Catheter placement system with stiffening system

Information

  • Patent Grant
  • 12290644
  • Patent Number
    12,290,644
  • Date Filed
    Thursday, October 28, 2021
    3 years ago
  • Date Issued
    Tuesday, May 6, 2025
    2 months ago
Abstract
Disclosed herein is a catheter placement system with a stiffening system and associated methods thereof. The catheter placement system can include a needle, catheter (e.g. rapid insertion central catheter), one or more guidewires, and a stiffening system, configured to place the catheter while containing portions of the catheter placement system that contact the patient within a sterile environment. Advantageously, the catheter placement system can provide all tools necessary for accessing a vasculature, dilating the insertion site and placing the catheter within a single device, mitigating repeated insertion of multiple tools and reducing the risk of introducing pathogens or the like. Further, the overall time required to place the catheter is reduced, reducing patient down time and improving patient outcomes.
Description
SUMMARY

Embodiments disclosed herein are directed to a catheter placement system with a stiffening system and associated methods thereof. The catheter placement system can include a needle, catheter (e.g. rapid insertion central catheter), one or more guidewires, and a stiffening system, configured to place the catheter while containing portions of the catheter placement system that contact the patient within a sterile environment. Advantageously, the catheter placement system can provide all tools necessary for accessing a vasculature, dilating the insertion site and placing the catheter within a single device, mitigating repeated insertion of multiple tools and reducing the risk of introducing pathogens, or the like. Further, the overall time required to place the catheter is reduced, reducing patient down-time and improving patient outcomes. Advantageously, the stiffening system can support the catheter, or portions thereof disposed outside of the patient. The stiffening system can remain outside of the body as the catheter is placed and allow for more rigid materials to support the catheter.


Disclosed herein is catheter placement system including, a housing defining an interior cavity and configured to maintain a sterile environment therein, a catheter defining a first lumen and including a first section, a second section, and a transition section disposed therebetween, one or both of the transition section and the second section disposed within the sterile environment defined by the housing, and a stiffening system including a first stylet defining a stylet lumen and extending proximally into a proximal portion of the first lumen.


In some embodiments, the catheter placement system further includes a needle extending through a first side port of the catheter into a distal portion of the first lumen, a distal portion of the needle and a distal portion of the first section extending from a distal end of the housing. In some embodiments, the catheter placement system further includes a needle retraction assembly configured to withdraw the needle proximally from the first lumen and dispose the needle in an offset position from an axis of the first lumen within the interior cavity.


In some embodiments, the catheter placement system further includes a first guidewire advancement assembly configured to advance a first guidewire through the first side port of the catheter and through a distal portion of the first lumen. In some embodiments, the catheter placement system further includes a second guidewire assembly including a scroll wheel actuator configured to rotate and advance a second guidewire through the first lumen. In some embodiments, the stiffening system includes a second stylet extending proximally into a proximal portion of a second lumen of the catheter, the second stylet including a stylet guidewire extending distally therefrom into the second section of the catheter.


In some embodiments, the second lumen communicates with a distal opening disposed in a sidewall of the second section, a distal portion of the stylet guidewire configured to selectively occlude the distal opening. In some embodiments, the catheter placement system further includes a catheter advancement assembly configured to advance the catheter distally, and configured to separate a top half of the housing from a bottom half of the housing when advanced to a distal position. In some embodiments, the catheter placement system further includes a manifold including a flushing hub in fluid communication with the stylet lumen, the manifold configured to support the stiffening system. In some embodiments, the catheter placement system further includes a blood flash indicator disposed within the interior cavity and in fluid communication with a lumen of the needle.


Also disclosed is a method of placing a catheter including, providing a catheter placement system having a housing defining a sterile environment and including a needle, a catheter defining a first catheter lumen, and a stiffening system including a stylet having a stylet lumen and in fluid communication with the first catheter lumen, flushing the first catheter lumen by providing a fluid through the stylet lumen, accessing a vasculature of a patient by creating an insertion site with the needle, advancing a first section of the catheter through the insertion site, withdrawing the needle from a lumen of the first section, dilating the insertion site by advancing a transition section of the catheter through the insertion site, advancing a second section of the catheter into the vasculature, and withdrawing the stiffening system from the first catheter lumen.


In some embodiments, the catheter includes the first section disposed at a distal end, the transition section extending proximally from the first section, a second section extending proximally from the transition section, a hub disposed at a proximal end of the second section and an extension set extending proximally from the hub, the extension set including a first extension leg in fluid communication with the first catheter lumen. In some embodiments, the method further includes advancing one of a first guidewire or a second guidewire through a portion of the first lumen into a vasculature of a patient. In some embodiments, advancing the second section of the catheter into the vasculature further includes separating a top half of the housing from a bottom half of the housing.


In some embodiments, the method further includes disengaging the catheter from the catheter placement system by urging the catheter between the top half of the housing and the bottom half of the housing. In some embodiments, the method further includes a manifold having a flushing hub and configured to provide fluid communication between the flushing hub and the stylet lumen. In some embodiments, the method further includes sliding the manifold proximally relative to the housing to withdraw the stiffening system from the first catheter lumen.


In some embodiments, the method further includes actuating a blood flash actuator to provide fluid communication between a lumen of the needle and an interior cavity of a blood flash indicator. In some embodiments, a vacuum is disposed within the interior cavity of the blood flash indicator to draw a fluid flow proximally through the needle lumen.





DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIGS. 1A-1B illustrate perspective views of a catheter placement system, in accordance with embodiments disclosed herein.



FIG. 1C illustrates a side view of the catheter placement system of FIG. 1A with the outer housings removed for ease of illustration, in accordance with embodiments disclosed herein.



FIGS. 2A-2B illustrate cross-section schematic views of a catheter, in accordance with embodiments disclosed herein.



FIG. 2C illustrates a close up view of a distal portion of a catheter, in accordance with embodiments disclosed herein.



FIGS. 3A-3C illustrate side views of a needle insertion assembly, in accordance with embodiments disclosed herein.



FIGS. 4A-4B illustrate perspective views of a needle insertion assembly, in accordance with embodiments disclosed herein.



FIG. 5 illustrates a perspective view of a guidewire advancement assembly, in accordance with embodiments disclosed herein.



FIGS. 6A-6I illustrate steps in an exemplary method of use of a catheter placement system, in accordance with embodiments disclosed herein.



FIGS. 7A-7D illustrate steps in an exemplary method of use of a catheter placement system with the outer housings removed for ease of illustration, in accordance with embodiments disclosed herein.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.


With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.


In the following description, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. As an example, “A, B or C” or “A, B and/or C” mean “any of the following, A, B, C, A and B, A and C, B and C, A, B and C.” An exception to this definition will occur only when a combination of elements, components, functions, steps or acts are in some way inherently mutually exclusive.


As shown in FIG. 1A, and to assist in the description of embodiments described herein, a longitudinal axis extends substantially parallel to an axial length of a needle 140. A lateral axis extends normal to the longitudinal axis, and a transverse axis extends normal to both the longitudinal and lateral axes. A horizontal plane is defined by the longitudinal and lateral axes, a vertical plane extends normal thereto.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


The present disclosure generally relates to a catheter placement system (“system”) 100 including a stiffening system, and associated methods thereof. In an embodiment, the catheter placement system 100 can be used to place a catheter, such as for example, a Rapid Insertion Central Catheter (“RICC”) 190 to access a vasculature of a patient. However, it will be appreciated that embodiments disclosed herein can be used to place various catheters, cannulas, single lumen catheters, multi-lumen catheters, intravenous (IV) catheters, peripheral intravenous line (PIV) catheters, peripherally inserted central catheters (PICC), central venous catheter (CVC), dialysis catheters, drainage catheters, and the like, without limitation.



FIGS. 1A-1C show an exemplary embodiment of a catheter placement system (“system”) 100. FIG. 1A shows a perspective view of the system 100 prior to deployment of a catheter, e.g. a catheter 190. FIG. 1B shows a perspective view of the system 100 after the catheter 190 has been placed. FIG. 1C shows a side view of the interior components of the system 100 with the exterior housings 110, 120 removed for ease of explanation.


The system 100 generally includes one or more exterior housings, such as a splittable catheter housing (“catheter housing”) 110 and a guidewire housing 120, coupled to a proximal end thereof. The system 100 further includes a needle 140, a catheter 190 such as a Rapid Insertion Central Catheter (RICC), an extension set 180, one or more guidewires 150, 160, and a stiffening system 184, portions of which can be disposed within an interior cavity defined by the one or more exterior housings 110, 120.


In an embodiment, the catheter 190 can include one or more sections configured to display different mechanical properties. For example, the catheter 190 can include a first section 130 disposed at a distally, a second section 170 disposed proximally. The catheter 190 can further include a transition section 136 disposed therebetween, as described in more detail herein. Further, the system 100 can include a first guidewire 150 and a second guidewire 160, as described in more detail herein.


The catheter housing 110 and the guidewire housing 120 can co-operate to define an elongate, cylindrical shape including a tapered distal portion and a substantially circular cross-sectional shape. However, it will be appreciated that other elongate profiles and cross-sectional shapes including triangular, square, hexagonal, polygonal, or combinations thereof, are also contemplated. In an embodiment, a portion of the catheter housing 110 and/or the guidewire housing 120 can define a faceted surface to provide a gripping surface and facilitate manipulation of the system 100. In an embodiment, the catheter housing 110 and/or the guidewire housing 120 can include a protrusion 118 configured to provide an abutment surface for a user to facilitate manipulation of the system 100. In an embodiment, the catheter housing 110 and/or the guidewire housing 120 can be formed of a rigid or semi-rigid material including metal, alloy, polymer, plastic, thermoplastic, elastomer, rubber, silicone rubber, composite, combinations thereof, or the like.


In an embodiment, an outer surface of the catheter housing 110 or the guidewire housing 120 includes a compliant material, elastomer, silicone rubber, or the like, with an increased friction co-efficient, to provide a comfortable gripping surface and facilitate grasping and manipulation of the system 100. In an embodiment, the catheter housing 110 or the guidewire housing 120, or portion thereof, can be formed of a translucent or transparent material to allow a user to observe structures, components, catheters, guidewires, extension sets, elongate medical devices, or the like, disposed therein. As used herein, an “elongate medical device” can include the catheter 190 or portion thereof such as the first section 130 or the second section 170, the needle 140, the first guidewire 150, the second guidewire 160, one or more advancement assemblies, combinations thereof, or the like.


In an embodiment, the catheter housing 110 can include a top housing piece 110A and a bottom housing piece 110B that are releasably engage along a horizontal plane. The top housing piece 110A and the bottom housing piece 110B are configured to selectively detach and disengage from the catheter 190 once the catheter 190 is placed within the vasculature 90 of the patient. In an embodiment, the housing pieces 110A, 110B can be engaged along a longitudinal vertical plane to provide a left housing piece 110A and a right housing piece 110B, or along a plane angled relative to the horizontal or vertical plane.


In an embodiment, a guidewire housing 120 can extend from a proximal end of the catheter housing 110 and define an interior cavity that communicates with an interior cavity of the catheter housing 110. In an embodiment, the guidewire housing 120, or portion thereof, can be formed of a transparent material to allow a user to observe a portion of the catheter 190, the blood flash indicator 122, or an elongate medical device, or the like, disposed therein.


The system 100 can further include an extension set manifold (“manifold”) 182, disposed at a proximal end of the guidewire housing 120 and configured to slide proximally along a longitudinal axis between a distal position (FIG. 1A) and a proximal position (FIG. 1B). The manifold 182 can support a stiffening system 184 that comprises one or more stylets 186 or stylet guidewires 188. The manifold 182 can include one or more tabs, wings, or protrusions configured to provide increased grip for a user to slide the manifold 182 to the proximal position and remove the stiffening system 184 from the catheter 190. The manifold 182 can include a flexible film barrier 114 extending between a distal end of the extension set manifold 182 and a proximal end of the guidewire housing 120 and extend annularly about a longitudinal axis. In an embodiment, the barrier 114 can be formed of a thin polymer film or similar flexible material, and can be configured to collapse to allow the manifold 182 to transition between the distal position and the proximal position. In an embodiment, the barrier 114, or portion thereof, can be transparent to allow a user to observe one or more components, elongate medical devices, or the like, disposed therein.


In an embodiment, the catheter housing 110, guidewire housing 120, and/or one or more barriers, e.g. barriers 114, can define an interior cavity configured to receive one or more elongate medical devices, advancement assemblies, or the like, therein. Advantageously, the interior cavity can maintain the elongate medical devices etc., within a sterile environment, allowing a user to manipulate the system 100 without having to directly contact the elongate medical devices. This maintains the elongate medical device(s) etc. in a sterile environment and mitigates the introduction of pathogens, or similar infection causing agents.


In an embodiment, one or more flexible film barriers can be disposed within the interior cavity of the system 100 to contain one or more elongate medical devices within a sterile environment. For example, as shown in FIG. 1C, a first sterile barrier 114 can contain the extension set 180 and a portion of the catheter 190. A second sterile barrier 116 can contain the first guidewire 150 and the needle 140 in the retracted state. These and other combinations of sterile barriers and elongate medical devices are also contemplated.


As shown in FIG. 1C, the catheter placement system 100 can include a needle retraction assembly 144, a catheter advancement assembly 174, a first guidewire advancement assembly 154, and a second guidewire advancement assembly 164. In an embodiment, the system 100 can include a Rapid Insertion Central Catheter (“RICC”) 190. The catheter 190 can be disposed within the interior cavity formed by the catheter housing 110 and the guidewire housing 120. The catheter 190 can be coupled with the catheter advancement assembly 174 and both the catheter 190 and the catheter advancement assembly 174 can be slidable relative to the catheter housing 110 or the guidewire housing 120, along a longitudinal axis.


The catheter advancement assembly 174 can be coupled with a catheter actuator 172 disposed on an outer surface of the catheter housing 110. Transitioning the catheter actuator 172 between a proximal position (FIG. 1A) and a distal position (FIG. 1B) can transition the catheter advancement assembly 174 and the catheter 190 between the retracted position and the extended position. In use, a user can manipulate the catheter actuator 172 to advance the catheter 190, or similar catheter device, into the vasculature 90.



FIGS. 2A-2B show further details of an exemplary catheter 190. The catheter 190 can include a first section 130 disposed at a distal end of the catheter 190, and a second section 170 disposed proximally. In an embodiment, the catheter 190 can further include a transition section 136 disposed between the first section 130 and the second section 170.


In an embodiment, the catheter 190 can further including a hub 192 disposed at a proximal end of the second section 170. The catheter 190 can further include an extension set 180 extending proximally from the hub 192 and comprising one or more extension legs, each communicating with a lumen of the catheter 190. For example, a first extension leg 180A can communicate with a first lumen 194A, a second extension leg 180B can communicate with a second lumen 194B and a third extension leg 180C can communicate with a third lumen 194C. Each extension leg can include a connector such as a luer lock, or the like, disposed at a proximal end thereof. The connector can be configured to couple the extension leg with a syringe, medical fluid line, or the like, to provide fluid communication with a lumen.


In an embodiment, each lumen 194 can communicate with a distal opening 196. For example, the first lumen 194A can extend from the first extension leg 180A, through the hub 192, the second section 170 and the transition section 136, to a first distal opening 196A, disposed at a distal tip of the first section 130. In an embodiment, one of the second lumen 194B or the third lumen 194C can extend from the second extension leg 180B or the third extension leg 180C, respectively, through the hub 192 to the second section 170 and communicate with a respective second distal opening 196B or a third distal opening 196C, disposed in a side wall of the second section 170. In an embodiment, one of the distal openings 196A, 196B, 196C can be disposed in a transition section 136.


In an embodiment, the catheter 190 can include one or more side entry ports (“side ports”) 132, extending through a side wall of one of the first section 130, transition section 136, or second section 170, and communicating with one of the first lumen 194A, second lumen 194B, or third lumen 194C. For example, the first section 130 can include a first side port 132A. A needle 140 or a first guidewire 150 can extend through the first side port 132A, and through a distal portion of the first lumen 194A, through the first distal opening 196A to extend distally of the distal tip of the catheter 190.


In an embodiment, the first section 130 can define a relatively smaller diameter than the second section 170. In an embodiment, the first section 130 can define a relatively more rigid, more resilient, or harder durometer than the second section 170. As such, one or both of the first section 130 and the transition section 136 can provide greater columnar strength relative to the second section 170. In an embodiment, the first section 130 can define a single lumen and define a diameter similar to that of a peripheral intravenous (PIV) catheter. In an embodiment, the second section 170 can define two or more lumen, and define a diameter similar to that of a central venous catheter (CVC). The first section 130 can further include a tapered tip, tapering distally from the diameter of the first section 130 to the diameter of the needle 140, to facilitate insertion of the first section 130 through the access site formed by the needle 140. In an embodiment, the transition section 136 can define a tapered or frusto-conical shape extending from the diameter of the first section 130 to the diameter of the second section 170.


Advantageously, the first section 130 can access a vasculature more easily, due to the relatively smaller diameter. Further, if the incorrect vessel is accessed, removing the first section 130 and closing the access site is more easily achieved due to the smaller size of the access site. If the correct vessel is accessed, the catheter 190 can be urged distally such that the transition section 136 is urged through the access site to dilate the access site from the diameter of the first section 130 to the diameter of the second section 170. The stiffening system 184 can support a portion of the catheter 190, e.g. the second section 170, hub 192, or extension set 180 etc., as the catheter 190 is urged into the vasculature 90. In an embodiment, the catheter 190 or sections thereof can be formed of a plastic, polymer, elastomer, urethane, polyether ether ketone (PEEK), fluorinated ethylene propylene (FEP), or similar suitable material. Advantageously, the stiffening system 184 can be formed of a rigid or resilient material and can support the catheter 190, or sections thereof, which remain outside of the patient as the catheter 190 is advanced into the vasculature. The catheter 190 can be advanced while the stiffening system 184 remains stationary, allowing the stiffening system to support portions of the catheter 190 that remain exterior to the patient. Optionally, the stiffening system 184 can be withdrawn proximally to fully remove the stiffening system 184 from the catheter 190. Since portions of the stiffening system 184, e.g. stylets 186, remain exterior to patient, they can be formed of a more rigid material, and provide greater columnar support to the catheter 190.



FIG. 2B shows an exemplary catheter 190 including a needle 140 and a first guidewire 150 entering the lumen of the first section 130, i.e. a distal portion of the first lumen 194A, by way of a first side port 132A extending through a side wall of the catheter 190. The catheter 190 can further include a second guidewire 160 entering the first lumen 194A of the second section 170 of the catheter 190 by way of a second side port 132B. In an embodiment, the second guidewire 160 can enter the first lumen 194A through the first extension leg 180A. Once the needle 140 and the first guidewire 150 are removed, the second guidewire 160 can be advanced through the first lumen 194A, through the first distal opening 196A into a vasculature 90 to facilitate advancing the second section 170 into the vasculature 90.


The catheter placement system 100 can further include a stiffening system 184 comprising one or more support stylets (“stylets”) 186 extending distally from the manifold 182. In an embodiment, a stylet 186 can further include a guidewire 188 extending from the distal end thereof. As described herein, the stylets 186 remain outside of the patient and can be formed of a substantially rigid or resilient material. The stylet guidewires 188 can be formed of a relatively more flexible material, or display more flexible characteristics relative to the stylets 186. As such, the stiffening system 184 can provide additional support or stiffening properties to the catheter 190 during placement. In an embodiment, one of the stylet(s) 186, and optionally the stylet guidewires 188 remain stationary relative to the system 100 as the catheter 190 is advanced distally. As such the stiffening system 184 is passively withdrawn from the catheter 190 as the catheter 190 is placed, leaving at least the stylets 186 and optionally the stylet guidewires 188 exterior to the patient and supporting portions of the catheter 190 that remain exterior to the patient. As such, the stiffening system 184 can display more rigid mechanical properties and can provide increase columnar support during placement. During placement, or after the catheter 190 has being placed, the stiffening system 184 can be removed proximally.


In an embodiment, the stiffening system 184 can include a first stylet 186A extending distally into the lumen of the first extension leg 180A, i.e. a proximal portion of the first lumen 194A, a second stylet 186B extending distally into the lumen of the second extension leg 180B, and a third stylet 186C extending distally into the lumen of the third extension leg 180C. Further, in an embodiment, one of the second stylet 186B or the third stylet 186C can include a guidewire 188 extending distally therefrom, through the lumen 194 of the hub 192 and the second section 170.


In an embodiment, as shown in FIG. 2C, a distal portion of the stylet guidewire 188 can occlude a distal opening 196 to prevent a fluid from entering the lumen 194 as the second section 170 is advanced towards a target location within the vasculature 90. To note, the second guidewire 160 can extend through the first lumen 194A and can be configured to occlude the first opening 196A to, similarly, prevent a fluid from entering the first lumen 194A as the second section 170 is advanced towards a target location within the vasculature 90.


In an embodiment, one or more of the support stylets 186 can define a stylet lumen that is in fluid communication with a lumen of the flushing hub 106. A fluid can be introduced at the flushing hub 106 and pass through the manifold 182, through a lumen of the support stylet 186 and into a lumen 194 of the catheter 190 to flush the catheter 190 and purge the catheter 190 of any gases prior to placement.


With continued reference to FIGS. 1A-1C, in an embodiment, the catheter placement system 100 can include a needle 140, coupled to a needle retraction assembly 144 that is disposed within the interior cavity of the catheter housing 110. The needle 140 and needle retraction assembly 144 can be slidably engaged with the catheter housing 110 and can transition between an extended position (FIG. 1A) and a retracted position (FIG. 1B). The needle retraction assembly 144 can be coupled with a needle actuator 142 disposed on an outer surface of the catheter housing 110. Transitioning the needle actuator 142 between a distal position (FIG. 1A) and a proximal position (FIG. 1B) can transition the needle retraction assembly 144 and the needle 140 between the extended position and the retracted position. In use, a user can manipulate the needle actuator 142 and retract the needle 140 into the catheter housing 110. Advantageously, system 100 retains the needle 140 within the catheter housing 110 after use, mitigating accidental needle stick injuries or contamination from fluids, e.g. blood, disposed on the needle 140.



FIGS. 3A-3C show further details of the needle retraction assembly 144. The needle 140 can extend through the first side port 132A and can be disposed within the lumen of the first section 130. A proximal end of the needle 140 can be coupled to the needle retraction assembly 144 that is coupled with the needle retraction actuator 142. As shown in FIGS. 3A-3B, withdrawing the needle retraction actuator 142 proximally can withdraw the needle 140 proximally through the side port 132A, removing the needle 140 from the first lumen 194A.


In an embodiment, as shown in FIGS. 3A-3B and 4A-4B, the needle retraction actuator 142 can be slidably engaged with the needle retraction assembly 144 along the transverse axis. As such, as the needle 140 is withdrawn proximally, the needle 140 can displace transversely upward, away from the central axis of the first lumen 194A. Advantageously, the transverse movement of the needle 140 can allow for a clear pathway for additional elongate medical devices, e.g. the second guidewire 160, to be advanced through the first lumen 194A.


In an embodiment, as shown in FIGS. 3B-3C, the system 100 can further include a side port occluder 134 slidably engaged with the system 100 along a transverse axis and can be configured to close a side port 132, e.g. the first side port 132A, once the needle 140 is removed from the side port 132. The side port occluder 134 can be biased towards the closed position such that as soon as the needle 140 is fully removed from the side port 132, the side port occluder 134 transitions to the closed position (FIG. 3C). Advantageously, the side port occluder 134 can prevent any fluid from escaping from the first lumen 194A, when the needle 140 is removed.


With continued reference to FIGS. 1A-1C, the guidewire housing 120 can include one or more guidewire advancement assemblies. In an embodiment, the guidewire housing 120 can include a first guidewire 150 coupled to a first guidewire advancement assembly 154. The first guidewire 150 and first guidewire advancement assembly 154 can be slidably engaged with the guidewire housing 120. The first guidewire advancement assembly 154 can transition between a proximal position and a distal position. The first guidewire advancement assembly 154 can be coupled with a first guidewire actuator 152 disposed on an outer surface of the guidewire housing 120. Transitioning the first guidewire actuator 152 between the proximal position and the distal position can transition the first guidewire advancement assembly 154 and the first guidewire 150 between a retracted position and an extended position. In use, a user can manipulate the first guidewire actuator 152 to advance the first guidewire 150, into the vasculature 90, as described in more detail herein.


In an embodiment, the guidewire housing 120 can further include a second guidewire 160 coupled to a second guidewire advancement assembly 164 and slidably or rotatably engaged with the guidewire housing 120. The second guidewire advancement assembly 164 can transition the second guidewire 160 between a retracted position and an extended position. The second guidewire advancement assembly 164 can be coupled with a second guidewire actuator 162 disposed on an outer surface of the guidewire housing 120. In an embodiment, the second guidewire actuator 162 can be a scroll wheel, rotatably coupled with the guidewire housing 120. A portion of the scroll wheel can extend through a side wall of the guidewire housing 120. Rotating the second guidewire actuator 162 can extend or retract the second guidewire 160 along the longitudinal axis.



FIG. 5 shows further details of the scroll wheel actuator 162 of the second guidewire advancement assembly 164. The second guidewire actuator 162 can be coupled with one or more gears, wheels, or similar mechanisms configured to grasp, or compress the second guidewire 160 therebetween and to translate the rotational movement of the second guidewire actuator 162 into longitudinal movement of the guidewire 160.


With continued reference to FIGS. 1A-1C, in an embodiment, the catheter placement system 100 can further include a blood flash indicator 122. The blood flash indicator 122 can include a tube or similar structure formed from a transparent material and can be disposed within the guidewire housing 120. As noted, the guidewire housing 120 can be formed of a transparent material, as such a user can observe the blood flash indicator 122 disposed therein.


In an embodiment, the blood flash indicator 122 can define an interior cavity configured to maintain a vacuum therein. The blood flash indicator 122 can be in fluid communication with a lumen of the needle 140 by way of a communicating tube 124, or similar structure. As a distal tip of the needle 140 accesses a vasculature 90 of the patient, a fluid (e.g. blood) can flow proximally into the blood flash indicator 122 to be observed by a user. In an embodiment, a vacuum disposed within the blood flash indicator 122 can draw a fluid (e.g. blood) proximally through the needle lumen and into the blood flash indicator 122. A user can then observe a color or pulsatile flow characteristics to confirm vascular access. In an embodiment, the system 100 can include a blood flash actuator 126. Actuating the blood flash actuator 126 can open a valve or similar structure to place the vacuum disposed within the blood flash indicator 122, in fluid communication with the needle lumen to draw a fluid proximally therethrough. In an embodiment, the blood flash indicator 122 can further include a pump configured to be actuated by the user to create a vacuum within the blood flash indicator 122. For example, repeatedly actuating the blood flash actuator 126 can actuate the pump and create a vacuum within the blood flash indicator 122 to draw a fluid proximally through the needle lumen.


In an embodiment, the system 100 further includes a cap 108 configured to couple with a distal end of the catheter housing 110 and cover a distal portion of one of the needle 140 or the first section 130 of the catheter 190. The cap 108 can mitigate accidental needle stick injuries during storage or transport and maintains the needle 140, etc. in a sterile environment.


In an exemplary method of use, as shown in FIGS. 6A-61, a catheter placement system 100 is provided, as described herein. Initially, as shown in FIG. 6A, a user can couple a syringe or medical fluid line to a flushing hub 106 disposed at a proximal end of catheter placement system 100. As shown, the flushing hub 106 extends from a proximal surface of the manifold 182. The manifold 182 provides fluid communication between the flushing hub 106 and one or more stylets 186, partially disposed within the extension legs of the extension set 180. Flushing fluid through the manifold 182, stylets 186 and into the lumen(s) 194 of the catheter 190 can purge the catheter 190 of any air, ready for placement within the vasculature 90. The catheter placement system cap 108 can be removed from the catheter housing 110.


As shown in FIGS. 6A-6B, a user can grasp the catheter housing 110 and urge the needle tip 141 into a vasculature 90 of a patient. It is important to note that the catheter placement system 100 provides all of the components for placing the catheter 190, i.e. needle 140, blood flash indicator 122, catheter 190, first guidewire 150, second guidewire 160, stiffening system 184, etc. contained within a single sterile unit. This maintains all components that may be exposed to the patient within a sterile environment and contrasts with existing procedures that require repeated insertions using multiple components, risking the introduction of pathogens and the like. Further, the catheter placement system 100 maintains a barrier between the user and components that contact the patient, mitigating exposure to the patients' blood.


As shown in FIG. 6B, as the needle tip 141 accesses a vasculature 90 a blood flow can flow proximally through the needle lumen to a blood flash indicator 122. In an embodiment, the clinician can actuate a blood flash actuator 126 and provide fluid communication between a vacuum disposed within the blood flash indicator 122 and the needle lumen. Optionally, actuating or repeated actuating of the blood flash actuator 126 can form a vacuum within the blood flash indicator 122. The vacuum can draw the blood flow through the needle lumen and into the blood flash indicator 122. A user can then observe a color and pulsatile flow characteristics of the fluid disposed within the blood flash indicator 122 to confirm correct vascular access. For example a bright red color or strong pulsatile flow can indicate arterial access, a dark red color and low pulsatile flow can indicate venous access. Optionally, a user can compress the flexible blood flash indicator tube 122 to induce blood to flow therein. As shown, both the blood flash indicator 122 and a guidewire housing 120 in which the blood flash indicator 122 is disposed, can include a transparent material to allow a user to observe the blood flow therein.


In an embodiment, with correct vascular access confirmed, a user can actuate the first guidewire actuator 152 to advance the first guidewire 150 through the needle lumen and into the vasculature 90 of the patient until a distal tip of the first guidewire 150 extends distally of the needle tip 141, within the vasculature 90. In an embodiment, a distal tip of the first section 130 can be advanced into the vasculature along with the needle 140, as the needle accesses the vasculature. The distal tip of the first section 130 can be disposed on an outer surface of the needle 140 and can fit tightly therewith to prevent fluids, blood, or tissue from being urged between the needle 140 and first section 130 as the needle access the vasculature.


As shown in FIG. 6C, with the first section 130 of the catheter 190 disposed within the vasculature 90, the clinician can actuate a needle retraction actuator 142 to retract the needle 140 into the catheter housing 110. Advantageously, the needle 140 can be contained within the catheter housing 110 to mitigate accidental needle stick injuries and prevent contamination from fluids disposed thereon. In an embodiment, the clinician can actuate the first guidewire actuator 152 to retract the first guidewire 150 into the catheter housing 110. Advantageously, the first guidewire 150 can provide columnar support to the first section 130 as the needle 140 is retracted. In an embodiment, after the needle 140 is retracted, the catheter placement system 100 can be advanced distally to further advance the first section 130 into the vasculature 90. The first guidewire 150 can provide columnar support to the first section 130 as the system 100 is advanced distally. The first guidewire 150 can then be retracted once the first section 130 has been advanced into the vasculature. In an embodiment, the needle 140 and the first guidewire 150 can be retracted simultaneously.


As shown in FIG. 6D, in an embodiment, the clinician can actuate a catheter actuator 172 from a first position to a second position to advance the first section 130 of the catheter 190 further into the vasculature 90. As shown, the catheter housing 110 can include a first notch 176A disposed at the first position, a second notch 176B disposed at the second position and a third notch 176C disposed at a third position. Each notch 176 can be configured to capture the catheter actuator 172 as the actuator 172 slides past the notch 176, to provide some resistance to further longitudinal movement. As such, the notches 176 can provide tactile feedback to the user to indicate when the catheter actuator 172 is disposed at one of the first, second, or third positions. As described herein, as the catheter 190 is advanced distally, the stiffening system 184 remains stationary relative to the housings 110, 120. As such the stiffening system is passively removed from the catheter 190 as the catheter 190 is advanced.


As shown in FIG. 6E, in an embodiment, the clinician can actuate the second guidewire actuator 162 to advance the second guidewire 160 through the first section 130 of the catheter 190 and into the vasculature 90. A distal tip of the second guidewire 160 can advance distally of a distal tip of the first section 130 to a target location within the vasculature 90. In an embodiment, the manifold 182 can be urged proximally to disengage from the proximal end of the guidewire housing 120 and withdraw the stiffening system 184 proximally. As noted, the collapsible film barrier 114 extending between the manifold 182 and the guidewire housing 120 can maintain the stiffening system 184 within a sterile environment, within the interior cavity of the catheter placement system 100.


As shown in FIG. 6F, in an embodiment, the catheter actuator 172 can be advanced distally from the second position at the second notch 176B to the third position at the third notch 176C to advance the transition section 136 and the second section 170 into the vasculature 90. The transition section 136 can dilate the insertion site to allow the second section 170 to enter the vasculature 90.


As shown in FIG. 6G, in an embodiment, with the catheter actuator 172 disposed in the third position, the catheter advancement assembly 174 engage a cam structure disposed on an interior surface of the catheter housing 110, and configured to separate the top catheter housing piece 110A from the bottom catheter housing piece 110B. Further, the manifold 182 can be fully withdrawn proximally to fully disengage the stiffening system 184 from the catheter 190.


As shown in FIG. 6H, in an embodiment, the clinician can actuate the second guidewire actuator 162 to retract the second guidewire 160 from the catheter 190 and into the guidewire housing 120. Further, the top housing piece 110A and the bottom housing piece 110B can be further separated by the clinician to allow the hub 192 and extension set 180 to be removed from the catheter housing 110.


As shown in FIG. 6I, in an embodiment, with the catheter 190 placed at a target location within the vasculature 90, the catheter housing 110 can disengage the catheter 190 and the extension set 180. The catheter 190 can then be stabilized proximate the insertion site and a syringe or medical fluid line can be coupled to the extension set.



FIGS. 7A-7D show the movement of the inner components of the catheter placement system 100 with the outer housings removed for ease of explanation. In an embodiment, as shown in FIG. 7A, the needle tip 141 is advanced into the vasculature 90 to allow a blood flow to the blood flash indicator 122 by way of a communicating tube 124 providing fluid communication between the needle lumen and the blood flash indicator 122. FIG. 7B shows the first guidewire actuator 152 being advanced to advance the first guidewire 150 through the lumen of the needle 140 and into the vasculature 90. FIG. 7C shows the needle actuator 142 being withdrawn to withdraw the needle 140 from the lumen of the first section 130. FIG. 7D shows the first guidewire actuator 152 being withdrawn proximally to withdraw the first guidewire 150.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. A catheter placement system, comprising: a housing defining an interior cavity and configured to maintain a sterile environment therein;a catheter comprising: a catheter tube having a first section, a second section, and a transition section disposed therebetween, one or both of the transition section and the second section disposed within the sterile environment defined by the housing;a hub supporting a proximal end of the second section;a first extension leg extending proximally from the hub and communicating with a first lumen of the catheter tube; anda second extension leg extending proximally from the hub and communicating with a second lumen of the catheter tube;a needle extending through a distal portion of the first lumen; anda stiffening system comprising: a first stylet comprising a first stylet lumen positioned in a proxmial portion of the first lumen; anda second stylet comprising a second stylet lumen and a stylet guidewire, a proximal end of the stylet guidewire coupled to a distal end of the second stylet, the second stylet positioned in a proximal portion of the second lumen, the stylet guidewire extending through the hub into the second section.
  • 2. The catheter placement system according to claim 1, wherein the needle extends through a first side port of the catheter into a distal portion of the first lumen, a distal portion of the needle and a distal portion of the first section extending from a distal end of the housing.
  • 3. The catheter placement system according to claim 2, further including a needle retraction assembly configured to withdraw the needle proximally from the first lumen and dispose the needle in an offset position from an axis of the first lumen within the interior cavity.
  • 4. The catheter placement system according to claim 2, further including a first guidewire advancement assembly configured to advance a first guidewire through the first side port of the catheter and through a distal portion of the first lumen.
  • 5. The catheter placement system according to claim 4, further including a second guidewire assembly including a scroll wheel actuator configured to rotate and advance a second guidewire through the first lumen.
  • 6. The catheter placement system according to claim 1, wherein the stiffening system further includes a third stylet comprising a third stylet lumen and a second stylet guidewire, a proximal end of the second stylet guidewire coupled to a distal end of the third stylet, the third stylet positioned in a proximal portion of a third lumen of the catheter, the second stylet guidewire extending through the hub into the second section of the catheter.
  • 7. The catheter placement system according to claim 6, wherein the second lumen communicates with a distal opening disposed in a sidewall of the second section, a distal portion of the stylet guidewire configured to selectively occlude the distal opening.
  • 8. The catheter placement system according to claim 1, further including a catheter advancement assembly configured to advance the catheter distally, and configured to separate a top half of the housing from a bottom half of the housing when advanced to a distal position.
  • 9. The catheter placement system according to claim 1, further including a manifold including a flushing hub in fluid communication with one or both of the first stylet lumen and the second stylet lumen, the manifold configured to support the stiffening system.
  • 10. The catheter placement system according to claim 2, further including a blood flash indicator disposed within the interior cavity and in fluid communication with a lumen of the needle.
  • 11. The catheter placement system according to claim 1, wherein the second stylet defines a more rigid mechanical characteristic relative to the stylet guidewire.
PRIORITY

This application claims the benefit of priority to U.S. Provisional Application No. 63/106,792, filed Oct. 28, 2020, which is incorporated by reference in its entirety into this application.

US Referenced Citations (374)
Number Name Date Kind
1013691 Shields Jan 1912 A
3225762 Guttman Dec 1965 A
3382872 Rubin May 1968 A
3570485 Reilly Mar 1971 A
3890976 Bazell et al. Jun 1975 A
4205675 Vaillancourt Jun 1980 A
4292970 Hession, Jr. Oct 1981 A
4468224 Enzmann et al. Aug 1984 A
4525157 Vaillancourt Jun 1985 A
4581019 Curelaru et al. Apr 1986 A
4594073 Stine Jun 1986 A
4702735 Luther et al. Oct 1987 A
4743265 Whitehouse et al. May 1988 A
4766908 Clement Aug 1988 A
4863432 Kvalo Sep 1989 A
4935008 Lewis, Jr. Jun 1990 A
4950252 Luther et al. Aug 1990 A
4994040 Cameron et al. Feb 1991 A
5017259 Kohsai May 1991 A
5040548 Yock Aug 1991 A
5057073 Martin Oct 1991 A
5112312 Luther May 1992 A
5115816 Lee May 1992 A
5120317 Luther Jun 1992 A
5158544 Weinstein Oct 1992 A
5188593 Martin Feb 1993 A
5195962 Martin et al. Mar 1993 A
5207650 Martin May 1993 A
RE34416 Lemieux Oct 1993 E
5267958 Buchbinder et al. Dec 1993 A
5295970 Clinton et al. Mar 1994 A
5306247 Pfenninger Apr 1994 A
5312361 Zadini et al. May 1994 A
5322512 Mohiuddin Jun 1994 A
5328472 Steinke et al. Jul 1994 A
5350358 Martin Sep 1994 A
5358495 Lynn Oct 1994 A
5368567 Lee Nov 1994 A
5378230 Mahurkar Jan 1995 A
5380290 Makower et al. Jan 1995 A
5389087 Miraki Feb 1995 A
5439449 Mapes et al. Aug 1995 A
5443457 Ginn et al. Aug 1995 A
5460185 Johnson et al. Oct 1995 A
5489271 Andersen Feb 1996 A
5573520 Schwartz et al. Nov 1996 A
5683370 Luther et al. Nov 1997 A
5713876 Bogert et al. Feb 1998 A
5718678 Fleming, III Feb 1998 A
5772636 Brimhall et al. Jun 1998 A
5885251 Luther Mar 1999 A
5919164 Andersen Jul 1999 A
5921971 Agro et al. Jul 1999 A
5947940 Beisel Sep 1999 A
5957893 Luther et al. Sep 1999 A
5971957 Luther et al. Oct 1999 A
6159198 Gardeski et al. Dec 2000 A
6206849 Martin et al. Mar 2001 B1
6228062 Howell et al. May 2001 B1
6475187 Gerberding Nov 2002 B1
6551284 Greenberg et al. Apr 2003 B1
6606515 Windheuser et al. Aug 2003 B1
6616630 Woehr et al. Sep 2003 B1
6626869 Bint Sep 2003 B1
6638252 Moulton et al. Oct 2003 B2
6716228 Tal Apr 2004 B2
6726659 Stocking et al. Apr 2004 B1
6819951 Patel et al. Nov 2004 B2
6821287 Jang Nov 2004 B1
6926692 Katoh et al. Aug 2005 B2
6962575 Tal Nov 2005 B2
6991625 Gately et al. Jan 2006 B1
6994693 Tal Feb 2006 B2
6999809 Currier et al. Feb 2006 B2
7025746 Tal Apr 2006 B2
7029467 Currier et al. Apr 2006 B2
7037293 Carrillo et al. May 2006 B2
7074231 Jang Jul 2006 B2
7094222 Siekas et al. Aug 2006 B1
7141050 Deal et al. Nov 2006 B2
7144386 Korkor et al. Dec 2006 B2
7311697 Osborne Dec 2007 B2
7364566 Elkins et al. Apr 2008 B2
7377910 Katoh et al. May 2008 B2
7390323 Jang Jun 2008 B2
D600793 Bierman et al. Sep 2009 S
D601242 Bierman et al. Sep 2009 S
D601243 Bierman et al. Sep 2009 S
7594911 Powers et al. Sep 2009 B2
7691093 Brimhall Apr 2010 B2
7722567 Tal May 2010 B2
D617893 Bierman et al. Jun 2010 S
D624643 Bierman et al. Sep 2010 S
7819889 Healy et al. Oct 2010 B2
7857788 Racz Dec 2010 B2
D630729 Bierman et al. Jan 2011 S
7909797 Kennedy, II et al. Mar 2011 B2
7909811 Agro et al. Mar 2011 B2
7922696 Tal et al. Apr 2011 B2
7938820 Webster et al. May 2011 B2
7967834 Tal et al. Jun 2011 B2
7976511 Fojtik Jul 2011 B2
7985204 Katoh et al. Jul 2011 B2
8073517 Burchman Dec 2011 B1
8105286 Anderson et al. Jan 2012 B2
8192402 Anderson et al. Jun 2012 B2
8202251 Bierman et al. Jun 2012 B2
8206356 Katoh et al. Jun 2012 B2
8361011 Mendels Jan 2013 B2
8372107 Tupper Feb 2013 B2
8377006 Tal et al. Feb 2013 B2
8454577 Joergensen et al. Jun 2013 B2
8585858 Kronfeld et al. Nov 2013 B2
8657790 Tal et al. Feb 2014 B2
8672888 Tal Mar 2014 B2
8696645 Tal et al. Apr 2014 B2
8784362 Boutilette et al. Jul 2014 B2
8827958 Bierman et al. Sep 2014 B2
8876704 Golden et al. Nov 2014 B2
8882713 Call et al. Nov 2014 B1
8900192 Anderson et al. Dec 2014 B2
8900207 Uretsky Dec 2014 B2
8915884 Tal et al. Dec 2014 B2
8956327 Bierman et al. Feb 2015 B2
9023093 Pal May 2015 B2
9067023 Bertocci Jun 2015 B2
9126012 McKinnon et al. Sep 2015 B2
9138252 Bierman et al. Sep 2015 B2
9180275 Helm Nov 2015 B2
9265920 Rundquist et al. Feb 2016 B2
9272121 Piccagli Mar 2016 B2
9445734 Grunwald Sep 2016 B2
9522254 Belson Dec 2016 B2
9554785 Walters et al. Jan 2017 B2
9566087 Bierman et al. Feb 2017 B2
9675784 Belson Jun 2017 B2
9713695 Bunch et al. Jul 2017 B2
9764117 Bierman et al. Sep 2017 B2
9770573 Golden et al. Sep 2017 B2
9814861 Boutillette et al. Nov 2017 B2
9820845 von Lehe et al. Nov 2017 B2
9861383 Clark Jan 2018 B2
9872971 Blanchard Jan 2018 B2
9884169 Bierman et al. Feb 2018 B2
9889275 Voss et al. Feb 2018 B2
9913585 McCaffrey et al. Mar 2018 B2
9913962 Tal Mar 2018 B2
9981113 Bierman May 2018 B2
10010312 Tegels Jul 2018 B2
10065020 Gaur Sep 2018 B2
10086170 Chhikara et al. Oct 2018 B2
10098724 Adams et al. Oct 2018 B2
10111683 Tsamir et al. Oct 2018 B2
10118020 Avneri et al. Nov 2018 B2
10130269 McCaffrey et al. Nov 2018 B2
10220184 Clark Mar 2019 B2
10220191 Belson et al. Mar 2019 B2
10265508 Baid Apr 2019 B2
10271873 Steingisser et al. Apr 2019 B2
10376675 Mitchell et al. Aug 2019 B2
10675440 Abitabilo et al. Jun 2020 B2
10688281 Blanchard et al. Jun 2020 B2
10806901 Burkholz et al. Oct 2020 B2
10926060 Stern et al. Feb 2021 B2
11260206 Stone et al. Mar 2022 B2
11400260 Huang et al. Aug 2022 B2
11759607 Biancarelli Sep 2023 B1
20020040231 Wysoki Apr 2002 A1
20020198492 Miller et al. Dec 2002 A1
20030036712 Heh et al. Feb 2003 A1
20030060863 Dobak Mar 2003 A1
20030088212 Tal May 2003 A1
20030100849 Jang May 2003 A1
20030153874 Tal Aug 2003 A1
20030158514 Tal Aug 2003 A1
20040015138 Currier et al. Jan 2004 A1
20040064086 Gottlieb et al. Apr 2004 A1
20040116864 Boudreaux Jun 2004 A1
20040116901 Appling Jun 2004 A1
20040167478 Mooney et al. Aug 2004 A1
20040193093 Desmond Sep 2004 A1
20040230178 Wu Nov 2004 A1
20050004554 Osborne Jan 2005 A1
20050120523 Schweikert Jun 2005 A1
20050131343 Abrams et al. Jun 2005 A1
20050215956 Nerney Sep 2005 A1
20050245882 Elkins et al. Nov 2005 A1
20050283221 Mann et al. Dec 2005 A1
20060009740 Higgins et al. Jan 2006 A1
20060116629 Tal et al. Jun 2006 A1
20060129100 Tal Jun 2006 A1
20060129130 Tal et al. Jun 2006 A1
20070276288 Khaw Nov 2007 A1
20080045894 Perchik et al. Feb 2008 A1
20080125744 Treacy May 2008 A1
20080125748 Patel May 2008 A1
20080132850 Fumiyama et al. Jun 2008 A1
20080262430 Anderson et al. Oct 2008 A1
20080262431 Anderson et al. Oct 2008 A1
20080294111 Tal et al. Nov 2008 A1
20080312578 DeFonzo et al. Dec 2008 A1
20080319387 Amisar et al. Dec 2008 A1
20090187147 Kurth et al. Jul 2009 A1
20090221961 Tal Sep 2009 A1
20090270889 Tal et al. Oct 2009 A1
20090292272 McKinnon Nov 2009 A1
20100030154 Duffy Feb 2010 A1
20100256487 Hawkins et al. Oct 2010 A1
20100298839 Castro Nov 2010 A1
20100305474 DeMars et al. Dec 2010 A1
20110004162 Tal Jan 2011 A1
20110009827 Bierman et al. Jan 2011 A1
20110021994 Anderson et al. Jan 2011 A1
20110066142 Tal et al. Mar 2011 A1
20110071502 Asai Mar 2011 A1
20110144620 Tal Jun 2011 A1
20110152836 Riopelle et al. Jun 2011 A1
20110190778 Arpasi Aug 2011 A1
20110202006 Bierman et al. Aug 2011 A1
20110251559 Tal et al. Oct 2011 A1
20110270192 Anderson et al. Nov 2011 A1
20120041371 Tal et al. Feb 2012 A1
20120065590 Bierman et al. Mar 2012 A1
20120078231 Hoshinouchi Mar 2012 A1
20120130411 Tal et al. May 2012 A1
20120130415 Tal et al. May 2012 A1
20120157854 Kurrus et al. Jun 2012 A1
20120215171 Christiansen Aug 2012 A1
20120220942 Hall et al. Aug 2012 A1
20120226239 Green Sep 2012 A1
20120283640 Anderson et al. Nov 2012 A1
20120316500 Bierman et al. Dec 2012 A1
20130053763 Makino et al. Feb 2013 A1
20130053826 Shevgoor Feb 2013 A1
20130123704 Bierman et al. May 2013 A1
20130158338 Kelly et al. Jun 2013 A1
20130188291 Vardiman Jul 2013 A1
20130237931 Tal et al. Sep 2013 A1
20130306079 Tracy Nov 2013 A1
20140025036 Bierman et al. Jan 2014 A1
20140081210 Bierman et al. Mar 2014 A1
20140094774 Blanchard Apr 2014 A1
20140100552 Gallacher et al. Apr 2014 A1
20140207052 Tal et al. Jul 2014 A1
20140207069 Bierman et al. Jul 2014 A1
20140214005 Belson Jul 2014 A1
20140257111 Yamashita et al. Sep 2014 A1
20140276432 Bierman et al. Sep 2014 A1
20140276599 Cully et al. Sep 2014 A1
20150011834 Ayala et al. Jan 2015 A1
20150080939 Adams et al. Mar 2015 A1
20150094653 Pacheco et al. Apr 2015 A1
20150112307 Margolis Apr 2015 A1
20150112310 Call et al. Apr 2015 A1
20150126930 Bierman et al. May 2015 A1
20150148595 Bagwell et al. May 2015 A1
20150190168 Bierman et al. Jul 2015 A1
20150196210 McCaffrey et al. Jul 2015 A1
20150224287 Bian et al. Aug 2015 A1
20150231364 Blanchard Aug 2015 A1
20150283357 Lampropoulos et al. Oct 2015 A1
20150297868 Tal et al. Oct 2015 A1
20150320969 Haslinger et al. Nov 2015 A1
20150320977 Vitullo et al. Nov 2015 A1
20150351793 Bierman et al. Dec 2015 A1
20150359549 Lenker et al. Dec 2015 A1
20150359998 Carmel et al. Dec 2015 A1
20160082223 Barnell Mar 2016 A1
20160114124 Tal Apr 2016 A1
20160158523 Helm Jun 2016 A1
20160220786 Mitchell Aug 2016 A1
20160242661 Fischell et al. Aug 2016 A1
20160256101 Aharoni et al. Sep 2016 A1
20160325073 Davies et al. Nov 2016 A1
20160331938 Blanchard et al. Nov 2016 A1
20160338728 Tal Nov 2016 A1
20160346503 Jackson et al. Dec 2016 A1
20170035990 Swift Feb 2017 A1
20170072165 Lim et al. Mar 2017 A1
20170120000 Osypka et al. May 2017 A1
20170120014 Harding et al. May 2017 A1
20170120034 Kaczorowski May 2017 A1
20170128700 Roche Rebollo May 2017 A1
20170156987 Babbs et al. Jun 2017 A1
20170172653 Urbanski et al. Jun 2017 A1
20170182293 Chhikara et al. Jun 2017 A1
20170239443 Abitabilo et al. Aug 2017 A1
20170259043 Chan et al. Sep 2017 A1
20170273713 Shah et al. Sep 2017 A1
20170296792 Ornelas Vargas et al. Oct 2017 A1
20170326339 Bailey et al. Nov 2017 A1
20170361070 Hivert Dec 2017 A1
20170368255 Provost et al. Dec 2017 A1
20180001062 O'Carrol et al. Jan 2018 A1
20180021545 Mitchell et al. Jan 2018 A1
20180116690 Sarabia et al. May 2018 A1
20180117284 Appling et al. May 2018 A1
20180133438 Hulvershorn et al. May 2018 A1
20180154062 DeFonzo et al. Jun 2018 A1
20180154112 Chan et al. Jun 2018 A1
20180214674 Ebnet et al. Aug 2018 A1
20180296799 Horst et al. Oct 2018 A1
20180296804 Bierman Oct 2018 A1
20180310955 Lindekugel et al. Nov 2018 A1
20190015646 Matlock et al. Jan 2019 A1
20190021640 Burkholz et al. Jan 2019 A1
20190060616 Solomon Feb 2019 A1
20190076167 Fantuzzi et al. Mar 2019 A1
20190134349 Cohn et al. May 2019 A1
20190192824 Cordeiro et al. Jun 2019 A1
20190201665 Turpin Jul 2019 A1
20190209812 Burkholz et al. Jul 2019 A1
20190255294 Mitchell et al. Aug 2019 A1
20190255298 Mitchell et al. Aug 2019 A1
20190275303 Tran et al. Sep 2019 A1
20190276268 Akingba Sep 2019 A1
20190321590 Burkholz et al. Oct 2019 A1
20190351196 Ribelin et al. Nov 2019 A1
20200001051 Huang et al. Jan 2020 A1
20200016374 Burkholz et al. Jan 2020 A1
20200046948 Burkholz et al. Feb 2020 A1
20200100716 Devgon et al. Apr 2020 A1
20200129732 Vogt et al. Apr 2020 A1
20200147349 Holt May 2020 A1
20200197682 Franklin et al. Jun 2020 A1
20200197684 Wax Jun 2020 A1
20200237278 Asbaghi Jul 2020 A1
20200359995 Walsh et al. Nov 2020 A1
20210030944 Cushen et al. Feb 2021 A1
20210060306 Kumar Mar 2021 A1
20210069471 Howell Mar 2021 A1
20210085927 Howell Mar 2021 A1
20210100985 Akcay et al. Apr 2021 A1
20210113809 Howell Apr 2021 A1
20210113810 Howell Apr 2021 A1
20210113816 DiCianni Apr 2021 A1
20210121661 Howell Apr 2021 A1
20210121667 Howell Apr 2021 A1
20210228842 Scherich et al. Jul 2021 A1
20210228843 Howell et al. Jul 2021 A1
20210244920 Kujawa Aug 2021 A1
20210290898 Burkholz Sep 2021 A1
20210290901 Burkholz et al. Sep 2021 A1
20210290913 Horst et al. Sep 2021 A1
20210322729 Howell Oct 2021 A1
20210330941 Howell et al. Oct 2021 A1
20210330942 Howell Oct 2021 A1
20210361915 Howell et al. Nov 2021 A1
20210402149 Howell Dec 2021 A1
20210402153 Howell et al. Dec 2021 A1
20220001138 Howell Jan 2022 A1
20220032013 Howell et al. Feb 2022 A1
20220032014 Howell et al. Feb 2022 A1
20220062528 Thornley et al. Mar 2022 A1
20220062596 Ribelin et al. Mar 2022 A1
20220193376 Spataro et al. Jun 2022 A1
20220193377 Haymond et al. Jun 2022 A1
20220193378 Spataro et al. Jun 2022 A1
20220323723 Spataro et al. Oct 2022 A1
20220331562 Jaros et al. Oct 2022 A1
20220331563 Papadia Oct 2022 A1
20230042898 Howell et al. Feb 2023 A1
20230096377 West et al. Mar 2023 A1
20230096740 Bechstein et al. Mar 2023 A1
20230099654 Blanchard et al. Mar 2023 A1
20230100482 Howell Mar 2023 A1
20230101455 Howell et al. Mar 2023 A1
20230102231 Bechstein et al. Mar 2023 A1
20230173231 Parikh et al. Jun 2023 A1
20230233814 Howell et al. Jul 2023 A1
20230381459 Belson et al. Nov 2023 A1
20240009427 Howell et al. Jan 2024 A1
20240050706 Howell et al. Feb 2024 A1
20240198058 Howell et al. Jun 2024 A1
Foreign Referenced Citations (107)
Number Date Country
202012006191 Jul 2012 DE
0653220 May 1995 EP
0730880 Sep 1996 EP
2061385 May 2009 EP
1458437 Mar 2010 EP
2248549 Nov 2010 EP
2319576 May 2011 EP
2366422 Sep 2011 EP
2486880 Aug 2012 EP
2486881 Aug 2012 EP
2486951 Aug 2012 EP
2512576 Oct 2012 EP
2152348 Feb 2015 EP
3473291 Apr 2019 EP
3093038 May 2019 EP
2260897 Sep 2019 EP
3693051 Aug 2020 EP
1273547 May 1972 GB
2004248987 Sep 2004 JP
2008054859 Mar 2008 JP
9421315 Sep 1994 WO
9532009 Nov 1995 WO
9844979 Oct 1998 WO
9853871 Dec 1998 WO
9857685 Dec 1998 WO
9912600 Mar 1999 WO
9926681 Jun 1999 WO
0006221 Feb 2000 WO
0054830 Sep 2000 WO
2003008020 Jan 2003 WO
2003057272 Jul 2003 WO
03068073 Aug 2003 WO
2003066125 Aug 2003 WO
2005096778 Oct 2005 WO
2006055288 May 2006 WO
2006055780 May 2006 WO
2007046850 Apr 2007 WO
2008033983 Mar 2008 WO
2008092029 Jul 2008 WO
2008131300 Oct 2008 WO
2008131289 Oct 2008 WO
2009114833 Sep 2009 WO
2009114837 Sep 2009 WO
2010048449 Apr 2010 WO
2010056906 May 2010 WO
2010083467 Jul 2010 WO
2010132608 Nov 2010 WO
2011081859 Jul 2011 WO
2011097639 Aug 2011 WO
2011109792 Sep 2011 WO
2011146764 Nov 2011 WO
2012068162 May 2012 WO
2012068166 May 2012 WO
2012135761 Oct 2012 WO
2012154277 Nov 2012 WO
2012162677 Nov 2012 WO
2013026045 Feb 2013 WO
2013138519 Sep 2013 WO
2014006403 Jan 2014 WO
2014100392 Jun 2014 WO
2014113257 Jul 2014 WO
2014152005 Sep 2014 WO
2014197614 Dec 2014 WO
2015057766 Apr 2015 WO
2015077560 May 2015 WO
2015168655 Nov 2015 WO
2016110824 Jul 2016 WO
2016123278 Aug 2016 WO
2016139590 Sep 2016 WO
2016139597 Sep 2016 WO
2016178974 Nov 2016 WO
2016187063 Nov 2016 WO
2016176065 Nov 2016 WO
2018089275 May 2018 WO
2018089285 May 2018 WO
2018089385 May 2018 WO
2018191547 Oct 2018 WO
2018213148 Nov 2018 WO
2018218236 Nov 2018 WO
2019050576 Mar 2019 WO
2019146026 Aug 2019 WO
2019199734 Oct 2019 WO
2020014149 Jan 2020 WO
2020069395 Apr 2020 WO
2020109448 Jun 2020 WO
2020113123 Jun 2020 WO
2021038041 Mar 2021 WO
2021050302 Mar 2021 WO
2021077103 Apr 2021 WO
2021062023 Apr 2021 WO
2021081205 Apr 2021 WO
2021086793 May 2021 WO
2021236950 Nov 2021 WO
2021226050 Nov 2021 WO
2022031618 Feb 2022 WO
2022094141 May 2022 WO
2022133297 Jun 2022 WO
2022-140406 Jun 2022 WO
2022140429 Jun 2022 WO
2022217098 Oct 2022 WO
2023014994 Feb 2023 WO
2023049498 Mar 2023 WO
2023049505 Mar 2023 WO
2023049511 Mar 2023 WO
2023049519 Mar 2023 WO
2023049522 Mar 2023 WO
2023146792 Aug 2023 WO
Non-Patent Literature Citations (75)
Entry
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Board Decision dated Oct. 30, 2023.
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Notice of Allowance dated Aug. 9, 2023.
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Non-Final Office Action dated Jul. 27, 2023.
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Notice of Allowance dated Oct. 27, 2023.
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Non-Final Office Action dated Oct. 4, 2023.
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Non-Final Office Action dated Oct. 13, 2023.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Final Office Action dated Jul. 27, 2023.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Final Office Action dated Nov. 21, 2023.
U.S. Appl. No. 17/557,924, filed Dec. 21, 2021 Non-Final Office Action dated Nov. 3, 2023.
PCT/US2020/052536 filed Sep. 24, 2020 International Search Report and Written Opinion dated Dec. 4, 2020.
PCT/US2021/014700 filed Jan. 22, 2021 International Search Report and Written Opinion dated Jun. 29, 2021.
PCT/US2021/028018 filed Apr. 19, 2021 International Search Report and Written Opinion dated Sep. 13, 2021.
PCT/US2021/028683 filed Apr. 22, 2021 International Search Report and Written Opinion dated Sep. 16, 2021.
PCT/US2021/029183 filed Apr. 26, 2021 International Search Report and Written Opinion dated Sep. 24, 2021.
PCT/US2021/033443 filed May 20, 2021 International Search Report and Written Opinion dated Sep. 23, 2021.
PCT/US2021/039084 filed Jun. 25, 2021 International Search Report and Written Opinion dated Jan. 10, 2022.
PCT/US2021/044029 filed Jul. 30, 2021 International Search Report and Written Opinion dated Dec. 9, 2021.
PCT/US2021/044223 filed Aug. 2, 2021 International Search Report and Written Opinion dated Dec. 21, 2021.
PCT/US2021/048275 filed Aug. 30, 2021 International Search Report and Written Opinion dated Jan. 4, 2022.
PCT/US2021/064642 filed Dec. 21, 2021 International Search Report and Written Opinion dated May 11, 2022.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Final Office Action dated May 30, 2018.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Jan. 25, 2019.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Nov. 2, 2017.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Notice of Allowance dated May 15, 2019.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Final Office Action dated Jan. 25, 2022.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Non-Final Office Action dated May 11, 2021.
U.S. Appl. No. 17/031,478, filed Sep. 24, 2020 Non-Final Office Action dated May 11, 2022.
PCT/US2021/057135 filed Oct. 28, 2021 International Preliminary Report on Patentability dated May 2, 2023.
PCT/US2021/057135 filed Oct. 28, 2021 International Search Report and Written Opinion dated Mar. 11, 2022.
PCT/US2023/011173 filed Jan. 19, 2023 International Search Report and Written Opinion dated May 22, 2023.
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Non-Final Office Action dated Jun. 8, 2023.
U.S. Appl. No. 17/326,017, filed May 20, 2021 Notice of Allowance dated Jul. 3, 2023.
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Restriction Requirement dated Jun. 7, 2023.
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Restriction Requirement dated Jul. 20, 2023.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Non-Final Office Action dated Jul. 17, 2023.
PCT/US2021/064671 filed Dec. 21, 2021 International Search Report and Written Opinion dated May 27, 2022.
PCT/US2022/024085 filed Apr. 8, 2022 International Search Report and Wirtten Opinion dated Sep. 12, 2022.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Examiner's Answer dated Oct. 31, 2022.
U.S. Appl. No. 17/031,478, filed Sep. 24, 2020 Notice of Allowance dated Sep. 16, 2022.
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Non-Final Office Action dated Oct. 25, 2022.
PCT/US2022/039614 filed Aug. 5, 2022 International Search Report and Written Opinion dated Dec. 22, 2022.
PCT/US2022/044848 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 3, 2023.
PCT/US2022/044879 filed Sep. 27, 2022 International Search Report and Written Opinion dated Mar. 3, 2023.
PCT/US2022/044901 filed Sep. 27, 2022 International Search Report and Written Opinion dated Mar. 3, 2023.
PCT/US2022/044918 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 21, 2023.
PCT/US2022/044923 filed Sep. 27, 2022 International Search Report and Written Opinion dated Feb. 15, 2023.
U.S. Appl. No. 17/156,252, filed Jan. 22, 2021 Notice of Allowance dated Apr. 24, 2023.
U.S. Appl. No. 17/237,909, filed Apr. 22, 2021 Restriction Requirement dated Feb. 1, 2023.
U.S. Appl. No. 17/326,017, filed May 20, 2021 Non-Final Office Action dated Jan. 26, 2023.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Mar. 2, 2023.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Restriction Requirement dated Mar. 30, 2023.
PCT/US2021/028018 filed Apr. 19, 2021 International Preliminary Report on Patentability dated Jun. 3, 2022.
PCT/US2021/064174 filed Dec. 17, 2021 International Search Report and Written Opinion dated May 18, 2022.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Non-Final Office Action dated Jan. 18, 2024.
U.S. Appl. No. 17/234,611, filed Apr. 19, 2021 Restriction Requirement dated Jan. 18, 2024.
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Advisory Action dated Feb. 22, 2024.
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Final Office Action dated Dec. 6, 2023.
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Final Office Action dated Mar. 13, 2024.
U.S. Appl. No. 17/360,694, filed Jun. 28, 2021 Non-Final Office Action dated Feb. 14, 2024.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Dec. 1, 2023.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Advisory Action dated Feb. 14, 2024.
U.S. Appl. No. 17/557,924, filed Dec. 21, 2021 Final Office Action dated Feb. 29, 2024.
U.S. Appl. No. 17/234,611, filed Apr. 19, 2021 Final Office Action dated Sep. 20, 2024.
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Final Office Action dated Aug. 14, 2024.
U.S. Appl. No. 17/358,504, filed Jun. 25, 2021 Notice of Allowance dated Jul. 17, 2024.
U.S. Appl. No. 17/554,978, filed Dec. 17, 2021 Notice of Allowance dated Jul. 24, 2024.
U.S. Appl. No. 17/557,924, filed Dec. 21, 2021 Non-Final Office Action dated Aug. 20, 2024.
U.S. Appl. No. 17/558,124, filed Dec. 21, 2021 Non-Final Office Action dated Sep. 20, 2024.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Notice of Allowance dated May 20, 2024.
U.S. Appl. No. 17/234,611, filed Apr. 19, 2021 Non-Final Office Action dated Apr. 23, 2024.
U.S. Appl. No. 17/240,591, filed Apr. 26, 2021 Non-Final Office Action dated Jun. 4, 2024.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Final Office Action dated May 6, 2024.
U.S. Appl. No. 17/390,682, filed Jul. 30, 2021 Non-Final Office Action dated Jul. 5, 2024.
U.S. Appl. No. 17/392,061, filed Aug. 2, 2021 Non-Final Office Action dated Apr. 23, 2024.
U.S. Appl. No. 17/554,978, filed Dec. 17, 2021 Non-Final Office Action dated Apr. 19, 2024.
Related Publications (1)
Number Date Country
20220126064 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
63106792 Oct 2020 US