Catheter including cutting element and energy emitting element

Information

  • Patent Grant
  • 11666355
  • Patent Number
    11,666,355
  • Date Filed
    Wednesday, January 29, 2020
    4 years ago
  • Date Issued
    Tuesday, June 6, 2023
    11 months ago
Abstract
A catheter for removing tissue from a body lumen and for providing information relating to the body lumen. The catheter includes a tissue cutting element that rotates relative to the catheter body and is mounted to the drive shaft for imparting rotation to the tissue cutting element. An energy emitting element of the catheter rotates relative to the catheter body and is rotatable independently of the tissue cutting element.
Description
BACKGROUND OF THE INVENTION

The present invention is directed to devices and methods for cutting tissue. In a specific application, the present invention is directed to devices and methods for re-entering the true lumen from a subintimal space such as a dissection plane or so-called “false lumen.”


Guidewires and other interventional devices are used to treat vessels and organs using endovascular approaches. A guidewire is typically guided through blood vessels to the treatment site and the device is then advanced over the guidewire. For example, angioplasty and stenting are generally accomplished by first introducing a guidewire to the desired site and then advancing the angioplasty or stent catheter over the guidewire.


When attempting to advance a guidewire or other interventional device through a highly stenosed region or chronic total occlusion (CTO), the guidewire or device may inadvertently enter into the wall of the vessel to create a sub-intimal space. Once in a sub-intimal space, it can be difficult to re-enter the vessel true lumen. Devices for reentering a vessel true lumen from a subintimal location are described in WO 02/45598 which is hereby incorporated by reference.


BRIEF SUMMARY OF THE INVENTION

In one aspect of the present invention, a catheter is provided which has a rotating active element and a rotating energy emitter. The active element is mounted to a shaft. The energy emitter may be mounted to another shaft. The elements notate independently which may provide advantages over devices which ample the energy emitter and cutting element (or other active element) together. A problem with device which couple the energy emitter to another rotating element, such as a cutting element, is that rotation of the energy emitting element may be disrupted by resistance met by the cutting element during rotation. Disruption in rotation of the energy emitting element can negatively impact the ability to gather useful information from the energy received.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a view of the system of the present invention.



FIG. 2 shows a guidewire positioned proximate to a total occlusion.



FIG. 3 shows a subintimal space created adjacent a true lumen by the guidewire.



FIG. 4 shows a reentry device of the present invention advanced over the guidewire to the subintimal space.



FIG. 5 shows a guidewire positioned in the true lumen.



FIG. 6 shows the reentry device with the cutting element in a stored position.



FIG. 7 shows the reentry device with the cutting element in a cutting position.



FIG. 8 is a side view of the reentry device of FIG. 7.



FIG. 9 shows another reentry device with the cutting element in a stored position.



FIG. 10 shows the reentry device of FIG. 9 with the cutting element in a cutting position and the distal portion bent.



FIG. 11 shows the reentry device of FIGS. 9 and 10 with the cutting element advanced to another cutting position which exposes even more of the cutting element and also bends the distal tip further.



FIG. 12 shows another reentry device which has a bendable distal portion.



FIG. 13 shows the reentry device of FIG. 12 with the distal portion bent.



FIG. 14 shows still another reentry device with a cutting element which may be tilted.



FIG. 15 shows the reentry device of FIG. 14 with the cutting element tilted to expose more of the cutting element and to move the cutting element through the opening in the body of the device.



FIG. 16 shows the reentry device of FIG. 6 having a junction leading to two separate guidewire outlets with the guidewire positioned in the first outlet during advancement of the device over the guidewire.



FIG. 17 show s the reentry device of FIG. 16 with the guidewire extending through the second outlet for directing the guidewire into the true lumen.



FIG. 18 shows a catheter having a lumen for receiving a guidewire and another lumen which receives the reentry device.



FIG. 19 shows another catheter having a single lumen through which the guidewire and reentry device pass.



FIG. 20 shows an external view of another device for cutting tissue having a sizer.



FIG. 21 shows another external view of the device of FIG. 20.



FIG. 22 is a cross-sectional view of the device of FIGS. 20 and 21.



FIG. 23 is a cross-sectional view of the device of FIGS. 20 and 21 with the sizer moved inward.



FIG. 24 shows another catheter for cutting tissue.



FIG. 25 shows a proximal end of the catheter of FIG. 24.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1-8, a system 2 and device 4 for reentering a true lumen from a subintimal space, dissection plane or so-called false lumen is shown. The device 4 includes a cutting element 6 coupled to a torque transmitting element 8, such as a wire 10, which rotates the cutting element 6. The device 4 has an opening 12 at a distal end 14 with the cutting element 6 movable between a stored position (FIG. 6) and a cutting position (FIGS. 7 and 8) which exposes the cutting element 6. The cutting element 6 may be any suitable cutting element 6 such as the cutting element 6 described in patents incorporated by reference above. The cutting element 6 has a circular cutting edge which has a diameter of about 1 mm although any suitable size may be used depending upon the particular application. The cutting element 6 may also be any other type of cutter such as a laser, ultrasound, RF or other type of cutter without departing from various aspects of the present invention.


The device 4 has a flexible body 6 to navigate through blood vessels or other body lumens to a target location. The body 16 may be made of any suitable material as is known in the art such as Pebax. The torque transmitting element 8 extends through a lumen 18 in the body 16. The body 16 may have more lumens for various reasons such as introduction of fluids, such as contrast, or for delivery of another device 4 such as a guidewire or interventional device. The torque transmitting element 8 is coupled to a driver 20 which rotates the torque transmitting element 8 at a variable or fixed speed.


The device 4 may also have an energy emitting element 22, such as an ultrasound element 25, which emits (and may receive) energy to determine the location of the true lumen as explained below. The energy emitting element 22 is coupled to the cutting element 6 so that the energy emitting element 22 and cutting element 6 are rotated together. The cutting element 6 is in the stored position when locating the true lumen so that the cutting element 6 is not exposed and will not cut or damage tissue. The energy emitting element 22 is positioned adjacent a window 24 which may be a side opening 20 or may simply be a portion of the sidewall which transmits a sufficient amount of the energy therethrough. Any suitable energy emitting element 22 may be used such as the ultrasound emitting element available from Boston Scientific and is marketed under the name Atlantis™. The cutting element 6 may be mounted to a collar which is then mounted to an ultrasound element holder 28 or the cutting element 6 may be integrally formed with the ultrasound element holder 28.


The device 4 has an atraumatic tip 34 which is relatively flexible to prevent damaging tissue. The tip 34 may be a separate piece laminated or glued to the body 16. The tip 34 is preferably made out of a relatively soft, flexible material, such as tecothane, and may be used for blunt dissection as necessary. A reinforcing element 36 is encapsulated in the tip 34 to help the tip 34 maintain its general shape. The tip 34 may also have one or more guidewire lumens 38 or any of the guidewire features described herein.


The opening 12 in the distal portion may be designed to expose over 180 degrees of the cutting element 6 and may even expose 220 degrees or even 270 degrees of the cutting element 6 as defined by the axis of rotation. This provides advantages over WO 02/45598 which docs not expose much of the cutting element 6 and requires invagination of the tissue within the opening to cut tissue. In another aspect of the invention, the cutting element 6 may be gradually exposed. For example, the cutting element 6 may be gradually exposed from 180-220 degrees or even 200-270 degrees. As explained below, this feature provides the user with the ability to change the amount of cutter 6 that is exposed depending upon the tissue thickness between the subintimal location and true lumen. The term opening 12 and amount of exposure of the cutting element 6 are defined by the outer bounds of the opening 12 and the axis of rotation. Referring to FIGS. 7 and 8, the cutting element 6 is exposed relative to the outer bounds of the opening 12 due to the relatively open distal end.


Referring to FIGS. 9-11, another device 4A for reentering a true lumen from a subintimal location is shown wherein the same or similar reference numbers refer to the same or similar structure. The device 4A also has an opening 12A at the distal end to expose the cutting element 6A. FIG. 9 shows the cutting element 6A in a stored position, FIG. 10 shows the cutting element 6A in a first cutting position and FIG. 11 shows the cutting element 6A in a second cutting position which further exposes the element 6A. The device 4A also has the window 24 through which the energy emitting element 22, such as the ultrasound element, may emit energy when the cutting element 6A is in the stored position.


A distal portion 40 of the body can bend or articulate to further expose the cutting element 6A and to move the cutting element 6A toward true lumen. The body has slots 42 formed therein to increase the flexibility of the distal portion 40. The cutting element 6A has a surface 44 which engages a lip 46 on the body. As the cutting element 6A is advanced, the interaction between the surface 44 and lip 46 causes the distal portion 40 to deflect. Bending the distal portion 40 can be helpful in moving the cutting element 6A toward the tissue and may also expose more of the cutting element 6A. As also explained below, the tip 40 may also be bent to direct the device 4A itself or a guidewire into the true lumen. The cutting element 6A may also be gradually exposed as the cutting element 6A moves distally and may be gradually exposed in the same manner described above.


Referring to FIGS. 12 and 13, another reentry device 4B is shown which has a distal portion or tip 60 which bends or articulates. The tip 60 may be articulated and actuated in any suitable manner. For example, the tip 60 may be bent upon longitudinal movement of the cutting element 6 (as shown above) or a separate actuator, such as a pull wire 62, may be used. As can be appreciated from FIG. 13, the tip 60 is bent or articulated to move the cutting element 6 toward the true lumen and to expose more of the cutting element 6. The device 4B may also be bent to direct the device 4B itself or another device or guidewire through the guidewire lumen 38 to the access path into the true lumen as described further below.


Referring to FIGS. 14 and 15, still another device 4C for cutting tissue is shown wherein the same or similar numbers refer to the same or similar structure. The device 4C includes a cutting element 6C, an energy emitting element 220 and a torque transmitter 8C for rotating the elements. The device 4C has an opening 64 along one side. The cutting element 6C is contained within the opening 64 in the stored position of FIG. 14 and extends out of the opening 64 in the cutting position of FIG. 15. The cutting element 6C is moved out of the window 24 using an actuator 68, such as a wire 70, which tilts a bearing 72 supporting the shaft of the rotatable cutting element 6C. Of course, any other suitable structure may be used to move (be cutting element 6C outside the opening 64 such as those described in U.S. Pat. No. 6,447,525 which is hereby incorporated by reference. Furthermore, the cutting element 6C may be moved out of the opening 64 by bending the distal portion or tip as described herein.


Use of the devices 4, 4A-C is now described with reference to the device 4 although it is understood that any of the devices 4, 4A-C may be used. As mentioned above, the device 4 may be used to perform any suitable procedure to cut from one location to another in the body such as a procedure to reenter a true lumen. The device 4 is initially advanced to a position within a subintimal space SS. As described above, the subintimal space SS may be inadvertently created during an endovascular procedure with a guidewire GW or other device creating the subintimal space SS as shown in FIGS. 2 and 3. The device 4 may be introduced over the same guidewire GW or device which created the subintimal space SS as shown in FIGS. 4 and 5. Of course, the device 4 may also be advanced over the guidewire GW to a position proximate to the subintimal space SS after which the device 4 is then advanced by itself into the subintimal space SS.


After the device 4 is positioned at the appropriate location in the subintimal space SS, the energy emitting element 22 is used to determine the location of the true lumen. When using the ultrasound element 28, for example, the ultrasound element 28 is rotated while emitting ultrasound energy and the energy emitted through the window 24 and reflected back through the window 24 is processed as is known in the art. The entire device 4 is rotated within the subintimal space SS to orient the window 24 until the true lumen is located. The angular orientation of the device 4 is then maintained so that the opening 12 and window 24 are directed toward the true lumen.


The cutting element 6 is then moved to the cutting position to expose the cutting element 6. The cutting element 6 may be rotated with the driver 20 during this time so that cutting is initiated as the cutting element 6 is exposed. In another aspect of the invention, the entire device 4 itself may be moved through the subintimal space to cut tissue. This provides advantages over the method of WO 02/45598 which requires invagination of tissue through a window to attempt a cut at one location. If the tissue does not invaginate sufficiently into the window, such as when die tissue is too thick, the device of WO 02/45598 will not be able to cut completely through the tissue to create the access path to the true lumen. The user must then move the device and again attempt to invaginate enough tissue to cut an access path. The present invention provides the ability to move the entire device 4 through the subintimal space to create the access path rather than attempting a cut at a single discrete location as in WO 02/45598. Of course, the device 4 may also be used by moving only the cutting element 6 rather than the entire device 4 without departing from the invention.


The cutting element 6 may also be exposed to varying degrees, as described above, until enough of the cutting element 6 is exposed to cut through to the true lumen. For example, the user may choose to expose half of die cutting element 6 and attempt to create an access path to the true lumen. If an access path is not created, the user may then choose to expose more of the cutting element 6 and again attempt to create an access path. This procedure can be repeated until the access path is formed to the true lumen. The device 4A, 4B may be also have a distal tip or portion 40, 60 which bends to move the cutting element 6 toward the tissue and/or expose more of the cutting element 6 during cutting.


After successfully creating the access path into the true lumen, the device 4 itself or part thereof may be directed toward or through the access path. Referring to FIGS. 9-13, for example, the distal portion or tip 40, 60 may be bent to help direct the device 4A, 4B itself or the guidewire GW through the access path.


Referring to FIGS. 16 and 17, another device 4D, similar to device 4, is shown which has a guidewire lumen 74 having a junction 76 so the guidewire can be directed through either a first lumen 77 having a first outlet 78 or a second lumen 79 having a second outlet 80. The first outlet 78 directs the guidewire substantially longitudinally for advancing the device 4D over the guidewire to the target area in a conventional manner. The second outlet 80 directs the guidewire at an angle relative to the longitudinal axis, such as 30-75 degrees, to direct the guidewire through the access path into the true lumen.


The junction 76 may include a feature which directs the guidewire into the second outlet 80. Referring to FIG. 17, for example, the junction 76 may include a flap or stop 82 which closes and prevents or inhibits the guidewire from passing through the first outlet 78 after the guidewire has been withdrawn proximal to the junction 76. When the guidewire is advanced again as shown in FIG. 17, the guidewire passes through the second outlet 80 due to the stop 82. The device 4 and/or guidewire GW are then manipulated to direct the guidewire GW through the access path. Although the stop 82 may be provided, the junction 76 may also simply be a relatively open junction 76 with the user manipulating and rotating the guidewire GW to direct the guidewire GW through the desired outlet 78, 80. The device is rotated about 180 degrees after creating the access path to direct the GW through outlet 80 and into the true lumen.


Referring to FIGS. 18 and 19, the system 2 may also include a sheath or catheter 90 which is advanced proximal to the treatment site. The sheath 90 may help provide better control of the guidewire GW and devices 4 of the present invention during manipulation in the subintimal space. The sheath 90 may also used to deliver contrast solution to the treatment site from a source of contrast 97 (see FIG. 1) or may be coupled to a pressure sensor 94. The pressure sensor 94 may be part of the contrast delivery system 97 or may be a separate component. Deliver of contrast and/or pressure monitoring may be used to determine when the access path has been created.


The sheath 90 may include only one lumen 92 with fluid delivery and pressure sensing being accomplished in the annular space between the device and sheath as shown in FIG. 19. The sheath 90 may also have first and second lumens 96, 98 for separate delivery of the device 4 and guidewire GW. As mentioned above, the devices 4 of the present invention may be advanced over the same guidewire or device that created the subintimal space or may be advanced over another guidewire or even through the sheath 90 by itself.


After accessing the true lumen, another interventional device may be introduced into the true lumen for the intended therapy or procedure. For example, a stent catheter, angioplasty catheter, or atherectomy device may be used to treat the occlusion. The present invention has been described for reentering a true lumen from a subintimal space but, of course, may be used for other purposes to gain access from one space to another anywhere within the body.


Referring to FIGS. 20-23, another device 100 for cutting tissue is shown wherein the same or similar reference numbers refer to the same or similar structure. The device 100 includes an elongate body 116 and a cutting element 106 coupled to a drive element 108 which is rotated to drive the cutting element 106. The drive element 108 extends through a lumen 118 in the body 116 and is driven by a driver (not shown) at the proximal end. The cutting element 106 may be any suitable cutting element 106 including those described in the applications incorporated herein. The cutting element 106 has an essentially circular cutting surface 107 along the leading edge of the cutting element 106.


The body 116 has an opening 112 therein and the tissue cutter 106 is movable from the stored position of FIGS. 20 and 22 to the cutting position of FIG. 23. When moved to the cutting position of FIG. 23, part of the tissue cutting element 116 becomes exposed relative to opening 112. The opening 112 may be a side opening as shown in FIGS. 20-23 or may be a distal opening as shown in other devices described herein such as the devices of FIGS. 1-19. The tissue cutting element 106 moves relative to the body 116 so that a cutting height 117 of the tissue cutting element 106 changes as the position of the cutting element changes relative to the body 116. The cutting height 117 is defined by a maximum distance from the cutting surface 107 to an outer surface 109 of the body 116.


The device 100 has a sizer 119 coupled to the body 116 which automatically adjusts the cutting height 117 based on vessel size. The sizer 119 is naturally biased to an outer position of FIG. 22 by a spring 122 which defines a maximum width of the device along the sizer 119, The sizer 119 is moved inward from the position of FIG. 22 when contact with the vessel wall overcomes the force biasing the sizer 119 outward. In simplistic terms, the sizer 119 is essentially moved inward by the vessel wall when the vessel size is smaller than the width of the device 100. Thus, the sizer 119 moves between the positions of FIGS. 22 and 23 as the diameter of the vessel varies within a given range. When the vessel diameter is larger than the diameter of the device 100, the tissue cutting element 106 will remain in the stored position of FIG. 22. Stated another way, the sizer 119 is coupled to the tissue cutting element 106 so that an outward force is applied to the tissue cutting element 106 when the sizer 119 moves inward. The outward force on the tissue cutting element 106 being directed away from the body 116.


The sizer 119 is coupled to the tissue cutting element 106 so that the amount of exposure of the cutting element, such as the cutter height 117, changes when the vessel diameter changes. In the embodiment of FIG. 16, the exposure of the tissue cutting element 106 is increased when the vessel diameter decreases so that a deeper cut is made in smaller vessels. A deeper cut may be desired when removing tissue in smaller vessels to increase the flow of blood through the vessel. The user may still move the tissue cutting element 106 to the cutting position of FIG. 23 by pulling on the drive element 108 so that a contact surface 123 on the sizer 119 engages a ramp 126 on an inner wall 128 of the body 116 to move the cutting element 106 to the position of FIG. 23.


The tissue cutting device 100 may be used to cut tissue for any purpose. Furthermore, the device 100 has been described in connection with cutting tissue in blood vessels but may be used for any other purpose in the vasculature. The tissue may be cut and left within the body or may be removed in any suitable manner. For example, the device 100 may include a tissue collection chamber 130 coupled to the body 116 distal to the cutting element 106. The tissue cutting element 106 cuts tissue and directs the tissue into the collection chamber 130. The tissue cut by the tissue cutting element 106 is parted off from the surrounding tissue by moving the cutting element 106 back to the stored position.


Referring to FIG. 24, another catheter 200 is shown which is similar to the device 100 described above and description of the device 100 is incorporated here. The catheter 200 has an elongate body 232 and an active element 205, such as a tissue cutting element 206, which is mounted to a drive shaft 208. The drive shaft 208 is positioned in a lumen 210 in the body 232. The body 232 has an opening 234 and the cutting element 206 is movable relative to the opening 234 between the stored position of FIG. 24 and a cutting position in which the cutting element 206 extends out of the opening 234 (not shown).


An energy emitting element 222, such as an ultrasound element 224, is mounted to a shaft 223 positioned in a lumen 225 in the drive shaft 208 of the active element 205. The energy emitting element 222 emits energy toward tissue which is reflected back from the tissue to the catheter 200 and measured by the catheter 200 to provide information about the vasculature. The energy reflected back to the catheter 200 may be received by the energy emitting element 222 itself, such as when using the ultrasound element 224, or may be received by another part of the catheter 200 other than the emitter 222. The energy which is received back at the catheter 200 is then processed as is known in the art to provide the user with information such as an image of the vessel.


The drive shaft 208 and the body 232 each have a part 235, 237 adjacent to the emitter 222 which permits energy to pass therethrough. Energy reflected back at the catheter 200 from the tissue may also pass back through the parts 235, 237 of the body 232 and shaft 208 to be received by the emitter 222 or another part of the catheter 200. Of course, the catheter 200 may also have an open window through which energy is emitted rather than directing energy through parts of the body 232 and/or shaft 208.


Referring now to FIGS. 24 and 25, the drive shafts 208, 223 of the energy emitting element 222 and the active element 205 may both be coupled to and driven by a single rotating driver 230. Although both rotating elements 205, 222 may be driven by the same driver, the elements 205, 222 may rotate somewhat independently which may provide advantages over devices which couple the energy emitter and cutting element (or other active element) together. A problem with devices which couple the energy emitter to another rotating element, such as a cutting element, is that rotation of the energy emitting element may be disrupted by resistance met by the cutting element during rotation. Disruption in rotation of the energy emitting element can negatively impact the ability to gather useful information from the energy received. Separating the energy emitting element 222 from the cutting element 206 isolates the energy emitting element 222 from potential disruptions caused by disruptions in rotation of the cutting element 206. To this end, the two drive shafts 208, 223 may be unattached to one another for a length of at least 10 cm or at least 20 cm from the energy emitting element. The drive shafts 208, 223 are free of attachments to one another until they reach a proximal hub 239 which couples the two shafts 208, 223 together as shown in the schematic representation of FIG. 25. The hub 239 is coupled to a connector 241 on the driver 230 so that the proximal end of the shafts 208, 223 essentially rotate together. Although the proximal ends of the shafts 208, 223 may be coupled together, the energy emitting element 222 and cutting element 205 at the distal ends of the shafts 208, 223 are somewhat free to rotate relative to one another since each shaft 208, 223 acts like a torsion spring which stores and releases energy as necessary. For example, the cutting element 206 may encounter resistance which slows or stops rotation. The shaft 208 will act like a torsion spring which permits the cutting element 206 to lag behind rotation of the energy emitting element 222. Of course, the two shafts 208, 223 may be free to rotate relative to one another along their entire length without departing from numerous aspects of the invention.


Although the catheter 200 has been described in connection with cutting tissue, the catheter 200 may use any other suitable active element which is rotated such as an ablating element, a diagnostic tool, or a drug delivery element. The tissue which has been cut may be left in the body or removed in any suitable manner, for example, the catheter 200 may also have a tissue collection element 236 positioned distal to the cutting element 206. The cutting element 206 cuts tissue and directs the tissue through the opening 234 in the body 232 and into the tissue collection element 230 as the catheter 200 is advanced.


The present invention has been described in connection with the preferred embodiments, however, it is understood that numerous alternatives and modifications can be made within the scope of the present invention as defined by the claims.

Claims
  • 1. A tissue-removing catheter for removing tissue from a body lumen, the tissue-removing catheter comprising: a catheter body assembly having a longitudinal axis, and a proximal end portion and a distal end portion spaced apart along the longitudinal axis, the catheter body assembly comprising a tip member defining the distal end portion of the catheter body assembly and a flexible tube coupled to the tip member and extending from the tip member toward the proximal end portion of the catheter body, the catheter body assembly defining a lumen extending through the catheter body assembly along the longitudinal axis, the lumen including a distal opening which opens longitudinally through the distal end portion of the catheter body assembly, the catheter body assembly further comprising a side window spaced apart proximally of the distal opening, the side window being configured to communicate energy radially through the catheter body with respect to the longitudinal axis; anda rotational assembly having a rotational axis and a proximal end portion and a distal end portion spaced apart along the rotational axis, the rotational assembly being at least partially received in the lumen of the catheter body assembly and being rotatable as a unit with respect to the catheter body assembly about the rotational axis, the rotational assembly comprising: an elongate torque-transmitting element having a proximal end portion and a distal end portion spaced apart along the rotational axis;a cutting element coupled to the distal end portion of the elongate torque-transmitting element and defining the distal end portion of the rotational assembly, the cutting element being configured to extend through the distal opening and to cut tissue adjacent the distal end portion of the catheter body assembly as the rotational assembly rotates about the rotational axis; andan energy-emitting element spaced apart proximally of the cutting element along the rotational axis, the energy-emitting element being configured to emit energy radially outward with respect to the rotational axis as the rotational assembly rotates about the rotational axis, the energy-emitting element being configured to radially overlap the side window with respect to the longitudinal axis of the catheter body assembly such that the energy emitted from the energy-emitting element is passable through the side window as the rotational element rotates about the rotational axis, wherein the energy-emitting element is configured to emit the energy through the side window toward tissue such that the energy is reflected back from the tissue to the catheter.
  • 2. The tissue-removing catheter as set forth in claim 1, wherein the energy-emitting element is configured to emit ultrasound energy.
  • 3. The tissue-removing catheter as set forth in claim 1, wherein the catheter is configured to measure the energy reflected back from the tissue to provide information about the body lumen.
  • 4. The tissue-removing catheter as set forth in claim 3, wherein the catheter is configured to provide an image of the body lumen.
  • 5. The tissue-removing catheter as set forth in claim 1, wherein the catheter body assembly comprises a longitudinal bending segment spaced apart proximally from the side window.
  • 6. The tissue-removing catheter as set forth in claim 5, wherein the catheter body assembly has different bending properties along the longitudinal bending segment and along a longitudinal segment of the catheter body assembly located immediately proximal of the longitudinal bending segment.
  • 7. The tissue-removing catheter as set forth in claim 5, wherein the longitudinal bending segment is selectively bendable to adjust a distance in a plane extending along the longitudinal axis between a first point on the cutting element and a second point on the catheter body assembly diametrically opposite the first point with respect to the longitudinal axis.
  • 8. The tissue-removing catheter as set forth in claim 1, wherein the cutting element comprises a cutting edge extending circumferentially about the rotational axis.
  • 9. The tissue-removing catheter as set forth in claim 1, wherein the rotational assembly comprises a holder on which the energy-emitting element is mounted.
  • 10. The tissue-removing catheter as set forth in claim 9, wherein the holder and the cutting element are integrally formed from a single piece of monolithic material.
  • 11. The tissue-removing catheter as set forth in claim 9, wherein the cutting element is mounted on the holder.
  • 12. The tissue-removing catheter as set forth in claim 1, further comprising a guidewire lumen.
  • 13. The tissue-removing catheter as set forth in claim 1, wherein the entire tip member is radially outward of the cutting element with respect to the longitudinal axis such that no portion of the tip member longitudinally overlaps any portion of a distal end face of the cutting element.
  • 14. The tissue-removing catheter as set forth in claim 1, wherein the side window comprises a radial opening in the tip member.
  • 15. The method as set forth in claim 14, further comprising rotating the catheter body assembly about the longitudinal axis to an orientation at which the side window opposes a portion of a wall of the body lumen.
  • 16. A method of removing tissue from a body lumen, the method comprising: introducing the tissue-removing catheter of claim 1 into the body lumen;emitting energy from the energy-emitting element while rotating the rotational assembly about the rotational axis to determine a location of the tissue-removing catheter relative to the body lumen; andcutting tissue with the cutting element while rotating the rotational assembly about the rotational axis.
  • 17. The method as set forth in claim 16, further comprising maintaining the catheter body assembly in said orientation while performing the step of cutting the tissue so that the tissue-removing catheter advances toward said portion of the wall of the body lumen.
  • 18. A tissue-removing catheter for removing tissue from a body lumen, the tissue-removing catheter comprising: a catheter body assembly having a longitudinal axis, and a proximal end portion and a distal end portion spaced apart along the longitudinal axis, the catheter body assembly comprising a tip member defining the distal end portion of the catheter body assembly and a flexible tube coupled to the tip member and extending from the tip member toward the proximal end portion of the catheter body, the catheter body assembly defining a lumen extending through the catheter body assembly along the longitudinal axis, the lumen including a distal opening which opens longitudinally through the distal end portion of the catheter body assembly, the catheter body assembly further comprising a side window spaced apart proximally of the distal opening, the side window being configured to communicate energy radially through the catheter body with respect to the longitudinal axis;a guidewire lumen; anda rotational assembly having a rotational axis and a proximal end portion and a distal end portion spaced apart along the rotational axis, the rotational assembly being at least partially received in the lumen of the catheter body assembly and being rotatable as a unit with respect to the catheter body assembly about the rotational axis, the rotational assembly comprising: an elongate torque-transmitting element having a proximal end portion and a distal end portion spaced apart along the rotational axis;a cutting element coupled to the distal end portion of the elongate torque-transmitting element and defining the distal end portion of the rotational assembly, the cutting element being configured to extend through the distal opening and to cut tissue adjacent the distal end portion of the catheter body assembly as the rotational assembly rotates about the rotational axis; andan energy-emitting element spaced apart proximally of the cutting element along the rotational axis, the energy-emitting element being configured to emit energy radially outward with respect to the rotational axis as the rotational assembly rotates about the rotational axis, the energy-emitting element being configured to radially overlap the side window with respect to the longitudinal axis of the catheter body assembly such that the energy emitted from the energy-emitting element is passable through the side window as the rotational element rotates about the rotational axis.
  • 19. A tissue-removing catheter for removing tissue from a body lumen, the tissue-removing catheter comprising: a catheter body assembly having a longitudinal axis, and a proximal end portion and a distal end portion spaced apart along the longitudinal axis, the catheter body assembly comprising a tip member defining the distal end portion of the catheter body assembly and a flexible tube coupled to the tip member and extending from the tip member toward the proximal end portion of the catheter body, the catheter body assembly defining a lumen extending through the catheter body assembly along the longitudinal axis, the lumen including a distal opening which opens longitudinally through the distal end portion of the catheter body assembly, the catheter body assembly further comprising a side window spaced apart proximally of the distal opening, the side window being configured to communicate energy radially through the catheter body with respect to the longitudinal axis; anda rotational assembly having a rotational axis and a proximal end portion and a distal end portion spaced apart along the rotational axis, the rotational assembly being at least partially received in the lumen of the catheter body assembly and being rotatable as a unit with respect to the catheter body assembly about the rotational axis, the rotational assembly comprising: an elongate torque-transmitting element having a proximal end portion and a distal end portion spaced apart along the rotational axis;a cutting element coupled to the distal end portion of the elongate torque-transmitting element and defining the distal end portion of the rotational assembly, the cutting element being configured to extend through the distal opening and to cut tissue adjacent the distal end portion of the catheter body assembly as the rotational assembly rotates about the rotational axis; andan energy-emitting element spaced apart proximally of the cutting element along the rotational axis, the energy-emitting element being configured to emit energy radially outward with respect to the rotational axis as the rotational assembly rotates about the rotational axis, the energy-emitting element being configured to radially overlap the side window with respect to the longitudinal axis of the catheter body assembly such that the energy emitted from the energy-emitting element is passable through the side window as the rotational element rotates about the rotational axis, wherein the energy-emitting element is configured to emit ultrasound energy.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 15/713,862, filed Sep. 25, 2017, which is a continuation of U.S. patent application Ser. No. 13/674,581, filed Nov. 12, 2012, and issued as U.S. Pat. No. 9,801,647, which is a continuation application of U.S. patent application Ser. No. 11/442,685, filed May 26, 2006, now abandoned, the entirety of each of which is incorporated by reference herein.

US Referenced Citations (586)
Number Name Date Kind
1481078 Albertson Jan 1924 A
2178790 Henry Nov 1939 A
2701559 Cooper Feb 1955 A
2850007 Lingley Sep 1958 A
3064651 Henderson Nov 1962 A
3082805 Royce Mar 1963 A
3320957 Sokolik May 1967 A
3614953 Moss Oct 1971 A
3683891 Eskridge et al. Aug 1972 A
3705577 Sierra Dec 1972 A
3732858 Banko May 1973 A
3749085 Wilson et al. Jul 1973 A
3800783 Jamshidi Apr 1974 A
3815604 O'Malley et al. Jun 1974 A
3831585 Brondy et al. Aug 1974 A
3837345 Matar Sep 1974 A
3845375 Stiebel Oct 1974 A
3924608 Mitsui Dec 1975 A
3937222 Banko Feb 1976 A
3945375 Banko Mar 1976 A
3976077 Kerfoot, Jr. Aug 1976 A
3995619 Glatzer Dec 1976 A
4030503 Clark, III Jun 1977 A
4034744 Goldberg Jul 1977 A
4038985 Chiulli Aug 1977 A
4112708 Fukuda Sep 1978 A
4177797 Baylis et al. Dec 1979 A
4210146 Banko Jul 1980 A
4273128 Lary Jun 1981 A
4306562 Osborne Dec 1981 A
4306570 Matthews Dec 1981 A
4349032 Koyata Sep 1982 A
4368730 Sharrock Jan 1983 A
4424045 Kulischenko et al. Jan 1984 A
4436091 Blanko Mar 1984 A
4445509 Auth May 1984 A
4490139 Huizenga et al. Dec 1984 A
4494057 Hotta Jan 1985 A
4512344 Barber Apr 1985 A
4589412 Kensey May 1986 A
4603694 Wheeler Aug 1986 A
4620547 Boebel Nov 1986 A
4631052 Kensey Dec 1986 A
4646719 Neuman et al. Mar 1987 A
4646736 Auth Mar 1987 A
4646738 Trott Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4653496 Bundy et al. Mar 1987 A
4664112 Kensey et al. May 1987 A
4669469 Gifford, III et al. Jun 1987 A
4686982 Nash Aug 1987 A
4692141 Mahurkar Sep 1987 A
4696298 Higgins et al. Sep 1987 A
4696667 Masch Sep 1987 A
4705038 Sjostrom et al. Nov 1987 A
4706671 Weinrib Nov 1987 A
4728319 Masch Mar 1988 A
4729763 Henrie Mar 1988 A
4730616 Frisbie Mar 1988 A
4732154 Shiber Mar 1988 A
4733662 DeSatnick et al. Mar 1988 A
4747406 Nash May 1988 A
4747821 Kensey et al. May 1988 A
4749376 Kensey et al. Jun 1988 A
4754755 Husted Jul 1988 A
4757819 Yokoi et al. Jul 1988 A
4765332 Fischell Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4781186 Simpson et al. Nov 1988 A
4784636 Rydell Nov 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4794931 Yock Jan 1989 A
4817613 Jaraczewski et al. Apr 1989 A
4819634 Shiber Apr 1989 A
4819635 Shapiro Apr 1989 A
4838268 Keith et al. Jun 1989 A
4842579 Shiber Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4846192 MacDonald Jul 1989 A
4848343 Wallsten et al. Jul 1989 A
4850957 Summers Jul 1989 A
4857046 Stevens et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4870953 DonMichael et al. Oct 1989 A
4883458 Shiber Nov 1989 A
4886061 Fischell et al. Dec 1989 A
4886490 Shiber Dec 1989 A
4887613 Farr et al. Dec 1989 A
4889061 McPherson et al. Dec 1989 A
4894051 Shiber Jan 1990 A
4899757 Pope, Jr. et al. Feb 1990 A
4919133 Chiang Apr 1990 A
4923462 Stevens May 1990 A
4926858 Gifford, III et al. May 1990 A
4928693 Goodin et al. May 1990 A
4936987 Persinski et al. Jun 1990 A
RE33258 Onik et al. Jul 1990 E
4950238 Sullivan Aug 1990 A
4954338 Mattox Sep 1990 A
4957482 Shiber Sep 1990 A
4966604 Reiss Oct 1990 A
4973409 Cook Nov 1990 A
4979939 Shiber Dec 1990 A
4979951 Simpson Dec 1990 A
4986807 Farr Jan 1991 A
4990134 Auth Feb 1991 A
4994067 Summers Feb 1991 A
4997435 Demeter Mar 1991 A
5000185 Yock Mar 1991 A
5002553 Shiber Mar 1991 A
5003918 Olsen et al. Apr 1991 A
5007896 Shiber Apr 1991 A
5009659 Hamlin et al. Apr 1991 A
5011490 Fischell et al. Apr 1991 A
5019088 Farr May 1991 A
5024234 Leary et al. Jun 1991 A
5024651 Shiber Jun 1991 A
5026384 Farr et al. Jun 1991 A
5029588 Yock et al. Jul 1991 A
5030201 Palestrant Jul 1991 A
5047040 Simpson et al. Sep 1991 A
5049124 Bales, Jr. Sep 1991 A
5053044 Mueller et al. Oct 1991 A
5054492 Scribner et al. Oct 1991 A
5059851 Corl Oct 1991 A
5064435 Porter Nov 1991 A
5071425 Gifford, III et al. Dec 1991 A
5074841 Ademovic et al. Dec 1991 A
5077506 Krause Dec 1991 A
5078722 Stevens Jan 1992 A
5078723 Dance et al. Jan 1992 A
5084010 Plaia et al. Jan 1992 A
5085662 Willard Feb 1992 A
5087265 Summers Feb 1992 A
5092839 Kipperman Mar 1992 A
5092873 Simpson et al. Mar 1992 A
5095911 Pomeranz Mar 1992 A
5100423 Fearnot Mar 1992 A
5100424 Jang et al. Mar 1992 A
5100426 Nixon Mar 1992 A
5108500 Mattox Apr 1992 A
5110822 Sherba et al. May 1992 A
5112345 Farr May 1992 A
5114399 Kovalcheck May 1992 A
5115814 Griffin et al. May 1992 A
5116352 Schnepp-Pesch et al. May 1992 A
5120323 Shockey et al. Jun 1992 A
5127902 Fischell Jul 1992 A
5127917 Niederhauser et al. Jul 1992 A
5135531 Shiber Aug 1992 A
5154705 Fleischhacker et al. Oct 1992 A
5154724 Andrews Oct 1992 A
5165421 Fleischhacker et al. Nov 1992 A
5176693 Pannek, Jr. Jan 1993 A
5178625 Groshong Jan 1993 A
5181920 Mueller et al. Jan 1993 A
5183432 Noguchi Feb 1993 A
5190528 Fonger et al. Mar 1993 A
5192291 Pannek, Jr. Mar 1993 A
5195956 Stockmeier Mar 1993 A
5203338 Jang Apr 1993 A
5211651 Reger et al. May 1993 A
5217474 Zacca et al. Jun 1993 A
5222966 Perkins et al. Jun 1993 A
5224488 Neuffer Jul 1993 A
5224945 Pannek, Jr. Jul 1993 A
5224949 Gomringer et al. Jul 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234451 Osypka Aug 1993 A
5263928 Trauthen et al. Aug 1993 A
5242460 Klein et al. Sep 1993 A
5242461 Kortenbach et al. Sep 1993 A
5250059 Andreas et al. Oct 1993 A
5261877 Fine et al. Nov 1993 A
5263959 Fischell Nov 1993 A
5267982 Sylvanoqicz Nov 1993 A
5250065 Clement et al. Dec 1993 A
5267955 Hanson Dec 1993 A
5269793 Simpson Dec 1993 A
5273526 Dance et al. Dec 1993 A
5282484 Reger Feb 1994 A
5284486 Kotula et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5290303 Pingleton et al. Mar 1994 A
5295493 Radisch, Jr. Mar 1994 A
5300085 Yock Apr 1994 A
5306294 Winston et al. Apr 1994 A
5308354 Zacca et al. May 1994 A
5312425 Evans et al. May 1994 A
5312427 Shtuman May 1994 A
5314438 Shtuman May 1994 A
5318032 Lonsbury et al. Jun 1994 A
5318528 Heaven et al. Jun 1994 A
5318576 Piassche, Jr. et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5322508 Viera Jun 1994 A
5336167 Sullivan et al. Aug 1994 A
5350390 Sher Sep 1994 A
5354311 Kambin et al. Oct 1994 A
5356418 Shtuman Oct 1994 A
5358472 Vance et al. Oct 1994 A
5358485 Vance et al. Oct 1994 A
5360432 Shtuman Nov 1994 A
5366463 Ryan Nov 1994 A
5368035 Hamm et al. Nov 1994 A
5370609 Drasler et al. Dec 1994 A
5370651 Summers Dec 1994 A
5372601 Lary Dec 1994 A
5372602 Burke Dec 1994 A
5373849 Maroney et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5378234 Hammerslag et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5395311 Andrews Mar 1995 A
5395313 Naves et al. Mar 1995 A
5395335 Jang Mar 1995 A
5397345 Lazarus Mar 1995 A
5402790 Jang et al. Apr 1995 A
5409454 Fischell et al. Apr 1995 A
5413107 Oakley et al. May 1995 A
5419774 Willard et al. May 1995 A
5421338 Crowley et al. Jun 1995 A
5423799 Shiu Jun 1995 A
5423846 Fischell Jun 1995 A
5427107 Milo et al. Jun 1995 A
5429136 Milo et al. Jul 1995 A
5431673 Summers et al. Jul 1995 A
5441510 Simpson et al. Aug 1995 A
5443446 Shtuman Aug 1995 A
5443497 Venbrux Aug 1995 A
5444078 Yu et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5449369 Imran Sep 1995 A
5454809 Janssen Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458585 Salmon et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5466382 Downey et al. Nov 1995 A
5485840 Bauman Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5491524 Hellmuth et al. Feb 1996 A
5496267 Drasler et al. Mar 1996 A
5501694 Ressemann et al. Mar 1996 A
5503155 Salmon et al. Apr 1996 A
5505210 Clement Apr 1996 A
5507760 Wynne et al. Apr 1996 A
5507761 Duer Apr 1996 A
5507769 Marin et al. Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5512037 Powell et al. Apr 1996 A
5512044 Duer Apr 1996 A
5514115 Frantzen et al. May 1996 A
5520189 Malinowski et al. May 1996 A
5522825 Kropf et al. Jun 1996 A
5522880 Barone et al. Jun 1996 A
5527292 Adams et al. Jun 1996 A
5527298 Vance et al. Jun 1996 A
5527325 Conley et al. Jun 1996 A
5531685 Hemmer et al. Jul 1996 A
5531690 Solar Jul 1996 A
5531700 Moore et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540707 Ressemann et al. Jul 1996 A
5549601 McIntyre et al. Aug 1996 A
5554163 Shtuman Sep 1996 A
5556408 Farhat Sep 1996 A
5558093 Pomeranz Sep 1996 A
5562726 Chuter Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5569275 Kotula et al. Oct 1996 A
5569279 Rainin Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571130 Simpson et al. Nov 1996 A
5575817 Martin Nov 1996 A
5584842 Fogarty et al. Dec 1996 A
5584843 Wulfman et al. Dec 1996 A
5609605 Marshall et al. Mar 1997 A
5618293 Sample et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624457 Farley et al. Apr 1997 A
5626562 Castro May 1997 A
5628761 Rizik May 1997 A
5632754 Farley et al. May 1997 A
5632755 Nordgren et al. May 1997 A
5643296 Hundertmark et al. Jul 1997 A
5643298 Nordgren et al. Jul 1997 A
5649941 Lary Jul 1997 A
5662671 Barbut et al. Sep 1997 A
5669275 Mills Sep 1997 A
5669920 Conley et al. Sep 1997 A
5669926 Aust et al. Sep 1997 A
5674232 Halliburton Oct 1997 A
5676697 McDonald Oct 1997 A
5681336 Clement et al. Oct 1997 A
5683449 Ma Nov 1997 A
5683453 Palmaz Nov 1997 A
5687739 McPherson et al. Nov 1997 A
5688234 Frisbie Nov 1997 A
5695506 Pike et al. Dec 1997 A
5695507 Auth et al. Dec 1997 A
5697944 Lary Dec 1997 A
5700240 Barwick, Jr. et al. Dec 1997 A
5700687 Finn Dec 1997 A
5707350 Krause et al. Jan 1998 A
5707376 Kavteladze et al. Jan 1998 A
5707383 Bays et al. Jan 1998 A
5709698 Adams et al. Jan 1998 A
5713913 Lary et al. Feb 1998 A
5716410 Wang et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5724977 Yock et al. Mar 1998 A
5728123 Lemelson et al. Mar 1998 A
5733296 Rogers et al. Mar 1998 A
5735816 Lieber et al. Apr 1998 A
5741270 Hansen et al. Apr 1998 A
5766192 Zacca Jun 1998 A
5772674 Nakhjavan Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776153 Rees Jul 1998 A
5779643 Lum et al. Jul 1998 A
5779673 Roth et al. Jul 1998 A
5779721 Nash Jul 1998 A
5779722 Shturman et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5797949 Parodi Aug 1998 A
5807235 Heff Sep 1998 A
5807329 Gelman Sep 1998 A
5810867 Zarbatany et al. Sep 1998 A
5816923 Milo et al. Oct 1998 A
5820592 Hammerslag Oct 1998 A
5823971 Robinson et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5827201 Samson et al. Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827304 Hart Oct 1998 A
5827322 Williams Oct 1998 A
5830222 Makower Nov 1998 A
5830224 Cohn et al. Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843022 Willard et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5843161 Solovay Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5865748 Russell et al. Feb 1999 A
5868685 Powell et al. Feb 1999 A
5868767 Farley et al. Feb 1999 A
5871536 Lazarus Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5879361 Nash Mar 1999 A
5879397 Kalberer et al. Mar 1999 A
5883458 Sumita et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5895399 Barbut et al. Apr 1999 A
5906627 Spaulding May 1999 A
5910150 Saadat Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5916210 Winston Jun 1999 A
5922003 Anctil et al. Jul 1999 A
5935108 Katoh et al. Aug 1999 A
5938645 Gordon Aug 1999 A
5938671 Katoh et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5947985 Imran Sep 1999 A
5951480 White et al. Sep 1999 A
5951482 Winston et al. Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5979951 Shimuira Nov 1999 A
5985397 Witt et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001112 Taylor Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6010522 Barbut et al. Jan 2000 A
6013072 Winston et al. Jan 2000 A
6019778 Wilson et al. Feb 2000 A
6022362 Lee et al. Feb 2000 A
6027450 Brown et al. Feb 2000 A
6027460 Shturman Feb 2000 A
6027514 Stine et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036646 Barthe et al. Mar 2000 A
6036656 Siater Mar 2000 A
6036707 Spaulding Mar 2000 A
6039693 Seward et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6050949 White et al. Apr 2000 A
6066153 Lev May 2000 A
6068603 Suzuki May 2000 A
6081738 Hinohara et al. Jun 2000 A
RE36764 Zacca et al. Jul 2000 E
6095990 Parodi Aug 2000 A
6106515 Winston et al. Aug 2000 A
6110121 Lenker Aug 2000 A
6120515 Rogers et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6129734 Shturman et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6152938 Curry Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159195 Ha et al. Dec 2000 A
6179859 Bates et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6187025 Machek Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6196963 Williams Mar 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217595 Shturman et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221332 Thumm et al. Apr 2001 B1
6228049 Schroeder et al. May 2001 B1
6228076 Winston et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231549 Noecker et al. May 2001 B1
6234971 Jang May 2001 B1
6238405 Findlay, III et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6241744 Imran et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6263236 Kasinkas et al. Jul 2001 B1
6264611 Ishikawa et al. Jul 2001 B1
6277138 Levinson et al. Aug 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6305834 Schubert et al. Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319275 Lashinski et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6361545 Macoviak et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383205 Samson et al. May 2002 B1
6394976 Winston et al. May 2002 B1
6398798 Selmon et al. Jun 2002 B2
6422736 Antonaides et al. Jul 2002 B1
6425870 Flesch Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6428552 Sparks Aug 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447525 Follmer et al. Sep 2002 B2
6475226 Belef et al. Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6497711 Plaia et al. Dec 2002 B1
6501551 Tearney et al. Dec 2002 B1
6520975 Branco Feb 2003 B2
RE38018 Anctil et al. Mar 2003 E
6532380 Close et al. Mar 2003 B1
6533749 Mitusina et al. Mar 2003 B1
6561998 Roth et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6569177 Sillard et al. May 2003 B1
6592526 Lenker Jul 2003 B1
6605061 VanTassel et al. Aug 2003 B2
6610059 West, Jr. Aug 2003 B1
6620180 Bays et al. Sep 2003 B1
6623437 Hinchcliffe et al. Sep 2003 B2
6623495 Findlay, III et al. Sep 2003 B2
6623496 Snow et al. Sep 2003 B2
6627784 Hudson et al. Sep 2003 B2
6629953 Boyd Oct 2003 B1
6638233 Corvi et al. Oct 2003 B2
RE38335 Aust et al. Nov 2003 E
6652505 Tsugita Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6656195 Peters et al. Dec 2003 B2
6666874 Heitzmann et al. Dec 2003 B2
6682536 Vardi et al. Jan 2004 B2
6790204 Zadno-Azizi et al. Sep 2004 B2
6790215 Findlay, III et al. Sep 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6830577 Nash et al. Dec 2004 B2
6843797 Nash et al. Jan 2005 B2
6849068 Bagaoisan et al. Feb 2005 B1
6863676 Lee et al. Mar 2005 B2
6911026 Hall et al. Jun 2005 B1
6919690 Siegfried et al. Jul 2005 B2
6932502 Childers et al. Aug 2005 B2
6935768 Lowe et al. Aug 2005 B2
7004173 Sparks et al. Feb 2006 B2
7007732 Bailey Mar 2006 B2
7020847 Holzheuer Mar 2006 B1
7153315 Miller Dec 2006 B2
7169165 Belef et al. Jan 2007 B2
7208511 Williams et al. Apr 2007 B2
7318831 Alvarez et al. Jan 2008 B2
7344546 Wulfman et al. Mar 2008 B2
7388495 Fallin et al. Jun 2008 B2
7479148 Beaupre Jan 2009 B2
7488322 Brunnett et al. Feb 2009 B2
7524289 Lenker Apr 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7629829 Lee Dec 2009 B2
7674272 Torrance et al. Mar 2010 B2
7699790 Simpson Apr 2010 B2
7708749 Simpson et al. May 2010 B2
7713235 Torrance et al. May 2010 B2
7713279 Simpson et al. May 2010 B2
7729745 Maschke Jun 2010 B2
7734332 Sher Jun 2010 B2
7753852 Maschke Jul 2010 B2
7771444 Patel et al. Aug 2010 B2
7887556 Simpson et al. Feb 2011 B2
7951161 Bonnette et al. May 2011 B2
7959634 Sennett Jun 2011 B2
7981128 To et al. Jul 2011 B2
8007506 To et al. Aug 2011 B2
8052704 Olson Nov 2011 B2
8062316 Patel et al. Nov 2011 B2
8070762 Escudero et al. Dec 2011 B2
8109951 Mashke Feb 2012 B2
8142464 Mitusina Mar 2012 B2
8192452 Moberg Jun 2012 B2
8208990 Maschke Jun 2012 B2
8211025 Donaldson et al. Jul 2012 B2
8236016 To et al. Aug 2012 B2
8246640 Rosenthal et al. Aug 2012 B2
8257375 Maschke Sep 2012 B2
8275201 Rangwala et al. Sep 2012 B2
8298147 Huennekens et al. Oct 2012 B2
8328829 Olson Dec 2012 B2
8361094 To et al. Jan 2013 B2
8784333 Corvi et al. Jul 2014 B2
20010000041 Selmon et al. Mar 2001 A1
20010003174 Peters et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020005732 Wilson May 2002 A1
20020058904 Boock et al. May 2002 A1
20020077642 Patel et al. Jun 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20030023263 Krolik et al. Jan 2003 A1
20030039169 Ehrfeld et al. Feb 2003 A1
20030120295 Simpson et al. Jun 2003 A1
20030125757 Patel et al. Jul 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20040049225 Denison Mar 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040193034 Wasicek et al. Sep 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050042239 Lipiecki et al. Feb 2005 A1
20050090849 Adams Apr 2005 A1
20060235334 Corvi et al. Oct 2006 A1
20070049958 Adams Mar 2007 A1
20070135886 Maschke Jun 2007 A1
20070167824 Lee et al. Jul 2007 A1
20070276419 Rosenthal Nov 2007 A1
20080004645 To et al. Jan 2008 A1
20080045986 To et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080125799 Adams May 2008 A1
20080161840 Osiroff et al. Jul 2008 A1
20080177139 Courtney et al. Jul 2008 A1
20080208227 Kadykowski et al. Aug 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20090012548 Thatcher et al. Jan 2009 A1
20090018565 To et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090138031 Tsukernik May 2009 A1
20090187203 Corvi et al. Jul 2009 A1
20090216180 Lee et al. Aug 2009 A1
20090275966 Mitusina Nov 2009 A1
20090306689 Welty et al. Dec 2009 A1
20100030216 Arcenio Feb 2010 A1
20100130996 Doud et al. May 2010 A1
20100312263 Moberg et al. Dec 2010 A1
20110004107 Rosenthal et al. Jan 2011 A1
20110130777 Zhang et al. Jun 2011 A1
20110144673 Zhang et al. Jun 2011 A1
Foreign Referenced Citations (32)
Number Date Country
2000621 Apr 1990 CA
3732236 Dec 1988 DE
8900059 May 1989 DE
9303531 Jul 1994 DE
4444166 Jun 1998 DE
29722136 Apr 1999 DE
0107009 May 1984 EP
0229620 Jul 1987 EP
0330843 Sep 1989 EP
0431752 Jun 1991 EP
0514810 Nov 1992 EP
1767159 Mar 2007 EP
2093353 Sep 1982 GB
2115829 Sep 1983 GB
2210965 Jun 1989 GB
4200459 Jul 1992 JP
5042162 Feb 1993 JP
5056984 Mar 1993 JP
442795 Sep 1974 SU
665908 Jun 1979 SU
WO9746164 Dec 1997 WO
WO9824372 Jun 1998 WO
WO0030531 Jun 2000 WO
WO0054735 Sep 2000 WO
WO0062913 Oct 2000 WO
WO0072955 Dec 2000 WO
WO0115609 Mar 2001 WO
WO0115609 Mar 2001 WO
WO0119444 Mar 2001 WO
WO0130433 May 2001 WO
WO0245598 Jun 2002 WO
WO2006058223 Jun 2006 WO
Non-Patent Literature Citations (23)
Entry
European Extended Search Report for Application No. 141945220.0, dated Mar. 25, 2015, 8pgs.
Office Action for European Application No. 12165347.1, dated Jul. 14, 2014, 4pgs, Alexandria, Munich, Germany.
Non-Final Office for U.S. Appl. No. 13/551,123, dated Apr. 17, 2014, 9 pages, Alexandria, Virginia, United States.
Notice of Allowance for U.S. Appl. No. 15/536,497, dated May 15, 2014, 10 pages, Alexandria, Virginia, United States.
Office Action for United States U.S. Appl. No. 13/551,123, dated Aug. 4, 2014, 4 pages.
Extended European Search Report regarding related European Patent Application No. 13172807.3, dated Aug. 23, 2013, 6 pages.
Brezinski et al., “Assessing Atherosclerotic Plaque Morphology: Comparison of Optical Coherence Tomography and High Frequency Intravascular Ultrasound,” Heart, 77:397-403 (1997).
Huang et al., “Optical Coherence Tomography,” Science, 254: 1178-1181 (1991).
Amplatz Coronary Catheters, posted: Feb. 25, 2009 [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website URL:http://cardiophile.org/2009/02/amplatzcoronary-catheter.html> (2 pages).
European Search Report regarding related application serial No. EP07795342.0 dated Sep. 3, 2012, 6pgs.
European Search Report regarding related application serial No. EP07809112.1 dated Apr. 23, 2013, 6 pgs.
Non-Final Office Action for U.S. Appl. No. 12/431,210 dated Mar. 18, 2014, 7 pages.
Judkins Left Coronary Catheter, posted: Feb. 19, 2009 [online], [retrieved on Mar. 29, 2011], retrieved from the Cariophile MD using Internet website URL:http://cardiophile.org/2009/02/judkins-left-coronary-catheter.html> (2 pages).
Brezinski et al., “Optical Coherence Tomography for Optical Biopsy,” Circulation, 93: 1206-1213 (1996).
PCT International Search Report for PCT/US01/49220 dated Jun. 21, 2002, 1 pg.
PCT International Search Report and Written Opinion for PCT/US04/12601 dated Jun. 30, 2005 4 pgs.
PCT International Search Report and Written Opinion for PCT/US04/12600 dated Jun. 13, 2008, 4pgs.
PCT International Search Report and Written Opinion for PCT/US07/12008 dated Sep. 30, 2008, 4pgs.
European Search Report regarding related application serial No. EP04760156.2 dated Apr. 6, 2010, 3pgs.
Extended European Search Report regarding related application serial No. EP11151192.9 dated Apr. 11, 2011, 6pgs.
Exam Report regarding related application serial No. EP04760155.4 dated Jul. 19, 2011, 5pgs.
Extended European Search Report regarding related application serial No. EP12165347.1 dated Jun. 21, 2012, 7pgs.
Extended European Search Report regarding related application serial No. EP12165348.9 dated Jun. 21, 2012, 7pgs.
Related Publications (1)
Number Date Country
20200237392 A1 Jul 2020 US
Continuations (3)
Number Date Country
Parent 15713862 Sep 2017 US
Child 16776003 US
Parent 13674581 Nov 2012 US
Child 15713862 US
Parent 11442685 May 2006 US
Child 13674581 US