The present invention relates generally to catheter control systems for controlling the articulation of visualization and treatment apparatus having imaging and manipulation features for intravascularly accessing regions of the body.
Conventional devices for accessing and visualizing interior regions of a body lumen are known. For example, various catheter devices are typically advanced within a patient's body, e.g., intravascularly, and advanced into a desirable position within the body. Other conventional methods have utilized catheters or probes having position sensors deployed within the body lumen, such as the interior of a cardiac chamber. These types of positional sensors are typically used to determine the movement of a cardiac tissue surface or the electrical activity within the cardiac tissue. When a sufficient number of points have been sampled by the sensors, a “map” of the cardiac tissue may be generated.
Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging. Other conventional balloons utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood.
However, many of the conventional catheter imaging systems lack the capability to provide therapeutic treatments or are difficult to manipulate in providing effective therapies. For instance, the treatment in a patient's heart for atrial fibrillation is generally made difficult by a number of factors, such as visualization of the target tissue, access to the target tissue, and instrument articulation and management, amongst others.
Conventional catheter techniques and devices, for example such as those described in U.S. Pat. Nos. 5,895,417; 5,941,845; and 6,129,724, used on the epicardial surface of the heart may be difficult in assuring a transmural lesion or complete blockage of electrical signals. In addition, current devices may have difficulty dealing with varying thickness of tissue through which a transmural lesion is desired.
Conventional accompanying imaging devices, such as fluoroscopy, are unable to detect perpendicular electrode orientation, catheter movement during the cardiac cycle, and image catheter position throughout lesion formation. The absence of real-time visualization also poses the risk of incorrect placement and ablation of structures such as sinus node tissue which can lead to fatal consequences.
Moreover, because of the tortuous nature of intravascular access, devices or mechanisms at the distal end of a catheter positioned within the patient's body, e.g., within a chamber of the heart, are typically no longer aligned with the handle. Steering or manipulation of the distal end of the catheter via control or articulation mechanisms on the handle is easily disorienting to the user as manipulation of a control on the handle in a first direction may articulate the catheter distal end in an unexpected direction depending upon the resulting catheter configuration leaving the user to adjust accordingly. However, this results in reduced efficiency and longer procedure times as well as increased risks to the patient. Accordingly, there is a need for improved catheter control systems which facilitate the manipulation and articulation of a catheter.
A tissue imaging and manipulation apparatus that may be utilized for procedures within a body lumen, such as the heart, in which visualization of the surrounding tissue is made difficult, if not impossible, by medium contained within the lumen such as blood, is described below. Generally, such a tissue imaging and manipulation apparatus comprises an optional delivery catheter or sheath through which a deployment catheter and imaging hood may be advanced for placement against or adjacent to the tissue to be imaged.
The deployment catheter may define a fluid delivery lumen therethrough as well as an imaging lumen within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, the imaging hood may be expanded into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field is defined by the imaging hood. The open area is the area within which the tissue region of interest may be imaged. The imaging hood may also define an atraumatic contact lip or edge for placement or abutment against the tissue region of interest. Moreover, the distal end of the deployment catheter or separate manipulatable catheters may be articulated through various controlling mechanisms such as push-pull wires manually or via computer control
The deployment catheter may also be stabilized relative to the tissue surface through various methods. For instance, inflatable stabilizing balloons positioned along a length of the catheter may be utilized, or tissue engagement anchors may be passed through or along the deployment catheter for temporary engagement of the underlying tissue.
In operation, after the imaging hood has been deployed, fluid may be pumped at a positive pressure through the fluid delivery lumen until the fluid fills the open area completely and displaces any blood from within the open area. The fluid may comprise any biocompatible fluid, e.g., saline, water, plasma, Fluorinert™, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. The fluid may be pumped continuously or intermittently to allow for image capture by an optional processor which may be in communication with the assembly.
In an exemplary variation for imaging tissue surfaces within a heart chamber containing blood, the tissue imaging and treatment system may generally comprise a catheter body having a lumen defined therethrough, a visualization element disposed adjacent the catheter body, the visualization element having a field of view, a transparent fluid source in fluid communication with the lumen, and a barrier or membrane extendable from the catheter body to localize, between the visualization element and the field of view, displacement of blood by transparent fluid that flows from the lumen, and an instrument translatable through the displaced blood for performing any number of treatments upon the tissue surface within the field of view. The imaging hood may be formed into any number of configurations and the imaging assembly may also be utilized with any number of therapeutic tools which may be deployed through the deployment catheter.
More particularly in certain variations, the tissue visualization system may comprise components including the imaging hood, where the hood may further include a membrane having a main aperture and additional optional openings disposed over the distal end of the hood. An introducer sheath or the deployment catheter upon which the imaging hood is disposed may further comprise a steerable segment made of multiple adjacent links which are pivotably connected to one another and which may be articulated within a single plane or multiple planes. The deployment catheter itself may be comprised of a multiple lumen extrusion, such as a four-lumen catheter extrusion, which is reinforced with braided stainless steel fibers to provide structural support. The proximal end of the catheter may be coupled to a handle for manipulation and articulation of the system.
To provide visualization, an imaging element such as a fiberscope or electronic imager such as a solid state camera, e.g., CCD or CMOS, may be mounted, e.g., on a shape memory wire, and positioned within or along the hood interior. A fluid reservoir and/or pump (e.g., syringe, pressurized intravenous bag, etc.) may be fluidly coupled to the proximal end of the catheter to hold the translucent fluid such as saline or contrast medium as well as for providing the pressure to inject the fluid into the imaging hood.
One example of a system configured to enable direct visualization of tissue underlying the hood and optionally treat tissue, e.g., ablation, may include an ablation assembly, hood, and deployment catheter coupled to a handle having a catheter steering assembly integrated along the handle. The steering handle assembly may enable a user to steer the visualization hood along at least two or more planes in multiple degrees of freedom relative to a longitudinal axis of the catheter. The handle assembly may include a handle portion and articulation housing which may extend at an angle proximally relative to the handle portion to position a distal steering control, e.g., having an articulation control member extending from the control, readily within the reach of the operator's thumb when his/her hand is gripped about the handle portion. The articulation control may be configured as a projection (such as a joystick) extending from distal steering control for facilitating manipulation by the operator; however, the articulation control may be configured in any number of shapes in alternative configurations to facilitate the control of the distal steering control by the operator's finger or fingers. By manipulating the control, e.g., with a single finger such as the operator's thumb, the distal steerable section may be articulated in any number directions, e.g., at least two or more different planes, relative to the catheter to control the articulation of the hood.
The handle may also incorporate a proximal steering control which may be rotated about the handle portion to actuate a proximal steering portion, e.g., located proximal to the distal steering portion, to articulate the proximal steering portion in at least one plane in either direction by rotating the control in either direction correspondingly. Although described as a rotatable control member, the proximal steering control may be alternatively actuated through any number of different mechanisms, e.g., levers, triggers, etc. Manipulating or pulling along a portion of the distal steering control causes the steerable portion and the hood to move along a corresponding direction of articulation. Moreover, because of the manner in which the articulation housing is positioned to extend along the angled housing from the handle portion, the operator may grip the handle and operate the handle assembly with a single hand.
Additionally, a distal handle portion may extend from the articulation housing for attachment to the catheter. The distal handle portion may be shaped in the configuration shown as a tapered nosecone tapering distally towards the catheter attachment, however, the distal handle portion may be shaped in any number of other configurations. Moreover, the distal handle portion may be attached to the articulation housing via a rotatable coupling which may allow for the handle portion to rotate about its longitudinal axis relative to the remainder of the handle to allow for the catheter and hood to be rotated during advancement and positioning within the patient body while allowing for the articulation housing to remain in a stationary position relative to the operator.
The proximal steering control may be actuated, e.g., by rotating the control in a first direction, to articulate the proximal steerable section within a first plane, e.g., to retroflex the hood and the distal steerable section in a corresponding direction of articulation. The hood may be further articulated by manipulating the articulation control of the distal steering control, e.g., in a direction of actuation, such that distal steerable section moves in a corresponding direction of articulation. The steering control may be further actuated in another direction of articulation to move the distal steerable section and hood in a corresponding direction of articulation while maintaining the proximal steerable section in its configuration. In one variation, the proximal steerable section may be configured to articulate via the proximal steering control within a single plane while distal steerable section may be configured to articulate in at least four directions. However, both the proximal steering control and distal steering control can be manipulated in varying degrees to steer the respective steerable sections to varying curvatures as desired by the operator.
As previously mentioned, the design of the catheter handle assembly allows the operator to easily grasp the assembly with a single hand, left or right hand, and articulate either or both the proximal steering control and/or the distal steering control with a single finger, e.g., the operator's thumb (although any of the operator's fingers may be utilized as desirable). This enables a single operator to effectively control full articulation of the catheter and hood (or any other distal end effector) through multiple degrees-of-freedom within a patient body with a single hand and/or a single finger.
Although multiple pullwires may be utilized in the control handle depending upon the number of directions for articulation, four pullwires may be typically utilized. Each of the four pullwires may be terminated symmetrically around a circumference of the steering control such that a balanced four-way steering of the distal portion may be accomplished, although manipulating the steering control along various portions of its circumference may yield combinational articulation between the pullwires to result in numerous catheter configurations. Additionally, the handle assembly may further incorporate a spring mechanism as an overdrive prevention mechanism. The spring mechanism may be positioned between the transition manifold and steering control in order to prevent over-tensioning or breaking of the pullwires if the steering control is over-deflected in a direction.
In utilizing the multi-articulation steering with the proximal steering control and/or distal steering control, a distal handle portion may be attached to the articulation housing via a rotatable coupling which may allow for the handle portion to rotate about its longitudinal axis relative to the remainder of the handle. The one or more pullwires coupled to the steering control may pass through the angled housing and into a torquing section defined within and/or between the articulation housing and distal handle portion. The distal handle portion may be rotated in one or both directions about a longitudinal axis of the handle assembly. With the catheter attached securely to the distal handle portion, as the hood and catheter is advanced through the patient's body intravascularly and, e.g., into the chambers of the heart, the distal end of the catheter having the hood may be articulated into a tortuous configuration.
The operator imaging the tissue regions through the hood may become disoriented when steering the catheter in a particular desired direction. This could result in reorienting the handle assembly in a configuration, e.g., upside down relative to the operator's position, making steering and articulation of the catheter awkward given the positioning of the controls along the handle. Thus, the distal handle portion may be rotated about the coupling to accommodate any rotation and orientation of the catheter while enabling the remainder of the handle portion and articulation housing to remain in a constant configuration relative to the operator. Moreover, the one or more pullwires may become twisted over one another within the torquing section. Because the wires may be encased in respective isolating structures or isolation coils, e.g., compression coils, they may twist upon one another while still remaining free to translate through the coils to effectively transmit the appropriate tension to articulate the distal steerable section. The distal handle portion may be rotated relative to the articulation housing by up to 720 degrees or more while still allowing for the one or more pullwires to sufficiently transmit the tension for articulation. Alternatively, a stop may be incorporated between the distal handle portion to limit its rotation relative to the articulation housing to prevent over-torquing of the pullwires, e.g., limiting rotation up to 270 degrees in one or both rotational directions.
With the distal handle portion and catheter being rotatable relative to the remainder of the handle assembly, the catheter and hood can be consistently deflected in the same direction by which the steering controls are being deflected regardless of the orientation of the handle assembly. For example, the handle assembly may be deflected in a first direction of actuation such that the hood is deflected in a corresponding first direction of articulation. The distal handle portion, catheter, and hood are then rotated along an arbitrary direction of rotation about the longitudinal axis of the handle assembly while maintaining a constant position of the handle assembly relative to the operator. Even with the distal handle portion rotated, e.g., 180°, actuating the steering controls along a direction of actuation still results in a corresponding direction of articulation of the hood which matches the first direction of articulation despite the rotated assembly. Regardless of the angle by which the operator subsequently rotates the catheter about the longitudinal axis, the operator can still be certain that deflecting the steering controls in a particular direction will steer the distal end of the catheter in the same direction. This removes the need for the operator to memorize the original position of the catheter or how much the catheter has been torqued in order to gauge the orientation of the deflected end when the catheter is inserted into the patient and further prevents the handle assembly from becoming oriented in an awkward position relative to the operator.
Once the distal handle portion has been rotated to re-orient a configuration of the hood within the patient's body, various mechanisms may be utilized for locking and maintaining a position of the rotated handle portion relative to the handle housing. The ability to lock and unlock a position of the distal handle portion relative to the housing may allow for the operator to ensure that the re-oriented hood and catheter will maintain its configuration within the patient's body without fear of releasing or becoming displaced inadvertently. Moreover, the various controls on the handle assembly, such as the articulation control, one-way steering controls, distal handle portion, etc., may be selectively locked and/or unlocked via various mechanisms.
Additionally and/or alternatively, visual indicators positioned directly upon the hood may also be utilized in coordination with corresponding visual indicators positioned upon the distal steering control. The hood may have one or more visual indicators marked upon the distal portion of the hood such that the visual image on the monitor as captured through the hood may show at least a first directional indicator along a first portion of the hood. In this example, a second directional indicator and yet a third corresponding third indicator and fourth directional indicator may be positioned about a circumference of the hood or hood membrane to represent any number of directions. The handle assembly may thus have one or more directional indicators located directly upon, e.g., the distal steering control, which is shown in this variation as a circular configuration and which corresponds spatially with the indicators positioned upon the hood or hood membrane. For instance, the first directional indicator on the hood may correspond spatially with the first directional indicator on the distal steering control, second directional indicator on the hood may correspond spatially with the second directional indicator on the distal steering control, third directional indicator on the hood may correspond with the third directional indicator on the distal steering control, and the fourth directional indicator on the hood may correspond with the fourth directional indicator on the distal steering control, and so on. Although four directional indicators are shown in this example, fewer than four or more than four may be utilized. Moreover, the location and positioning of the indicators may also be varied, as desired. Additionally, each of the directional indicators may be color-coded by different colors and/or shapes or symbols to distinguish between the different directions.
In use, the directional indicators as viewed through the hood correspond to the direction the hood may move when the distal steering control is deflected along the position where the corresponding indicator is located. Thus, deflecting the distal steering control in a direction of actuation, e.g., along any one or combination of the directional indicators, may articulate the distal steerable section and hood in a corresponding direction of articulation along the directional indicator shown on the hood or hood membrane. This removes complexity in steering the hood, e.g., when the hood is in a retroflexed position, where directions are reversed with respect to the operator.
Yet another variation of the catheter handle may include a handle assembly comprising a support housing which is removably engagable to a receiving handle. Having the support housing removable from the receiving handle may allow for the operator to initially insert and advance the catheter and its distal end effector, such as the hood, with the handle assembly as a complete assembly. If desired, the operator may then disengage the support housing from the receiving handle to provide unconstrained freedom in articulating the steerable section via the distal controller while allowing for the catheter to remain stationary relative to the patient's body.
Additionally and/or alternatively, the catheter handle assembly may be removably attached to a platform secured to a bed, railing or directly to the patient's own body, for securing a position of the catheter and handle relative to the entry point into the patient's body. This platform may have one or more adjustable features to accommodate the handle assembly as well as adjusting the platform position relative to the patient's body.
The catheter control systems described herein may additionally integrate any number of features and controls for facilitate procedures. These features and controls may be integrated into any of the variations described herein. One example may include features such as flow rate control, air bubble detection, ablation activation switches, built-in image sensors, etc., may be incorporated into the handle assembly.
A tissue-imaging and manipulation apparatus described herein is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions. Such an apparatus may be utilized for many procedures, e.g., facilitating transseptal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures.
One variation of a tissue access and imaging apparatus is shown in the detail perspective views of
When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in
Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods. Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged. Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest. Moreover, the diameter of imaging hood 12 at its maximum fully deployed diameter, e.g., at contact lip or edge 22, is typically greater relative to a diameter of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16). For instance, the contact edge diameter may range anywhere from 1 to 5 times (or even greater, as practicable) a diameter of deployment catheter 16.
As seen in the example of
Although contact edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 back into open area 26. Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface. Once the blood 30 has been displaced from imaging hood 12, an image may then be viewed of the underlying tissue through the clear fluid 30. This image may then be recorded or available for real-time viewing for performing a therapeutic procedure. The positive flow of fluid 28 may be maintained continuously to provide for clear viewing of the underlying tissue. Alternatively, the fluid 28 may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow 28 may cease and blood 30 may be allowed to seep or flow back into imaging hood 12. This process may be repeated a number of times at the same tissue region or at multiple tissue regions.
In utilizing the imaging hood 12 in any one of the procedures described herein, the hood 12 may have an open field which is uncovered and clear to provide direct tissue contact between the hood interior and the underlying tissue to effect any number of treatments upon the tissue, as described above. Yet in additional variations, imaging hood 12 may utilize other configurations. An additional variation of the imaging hood 12 is shown in the perspective and end views, respectively, of
Aperture 42 may function generally as a restricting passageway to reduce the rate of fluid out-flow from the hood 12 when the interior of the hood 12 is infused with the clear fluid through which underlying tissue regions may be visualized. Aside from restricting out-flow of clear fluid from within hood 12, aperture 42 may also restrict external surrounding fluids from entering hood 12 too rapidly. The reduction in the rate of fluid out-flow from the hood and blood in-flow into the hood may improve visualization conditions as hood 12 may be more readily filled with transparent fluid rather than being filled by opaque blood which may obstruct direct visualization by the visualization instruments.
Moreover, aperture 42 may be aligned with catheter 16 such that any instruments (e.g., piercing instruments, guidewires, tissue engagers, etc.) that are advanced into the hood interior may directly access the underlying tissue uninhibited or unrestricted for treatment through aperture 42. In other variations wherein aperture 42 may not be aligned with catheter 16, instruments passed through catheter 16 may still access the underlying tissue by simply piercing through membrane 40.
In an additional variation,
Additional details of tissue imaging and manipulation systems and methods which may be utilized with apparatus and methods described herein are further described, for example, in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005 (U.S. Pat. Pub. 2006/0184048 A1), which is incorporated herein by reference in its entirety.
In utilizing the devices and methods above, various procedures may be accomplished. One example of such a procedure is crossing a tissue region such as in a transseptal procedure where a septal wall is pierced and traversed, e.g., crossing from a right atrial chamber to a left atrial chamber in a heart of a subject. Generally, in piercing and traversing a septal wall, the visualization and treatment devices described herein may be utilized for visualizing the tissue region to be pierced as well as monitoring the piercing and access through the tissue. Details of transseptal visualization catheters and methods for transseptal access which may be utilized with the apparatus and methods described herein are described in U.S. patent application Ser. No. 11/763,399 filed Jun. 14, 2007 (U.S. Pat. Pub. 2007/0293724 A1), which is incorporated herein by reference in its entirety. Additionally, details of tissue visualization and manipulation catheter which may be utilized with apparatus and methods described herein are described in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005 (U.S. Pat. Pub. 2006/0184048 A1), which is incorporated herein by reference in its entirety.
Additionally, a distal handle portion 64 may extend from articulation housing 56 for attachment to catheter 16. Distal handle portion 64 is shaped in the configuration shown as a tapered nosecone tapering distally towards the catheter attachment, however, distal handle portion 64 may be shaped in any number of other configuration. Moreover, distal handle portion 64 may be attached to articulation housing 56 via a rotatable coupling 66 which may allow for handle portion 64 to rotate about its longitudinal axis relative to the remainder of the handle, as described in further detail below, to allow for catheter 16 and hood 12 to be rotated during advancement and positioning within the patient body while allowing for the articulation housing 56 to remain in a stationary position relative to the operator.
This particular handle assembly 50 may be used to control articulation of the hood 12 and the distal steerable section 70 as well as used to further control articulation of the proximal steerable section 68. As shown in the perspective views of
As illustrated in
As previously mentioned, the design of the catheter handle assembly 50 allows the operator to easily grasp the assembly 50 with a single hand 80, left or right hand, and articulate either or both the proximal steering control 54 and/or the distal steering control 60 with a single finger, e.g., the operator's thumb 82 (although any of the operator's fingers may be utilized alone or in combination as desirable). This enables a single operator to effectively control full articulation of the catheter 16 and hood 12 (or any other distal end effector) through multiple degrees-of-freedom within a patient body with a single hand and/or a single finger. As illustrated in the perspective view of
As shown in
As shown in the perspective views of
Steering control 60 may be moved about control support member 94 in any number of directions to tension one or more pullwires 104, 106, 108, 110 for correspondingly controlling the distal steerable section 70. The terminal ends of the one or more pullwires 104, 106, 108, 110 may be coupled at circumferential locations uniformly about steering control 60 via corresponding fasteners, e.g., set screws, securing each of the pullwire termination crimps. These pullwires 104, 106, 108, 110 may extend through corresponding receiving channels 112, defined through platform support member 92, and through pullwire transition manifold 116 and into a proximal end of a multi-lumen shaft, such as catheter 16. The pullwires may continue distally through catheter 16 where they may be coupled to the distal steerable section 70. Each of the pullwires may be optionally encased in corresponding isolating structures or isolation coils, e.g., compression coils 114, through the transition manifold 116 between platform support member 92 and catheter 16.
Although multiple pullwires may be utilized depending upon the number of directions for articulation, four pullwires may be typically utilized. Each of the four pullwires may be terminated symmetrically around a circumference of steering control 60 such that a balanced four-way steering of the distal portion may be accomplished, although manipulating the steering control 60 along various portions of its circumference may yield combinational articulation between the pullwires to result in numerous catheter configurations. Additionally, the handle assembly 50 may further incorporate a spring mechanism as an overdrive prevention mechanism. The spring mechanism may be positioned between the transition manifold 116 and steering control 60 in order to prevent over-tensioning or breaking of the pullwires if the steering control 60 is over-deflected in a direction.
To enable the multiple directions of articulation with steering control 60, an example of the pivoting support is illustrated in the exploded and assembly perspective views of
In utilizing the multi-articulation steering with the proximal steering control 54 and/or distal steering control 60, a distal handle portion 64 may be attached to articulation housing 56 via a rotatable coupling 66 which may allow for handle portion 64 to rotate about its longitudinal axis relative to the remainder of the handle. As shown in the cross-sectional side views of
The operator imaging the tissue regions through hood 12 may become disoriented when steering the catheter in a particular desired direction. This could result in reorienting the handle assembly 50 in a configuration, e.g., upside down relative to the operator's position, making steering and articulation of the catheter awkward given the positioning of the controls along the handle 50. Thus, distal handle portion 64 may be rotated about coupling 66 to accommodate any rotation and orientation of catheter 16, as shown by arrow 152, while enabling the remainder of handle portion 52 and articulation housing 56 to remain in a constant configuration relative to the operator. Moreover, the one or more pullwires 104, 106, 108, 110 may become twisted over one another, as shown, within torquing section 150 of a pullwire transition manifold 116, as described in further detail below. Because the wires may be encased in respective isolation coils 114, they may twist upon one another while still remaining free to translate through the coils 114 to effectively transmit the appropriate tension to articulate the distal steerable section 70. The distal handle portion 64 may be rotated relative to articulation housing 56 by up to 720 degrees or more while still allowing for the one or more pullwires 104, 106, 108, 110 to sufficiently transmit the tension for articulation. Alternatively, a stop may be incorporated between distal handle portion 64 to limit its rotation relative to articulation housing 56 to prevent over-torquing of the pullwires, e.g., limiting rotation up to 270 degrees in one or both rotational directions.
With distal handle portion 64 and catheter 16 being rotatable relative to the remainder of the handle assembly 50, catheter 16 and hood 12 can be consistently deflected in the same direction by which the steering controls 54, 60 are being deflected regardless of the orientation of the handle assembly 50. For example, handle assembly 50 may be deflected in a first direction of actuation such that hood 12 is deflected in a corresponding first direction of articulation. The distal handle portion 64, catheter 16, and hood 12 are then rotated along an arbitrary direction of rotation about longitudinal axis 154 of the handle assembly 50 while maintaining a constant position of handle assembly 50 relative to the operator. Even with the distal handle portion 64 rotated, e.g., 180°, actuating the steering controls 54, 60 along a direction of actuation still results in a corresponding direction of articulation of hood 12 which matches the first direction of articulation despite the rotated assembly. Regardless of the angle by which the operator subsequently rotates the catheter 16 about the longitudinal axis 154, the operator can still be certain that deflecting the steering controls 54, 60 in a particular direction will steer the distal end of the catheter in the same direction. This removes the need for the operator to memorize the original position of the catheter or how much the catheter has been torqued in order to gauge the orientation of the deflected end when the catheter is inserted into the patient and further prevents the handle assembly 50 from becoming oriented in an awkward position relative to the operator.
Utilizing such catheter steering may be particularly advantageous for tissue treatment, e.g., ablation, in the left atrium of the heart as such adaptability in steering may impart additional accuracy and efficiency to steer the imaging and ablation hood 12 around complex anatomical structures, such as the pulmonary vein ostium. Examples of such steerable catheters having any number of features which may be utilized with features described herein are shown and described in further detail in U.S. patent application Ser. No. 12/108,812 filed Apr. 24, 2008 (U.S. Pat. Pub. 2008/0275300 A1) and Ser. No. 12/117,655 filed May 8, 2008 (U.S. Pat. Pub. 2008/0281293 A1) and Ser. No. 12/499,011 filed Jul. 7, 2009, each of which is incorporated herein by reference in its entirety.
Moreover, these handle variations as well as any of the other handle variations herein may incorporate any of the features described in each of the variations, as practicable. For instance, this particular variation may also utilize the optical adjustment assembly, locking mechanisms, etc. in combination if so desired.
In coupling catheter 16 to the handle assembly 50, a strain relief shaft 131 may be attached to the proximal end of catheter 16 to provide structural support to the catheter and to prevent its kinking relative to the assembly 50. This strain relief shaft 131 may extend at least partially from and within distal handle portion 64. A rotatable plunger housing 135 may fixedly connect to distal handle portion 64 while rotatably positioned via an opening defined through plunger housing 135 over torquing section 150 of transition manifold 116. Plunger housing 135 may further define a surface which interfaces against a portion of transition manifold 116, as described in further detail below. A stop member 133 also defining an opening therethrough for passage of the pullwires may be positioned partially over torquing section 150 distal to plunger housing 135 and affixed to the transition manifold 116 to maintain the plunger housing 135 rotatable positioned over torquing section 150 as well as to maintain the interface between plunger housing 135 and transition manifold 116.
Proximal to platform member 92, a spacer 155 and one or more bearings 137, 139, 141 may be positioned to facilitate the rotation of control 54 with each defining an opening therethrough for accommodating the pullwire from proximal steering control 54. A carriage 143 may define a threaded outer surface and may also define an opening therethrough such that carriage 143 may ride along longitudinal support member 100. Proximal steering control 54 may also define a threaded inner surface which engages the threaded outer surface of carriage 143 in a complementary manner such that rotation of control 54 in a first rotational direction urges carriage 143 to slide in a first direction and rotation of control 54 in an opposite second rotational direction urges carriage 143 to slide in an opposite second direction. The longitudinal support member 100 may have a squared (or otherwise keyed) cross-section which corresponds to a squared (or otherwise keyed) opening defined through carriage 143 to prevent rotation of the carriage 143 when control 54 is rotated. This ensures carriage 143 is translated linearly the along support member 100 to push or pull the appropriate pullwire for controlling the orientation of the catheter distal end.
A stop member 145 may be positioned along or over support member 100 proximally of carriage 143 to limit the travel of carriage 143 along support member 100. Additionally, one or more bearings 147, 149 may also be included to facilitate the rotation of control 54 relative to the handle portion 52.
Turning to the detail exploded assembly view of
Additionally and/or alternatively, visual indicators positioned directly upon the hood 12 may also be utilized in coordination with corresponding visual indicators positioned upon the distal steering control 160. The hood 12 may have one or more visual indicators marked upon the distal portion of the hood such that the visual image 172 on monitor 170 as captured through the hood 12 may show at least a first directional indicator 162′ along a first portion of the hood, as shown in
In use, the directional indicators as viewed through the hood correspond to the direction the hood may move when the distal steering control 160 is deflected along the position where the corresponding indicator is located. Thus, deflecting distal steering control 160 in a direction of actuation, e.g., along any one or combination of the directional indicators, may articulate the distal steerable section 70 and hood 12 in a corresponding direction of articulation along the directional indicator shown on the hood or hood membrane. For instance, as shown in the perspective illustration of
Turning now to the rotatable distal handle portion, once the distal handle portion has been rotated to re-orient a configuration of the hood within the patient's body, various mechanisms may be utilized for locking and maintaining a position of the rotated handle portion relative to the handle housing 56. The ability to lock and unlock a position of the distal handle portion relative to the housing may allow for the operator to ensure that the re-oriented hood 12 and catheter 16 will maintain its configuration within the patient's body without fear of releasing or becoming displaced inadvertently.
An example of a locking mechanism is illustrated in the side and cross-sectional side views of
Although specific locking and rotational mechanisms are illustrated and described herein, these are intended to be illustrative and other variations may also be utilized with the devices and methods herein as practicable.
Another example of a locking mechanism for preventing the rotation of the distal handle portion relative to the articulation housing is further shown in the perspective views of
In addition to maintaining a position of the distal handle portion, the articulation control member used to articulate the distal steerable section 70 may also be selectively locked and unlocked to maintain a desired configuration of the distal steerable section 70. An example is illustrated in the perspective views of
In another variation, locking control 230 may be configured as a projection located adjacent to articulation control 62 and which may be slid into a locked or unlocked position, as shown the perspective views of
In yet another variation,
Although some examples of the locking features may be omitted from particular catheter handles assemblies, it is contemplated that any of the locking features described herein may be utilized with any of the catheter handle assemblies disclosed and as practicable.
Turning back now to the catheter handle assembly, yet another variation of the catheter handle is shown in the perspective views of
Generally, support housing 252 may comprise an engaging surface 254 and a handle portion 256 which may be tapered and to which a first end of transmission wire bundle 258 (through which one or more pullwires may be passed) may be coupled. The second end of transmission wire bundle 258 may pass into and/or through receiving handle 260 and through catheter 262. To engage support housing 252 to receiving handle 260, handle portion 256 may be inserted into receiving handle 260 while the excess length of transmission wire bundle 258 may be passed into receiving handle 260 or through a slot or channel 264 defined along handle 260, as shown in
Optionally, receiving handle 260 may also define a locking channel 290 with an actuatable locking mechanism 292 which may be configured to removably lock to a stationary platform such as a bar or rail 294, as shown in
Although multiple pullwires passing through bundle 258 may be utilized depending upon the number of directions for articulation, four pullwires may be typically utilized. Each of the four pullwires may be terminated to distal steering control 60, as previously described, such that a balanced four-way steering of the distal portion may be accomplished, although manipulating the steering control 60 along various portions of its circumference may yield combinational articulation between the pullwires to result in numerous catheter configurations.
As further illustrated in the top view of
Additionally and/or alternatively, the entire base 302 may be adjustably positioned upon another stationary platform 332 to allow for the adjustment of the handle assembly (and base 302) relative to the patient's body. As shown in the top view of
An alternative variation is shown in the perspective view of
In yet another variation shown in the perspective view of
The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other applications as well. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.
This application claims the benefit of priority to U.S. Provisional Application 61/286,283 filed Dec. 14, 2009 and 61/297,462 filed Jan. 22, 2010, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61286283 | Dec 2009 | US | |
61297462 | Jan 2010 | US |