Medium to long-term dwell catheters can incur occlusions caused by the buildup of biofilms, thrombosis, or the like. This results in the replacement of the catheter unless the occlusion is removed. Occluded catheters are currently treated with tissue plasminogen activator (tPA) to dissolve the occlusion. However, this can take upwards of 30 minutes to several hours, if successful at all.
Briefly summarized, embodiments disclosed herein are directed to apparatus and methods for disrupting and removing a catheter embolism while the catheter remains placed within the patient.
Disclosed herein an embolectomy system for restoring patency to an indwelling catheter having an occlusion disposed therein, the indwelling catheter including a catheter lumen extending from a proximal end of the indwelling catheter to a distal end of the indwelling catheter, the embolectomy system including a pressurized fluid conduit including a conduit body and a conduit lumen, the conduit body having an outer diameter less than an inner diameter of the catheter lumen to enable insertion and disposition of the pressurized fluid conduit in the catheter lumen, a positive pressure source in fluid communication with a proximal end of the conduit lumen, the positive pressure source providing a pressurized fluid, the conduit lumen directing the pressurized fluid into the occlusion in the catheter lumen, and a negative pressure source in fluid communication with the catheter lumen to aspirate the occlusion from the catheter lumen.
In some embodiments, the conduit lumen is in fluid communication with an opening disposed at a distal end of the conduit body, the pressurized fluid exiting the opening at an angle relative to a longitudinal axis of the conduit lumen. The opening disposed at the distal end of the conduit body includes a nozzle having one of a converging portion or a diverging portion. The pressurized fluid includes one of water and saline. The positive pressure source provides the pressurized fluid of between 0.1 psi to 400 psi. The positive pressure source provides the pressurized fluid of between 110 psi to 130 psi. The positive pressure source provides a pulsed pressurized fluid that varies in pressure between 0.1 psi and 400 psi at a rate of between 1 Hz to 150 Hz. The negative pressure source provides a medical vacuum of between −11 psi and −3 psi.
In some embodiments, the pressurized fluid conduit includes a reinforcement member extending through a portion of a wall of the pressurized fluid conduit. The reinforcement member includes a nitinol coil. In some embodiments, the embolectomy system further includes an ultrasound transducer coupled to the pressurized fluid conduit or the pressurized fluid and providing ultrasonic wave energy therethrough to the occlusion to fragment the occlusion. In some embodiments, the embolectomy system further includes an ultrasound transducer coupled to the catheter and providing ultrasonic wave energy through the catheter to the occlusion to fragment the occlusion. In some embodiments, the embolectomy system further includes a tip location system for tracking a magnetic element included with a distal portion of the pressurized fluid conduit. In some embodiments, the embolectomy system further includes an electrode included with a distal tip of the pressurized fluid conduit and configured for detecting an ECG signal, and a tip tracking system for receiving ECG data from the electrode and determining if the distal tip of the pressurized fluid conduit is proximate a distal tip of the indwelling catheter, or the occlusion has been cleared.
In some embodiments, the embolectomy system further includes a first electrode and a second electrode included with a distal portion of the pressurized fluid conduit, the first electrode configured for detecting an intra-luminal conductance at a first position and the second electrode configured for detecting an intra-luminal conductance at a second position, and a lumen localization system for measuring changes in relative conductance between the first position and the second position to determine a change in intraluminal cross-sectional area, indicating a distal tip of the pressurized fluid conduit is proximate a distal tip of the indwelling catheter.
Also disclosed is a method of removing an occlusion from a catheter lumen of an indwelling catheter, the method including providing an embolectomy system having a pressurized fluid conduit including a conduit lumen, a positive pressure source in fluid communication with the conduit lumen, the pressurized fluid source providing a pressurized fluid, and a negative pressure source in fluid communication with a collection container and the catheter lumen, introducing the pressurized fluid conduit into the catheter lumen until a distal end of the pressurized fluid conduit is proximate the occlusion, applying the pressurized fluid through the pressurized fluid conduit lumen into the occlusion to fragment the occlusion, and aspirating the occlusion proximally through the catheter lumen to the collection container.
In some embodiments, the pressurized fluid is between 0.1 psi and 400 psi. In some embodiments, applying the pressurized fluid further includes applying a pulsed pressurized fluid that varies in pressure between 0.1 psi and 400 psi at a rate of between 1 Hz to 150 Hz. In some embodiments, the method further includes directing the pressurized fluid at an angle relative to a longitudinal axis of the conduit lumen. The angle is between 5° and 90°. In some embodiments, the method further includes providing ultrasonic wave energy through one of the pressurized fluid conduit, the catheter, or the pressurized fluid to fragment the occlusion. In some embodiments, the method further includes tracking a magnetic element included with a distal portion of the pressurized fluid conduit to determine a location of a tip of the pressurized fluid conduit. In some embodiments, the method further includes detecting an ECG signal strength at a distal portion of the pressurized fluid conduit and determining if the distal portion is proximate a distal tip of the indwelling catheter, or the occlusion has been cleared. In some embodiments, the method further includes detecting an intra-luminal conductance at a first position and an intra-luminal conductance at a second position and measuring a change in relative conductance to determine a change in intraluminal cross-sectional area between the first position and the second position, indicating a distal tip of the pressurized fluid conduit is proximate a distal tip of the indwelling catheter.
Also disclosed is an embolectomy system for removing an occlusion from an indwelling catheter including, a pressurized fluid conduit including a first conduit lumen and a second conduit lumen, a positive pressure source in fluid communication with the first conduit lumen, the positive pressure source providing a pressurized fluid for ablating the occlusion, and a negative pressure source in fluid communication with the second conduit lumen, the negative pressure source providing a negative pressure for aspirating the occlusion from the indwelling catheter.
In some embodiments, the first conduit lumen includes an opening at the distal end that directs the pressurized fluid at an angle relative to a longitudinal axis of the first conduit lumen. The first conduit lumen includes a nozzle disposed at the distal end, and configured for developing a jet of pressurized fluid as the pressurized fluid passes therethrough. The positive pressure source provides a pulsed pressurized fluid that varies in positive pressure between 0.1 psi and 400 psi at a rate of between 1 Hz to 150 Hz. One of the first conduit lumen or the second conduit lumen includes a reinforcement member. The reinforcement member includes a nitinol coil. In some embodiments, the embolectomy system further includes a tip location system for tracking a magnetic element included with a distal portion of the pressurized fluid conduit. In some embodiments, the embolectomy system further includes an electrode included with a distal tip of the pressurized fluid conduit and configured for detecting an ECG signal, and a tip tracking system for receiving ECG data from the electrode and determining if the distal tip of the pressurized fluid conduit is proximate a distal tip of the indwelling catheter, or the occlusion has been cleared.
In some embodiments, the embolectomy system further includes a first electrode and a second electrode included with a distal portion of the pressurized fluid conduit, the first electrode configured for detecting an intra-luminal conductance at a first position and the second electrode configured for detecting an intra-luminal conductance at a second position, and a lumen localization system for measuring changes in relative conductance between the first position and the second position to determine a change in intraluminal cross-sectional area, indicating a distal tip of the pressurized fluid conduit is proximate a distal tip of the indwelling catheter. In some embodiments, the embolectomy system further includes an ultrasound transducer coupled to one of the pressurized fluid conduit, the indwelling catheter, or the pressurized fluid and configured to provide ultrasonic wave energy therethrough to the occlusion to fragment the occlusion.
Also disclosed is a method of removing an occlusion from a catheter lumen of an indwelling catheter including, providing an embolectomy system having a stylet extending from a proximal end to a distal end, the stylet including a stent retrieval structure disposed at the distal end thereof, and a negative pressure source in fluid communication with the catheter lumen and configured for aspirating the occlusion from the catheter lumen, introducing the stylet into the catheter lumen until the stent retrieval structure is proximate the occlusion, grasping the occlusion using the stent retrieval structure to fragment and withdraw a portion of the occlusion in a proximal direction, and aspirating the occlusion proximally through the catheter lumen to a collection container.
In some embodiments, the method further includes an ultrasound transducer coupled to the stylet and configured to provide ultrasonic wave energy therethrough to the occlusion to fragment the occlusion.
A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.
With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.
To assist in the description of embodiments described herein, a longitudinal axis extends substantially parallel to an axial length of a catheter 10. A lateral axis extends normal to the longitudinal axis, and a transverse axis extends normal to both the longitudinal and lateral axes.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.
The catheter 10 includes an elongate tubular body 12 defining a lumen 22 and extends from a catheter hub 14 disposed at a proximal end, to a distal tip 16 that includes an opening communicating with the lumen 22. A distal portion of the catheter body 12 can be disposed within a patient, for example within a vasculature of the patient. A proximal portion of the catheter body 12, including the catheter hub 14 can be disposed outside of the patient. Optionally, the hub 14 includes one or more extension legs extending from a proximal end thereof and communicating with one or more lumens of the catheter 10. As shown in
As shown in
As shown in
In use, when an occlusion 50 is detected within the lumen 22, the pressurized fluid conduit 110 can be introduced to the lumen 22 and advanced so that a distal tip 116 is proximate to the occlusion 50. The positive pressure source 130 provides a high pressure fluid through the conduit lumen 122 and applies a jet of high pressure fluid to the occlusion 50, as indicated by the solid arrows. The jet of high pressure fluid can disrupt, ablate or fragment the occlusion 50. Concurrently, the negative pressure source 140 applies a suction to the lumen 22 of the catheter 10. The negative pressure source 140 can aspirate any fragmented portions of the occlusion 50 to the collection container 150. Advantageously, the diameter of the catheter lumen 22 is larger than the outer diameter of the conduit body 112 and allows the occlusion 50, or portions thereof, to pass proximally as indicated by the dashed arrows.
In an embodiment, the positive pressure source 130 provides a pressurized fluid of between 0.1 psi to 400 psi, with a preferred pressure of between 110 psi to 130 psi. In an embodiment, the positive pressure source 130 provides different flow rates of pressurized fluid of between 0.1 ml per sec and 15 ml per sec, further the different flow rates can be selected by the clinician. In an embodiment, the positive pressure source 130 provides a pulsed pressurized fluid. The pulsed pressurized fluid varies in pressure from between 0.1 psi to 400 psi, with a preferred pressure variation of between 20 psi to 50 psi. In an embodiment, the pulsed pressurized fluid varies at a rate of 1 Hz to 150 Hz. In an embodiment, the pulsed pressurized fluid varies at a rate of up to 20 kHz. In an embodiment, the pulsed pressurized fluid varies at a rate of above 20 kHz. Advantageously, the pulsed pressurized fluid can further disrupt the occlusion 50 facilitating aspiration thereof. It will be appreciated that pressures, flow rates, and frequencies outside of the ranges described herein, are also contemplated.
In an embodiment, the negative pressure source 140 provides a negative pressure relative to ambient atmospheric pressure, i.e. substantially 1 atmosphere or 15 psi. In an embodiment, the negative pressure source provides a medical vacuum, i.e. a relative pressure of between −11 psi and −3 psi. In an embodiment, a user is able to control the pressure, flow rate, negative pressure, or combinations thereof to ensure occlusion 50 can be removed without damaging the catheter 10. Further details and embodiments of the system 100, as well as fluid pressures, flow rates, and pulsed pressurized fluid frequencies can be found in U.S. Pat. No. 10,322,230, which is herein incorporated by reference in its entirety.
In an embodiment, the distal end tip of the pressurized fluid conduit 110 includes a nozzle 118. As used herein, the term “nozzle” includes a structure that modifies the flow of a fluid therethrough.
In an embodiment, as shown in
In an embodiment, a wall of the conduit body 112 includes a reinforcement member configured to prevent the conduit body 112 from bursting when receiving pressurized fluid. For example, as shown in
As shown in
Advantageously, the conduit body 112 can include materials and structures that are different from the catheter 10 and can sustain a lower negative pressure while maintaining the patency of the second conduit lumen 122B and preventing any damage to the catheter 10. For example, the conduit body 112 can include a reinforcement member 128, as described herein, that prevents the second conduit lumen 122B from collapsing under a negative pressure. This allows for a harder negative pressure (i.e. lower pressure) to be applied to draw the occlusion 50 proximally. In an embodiment, the cross-sectional diameter of the first conduit lumen 122A and the second conduit lumen 122B can be the same. In an embodiment, the cross-sectional diameter of the first conduit lumen 122A and the second conduit lumen 122B can be different. In an embodiment, the first distal opening 116A, second distal opening 116B, or combinations thereof can include a nozzle 118, as described herein.
As shown in
In an embodiment, the embolytic system 100 further includes a tip tracking system 170 that detects if the occlusion has been cleared or detects if the tip 116 of the pressurized fluid conduit 110 is proximate the distal tip of the catheter 10. To note, if the pressurized fluid is exposed to the vasculature of the patient, the forces can potentially cause damage to otherwise healthy tissues. Accordingly, tracking the location of the tip 116 relative to the catheter tip 16 can be important. As shown in
In an embodiment, the embolytic system 100 further includes a lumen localization system 190 that determines intra-lumen conductance, intra-lumen impedance, cross-sectional area, cross-sectional profiles, or combinations thereof. As shown in
It will be appreciated that the embolytic system 100 can include the tip location system (“TLS”) 160, the tip tracking system 170, the lumen localization system 190 as described herein, embodiments thereof, or combinations thereof. Further details and embodiments of the tip location system 160, tip tracking system 170, and lumen localization system 190, can be found in U.S. Pat. Nos. 8,388,541, 8,781,555, 8,849,382, 9,445,743, 9,456,766, 9,492,097, 9,521,961, 9,554,716, 9,636,031, 9,649,048, 10,159,531, 10,172,538, 10,413,211, 10,449,330, 10,524,691, 10,751,509, U.S. Publication No. 2015/0080762, and U.S. Publication No. 2018/0116551, each of which are incorporated by reference in their entirety into this application.
As shown in
As shown in
Advantageously, the pressurized fluid conduit 110, including for example a reinforcement structure 128, can provide an efficient medium for the ultrasonic wave energy to pass through. The pressurized fluid conduit 110 is formed of a relatively stiffer material than the catheter 10 in order to sustain the fluid pressures subjected thereto. This material provides a more efficient media through which ultrasonic energy can pass. By contrast, indwelling catheters are formed of softer materials to facility navigation of tortuous vascular pathways. However, this soft material can absorb wave energy, especially wave energy of high frequencies such as ultrasound, thus attenuating the effects of the ultrasound wave energy on the occlusion.
In an embodiment, the ultrasound transducer 180 introduces ultrasonic wave energy directly to the pressurized fluid passing through the conduit lumen 122. The wave energy can include longitudinal waves, transverse waves, surface waves, or combinations thereof. The wave energy travels through the pressurized fluid to a distal tip 116. The jet of pressurized fluid impinging the occlusion 50 can also conduct the thrombolytic wave energy directly to the occlusion 50. This can dislodge the occlusion from the walls of the catheter lumen 22, break up the occlusion 50, or combinations thereof. The occlusion 50 can then be aspirated as described herein.
As shown in
In an embodiment, an ultrasound transducer 180 can be coupled with the stylet 210, stylet hub 214, or combinations thereof. The transducer 180 can introduce ultrasonic wave energy, through the stylet 210 to the occlusion 50 to provide thrombolytic energy directly to the occlusion 50, as described herein. This can dislodge the occlusion from the walls of the catheter lumen 22, break up the occlusion 50, or combinations thereof. The occlusion 50 can then be aspirated as described herein.
In an embodiment, the tip 216 of the stylet 210 can include various occlusion removal structures that can further pierce, ablate, grasp, or break up the occlusion 50. Such occlusion removal structures can include sharpened points, helical structures, corkscrew structures, hooks, barbs, pincer arms, sharpened blades, rotating structures, or the like.
In an embodiment, the tip 216 of the stylet 210 can include a stent retrieval structure configured for engaging and grasping the occlusion 50. The stent retrieval structure can grasp and withdraw the occlusion 50 proximally to remove, or break up the occlusion 50. The negative pressure source 140 can concurrently aspirate the occlusion 50, as described herein.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application claims the benefit of priority to U.S. Provisional Application No. 62/928,231, filed Oct. 30, 2019, which is incorporated by reference in its entirety into this application.
Number | Date | Country | |
---|---|---|---|
62928231 | Oct 2019 | US |