out the openings at the distal end, thus facilitating easy removal from the body vessel. The reduced catheter diameter during withdrawal further reduces trauma to the body vessel, which is a further technical advantage.
The catheter is also ideal for insertion through small arteries for ultimate positioning within a larger artery, such as for the purpose of delivering fluids into the large artery at suitable flow rates while minimizing trauma to the arteries by the catheter. It is intended that other arteries are suitable as access sites as well, such as the left carotid artery 92 and the right carotid artery 94. The desired insertion artery is left to the choice of the surgeon and will depend upon many criteria and will vary from patient to patient.
In summary, the present invention achieves technical advantages as a catheter which has the functional characteristics of a catheter having a predetermined outer diameter, but which during insertion and withdrawal has a smaller effective overall diameter. The present invention achieves advantages of a reduced-diameter single catheter which is suitable for insertion into smaller access arteries to reduce trauma to the arteries or blood vessels during insertion and withdrawal, while providing significant fluid flow therethrough to and toward the distal end of the catheter.
Though the invention has been described with respect to a specific preferred embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present application. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
This application is a continuation in part of application Ser. No. 09/204,108, now U.S. Pat. No. 6,179,827 filed Dec. 1, 1998, which claims the benefit of U.S. Provisional application Ser. No. 60/078,087, filed Mar. 16, 1998.
Number | Name | Date | Kind |
---|---|---|---|
2701559 | Cooper | Feb 1955 | A |
2936761 | Snyder | May 1960 | A |
3416531 | Edwards | Dec 1968 | A |
3640282 | Kamen et al. | Feb 1972 | A |
3674033 | Powers | Jul 1972 | A |
3802418 | Clayton | Apr 1974 | A |
3884242 | Bazell et al. | May 1975 | A |
3890970 | Gullen | Jun 1975 | A |
3902492 | Greenhalgh | Sep 1975 | A |
3913565 | Kawahara | Oct 1975 | A |
3983879 | Todd | Oct 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4055187 | Patel et al. | Oct 1977 | A |
4083369 | Sinnreich | Apr 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4173981 | Mortensen et al. | Nov 1979 | A |
4210478 | Shoney | Jul 1980 | A |
4211233 | Lin | Jul 1980 | A |
4230119 | Blum | Oct 1980 | A |
4248224 | Jones | Feb 1981 | A |
4249923 | Walda | Feb 1981 | A |
4251305 | Becker et al. | Feb 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4284073 | Krause et al. | Aug 1981 | A |
4285341 | Pollack | Aug 1981 | A |
4290428 | Durand et al. | Sep 1981 | A |
4297115 | Johnson, Jr. | Oct 1981 | A |
4301797 | Pollack | Nov 1981 | A |
4321920 | Gillig | Mar 1982 | A |
4328056 | Snooks | May 1982 | A |
4351341 | Goldberg et al. | Sep 1982 | A |
4375816 | Labianca | Mar 1983 | A |
4397335 | Doblar et al. | Aug 1983 | A |
4402684 | Jessup | Sep 1983 | A |
4406656 | Hattler et al. | Sep 1983 | A |
4413989 | Schjeldahl et al. | Nov 1983 | A |
4416280 | Carpenter et al. | Nov 1983 | A |
4417576 | Baran | Nov 1983 | A |
4423725 | Baran et al. | Jan 1984 | A |
4427009 | Wells et al. | Jan 1984 | A |
4433971 | Lindsay et al. | Feb 1984 | A |
4437856 | Valli | Mar 1984 | A |
4447590 | Szycher | May 1984 | A |
4449972 | Kruger | May 1984 | A |
4459977 | Pizon et al. | Jul 1984 | A |
4465072 | Taheri | Aug 1984 | A |
4474206 | Cannon | Oct 1984 | A |
4493697 | Krause et al. | Jan 1985 | A |
4501581 | Kurtz et al. | Feb 1985 | A |
4512163 | Wells et al. | Apr 1985 | A |
4512762 | Spears | Apr 1985 | A |
4522195 | Schiff | Jun 1985 | A |
4527549 | Gabbay | Jul 1985 | A |
4529397 | Hennemuth et al. | Jul 1985 | A |
4529400 | Scholten | Jul 1985 | A |
4531935 | Berryessa | Jul 1985 | A |
4531936 | Gordon | Jul 1985 | A |
4535757 | Webster, Jr. | Aug 1985 | A |
4540399 | Litzie et al. | Sep 1985 | A |
4566480 | Parham | Jan 1986 | A |
4568330 | Kujawski et al. | Feb 1986 | A |
4571241 | Christopher | Feb 1986 | A |
4575371 | Nordqvist et al. | Mar 1986 | A |
4577631 | Kreamer | Mar 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4596548 | DeVries et al. | Jun 1986 | A |
4596552 | DeVries | Jun 1986 | A |
4601706 | Aillon | Jul 1986 | A |
4601713 | Fuqua | Jul 1986 | A |
4606347 | Fogarty et al. | Aug 1986 | A |
4610661 | Possis et al. | Sep 1986 | A |
4610662 | Weikl et al. | Sep 1986 | A |
4617019 | Fecht et al. | Oct 1986 | A |
4639252 | Kelly et al. | Jan 1987 | A |
4643712 | Kulik et al. | Feb 1987 | A |
4648384 | Schmukler | Mar 1987 | A |
4655745 | Corbett | Apr 1987 | A |
4655746 | Daniels et al. | Apr 1987 | A |
4661095 | Taller et al. | Apr 1987 | A |
4664125 | Pinto | May 1987 | A |
4668215 | Allgood | May 1987 | A |
4676778 | Nelson, Jr. | Jun 1987 | A |
4680029 | Ranford et al. | Jul 1987 | A |
4689041 | Corday et al. | Aug 1987 | A |
4693243 | Buras | Sep 1987 | A |
4697574 | Karcher et al. | Oct 1987 | A |
4702252 | Brooks et al. | Oct 1987 | A |
4705507 | Boyles | Nov 1987 | A |
4712551 | Rayhanabad | Dec 1987 | A |
4714460 | Calderon | Dec 1987 | A |
4721109 | Healey | Jan 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4741328 | Gabbay | May 1988 | A |
4753637 | Horneffer | Jun 1988 | A |
4762130 | Fogarty et al. | Aug 1988 | A |
4781682 | Patel | Nov 1988 | A |
4781703 | Walker et al. | Nov 1988 | A |
4782834 | Maguire et al. | Nov 1988 | A |
4784638 | Ghajar et al. | Nov 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4787882 | Claren | Nov 1988 | A |
4790825 | Bernstein et al. | Dec 1988 | A |
4795439 | Guest | Jan 1989 | A |
4795446 | Fecht et al. | Jan 1989 | A |
4801297 | Mueller | Jan 1989 | A |
4803984 | Narayanan et al. | Feb 1989 | A |
4804358 | Karcher et al. | Feb 1989 | A |
4804365 | Litzie et al. | Feb 1989 | A |
4808158 | Kreuzer et al. | Feb 1989 | A |
4808163 | Laub | Feb 1989 | A |
4813935 | Haber et al. | Mar 1989 | A |
4817673 | Zoghby et al. | Apr 1989 | A |
4820349 | Saab | Apr 1989 | A |
4850969 | Jackson | Jul 1989 | A |
4863430 | Klyce et al. | Sep 1989 | A |
4863441 | Lindsay et al. | Sep 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4877035 | Bogen et al. | Oct 1989 | A |
4889137 | Kolobow | Dec 1989 | A |
4899787 | Ouchi et al. | Feb 1990 | A |
4902272 | Milder et al. | Feb 1990 | A |
4913683 | Gregory | Apr 1990 | A |
4919133 | Chiang | Apr 1990 | A |
4921478 | Solano et al. | May 1990 | A |
4927412 | Menasche | May 1990 | A |
4931330 | Stier et al. | Jun 1990 | A |
4943275 | Stricker | Jul 1990 | A |
4943277 | Bolling | Jul 1990 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
4957485 | Andersson et al. | Sep 1990 | A |
4966585 | Gangemi | Oct 1990 | A |
4988515 | Buckberg | Jan 1991 | A |
4990139 | Jang | Feb 1991 | A |
4991578 | Cohen | Feb 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5013296 | Buckberg et al. | May 1991 | A |
5021044 | Sharkawy | Jun 1991 | A |
5021045 | Buckberg et al. | Jun 1991 | A |
5024668 | Peters et al. | Jun 1991 | A |
5033998 | Corday et al. | Jul 1991 | A |
5041084 | DeVries et al. | Aug 1991 | A |
5041093 | Chu | Aug 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5059178 | Ya | Oct 1991 | A |
5059204 | Lawson et al. | Oct 1991 | A |
5069661 | Trudell | Dec 1991 | A |
5069674 | Fearnot et al. | Dec 1991 | A |
5074849 | Sachse | Dec 1991 | A |
5084033 | O'Neill et al. | Jan 1992 | A |
5090960 | Don Michael | Feb 1992 | A |
5112305 | Barath | May 1992 | A |
5116305 | Milder et al. | May 1992 | A |
5125395 | Adair | Jun 1992 | A |
5135474 | Swan et al. | Aug 1992 | A |
5135484 | Wright | Aug 1992 | A |
5149330 | Brightbill | Sep 1992 | A |
5151087 | Jonkman | Sep 1992 | A |
5158545 | Trudell et al. | Oct 1992 | A |
5163906 | Ahmadi | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5171218 | Fonger et al. | Dec 1992 | A |
5171232 | Castillo et al. | Dec 1992 | A |
5173346 | Middleton | Dec 1992 | A |
5176661 | Evard et al. | Jan 1993 | A |
5180368 | Garrison | Jan 1993 | A |
5186713 | Raible | Feb 1993 | A |
5192290 | Hilal | Mar 1993 | A |
5195942 | Weil et al. | Mar 1993 | A |
5195969 | Wang et al. | Mar 1993 | A |
5196024 | Barath | Mar 1993 | A |
5197952 | Marcadis et al. | Mar 1993 | A |
5209723 | Twardowski et al. | May 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5217466 | Hasson | Jun 1993 | A |
5219326 | Hattler | Jun 1993 | A |
5221258 | Shturman | Jun 1993 | A |
5226427 | Buckberg et al. | Jul 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5254091 | Aliahmad et al. | Oct 1993 | A |
5254097 | Schock et al. | Oct 1993 | A |
5269752 | Bennett | Dec 1993 | A |
5275622 | Lazarus et al. | Jan 1994 | A |
5279562 | Sirhan et al. | Jan 1994 | A |
5279596 | Castaneda et al. | Jan 1994 | A |
5281203 | Ressemann | Jan 1994 | A |
5290231 | Marcadis et al. | Mar 1994 | A |
5295994 | Bonutti | Mar 1994 | A |
5300015 | Runge | Apr 1994 | A |
5300022 | Klapper et al. | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306245 | Heaven | Apr 1994 | A |
5306249 | Don Michael | Apr 1994 | A |
5308319 | Ide et al. | May 1994 | A |
5308320 | Safar et al. | May 1994 | A |
5308323 | Sogawa et al. | May 1994 | A |
5308325 | Quinn et al. | May 1994 | A |
5312344 | Grinfeld et al. | May 1994 | A |
5314418 | Takano et al. | May 1994 | A |
5324253 | McRea et al. | Jun 1994 | A |
5324260 | O'Neill et al. | Jun 1994 | A |
5330451 | Gabbay | Jul 1994 | A |
5334142 | Paradis | Aug 1994 | A |
5334146 | Ozasa | Aug 1994 | A |
5334169 | Brown et al. | Aug 1994 | A |
5336191 | Davis et al. | Aug 1994 | A |
5338298 | McIntyre | Aug 1994 | A |
5342325 | Lun et al. | Aug 1994 | A |
5344399 | DeVries | Sep 1994 | A |
5354288 | Cosgrove et al. | Oct 1994 | A |
5356388 | Sepetka et al. | Oct 1994 | A |
5358486 | Saab | Oct 1994 | A |
5358493 | Schweich, Jr. et al. | Oct 1994 | A |
5360403 | Mische | Nov 1994 | A |
5363882 | Chikama | Nov 1994 | A |
5364357 | Aase | Nov 1994 | A |
5378230 | Mahurkar | Jan 1995 | A |
5383854 | Safar et al. | Jan 1995 | A |
5395330 | Marcadis et al. | Mar 1995 | A |
5395331 | O'Neill et al. | Mar 1995 | A |
5401244 | Boykin et al. | Mar 1995 | A |
5405338 | Kranys | Apr 1995 | A |
5407435 | Sachse | Apr 1995 | A |
5411706 | Hubbard et al. | May 1995 | A |
5423745 | Todd et al. | Jun 1995 | A |
5423764 | Fry | Jun 1995 | A |
5425708 | Nasu | Jun 1995 | A |
5433700 | Peters | Jul 1995 | A |
5437288 | Schwartz et al. | Aug 1995 | A |
5437637 | Lieber et al. | Aug 1995 | A |
5439444 | Andersen et al. | Aug 1995 | A |
5441484 | Atkinson et al. | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5443448 | DeVries | Aug 1995 | A |
5448989 | Heckele | Sep 1995 | A |
5449342 | Hirose et al. | Sep 1995 | A |
5449343 | Samson et al. | Sep 1995 | A |
5451204 | Yoon | Sep 1995 | A |
5451207 | Yock | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5453099 | Lee et al. | Sep 1995 | A |
5458574 | Machold et al. | Oct 1995 | A |
5458575 | Wang | Oct 1995 | A |
5460608 | Lodin et al. | Oct 1995 | A |
5460610 | Don Michael | Oct 1995 | A |
5462523 | Samson et al. | Oct 1995 | A |
5462530 | Jang | Oct 1995 | A |
5466222 | Ressemann et al. | Nov 1995 | A |
5466225 | Davis et al. | Nov 1995 | A |
5470313 | Crocker et al. | Nov 1995 | A |
5472418 | Palestrant | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5484409 | Atkinson et al. | Jan 1996 | A |
5487730 | Marcadis et al. | Jan 1996 | A |
5490837 | Blaeser et al. | Feb 1996 | A |
5499996 | Hill | Mar 1996 | A |
5501667 | Verduin, Jr. | Mar 1996 | A |
5505698 | Booth et al. | Apr 1996 | A |
5522819 | Graves et al. | Jun 1996 | A |
5533957 | Aldea | Jul 1996 | A |
5533968 | Muni et al. | Jul 1996 | A |
5536250 | Klein et al. | Jul 1996 | A |
5540653 | Schock et al. | Jul 1996 | A |
5554119 | Harrison et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
RE35352 | Peters | Oct 1996 | E |
5562606 | Huybregts | Oct 1996 | A |
5569201 | Burns | Oct 1996 | A |
5569219 | Hakki et al. | Oct 1996 | A |
5571089 | Crocker | Nov 1996 | A |
5571091 | Davis et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573508 | Thornton | Nov 1996 | A |
5575771 | Walinsky | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5593394 | Kanesaka et al. | Jan 1997 | A |
5597377 | Aldea | Jan 1997 | A |
RE35459 | Jonkman | Feb 1997 | E |
5599325 | Ju et al. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5607394 | Andersen et al. | Mar 1997 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5609571 | Buckberg et al. | Mar 1997 | A |
5611775 | Machold et al. | Mar 1997 | A |
5616149 | Barath | Apr 1997 | A |
5618267 | Palestrant | Apr 1997 | A |
5620418 | O'Neill et al. | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5634895 | Igo et al. | Jun 1997 | A |
5645560 | Crocker et al. | Jul 1997 | A |
5653696 | Shiber | Aug 1997 | A |
5658251 | Ressemann et al. | Aug 1997 | A |
5658264 | Samson | Aug 1997 | A |
5658311 | Baden | Aug 1997 | A |
5662607 | Booth et al. | Sep 1997 | A |
5662620 | Lieber et al. | Sep 1997 | A |
5674197 | van Muiden et al. | Oct 1997 | A |
5695457 | St. Goar et al. | Dec 1997 | A |
5695483 | Samson | Dec 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5700253 | Parker | Dec 1997 | A |
5702372 | Nelson | Dec 1997 | A |
5707389 | Louw et al. | Jan 1998 | A |
5716340 | Schweich, Jr. et al. | Feb 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5738652 | Boyd et al. | Apr 1998 | A |
5755660 | Tyagi | May 1998 | A |
5755687 | Donlon | May 1998 | A |
5755690 | Saab | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5769828 | Jonkman | Jun 1998 | A |
5782811 | Samson et al. | Jul 1998 | A |
5795331 | Cragg et al. | Aug 1998 | A |
5795332 | Lucas et al. | Aug 1998 | A |
5795341 | Samson | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5800375 | Sweezer et al. | Sep 1998 | A |
5807384 | Mueller | Sep 1998 | A |
5810757 | Sweezer, Jr. et al. | Sep 1998 | A |
5813410 | Levin | Sep 1998 | A |
5836926 | Peterson et al. | Nov 1998 | A |
5843116 | Crocker | Dec 1998 | A |
5865721 | Andrews et al. | Feb 1999 | A |
5873865 | Horzewski et al. | Feb 1999 | A |
5873866 | Kondo et al. | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5885238 | Stevens et al. | Mar 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5913842 | Boyd et al. | Jun 1999 | A |
5928181 | Coleman et al. | Jul 1999 | A |
5941858 | Johnson | Aug 1999 | A |
5947125 | Benetti | Sep 1999 | A |
5947940 | Beisel | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5957879 | Roberts et al. | Sep 1999 | A |
5965089 | Jarvik et al. | Oct 1999 | A |
5984908 | Davis et al. | Nov 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6015402 | Sahota | Jan 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6045531 | Davis | Apr 2000 | A |
6068608 | Davis et al. | May 2000 | A |
6132397 | Davis et al. | Oct 2000 | A |
6135982 | Campbell | Oct 2000 | A |
6152911 | Giannoble | Nov 2000 | A |
6179827 | Davis et al. | Jan 2001 | B1 |
6190311 | Glines et al. | Feb 2001 | B1 |
6241699 | Suresh et al. | Jun 2001 | B1 |
6258069 | Carpentier et al. | Jul 2001 | B1 |
6319244 | Suresh et al. | Nov 2001 | B2 |
6458097 | Boussignac | Oct 2002 | B1 |
Number | Date | Country |
---|---|---|
867144 | Feb 1953 | DE |
3417738 | Nov 1985 | DE |
150960 | Aug 1985 | EP |
218275 | Apr 1987 | EP |
249338 | Dec 1987 | EP |
266957 | May 1988 | EP |
280225 | Aug 1988 | EP |
357338 | Mar 1990 | EP |
415332 | Mar 1991 | EP |
417781 | Mar 1991 | EP |
451996 | Oct 1991 | EP |
485903 | May 1992 | EP |
582870 | Feb 1994 | EP |
664104 | Jul 1995 | EP |
668058 | Aug 1995 | EP |
704226 | Apr 1996 | EP |
730879 | Sep 1996 | EP |
769307 | Apr 1997 | EP |
791340 | Aug 1997 | EP |
2567405 | Jan 1986 | FR |
1547328 | Jun 1979 | GB |
8704081 | Jul 1987 | WO |
9108791 | Jun 1991 | WO |
9217118 | Oct 1992 | WO |
9220398 | Nov 1992 | WO |
9418881 | Sep 1994 | WO |
9511719 | May 1995 | WO |
9517919 | Jul 1995 | WO |
9528983 | Nov 1995 | WO |
9532756 | Dec 1995 | WO |
9617644 | Jun 1996 | WO |
9630072 | Oct 1996 | WO |
9640347 | Dec 1996 | WO |
9717099 | May 1997 | WO |
9717100 | May 1997 | WO |
9732623 | Sep 1997 | WO |
9848884 | Nov 1998 | WO |
9904836 | Feb 1999 | WO |
9904845 | Feb 1999 | WO |
9904848 | Feb 1999 | WO |
0032264 | Jun 2000 | WO |
0054829 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
60078087 | Mar 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09204108 | Dec 1998 | US |
Child | 09707487 | US |