Catheter pump

Information

  • Patent Grant
  • 12337165
  • Patent Number
    12,337,165
  • Date Filed
    Friday, January 13, 2023
    2 years ago
  • Date Issued
    Tuesday, June 24, 2025
    3 months ago
  • CPC
    • A61M60/857
    • A61M60/13
    • A61M60/174
    • A61M60/216
    • A61M60/411
    • A61M60/508
    • A61M60/81
    • A61M60/825
    • A61M60/148
    • A61M60/414
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • A61M60/857
    • A61M60/13
    • A61M60/148
    • A61M60/174
    • A61M60/216
    • A61M60/411
    • A61M60/414
    • A61M60/508
    • A61M60/81
    • A61M60/825
    • Term Extension
      0
Abstract
A catheter pump includes an elongate cannula with a formed mesh structure extending cylindrically between opposing ends thereof. The formed mesh structure defines a pattern configured to be stably expandable and collapsible without fracturing in a percutaneous delivery and re-sheathing in the provision of mechanical circulatory support of a patient's heart.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This application is directed to a catheter pump for mechanical circulatory support of a heart.


Description of the Related Art

Heart disease is a major health problem that has high mortality rate. After a heart attack, only a small number of patients can be treated with medicines or other non-invasive treatment. However, a significant number of patients can recover from a heart attack or cardiogenic shock if provided with mechanical circulatory support.


In a conventional approach, a blood pump having a fixed cross-section is surgically inserted between the left ventricle and the aortic arch to assist the pumping function of the heart. Other known applications involve providing for pumping venous blood from the right ventricle to the pulmonary artery for support of the right side of the heart. The object of the surgically inserted pump is to reduce the load on the heart muscle for a period of time, to stabilize the patient prior to heart transplant or for continuing support. Surgical insertion, however, can cause additional serious stresses in heart failure patients.


Percutaneous insertion of a left ventricular assist device (“LVAD”), a right ventricular assist device (“RVAD”) or in some cases a system for both sides of the heart (sometimes called biVAD) therefore is desired. Conventional fixed cross-section ventricular assist devices designed to provide near full heart flow rate are too large to be advanced percutaneously, e.g., through the femoral artery.


There is a continuing need for improved cannula that provide sufficient expansion force and a stable expanded shape while still allowing for reliable and easy collapse to a delivery size. In other words, the cannula should have sufficient force to expand, but also be collapsible under significant sheathing force while avoiding a risk of damaging the cannula during re-sheathing. There is a continuing need for improved cannula that can be expanded and collapsed, in some cases over many cycles, without risking breakage of the struts and connectors forming the mesh. Broken struts pose a risk of complicating patient treatment and/or compromising the performance of the device.


SUMMARY OF THE INVENTION

There is an urgent need for a pumping device that can be inserted percutaneously and also provide full cardiac rate flows of the left, right, or both the left and right sides of the heart when called for.


In one embodiment, an apparatus is provided for inducing motion of a fluid relative to the apparatus. The apparatus can be a catheter pump, as discussed below. The apparatus can include a rotatable impeller and an elongate cannula. The cannula has a plurality of circumferential members and a plurality of circumferential connectors. The circumferential members are disposed about a space, e.g., a volume including at least the impeller zone. One or more of, e.g., each of, the circumferential members can have an undulating configuration including a plurality of apices connected by elongate struts. The circumferential connectors can be disposed between alternating struts of adjacent circumferential members. A plurality of axial connectors is disposed between a proximal side of a proximal apex and a distal side of an adjacent circumferential member in the impeller zone of cannula.


In some embodiments, the cannula is differentiated along its length to have varying stiffness. The elongate cannula has an impeller zone disposed about the impeller and a distal zone disposed distal of the impeller zone. The distal zone can be made more flexible by reducing the number of connectors disposed therein. For example, the impeller zone can have alternating elongate struts that are connected by circumferential connectors and the distal zone can have alternating elongate struts that are free of such connections.


In one variation, each of the connectors of the plurality has a distal end coupled with a proximal side of a proximal apex of a first circumferential member, and a proximal end coupled with a distal face of a second circumferential member disposed adjacent to and proximal of the first circumferential member. Each of the connectors has an arcuate section disposed between the proximal and distal ends. In this variation, the arcuate section comprises a single convex portion disposed between the proximal and distal ends.


A first plurality of axial connectors is disposed between a proximal side of a proximal apex and a distal side of an adjacent circumferential member in the impeller zone of the cannula. A second plurality of axial connectors is disposed between a proximal side of a proximal apex and a distal side of an adjacent circumferential member in the distal zone of the cannula.


In another embodiment, an apparatus for pumping blood includes a rotatable impeller, an elongate cannula, and a sheath configured to be positioned over the elongate cannula. The elongate cannula has a plurality of circumferential members disposed about the impeller. One or more of, e.g., each of, the circumferential members can have an undulating configuration. The undulating configuration can include a plurality of proximal and distal apices, with proximal apices connected to distal apices by an elongate strut. The sheath is configured to be positioned over the elongate cannula to actuate the cannula from an expanded configuration to a collapsed configuration. The elongate cannula is configured to deflect radially inwardly in an area around the proximal apices before the apices move into the sheath.


In some configurations, the elongate cannula has an impeller zone disposed about the impeller and a distal zone disposed distal of the impeller zone. For example, the impeller can extend in about one-half or less of the length of the cannula. The distal zone may be more easily compressed by the sheath because the impeller is not present in that area. As a result, the cannula can have a different configuration in the distal zone.


In another configuration, a catheter pump is provided. A catheter pump is an example of an apparatus for inducing motion of a fluid relative to the apparatus. The catheter pump includes a rotatable impeller and an elongate cannula having a mesh comprising a plurality of circumferential members disposed about the impeller. The mesh also has a plurality of axial connectors extending between a proximal side of a distal circumferential member and a distal side of a proximal circumferential member. The circumferential members are radially self-expandable. A sheath is configured to be positioned over the elongated cannula to actuate the cannula from an expanded configuration to a collapsed configuration. The cannula is configured to minimize a risk of fracture within the mesh, e.g., of the axial connectors, as the elongated cannula moves into the sheath.


In a further embodiment, an apparatus for inducing motion of a fluid relative to the apparatus is provided. The apparatus includes a rotatable impeller and an elongate cannula. The elongate cannula defines a blood flow channel in which the impeller is disposed. The cannula has an expandable structure with a plurality of circumferential members, a plurality of circumferential connectors, and a plurality of axial connectors. The circumferential members are disposed about the blood flow channel. The circumferential members have an undulating configuration including a plurality of apices connected by elongate struts. The circumferential connectors are disposed between alternating struts of adjacent circumferential members. The axial connectors have a distal end coupled with a proximal side of a proximal apex of a first circumferential member, a proximal end coupled with a distal face (e.g., an edge) of a second circumferential member disposed adjacent to and proximal of the first circumferential member. The axial connectors have an arcuate section disposed between the proximal and distal ends. The arcuate section comprises a single convex portion disposed between the proximal and distal ends.


In another embodiment, an apparatus for pumping blood is provided that includes a rotatable impeller, an elongate cannula, and an axial member. The elongate cannula has a plurality of circumferential members disposed about the impeller. One or more of the circumferential members has an undulating configuration including a plurality of proximal and distal apices. Each proximal apex is connected to a distal apex by an elongate strut. The axial member has a distal end coupled with a proximal apex of a first circumferential member and a proximal end coupled with a second circumferential member disposed proximal of the first circumferential member. The axial member has a length that is less than the distance between the proximal apex to which the distal end of the axial member is connected and a proximal apex of the second circumferential member that is axially aligned with the proximal apex to which the distal end of the axial member is connected.


In another embodiment, a catheter pump is provided that includes a rotatable impeller and an elongate cannula. The elongate cannula has a mesh that has a plurality of circumferential members disposed about the impeller. The elongate cannula has a plurality of axial connectors extending between a proximal side of a distal circumferential member and a distal side of a proximal circumferential member. The circumferential members are radially self-expandable. The cannula is configured to minimize fracture within at least in the distal zone of the mesh as the elongated cannula moves into a sheathing device.


In another embodiment, a cannula for conveying blood is provided that includes an in-situ expandable and collapsible mesh structure and a polymeric enclosure. The in-situ expandable and collapsible mesh structure has a plurality of undulating circumferential members surrounding a lumen. Each circumferential member has proximal and distal vertices. The polymeric enclosure is disposed about the mesh structure to enclose the lumen along a length between an inlet and an outlet. The number of proximal vertices in an area defined between a proximal circumference intersecting the proximal vertex of a circumferential member and a distal circumference intersecting the distal vertex of the same circumferential member adjacent to the proximal vertex is at least two.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the subject matter of this application and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the accompanying drawings in which:



FIG. 1 illustrates one embodiment of a catheter pump configured for percutaneous application and operation;



FIG. 2 is a plan view of one embodiment of a catheter assembly adapted to be used with the catheter pump of FIG. 1;



FIG. 3 show a distal portion of the catheter assembly of similar to that of FIG. 2 in position within the anatomy;



FIG. 4 illustrates a wall pattern of a mesh structure in a flat configuration, where the mesh structure is configured to provide enhanced flexibility in a distal zone;



FIG. 4A is a detail view of a distal portion of the wall pattern of FIG. 4;



FIG. 5 shows a formed mesh structure for a cannula having a wall pattern similar to that of FIG. 4;



FIG. 5A is a detail view of the distal portion of the formed mesh structure of FIG. 5;



FIG. 6 illustrates another wall pattern of a mesh structure in a flat configuration, where the mesh structure is configured to minimize fracture risk;



FIG. 6A is a detail view of a distal portion of the wall pattern of FIG. 6;



FIG. 7 shows a cannula including a formed mesh structure having the wall pattern similar to that of FIG. 6 covered with a film layer;



FIG. 7A is a detail view of a distal portion of the cannula of FIG. 7;



FIG. 8 illustrates another wall pattern of a mesh structure in a flat configuration, where the mesh structure is configured to provide enhanced flexibility in a distal zone, while minimizing fracture risk;



FIG. 9 shows a formed mesh structure for a cannula having the wall pattern of FIG. 8;



FIG. 10 illustrates another wall pattern of a mesh structure in a flat configuration, where the mesh structure is configured to provide enhanced flexibility in a distal zone, while minimizing fracture risk;



FIG. 11 shows a formed mesh structure for a cannula having the wall pattern of FIG. 10;



FIG. 12 is a detail view of a distal portion of the wall pattern of FIGS. 8 and 10;



FIG. 13 is a detail view of a first variation of the distal portion of the formed mesh structure of FIG. 12;



FIG. 14 is a detail view of a second variation of the distal portion of the formed mesh structure of FIG. 12;



FIG. 14A-1 is a detail view of a proximal portion of another variation of a wall pattern that is stable and minimizes fracture;



FIG. 14A-2 is a detail view of a central portion of the wall pattern for which the proximal portion is shown in FIG. 14A-1



FIG. 14A-3 is a detail view of a distal portion of the wall pattern for which the proximal portion is shown in FIG. 14A-1



FIG. 15 illustrates another wall pattern of a mesh structure in a flat configuration, where the mesh structure is configured to provide more ports for blood to flow into or out of a cannula formed with this pattern;



FIG. 15A is a detail view of a proximal portion of the pattern of FIG. 15;



FIG. 16 is an expanded view of the pattern of FIGS. 15-15A; and



FIG. 17 is a graph of the sheathing force for collapsing a cannula and an impeller for an example wall pattern.





More detailed descriptions of various embodiments of components for heart pumps useful to treat patients experiencing cardiac stress, including acute heart failure, are set forth below.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

This application is directed to apparatuses for inducing motion of a fluid relative to the apparatus. The apparatus can be a catheter pump, e.g., a percutaneous heart pump.



FIGS. 1 and 2 illustrate various features of a catheter pump 10. The catheter pump 10 can provide high performance including flow rates similar to full cardiac output. The pump 10 includes a motor driven by a controller 22. The controller 22 directs the operation of the motor 14 and an infusion system 26 that supplies a flow of infusate in the pump 10. A catheter system 80 that can be coupled with the motor 14 houses an impeller within a distal portion thereof. In various embodiments, the impeller is rotated remotely by the motor 14 when the pump 10 is operating. For example, the motor 14 can be disposed outside the patient. In some embodiments, the motor 14 is separate from the controller 22, e.g., to be placed closer to the patient. In other embodiments, the motor 14 is part of the controller 22. In still other embodiments, the motor is miniaturized to be insertable into the patient. Such embodiments allow the drive shaft to be much shorter, e.g., shorter than the distance from the aortic valve to the aortic arch (about 5 cm or less). Some examples of miniaturized motors, catheter pumps, and related components and methods are discussed in U.S. Pat. Nos. 5,964,694; 6,007,478; 6,178,922; and 6,176,848, all of which are hereby incorporated by reference herein in their entirety for all purposes.



FIG. 3 illustrates one use of the catheter pump 10. A distal portion of the pump 10 is placed in the left ventricle LV of the heart to pump blood from the LV into the aorta. The pump 10 can be used in this way to treat patients with a wide range of conditions, including cardiogenic shock, myocardial infarction, and acutely decompensated heart failure, and also to support a patient during a procedure such as percutaneous coronary intervention. One convenient manner of placement of the distal portion of the pump 10 in the heart is by percutaneous access and delivery using the Seldinger technique or other methods familiar to cardiologists. These approaches enable the pump 10 to be used in emergency medicine, a catheter lab and in other non-surgical settings. Modifications can also enable the pump 10 to support the right side of the heart. Example modifications that could be used for right side support include providing delivery features and/or shaping a distal portion that is to be placed through at least one heart valve from the venous side, such as is discussed in U.S. Pat. Nos. 6,544,216; 7,070,555; and US 2012-0203056A1, all of which are hereby incorporated by reference herein in their entirety for all purposes.



FIG. 2 shows features that facilitate small blood vessel percutaneous delivery and high performance up to and in some cases exceeding normal cardiac output in all phases of the cardiac cycle. In particular, the catheter system 80 includes a catheter body 84 and a sheath assembly 88. An impeller assembly 92 is coupled with the distal end of the catheter body 84. The impeller assembly 92 is expandable and collapsible. In the collapsed state, the distal end of the catheter system 80 can be advanced to the heart. In the expanded state the impeller assembly 92 is able to pump blood at relatively high flow rates. FIGS. 2 and 3 illustrate the expanded state. The collapsed state can be provided by advancing a distal end 94 of an elongate body 96 distally over the impeller assembly 92 to cause the impeller assembly 92 to collapse. This provides an outer profile throughout the catheter assembly 80 that is of small diameter, for example 12.5 French as discussed further below.


Embodiments of the catheter pumps of this application can be configured with expandable structures to enhance performance. For example, an impeller for moving blood axially can be provided. The impeller can be positioned in an expandable cannula. When so positioned, the expandable cannula provides dual function of enclosing a blood flow lumen through which the impeller can act and also housing the impeller. In that sense, the cannula is also an expandable housing. The expandable cannula and impeller provide a flow rate in the pump that is much larger than would be possible using percutaneous access techniques were these components not capable of expanding. However, it may be possible to reduce flow resistance by increasing the size of a blood-flow cannula even with a fixed diameter impeller. Also, it may be possible to sequentially collapse the impeller, e.g., by withdrawing the impeller into a rigid ring or tubular segment prior to collapsing the impeller cannula. These variants also benefit from many of the embodiments herein and are within the scope of this application even though the impeller may not be housed in the cannula at all times or at all.


While these configurations provide excellent flow rates, a challenge arises in collapsing the expanded structures prior to removal from the patient. The collapsing of the impeller assembly 92 is this manner is not straight-forward. In various embodiments, a mesh is used to support the expandable portion of a blood flow conduit in the impeller assembly 92. The expandable portion can include a self-expanding structure that expands when undulating generally ring-shaped members release stored strain energy arising from circumferential compression. Compression of such a structure involves transforming axial relative movement of the sheath assembly 88 over the catheter body 84 into a circumferential compression force. There is a chance that such movement will cause the distal end to become lodged between adjacent undulating members. Such problems with compression can be more likely to occur when the undulating members are spaced apart by an axial distance that is greater than the wall thickness of the distal end of the sheath assembly 88. While the undulating members could be moved much closer together, such an approach could make the expandable structure too stiff thereby inhibiting collapse of the expandable portion. Some embodiments herein are configured to reduce this risk, while retaining sufficient flexibility. Some embodiments are configured to prevent connectors between adjacent rings from being deformed around the distal end of the sheath assembly 88. Various aspects of the expandable cannula and/or mesh in accordance with the invention achieve a careful balance of expansion force, collapsing force, and structural strength. FIGS. 4-16 illustrate various embodiments of mesh structures that can be incorporated into the expandable cannula to provide advantageous performance in use.


Additional details of the structures disclosed in these figures, and various modified embodiments thereof, and methods related to the same are discussed in U.S. application Ser. No. 13/343,617, filed Jan. 4, 2012, which is hereby incorporated by reference herein in its entirety. In addition, this application incorporates by reference in its entirety and for all purposes the subject matter disclosed in each of the following concurrently filed applications: application Ser. No. 13/802,556, entitled “DISTAL BEARING SUPPORT,” filed on the same date as this application; Application No. 61/780,656, entitled “FLUID HANDLING SYSTEM,” filed on the same date as this application; application Ser. No. 13/801,833, entitled “SHEATH SYSTEM FOR CATHETER PUMP,” filed on the same date as this application; application Ser. No. 13/802,570, entitled “IMPELLER FOR CATHETER PUMP,” filed on the same date as this application; and application Ser. No. 13/802,468, entitled “MOTOR ASSEMBLY FOR CATHETER PUMP,” filed on the same date as this application.



FIG. 4 shows a flat wall pattern 200 of a mesh structure 204 that is configured to provide enhanced flexibility in a distal zone 208. The distal zone 208 is disposed distally of an impeller zone 212, which is a portion of the mesh structure 204 that is disposed around an impeller in the catheter assembly of FIG. 2. The impeller can be part of the impeller assembly 116, as set forth in more detail in the U.S. application Ser. No. 13/343,617, incorporated by reference above. In some embodiments, the distal zone 208 and the impeller zone 212 are distinct from each other, for example having separate structure or performance characteristics. In other embodiments, the distal and impeller zones 208, 212 are general regions of an otherwise continuous structure. In some embodiments, the distal and impeller zones overlap. The wall pattern 200 also includes distal and proximal end connection structures 216A, 216B, which are discussed in detail in the '617 application incorporated by reference above, and also in U.S. application Ser. No. 13/343,618, which is hereby incorporated by reference herein in its entirety.


The wall pattern 200 illustrates a plurality of circumferential members 224 and a plurality of circumferential connectors 228. In the flat view of FIGS. 4 and 4A, the circumferential members 224 can be seen to extend transversely to a longitudinal axis of the pattern 200. In the formed view of FIGS. 5 and 5A, these structures can be seen to extend about the circumference of the formed mesh structure 204. As discussed below, e.g., in connection with FIGS. 7 and 7A, a cannula is formed by enclosing the circumferential members 224 with a polymer material, e.g., a film, to create a flow channel open on the ends but otherwise sealed to maximize axial flow through the cannula and the pump. Thus, the circumferential members 224 and later the cannula are disposed about a space, e.g., a volume including at least the impeller zone 212.


In various embodiments, the polymer material is a coating disposed about the cannula mesh structure 204. Suitable materials for the polymer coating include, but are not limited to a biocompatible polymer, a drug-eluting polymer, and a functionalized polymer such as a thromboresistant material. In various embodiments, the polymer material is Hapflex™ or Thoralon™. In the exemplary structure, the polymer material fills the voids in the mesh structure. The polymer material also coats the inner and outer walls such that the mesh structure does not come into contact with blood and tissue. In various embodiments, the polymer material is a thin coating. In various embodiments, the polymer coating has a maximum thickness of less than 10 microns, less than 9 microns, less than 8 microns, less than 7 microns, less than 6 microns, less than 5 microns, less than 4 microns, less than 3 microns, less than 2 microns, or less than 1 micron. In various embodiments, the polymer coating is formed of a plurality of layers. In various embodiments, the polymer coating is configured to reinforce the mesh structure. The polymer material may be applied by dip coating, molding, spinning on a mandrel, or other techniques. One will appreciate from the description herein that the polymer coating may be configured and applied in various other manners. Further details of suitable materials are set forth in U.S. Pat. Nos. 4,675,361 and 6,939,377, which are incorporated by reference herein in their entireties and for all purposes.


The circumferential members 224 preferably are configured to be self-expandable, also described as self-expanding herein. FIG. 4 shows that in one embodiment one or more of the circumferential members 224 can have an undulating configuration. As can be seen in many of the figures, and in FIG. 4A specifically, circumferential members can have an alternating structure, e.g., a plurality proximal turns and distal turns connected by struts. The struts can be straight members that each have a proximal ends connected to a proximal turn and a distal end connected to a distal turn. The distal turns can be peaks and the proximal turns can be valleys, e.g., if the cannula is held with the distal end up. The distal turns can be crests and the proximal turns can be troughs, e.g., if the cannula is held with the distal end up. In some cases, the circumferential members have a generally serpentine configuration, or can be sinusoidal in nature disposed on both sides of a transverse plane. The circumferential members 224 can include a plurality of distal and proximal apices 232A, 232B connected by elongate struts 236. As discussed further below, the density of the circumferential members 224 can be varied to modify the performance or the cannula.


The circumferential connectors 228 can be disposed between alternating struts 236 of adjacent circumferential members 224 in at least one of the distal and impeller zones 208, 212. For example, the connectors 228 (or other connectors discussed herein) can join a node on one circumferential member to a node on an adjacent circumferential member. In the case of the connectors 228, the nodes are offset from the peaks and valleys. At least one of the nodes can be disposed on a strut that extends between adjacent nodes. In some cases, connectors are disposed between the crests and troughs and can be disposed between a crest and a transverse mid-point of a sinusoidal circumferential member. In some patterns, the width of nodes are greater in the impeller zone than in the distal thereof. FIG. 4 shows that circumferential connector 228 can be provided between opposing sides of adjacent struts 236 of at least two adjacent circumferential members 224 in the impeller zone. In one embodiment, alternating elongate struts 236 are connected to an adjacent elongate strut of an adjacent circumferential member 224. In one embodiment, alternating elongate struts 236 are not connected to adjacent elongate struts by circumferential connectors 228. The elongate struts 236 that are not connected by circumferential connectors 228 are able to expand to a greater degree, providing for asymmetrical expansion about an apex in some embodiments. In this context, asymmetrical can refer to unequal movement upon expansion of the elongate struts 236 away from a central axis extending through an unexpanded apex. The central axis can be an axis intersecting an apex and being located an equal distance from inner edges of unexpanded adjacent elongate struts 236.



FIG. 4 shows that while circumferential connectors 228 are provided in the impeller zone 212, the connectors 228 can be omitted in the distal zone 208. Such an arrangement provides enhanced rigidity of the impeller zone 212 compared to the distal zone 208. FIGS. 6 and 14A-1 to 14A-3 are other embodiments in which circumferential connectors 228 are provided throughout a distal zone as well as in an impeller zone. More generally, the circumferential connectors 228 can be provided between opposing sides of alternating adjacent elongate struts of less than all of the circumferential members in the distal zone 208, while still providing benefits as discussed below. For example, a substantial portion such as one-half or more of the struts 236 can be connected by circumferential connectors 228 in the distal portion in one embodiment. In some embodiments, the density of connectors 228 in the distal zone 208 can be about one-half or less that in the impeller zone 212.


In various embodiments, there can be different groups of circumferential connectors 228. For example, in FIG. 4 two groups of circumferential connectors 228A, 228B can be provided. A first plurality of connectors 228A can be provided about the impeller zone 212 in which the connectors have a length along the struts 236 that the connectors 228A join that is greater than the separation between adjacent circumferential members, e.g. between the struts 236 that they join. The length of the connectors 228A along the struts 236 that they join is greater than the separation between adjacent circumferential members in the unexpanded state in some embodiments. A second plurality of connectors 228B can be provided between the impeller and distal zones 212, 208 in which the connectors have a length along the struts 236 that they join that is less than the length of the connectors 228A. For example, the length of each of the connectors 228B along the struts 236 to which they are coupled can be about one-half that of the first connectors 228A. By providing longer connectors 228A, enhanced stiffness can be provided in the impeller zone 212. This can aid in collapsing the cannula, as discussed below. Longer connectors 228A also contributes to dimensional stability of the impeller zone 212, e.g., to minimize variance of a gap between a tip of an impeller and an inner surface of the cannula in the impeller zone 212.



FIG. 4A shows details of a portion of the distal zone 208. For example, a plurality of axial connectors 252 can be provided between proximal side of a proximal apex and a distal side of an adjacent circumferential member in the distal zone of the cannula. The same connectors can be provided in the impeller zone 212. FIG. 4 shows that in some embodiments a modified axial connector 252A can be provided in the impeller zone 212. The connectors 252A have a first end that forms an apical connection with a proximally oriented apex 232B and a second end. The second end is coupled in between adjacent apices of a circumferential member, e.g., along a side of an elongate strut 236. The connectors 252A can be connected to the struts 236 at the same location that the strut connects to an adjacent strut by way of the connector 228A. The connectors 252A are shortened compared to the connectors 252. For example, they can extend with fewer undulations along their length, e.g., with a single inflection point between the ends.


In one embodiment, substantially all of the impeller zone 212 has enhanced rigidity connectors 252A. FIG. 5 shows a transition zone that can be provided at one or both of the proximal and distal ends of the impeller zone 212. For example, a transition zone TZ-B can be provided to facilitate radial transition from the expanded size of the formed mesh to the diameter of a non-expanding portion 254 of the formed mesh that does not expand. A transition zone TZ-A between the impeller and distal zones can provide for more gradual change in mechanical characteristics to provide for gradual collapse of the cannula, as discussed below.



FIG. 5 shows an expanded mesh structure 204 formed of the pattern 200. The mesh structure 204 comprises a plurality of spaced apart helical zones 260. The helical zones 260 are formed by adjacent struts 236 that have less or no movement relative to each other during expansion, where connectors 228 are provided. Adjacent struts that are connected by connectors 228 tend to move or expand less than struts that are not so connected, or do not move or expand at all. FIGS. 5 and 5A shows that the helical zones 260 are in the impeller zone 212 and not in the distal zone. The helical zones 260 provide enhanced concentration of material around the proximal apices 232B of circumferential members 224 in the impeller zone 212. Enhanced concentration of material provides enhanced local stiffness around the proximal apices 232B, which provides greater stiffness and protects the proximal apices 232B and connectors disposed thereon from fracture. As discussed more below in connection with FIG. 12, in some variants proximal apices in a zone (e.g., a distal zone) are omitted but the helical zones are induced to preserve this protective structure around the proximal apices. Such arrangements aid in the re-sheathing of a cannula incorporating this structure.


Enhanced concentration of material (e.g., increased struts per unit area) makes the connection between the apices 232B and adjacent proximal circumferential member 224 more robust. In particular, larger forces are encountered in the impeller zone 212 during collapsing of, sometimes referred to as re-sheathing of, the cannula, e.g., after the catheter pump has been used.



FIG. 17 shows a graph of axial force that may be required to be applied to an outer sheath, such as by the sheath assembly 88, disposed about the catheter body 120 (see FIG. 2) as the sheath assembly is advanced distally along the cannula. This figure shows that in region A the force is relatively high when the distal end of the sheath initially engages the proximal end of the expanded zone of the cannula. The force also increases in a region B to a relatively high level when the distal end of the outer sheath is advanced to a location over the proximal end of the impeller. At each of these locations, the clinicians will note increased resistance to advancement of the sheath to collapse the impeller and/or the cannula and to draw the impeller and/or the cannula into the outer sheath, sometimes referred to herein as re-sheathing. From this graph, an increased risk of failure of one or more connections within the mesh of the cannula being tested has been discovered in these regions of local maxima. Surprisingly, however, various cannulae that have been tested have failed in the lower force region to the right of region B. As a result, there is a surprising benefit to be obtained in enhancing the robustness of the cannula in a region distal of the impeller zone. As discussed herein, the robustness can be enhanced in any one or all of a variety of ways, such as shortening axially oriented connectors between adjacent circumferential members, increasing material per unit area in a region around proximally oriented apices, providing an expanded configuration in which struts of the mesh are positioned close together around a weak point in the mesh structure, and other ways described herein.



FIGS. 4-5A and other embodiments herein illustrate some specific ways of improving the reliability of an expandable cannula, which can help to minimize the risk of breakage within the mesh, e.g., breakage of the connectors 252A. A first technique is making the connectors 252A shorter than the connectors 252. A second technique involves the enhanced concentration of material around the proximal apices 232B, discussed above.


The distal zone 208 is substantially free of the helical zones 260 or other concentration of material in the embodiment of FIG. 4-5A. In the distal zone 208, the struts 236 expand substantially symmetrically about the apices 232A forming a more uniform expanded mesh in the distal zone 208. This arrangement enhances the overall flexibility of the distal zone 208, which can be beneficial. Also, this arrangement makes local zones of the expanded mesh structure 204 substantially uniformly flexible. A mesh structure 204 with a more flexible distal zone 208, and more uniform flexibility, can provide a cannula with a reduced risk of irritating the inner structures of the heart when deployed.



FIG. 6 shows an embodiment, in which the distal zone 208 is modified to minimize a risk of fracturing connectors in the distal zone. For example, a first plurality of axial connectors 272 is disposed between a proximal side of a proximal apex 232B and a distal side of an adjacent circumferential member 224 in the impeller zone 212. FIG. 6A shows a second plurality of axial connectors 272A is disposed between a proximal side of a proximal apex 232B and a distal side of an adjacent circumferential member 224 in the distal zone 208 of the cannula. In the illustrated embodiment, connectors 272A are provided between proximal apices 232B and a middle portion of the elongate members 236. The axial connectors 272A of the second plurality have first and second ends, and a single curved section therebetween. In contrast, the axial connectors 272 of the first plurality have first and second ends, and a plurality of curved section therebetween. Stated another way, the axial connectors 272 have multiple undulations and the connectors 272A have a fewer undulation, e.g., a single curved section.


Also, the distal zone 208 can be made less susceptible to fracture by providing circumferential connectors 228 in some embodiments. In the illustrated embodiment, every other elongate struts 236 of a circumferential member 224 in the distal zone 208 is connected to an adjacent elongate struts 236.



FIGS. 7-7A show a cannula 296 incorporating the formed shape of a mesh with some features similar to those of the flat pattern of FIGS. 6 and 6A. In this embodiment the helical zones 260 are provided throughout the cannula 296. In the embodiment of FIGS. 7-7A, apex-to-side connectors each have a plurality of undulations along their length, similar to the connectors 272. However, providing side-to-side connectors 228 throughout the length of the cannula 296 enhances the concentration of material around the apex-to-side connectors. As such, the load applied by the advancement of the sheath over the cannula is spread out over a greater area and a smaller load is concentrated in the apex-to-side connectors. These are examples of techniques for minimizing the chance of fracture of connectors similar to the connectors 272, 272A.



FIGS. 8 and 9 illustrate an embodiment that is similar to that of FIGS. 6 and 7. FIGS. 8 and 9 show a wall pattern 300 and a mesh structure 304 that is configured to provide a good compromise of fracture resistance and flexibility for interaction with heart tissue. The impeller zone 312 has a plurality of circumferential connectors 328 whereas the distal zone 308 is substantially free of circumferential connectors. This provides an impeller zone with spaced apart helical zones, as discussed above, and a distal zone with substantially symmetrical expansion about proximally and/or distally oriented apices thereof. By removing the circumferential connectors in the distal zone, the distal zone is made more flexible. Axial connectors 352 are provided throughout the pattern 300, but the distal zone 308 is provided with axial connectors 352A that are less subject to fracture. For example, the connectors 352A can be limited to fewer undulations than in the connectors 352 in the impeller zone 312, as discussed above.



FIGS. 10 and 11 illustrate an embodiment that is similar to that of FIGS. 6 and 7. FIG. 10 shows a wall pattern 400 that has a higher concentration of material in the impeller zone 412. Higher concentration of material can be achieved by more tightly packing the apices of the undulating structure of the circumferential members. For example, an angle can be formed between adjacent elongate struts 436 disposed on opposite sides of each of the apices. The angle can be smaller in the embodiment of FIGS. 10 and 11 compared to that of FIGS. 6 and 7. Also, in order to provide more flexibility compared to the pattern of FIGS. 6 and 7, the pattern of FIGS. 10 and 11 omits circumferential connectors in the distal zone 408.


One technique for minimizing fracture risk in the distal zone 408 is to configure the mesh structure 404 to produce helical zones 460 throughout the structure, including in the distal zone 408 where there area no circumferential connectors. This can be achieved by heat setting the expanded shape in a material that would operate in an elastic range in this application. For example, nitinol can be configured to be compressed for delivery and heat set to expand to the shape seen in FIG. 11. This arrangement may provide good flexibility in the distal portion 408 and resistance to fracture of connectors between adjacent circumferential members 424.



FIGS. 12-14 illustrate an embodiment in which at least a distal zone is configured to be resistant to fracture. FIGS. 12 and 13 show that in one embodiment, short connectors 452 are positioned in the distal zone. The short connectors 452 can be similar to those discussed above, e.g. having only a single curve or inflection between ends thereof. In one configuration, the short connectors 452 can have a length that is no more than about ten times the thickness of the outer sheath used to collapse the cannula. For example, these connectors can be about 0.035 inches long or less. The connectors 452 can be robust in their own right to permit a symmetrical expanded configuration for the distal zone of the wall pattern. Symmetrically expanded apices can provide some advantages, e.g., providing more uniform flexibility with the mesh structure, as discussed above. In some embodiments another technique can be used to spread a load applied by an outer sheath to the cannula incorporating the mesh illustrated in these figures. By spreading the load, the mesh is less subject to fracture.


The pattern arrangements in FIGS. 10-14 also reduce stress and strain on the connectors by subjecting them to more pulling and less twisting during expansion and collapse of the mesh structure. Another advantage of these designs is that they tend to deflect the proximally oriented apices radially inward as the sheath approaches the proximally oriented apices so that a distal face of the sheath does not become lodged beneath the proximally oriented apices. In the heat set distal portion illustrated in FIG. 14, each connector 452 is disposed distal of a portion of an elongate strut 436. The connectors 452 also can be located axially behind the elongate struts 436. In contrast, in the embodiment of FIG. 13, the connector 452 is disposed distal of the nearest proximally oriented apex. The elongate struts 436 in the FIG. 14 embodiment, helps guide the approaching outer sheath over the top of the proximally oriented apices. The elongate struts 436 also locally deflect the cannula in a zone between the connectors 452 and the outer sheath as the sheath approaches individual connectors to minimize any tendency of the connectors 452 deforming around the distal end of the sheath and later breaking.


Another approach to easing re-sheathing involves reducing an amount of open area in the formed cannula wall pattern around relative stiff proximally oriented structures. For example, the axially oriented undulating connectors in FIG. 5A may be more prone to fracture. At least two factors contribute to this. First, these connectors are relatively long. Also, they are surrounded on both sides by large areas not spanned by struts of the mesh pattern. These areas are covered with a polymer material to enclose a cannula. However upon re-sheathing this polymer material can ride over the outer surface of the outer sheath causing the proximal apices to ride over the outside of the sheath. This can lead to breakage of the axially oriented undulating connectors in FIG. 5A. This is because the axially oriented connectors are relatively thin in at least one cross-sectional dimension and are formed of somewhat ductile metal. FIG. 13 shows the connectors 452 shortened to minimize this effect. FIG. 14 shows an embodiment in which more struts are placed around at least one side of the short connectors 452 in the helical zones 460. Additionally, circumferential connectors can be provided in the distal zone for this purpose, as discussed herein.



FIG. 14A-1 to 14A-3 show a proximal portion 462A, a central portion 462B, and a distal portion 462C of a wall pattern 462. Each of the portions 462A, B, C has a plurality of circumferential members 466 in a relatively high metal density structure. The circumferential members 466 are close to each other in each of these portions. The members 466 have undulating configurations, e.g., with peaks and valleys. The peaks and valleys of neighboring members 466 can be received within each other, as shown in the figures. The proximal portion 462A is configured to enhance structural integrity of the wall surrounding the impeller. Advantages for this arrangement are discussed above, and include minimizing variation in the gap between the tip of the impeller and the inner wall of the cannula into which the pattern of FIGS. 14A-1 to 14A-3 is incorporated. In the illustrated embodiment, the stiffness of the proximal portion 462A is enhanced by providing a plurality of elongate circumferential connectors 470. The advantages of this sort of connector are discussed above, and include minimizing expansion of elongate struts 474 which are coupled by the connectors 470.


As shown in FIG. 7 an expanded cannula with connectors 470 will have an expanded configuration including spaced apart helical spines that arise from the minimal to no displacement of the struts 474 that are connected by the connectors 470. The spines or other configurations including a connector 470 and a plurality of struts connected thereby advantageously provide areas of enhanced stiffness and/or strength in the wall of a cannula having the pattern 462. Such regions can support an outward load without significant deflection. One outward load that can arise in operation is due to the fluid flowing in the cannula. Although the impeller is configured to primarily drive the blood axially the rotational movement may push blood into the inside wall of the cannula. The spines or other areas of enhanced stiffness can minimize deflection due to this load. Another outward load can be applied by a distal bearing structure such as that described in concurrently filed application Ser. No. 13/802,556, entitled “DISTAL BEARING SUPPORT,” filed on the same date as this application, which is hereby incorporated herein by reference in its entirety.


In addition to the connectors 470, 470A, the pattern 462 includes connectors 476 disposed between proximal oriented apices (or valleys, if the pattern is held distal end up) and a distal edge of a circumferential member disposed proximally of the apex. The connectors 476 are relatively slender in order to permit the apices to which they are connected to flex upon expansion and collapse of the cannula into which the wall pattern 462 is incorporated. The proximal portion 462A also provides enhanced concentration of material around the connectors 476 to minimize a chance of fracturing these connectors upon expansion and collapse of the cannula.



FIG. 14A-1 illustrates a pattern in the proximal portion 462A providing a high metal density cannula. The pattern has an embedded ring structure, which provides a first ring with a vertex of at least one adjacent ring within the axial length of the first ring. FIG. 14A-1 illustrates embodiments where there are 2 or more adjacent vertices within the axial length of the first ring. There are several benefits of the embedded design for the pump 10. The embedded design provides additional radial strength by increasing the number of load bearing rings per length of cannula. The embedded design minimizes the unsupported film area, which decreases the amount the film can flex as the pressure pulses generated by the impeller pass under it.


Other methods can be used to provide some of these benefits, include making the axial length of the rings shorter and increasing the number of sinusoidal waves within a ring. These features will result in other changes to the cannula pattern. Shorter rings tend to increase the strain the material must undergo in changing from the collapsed to expanded state. Suitable materials, such as nitinol, may be more prone to permanent deformation or fracture with increasing strain. Increasing the number of sinusoidal waves within a ring increases the diameter of the collapsed cannula, if other relevant factors (such as strut width) remains the same, may reduce the stress and strain to which the struts are subjected.


Other cannula patterns can be provided to reduce unsupported film area without increasing the number of embedded rings. For example, an arm feature could be added between two struts of adjacent rings. As the cannula transforms from the collapsed to expanded form, the arm orientation moves from a more axial to more radial orientation (in some cases, forming an “A” shape). More details of these structures are set forth in connection with FIGS. 15-16 below.


In a transition zone between the proximal portion 462A and the central portion 462B, modified connectors 470A are provided that are much shorter in a direction parallel to the longitudinal axis of the struts 474 than are the connectors 470. The shorter connectors 470A make the central portion 462B much more flexible than the proximal portion 462A. Such flexibility can provide less irritation to heart tissue and than higher biocompatibility as discussed elsewhere herein. FIG. 14 shows that the connectors 470A also are provided in the distal portion 462C.


A proximal end of each of the connectors 476 is coupled to a portion of the strut 474 that is also connected to the connector 470 or 470A. This structure provides a concentration of material around the more flexible and elongate connector 476 to minimize the chance of fracture of this structure when the cannula is collapsed by a sheath, as discussed herein. Because the sheathing forces are less in the distal portion of the cannula corresponding to the distal portion 462C, the concentration of material in the distal portion 462C around the connectors 476 can be less than in the proximal portion 462A.


Various additional advantageous features are found on the proximal and distal portions 462A, 472C in various embodiments. For example, when the pattern 462 is formed a sheet-like zone 480 is provided that is advantageous for mechanically integrating the pattern 462 into various catheter bodies in an assembly. A plurality of cantilevered projections 482 is disposed in the sheet-like zone 480 and is disposed about the circumference of the proximal portion 462A when the pattern 462 is formed into a tubular body. The projections 482 can be deflected into mating recesses in the catheter body 84 or another structure of a catheter assembly to provide a resistance to detachment of the pattern 462 (and the cannula into which it is incorporated) from the catheter body or assembly. Such resistance advantageously minimizes inadvertent separation of the cannula from the catheter body 84 during re-sheathing.


Also, the peak-to-peak distance between the proximal-most circumferential member 466 and the circumferential member immediately distal thereof is greater than the average peak-to-peak distance of adjacent circumferential members distal thereof. A consequence of this is that the connector 470 between the proximal-most circumferential member and the adjacent circumferential member is located closer to the peaks of the proximal most circumferential member. This creates an enlarged space 488 that aids in transitioning the diameter of the expanded cannula into which the pattern 462 is incorporated from a larger size disposed about the impeller to the diameter of the sheet-like zone 480 when formed into a tubular body.


The distal portion 462C of the wall pattern includes elongate members 490 that are for mechanically integrating the pattern into a catheter assembly. The elongate members 490 extend from distal apices of the distal portion 462C of the pattern 462. The connectors 470A and 476 disposed between the distal-most circumferential member 466 are shifted closer to the peak of the adjacent circumferential member 466 such that a larger space 492 is provided between the distal-most two circumferential members 466. The shifting of these connectors provides a larger peak-to-peak distance between the distal-most two circumferential members 466 than is provided between other circumferential members of the pattern 462. By increasing this distance, the transition from the enlarged diameter of the expanded cannula into which the pattern is incorporated to the smaller diameter of distally located non-expandable components of a catheter assembly can be facilitated.



FIGS. 15 and 15A illustrate another embodiment of a wall pattern 500 that can be combined with any features of any of the wall patterns herein. These embodiments illustrate a proximal zone of the pattern that forms a transition zone between a non-expandable proximal portion 554 of a cannula and an impeller zone 512. One feature of a cannula formed from the wall pattern 500 is the provision of a larger number of flow passages between inside of the proximal portion of the cannula and outside of the proximal portion thereof. A first outflow area is provided in one embodiment adjacent to the proximal end of the expandable portion of the cannula. In some embodiments, a second outflow area 520 is provided distal of the first outflow area. The first and second outflow areas 518, 520 can take any suitable form. In the illustrated embodiment, the first outflow area is defined between a distal edge or side of a first circumferential member 524A and a proximal edge or side of a second circumferential member 524B.



FIG. 16 shows the expanded configuration of one of a first plurality of openings 528A formed in a mesh. Comparing FIGS. 15A and 16 one can see that the plurality of openings can include four openings 528A formed defined within the members 524A, 524B and connectors extending therebetween. The connectors can take any suitable form, such as those discussed above. In the illustrated embodiment, the second outflow area is defined between a distal side or edge of the second circumferential member 524B and a proximal side or edge of a third circumferential member 524C. More particularly, a plurality of openings 528B in a mesh, e.g. four opening, formed by the pattern 500 are defined within the members 524B, 524C and connectors extending therebetween. The connectors can take any suitable form, such as those discussed above.



FIG. 16 shows a cross-hatched zone distal of the openings 528A, 528B. The cross-hatched zone illustrates the area of the mesh structure that is covered to enclose the space within the mesh structure. Comparing FIG. 16 with FIG. 9, one can appreciate that the openings 528A are inclined with respect to the longitudinal axis of the spaced enclosed therein and the openings 528B are less inclined and in some cases may be disposed on a substantially cylindrical surface about the longitudinal axis of the cannula. In this context, the concept of conforming to a cylindrical surface can be measured when the device is expanded but not implanted or in use. The mesh structure 500 should advantageously provide beneficial flow characteristics compared to an arrangement that only has flow openings 528A. For example, by providing the flow openings 528B (or other variant of a second outflow area 520), the average flow velocity into or out of the cannula can be decreased. By decreasing the average flow velocity, stress on the blood cells can be reduced. Such stresses can be due to shear forces across the boundary into or out of the cannula. Lower stresses on red blood cells can lessen hemolysis or other harm to the blood.



FIGS. 15-16 also illustrate the use of a circumferential connector 530 that is configured to reduce the extent of an unsupported portion of a structure enclosing a lumen within the mesh 500 after the mesh is formed into a cylinder. The connector has a proximal end 530B coupled with a proximal circumferential member 524B and a distal end 530C coupled with a circumferential member 524C that is located distal of the circumferential member 524B. The length of the connector 530 is several times the unexpanded separation distance between the adjacent struts of the circumferential members 524B, 524C. The length of the connector 530 enables the adjacent struts of the circumferential members 524B, 524C to move away from each other to a much greater extent than permitted by the short circumferential connectors 470. In the collapsed state, the connector 530 can be shaped to tightly nestle between the circumferential members 524B, 524C, for example, having a concave portion adapted to receive a portion of a crest of the circumferential members 524B. In some embodiments, the connector 530 enables the adjacent struts of the circumferential members 524B, 524C to move away from each other to the same extent as if these struts were not connected by a circumferential member. See, for example, the struts of the circumferential members that are not connected by circumferential connectors in the expanded cannula shown in FIG. 7A. However, as can be seen in FIG. 16, the presence of the connector 530 greatly reduces the extent of the unsupported area between adjacent struts.


In one embodiment, the connector 530 is connected approximately in the middle of adjacent struts, e.g., half way between adjacent peaks and valleys on each circumferential member. This arrangement roughly reduced by 50 percent the unsupported area between these struts. Long slender struts may be more prone to shearing upon being collapsed into the sheath. Accordingly, it may be desirable to locate the struts 530 in areas of local minima of a sheathing force curve as discussed below in connection with FIG. 17. In other embodiments, the connectors 530 are located away from areas of local maxima of a sheathing force curve as discussed below in connection with FIG. 17.



FIGS. 5, 7, and 17 illustrate further advantageous features of wall patterns. In particular, as noted above, a local maximum in the force-distance curve of FIG. 17 is the region A, which corresponds to a transition zone between the non-expandable part of the mesh and the expandable impeller zone. The test illustrated in FIG. 17 shows that this local maximum exceeds a threshold number that is based on clinician ease-of-use. One technique for reducing the level of this local maximum is to provide a shallower angle of the transition zone. In particular, an angle β can be provided between this inclined surface and a horizontal axis, e.g., an axis parallel to the undeflected longitudinal axis of the cannula. FIG. 7 shows a smaller angle than that of FIG. 5. Preferably the angle β is within a range of from about 30 to about 40 degrees, in some embodiments not more than about 40 degrees. To reduce the force required for re-sheathing, the angle β can be maintained at about 30 degrees or less. The angle β may be maintained above a value that is a function of the trackability of the catheter assembly into which the mesh structure is incorporated. If the angle is too low, the length of the cannula or portions thereof may result in a too stiff cannula to properly track. Another advantage of the shallower angles suggested by FIGS. 7 and 17 is that the impeller zone in a cannula incorporating this pattern is expected to be stiffer. This is one technique for providing better control of a gap between the impeller blade tip and the cannula wall. This tip gap control can advantageously minimize hemolysis and other damage to the blood, as well as any damage to the wall or blades that could be caused by impact therebetween.


The foregoing features of mesh patterns can be combined with other features for improving tip gap control. Such features can be incorporated into a distal bearing, as discussed in concurrently filed application Ser. No. 13/802,556, entitled “DISTAL BEARING SUPPORT,” filed on the same date as this application; and/or in impeller or impeller blade construction, as discussed in application Ser. No. 13/802,570, entitled “IMPELLER FOR CATHETER PUMP,” filed on the same date as this application. Both of these applications are incorporated by reference herein in their entirety.


Although the inventions herein have been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present inventions. It is therefore to be understood that numerous modifications can be made to the illustrative embodiments and that other arrangements can be devised without departing from the spirit and scope of the present inventions as defined by the appended claims. Thus, it is intended that the present application cover the modifications and variations of these embodiments and their equivalents.

Claims
  • 1. A catheter pump assembly, comprising: an elongate cannula including a formed mesh structure extending cylindrically between opposing ends thereof, the formed mesh structure defining a pattern configured to be stably expandable and collapsible without fracturing in a percutaneous delivery and re-sheathing in the provision of mechanical circulatory support of a patient's heart; anda polymeric enclosure disposed about the mesh structure to define an enclosed lumen extending through the elongate cannula;wherein the pattern of the formed mesh structure includes a series of circumferential members defined by a plurality of pairs of alternating elongated struts joined at respective opposing ends thereof;wherein each of the plurality of pairs of alternating elongate struts includes: a first elongated strut extending at a first positive angle with respect to a longitudinal axis of the pattern of the formed mesh structure;a second elongated strut extending at a second negative angle with respect to the longitudinal axis of the pattern of the formed mesh structure;wherein the joined respective opposing ends define a peak or a valley in the pattern of the formed mesh structure; andwherein the pattern of the formed mesh structure further includes a plurality of non-undulating axial connectors joining at least some of the adjacent pairs of alternating elongated struts in the series of circumferential members.
  • 2. The catheter pump assembly of claim 1, wherein the joined respective opposing ends include a convex or concave connection member defining the peak or valley.
  • 3. The catheter pump assembly of claim 1, wherein the plurality of axial connectors are at least partly curved.
  • 4. The catheter pump assembly of claim 3, wherein the partly curved axial connectors include a single inflection point.
  • 5. The catheter pump assembly of claim 1, wherein the pattern of the formed mesh structure includes a varied density of the series of circumferential members along an axial length of the elongate cannula.
  • 6. The catheter pump assembly of claim 1, wherein at least some of the adjacent elongated struts in the series of circumferential members form helical zones in the formed mesh structure when the elongate cannula is expanded.
  • 7. The catheter pump assembly of claim 1, wherein the elongate cannula defines a first zone and a second zone, the first zone and the second zone having a relatively different stiffness from one another.
  • 8. The catheter pump assembly of claim 7, wherein one of the first zone or the second zone is an impeller zone having a relatively greater stiffness than a remaining one of the first and second zones.
  • 9. The catheter pump assembly of claim 8, further comprising an impeller within the impeller zone, the impeller having a stowed configuration and an expanded configuration and the impeller being rotatable in the expanded configuration to provide the mechanical circulatory support.
  • 10. The catheter pump assembly of claim 1, further comprising an elongate catheter body coupled to the elongate cannula.
  • 11. The catheter pump assembly of claim 1, further comprising a sheath being advanceable toward the elongate cannula and applying a compression force upon the elongate cannula.
  • 12. The catheter pump assembly of claim 1, wherein the pattern of the formed mesh structure further includes a plurality of circumferential connectors that extend transversely to the longitudinal axis of the pattern of the formed mesh structure in order to respectively join at least some of the adjacent pairs of alternating elongated struts in the series of circumferential members.
  • 13. The catheter pump assembly of claim 12, wherein a stiffness of the formed mesh structure is increased in respective regions of the elongate cannula where the plurality of circumferential connectors are provided.
  • 14. The catheter pump assembly of claim 1, wherein the polymer enclosure comprises a polymer disposed about the pattern of the formed mesh structure.
  • 15. The catheter pump assembly of claim 14, wherein the polymer fills voids in the pattern of the formed mesh structure.
  • 16. The catheter pump assembly of claim 15, wherein the polymer completely coats an inner and outer surface of the pattern of the formed mesh structure.
  • 17. The catheter pump assembly of claim 14, wherein the polymer has a maximum thickness of less than 10 microns.
  • 18. The catheter pump assembly of claim 14, wherein the polymer is formed in a plurality of layers.
  • 19. The catheter pump assembly of claim 1, wherein the pattern of the formed mesh structure is fabricated from metal.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/086,377, filed Oct. 21, 20102020, entitled Catheter Pump and now issued U.S. Pat. No. 11,654,276, which is a continuation of U.S. patent application Ser. No. 16/110,648, filed Aug. 23, 2018, entitled Catheter Pump and now issued U.S. Pat. No. 11,058,865, which is a divisional of U.S. patent application Ser. No. 15/172,664, filed Jun. 3, 2016, entitled Catheter Pump and now issued U.S. Pat. No. 10,086,121, which is a divisional of U.S. patent application Ser. No. 13/801,528, filed Mar. 13, 2013, entitled Catheter Pump and now issued U.S. Pat. No. 9,358,329, which claims priority to U.S. Patent Application No. 61/667,903 filed Jul. 3, 2012, entitled Catheter Pump, all of which are hereby incorporated by reference in their entirety.

US Referenced Citations (744)
Number Name Date Kind
264134 Brown et al. Sep 1882 A
1902418 Pilgrim Mar 1933 A
2356659 Paiva Aug 1944 A
2649052 Weyer Aug 1953 A
2664050 Abresch Dec 1953 A
2684035 Kemp Jul 1954 A
2776161 Dingman et al. Jan 1957 A
2789511 Doble Apr 1957 A
2896926 Chapman Jul 1959 A
2935068 Shearman May 1960 A
3012079 Bruson et al. Dec 1961 A
3025647 Moody Mar 1962 A
3080824 Boyd et al. Mar 1963 A
3135943 Richard Jun 1964 A
3455540 Marcmann Jul 1969 A
3510229 Smith May 1970 A
3812812 Hurwitz May 1974 A
3860713 Shema et al. Jan 1975 A
3860968 Shapiro Jan 1975 A
3904901 Renard et al. Sep 1975 A
3995617 Watkins et al. Dec 1976 A
4066556 Vaillancourt Jan 1978 A
4105016 Donovan, Jr. Aug 1978 A
4115040 Knorr Sep 1978 A
4129129 Amrine Dec 1978 A
4135253 Reich et al. Jan 1979 A
4143425 Runge Mar 1979 A
4149535 Volder Apr 1979 A
4155040 Ackerman et al. May 1979 A
4304524 Coxon Dec 1981 A
D264134 Xanthopoulos Apr 1982 S
4382199 Isaacson May 1983 A
4392836 Sugawara Jul 1983 A
4458366 Macgregor et al. Jul 1984 A
4537561 Xanthopoulos Aug 1985 A
4540402 Aigner Sep 1985 A
4560375 Schulte et al. Dec 1985 A
4589822 Clausen et al. May 1986 A
4625712 Wampler Dec 1986 A
4655745 Corbett Apr 1987 A
4673334 Allington et al. Jun 1987 A
4675361 Ward, Jr. Jun 1987 A
4682015 Quan Jul 1987 A
4686982 Nash Aug 1987 A
4696667 Masch Sep 1987 A
4704121 Moise Nov 1987 A
4728319 Masch Mar 1988 A
4753221 Kensey et al. Jun 1988 A
4769006 Papantonakos Sep 1988 A
4777951 Cribier et al. Oct 1988 A
4790315 Mueller et al. Dec 1988 A
4817586 Wampler Apr 1989 A
4819653 Marks Apr 1989 A
4846152 Wampler et al. Jul 1989 A
4895557 Moise et al. Jan 1990 A
4900227 Trouplin Feb 1990 A
4902272 Milder et al. Feb 1990 A
4906229 Wampler Mar 1990 A
4908012 Moise et al. Mar 1990 A
4919647 Nash Apr 1990 A
4927407 Dorman May 1990 A
4930341 Euteneuer Jun 1990 A
4944722 Carriker et al. Jul 1990 A
4944748 Bramm et al. Jul 1990 A
4955856 Phillips Sep 1990 A
4957504 Chardack Sep 1990 A
4964864 Summers et al. Oct 1990 A
4968293 Nelson Nov 1990 A
4969865 Hwang et al. Nov 1990 A
4976270 Parl et al. Dec 1990 A
4985014 Orejola Jan 1991 A
4994017 Yozu Feb 1991 A
4995857 Arnold Feb 1991 A
5000177 Hoffmann et al. Mar 1991 A
5021048 Buckholtz Jun 1991 A
5044902 Malbec Sep 1991 A
5045072 Castillo et al. Sep 1991 A
5049134 Golding et al. Sep 1991 A
5059174 Vaillancourt Oct 1991 A
5061256 Wampler Oct 1991 A
5074756 Davis Dec 1991 A
5089016 Millner et al. Feb 1992 A
5092844 Schwartz et al. Mar 1992 A
5098256 Smith Mar 1992 A
5106368 Uldall et al. Apr 1992 A
5112200 Isaacson et al. May 1992 A
5112292 Hwang et al. May 1992 A
5112349 Summers et al. May 1992 A
5129883 Black Jul 1992 A
5142155 Mauze et al. Aug 1992 A
5145637 Richardson et al. Sep 1992 A
5147186 Buckholtz Sep 1992 A
5147187 Ito et al. Sep 1992 A
5153910 Mickelson et al. Oct 1992 A
5163910 Schwartz et al. Nov 1992 A
5169378 Figuera Dec 1992 A
5171212 Buck et al. Dec 1992 A
5190528 Fonger et al. Mar 1993 A
5195960 Hossain et al. Mar 1993 A
5201679 Velte, Jr. et al. Apr 1993 A
5211546 Isaacson et al. May 1993 A
5221270 Parker Jun 1993 A
5234407 Teirstein et al. Aug 1993 A
5234416 Macaulay et al. Aug 1993 A
5282787 Wortrich Feb 1994 A
5290227 Pasque Mar 1994 A
5300112 Barr Apr 1994 A
5308354 Zacca et al. May 1994 A
5312341 Turi May 1994 A
5324177 Golding et al. Jun 1994 A
5344443 Palma et al. Sep 1994 A
5346458 Affeld Sep 1994 A
5346568 Gsellmann Sep 1994 A
5360317 Clausen et al. Nov 1994 A
5364342 Beuchat et al. Nov 1994 A
5376114 Jarvik Dec 1994 A
5393197 Lemon et al. Feb 1995 A
5393207 Maher et al. Feb 1995 A
5397222 Moss et al. Mar 1995 A
5405341 Martin Apr 1995 A
5405383 Barr Apr 1995 A
5415637 Khosravi May 1995 A
5437541 Vainrub Aug 1995 A
5449342 Hirose et al. Sep 1995 A
5458459 Hubbard et al. Oct 1995 A
5490763 Abrams et al. Feb 1996 A
5505701 Anaya Fernandez de Lomana Apr 1996 A
5514154 Lau et al. May 1996 A
5527159 Bozeman, Jr. et al. Jun 1996 A
5533957 Aldea Jul 1996 A
5534287 Lukic Jul 1996 A
5554114 Wallace et al. Sep 1996 A
5586868 Lawless et al. Dec 1996 A
5588812 Taylor et al. Dec 1996 A
5601418 Ohara et al. Feb 1997 A
5601420 Warner et al. Feb 1997 A
5609574 Kaplan et al. Mar 1997 A
5613476 Oi et al. Mar 1997 A
5613935 Jarvik Mar 1997 A
5643226 Cosgrove et al. Jul 1997 A
5678306 Bozeman, Jr. et al. Oct 1997 A
5692882 Bozeman et al. Dec 1997 A
5702418 Ravenscroft Dec 1997 A
5704926 Sutton Jan 1998 A
5707218 Maher et al. Jan 1998 A
5722930 Larson, Jr. et al. Mar 1998 A
5725513 Ju et al. Mar 1998 A
5725570 Heath Mar 1998 A
5730628 Hawkins Mar 1998 A
5735897 Buirge Apr 1998 A
5738649 Macoviak Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5746709 Rom et al. May 1998 A
5749855 Reitan May 1998 A
5755784 Jarvik May 1998 A
5775190 Terai Jul 1998 A
5776111 Tesio Jul 1998 A
5776161 Globerman Jul 1998 A
5776190 Jarvik Jul 1998 A
5779721 Nash Jul 1998 A
5807311 Palestrant Sep 1998 A
5814011 Corace Sep 1998 A
5824070 Jarvik Oct 1998 A
5851174 Jarvik et al. Dec 1998 A
5859482 Crowell et al. Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5868703 Bertolero et al. Feb 1999 A
5888241 Jarvik Mar 1999 A
5888242 Antaki et al. Mar 1999 A
5895557 Kronzer Apr 1999 A
5904668 Hyman et al. May 1999 A
5911685 Siess et al. Jun 1999 A
5921913 Siess Jul 1999 A
5927956 Lim et al. Jul 1999 A
5941813 Sievers et al. Aug 1999 A
5951263 Taylor et al. Sep 1999 A
5957941 Ream Sep 1999 A
5964694 Siess et al. Oct 1999 A
5993420 Hyman et al. Nov 1999 A
6007478 Siess et al. Dec 1999 A
6007479 Rottenberg et al. Dec 1999 A
6015272 Antaki et al. Jan 2000 A
6015434 Yamane Jan 2000 A
6018208 Maher et al. Jan 2000 A
6022363 Walker et al. Feb 2000 A
6027863 Donadio, III Feb 2000 A
6053705 Schoeb et al. Apr 2000 A
6056705 Stigar-Brown May 2000 A
6056719 Mickley May 2000 A
6058593 Siess May 2000 A
6059760 Sandmore et al. May 2000 A
6068610 Ellis et al. May 2000 A
6071093 Hart Jun 2000 A
6083260 Aboul-Hosn Jul 2000 A
6086527 Talpade Jul 2000 A
6086570 Aboul-Hosn et al. Jul 2000 A
6093001 Burgreen et al. Jul 2000 A
6106494 Saravia et al. Aug 2000 A
6109895 Ray et al. Aug 2000 A
6113536 Aboul-Hosn et al. Sep 2000 A
6123659 Le Blanc et al. Sep 2000 A
6123725 Aboul-Hosn Sep 2000 A
6132363 Freed et al. Oct 2000 A
6135943 Yu et al. Oct 2000 A
6136025 Barbut et al. Oct 2000 A
6139487 Siess Oct 2000 A
6152704 Aboul-Hosn et al. Nov 2000 A
6162194 Shipp Dec 2000 A
6176822 Nix et al. Jan 2001 B1
6176848 Rau et al. Jan 2001 B1
6178922 Denesuk et al. Jan 2001 B1
6183412 Benkowski et al. Feb 2001 B1
6186665 Maher et al. Feb 2001 B1
6190304 Downey et al. Feb 2001 B1
6190357 Ferrari et al. Feb 2001 B1
6190537 Kanataev et al. Feb 2001 B1
6200260 Bolling Mar 2001 B1
6203528 Deckert et al. Mar 2001 B1
6210133 Aboul-Hosn et al. Apr 2001 B1
6210318 Lederman Apr 2001 B1
6210397 Aboul-Hosn et al. Apr 2001 B1
6214846 Elliott Apr 2001 B1
6217541 Yu Apr 2001 B1
6221100 Strecker Apr 2001 B1
6227797 Watterson et al. May 2001 B1
6228063 Aboul Hosn May 2001 B1
6234960 Aboul-Hosn et al. May 2001 B1
6234995 Peacock, III May 2001 B1
6244835 Antaki et al. Jun 2001 B1
6245007 Bedingham et al. Jun 2001 B1
6245026 Campbell et al. Jun 2001 B1
6247892 Kazatchkov et al. Jun 2001 B1
6248091 Voelker Jun 2001 B1
6254359 Aber Jul 2001 B1
6254564 Wilk et al. Jul 2001 B1
6287319 Aboul-Hosn et al. Sep 2001 B1
6287336 Globerman et al. Sep 2001 B1
6295877 Aboul-Hosn et al. Oct 2001 B1
6299635 Frantzen Oct 2001 B1
6305962 Maher et al. Oct 2001 B1
6387037 Bolling et al. May 2002 B1
6395026 Aboul-Hosn et al. May 2002 B1
6413222 Pantages et al. Jul 2002 B1
6422990 Prem Jul 2002 B1
6425007 Messinger Jul 2002 B1
6428464 Bolling Aug 2002 B1
6447441 Yu et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6468298 Pelton Oct 2002 B1
6494694 Lawless et al. Dec 2002 B2
6503224 Forman et al. Jan 2003 B1
6508777 Macoviak et al. Jan 2003 B1
6508787 Erbel et al. Jan 2003 B2
6517315 Belady Feb 2003 B2
6517528 Pantages et al. Feb 2003 B1
6527699 Goldowsky Mar 2003 B1
6532964 Aboul-Hosn et al. Mar 2003 B2
6533716 Schmitz-Rode et al. Mar 2003 B1
6544216 Sammler et al. Apr 2003 B1
6547519 Deblanc et al. Apr 2003 B2
6565588 Clement et al. May 2003 B1
6565598 Lootz May 2003 B1
6572349 Sorensen et al. Jun 2003 B2
6609883 Woodard et al. Aug 2003 B2
6610004 Viole et al. Aug 2003 B2
6613008 Aboul-Hosn et al. Sep 2003 B2
6616323 Mcgill Sep 2003 B2
6623420 Reich et al. Sep 2003 B2
6623475 Siess Sep 2003 B1
6641093 Coudrais Nov 2003 B2
6641558 Aboul-Hosn et al. Nov 2003 B1
6645241 Strecker Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6660014 Demarais et al. Dec 2003 B2
6673105 Chen Jan 2004 B1
6692318 Mcbride Feb 2004 B2
6702830 Demarais et al. Mar 2004 B1
6709418 Aboul-Hosn et al. Mar 2004 B1
6716189 Jarvik et al. Apr 2004 B1
6749598 Keren et al. Jun 2004 B1
6776578 Belady Aug 2004 B2
6776794 Hong et al. Aug 2004 B1
6783328 Lucke et al. Aug 2004 B2
6790171 Gruendeman et al. Sep 2004 B1
6794784 Takahashi et al. Sep 2004 B2
6794789 Siess et al. Sep 2004 B2
6814713 Aboul Hosn et al. Nov 2004 B2
6817836 Nose et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6835049 Ray Dec 2004 B2
6860713 Hoover Mar 2005 B2
6866625 Ayre et al. Mar 2005 B1
6866805 Hong et al. Mar 2005 B2
6887215 Mcweeney May 2005 B2
6889082 Bolling et al. May 2005 B2
6901289 Dahl et al. May 2005 B2
6926662 Aboul-Hosn et al. Aug 2005 B1
6935344 Aboul-Hosn et al. Aug 2005 B1
6939377 Jayaraman et al. Sep 2005 B2
6942611 Siess Sep 2005 B2
6949066 Bearnson et al. Sep 2005 B2
6962488 Davis et al. Nov 2005 B2
6966748 Woodard et al. Nov 2005 B2
6972956 Franz et al. Dec 2005 B2
6974436 Aboul-Hosn et al. Dec 2005 B1
6981942 Khaw et al. Jan 2006 B2
6984392 Bechert et al. Jan 2006 B2
7010954 Siess et al. Mar 2006 B2
7011620 Siess Mar 2006 B1
7014417 Salomon Mar 2006 B2
7018182 O'Mahony et al. Mar 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7027875 Siess et al. Apr 2006 B2
7037069 Arnold et al. May 2006 B2
7070555 Siess Jul 2006 B2
7122019 Kesten et al. Oct 2006 B1
7125376 Viole et al. Oct 2006 B2
7144365 Bolling et al. Dec 2006 B2
7150711 Nusser et al. Dec 2006 B2
7160243 Medvedev Jan 2007 B2
7172551 Leasure Feb 2007 B2
7175588 Morello Feb 2007 B2
7214038 Saxer et al. May 2007 B2
7229258 Wood et al. Jun 2007 B2
7238010 Hershberger et al. Jul 2007 B2
7241257 Ainsworth et al. Jul 2007 B1
7262531 Li et al. Aug 2007 B2
7264606 Jarvik et al. Sep 2007 B2
7267667 Houde et al. Sep 2007 B2
7284956 Nose et al. Oct 2007 B2
7288111 Holloway et al. Oct 2007 B1
7290929 Smith et al. Nov 2007 B2
7329236 Kesten et al. Feb 2008 B2
7331921 Viole et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7341570 Keren et al. Mar 2008 B2
7381179 Aboul-Hosn et al. Jun 2008 B2
7393181 McBride et al. Jul 2008 B2
7393189 Davis et al. Jul 2008 B2
7469716 Parrino et al. Dec 2008 B2
7478999 Limoges Jan 2009 B2
7491163 Viole et al. Feb 2009 B2
7534258 Gomez et al. May 2009 B2
7547200 O'Mahony et al. Jun 2009 B2
7589441 Kalsi et al. Sep 2009 B2
7605298 Bechert et al. Oct 2009 B2
7619560 Penna et al. Nov 2009 B2
7632079 Hershberger et al. Dec 2009 B2
7633193 Masoudipour et al. Dec 2009 B2
7645225 Medvedev et al. Jan 2010 B2
7657324 Westlund et al. Feb 2010 B2
7682673 Houston et al. Mar 2010 B2
7722568 Lenker et al. May 2010 B2
7731675 Aboul-Hosn et al. Jun 2010 B2
7736296 Siess et al. Jun 2010 B2
7744566 Pirovano et al. Jun 2010 B2
7758521 Morris et al. Jul 2010 B2
7759521 Bleuel et al. Jul 2010 B2
7766892 Keren et al. Aug 2010 B2
7780628 Keren et al. Aug 2010 B1
7785246 Aboul-Hosn et al. Aug 2010 B2
7811279 John Oct 2010 B2
7819833 Ainsworth et al. Oct 2010 B2
7820205 Takakusagi et al. Oct 2010 B2
7828710 Shifflette Nov 2010 B2
7841976 McBride et al. Nov 2010 B2
7842976 Fujii et al. Nov 2010 B2
7852996 Lemke Dec 2010 B2
7855316 Meyer et al. Dec 2010 B2
7878967 Khanal Feb 2011 B1
7918828 Lundgaard et al. Apr 2011 B2
7927068 McBride et al. Apr 2011 B2
7934912 Voltenburg, Jr. et al. May 2011 B2
7935102 Breznock et al. May 2011 B2
7942804 Khaw May 2011 B2
7942844 Moberg et al. May 2011 B2
7955365 Doty Jun 2011 B2
7993259 Kang et al. Aug 2011 B2
7998054 Bolling Aug 2011 B2
7998190 Gharib et al. Aug 2011 B2
8012079 Delgado, III Sep 2011 B2
8025647 Siess et al. Sep 2011 B2
8052399 Stemple et al. Nov 2011 B2
8062008 Voltenburg, Jr. et al. Nov 2011 B2
8079948 Shifflette Dec 2011 B2
8083503 Voltenburg et al. Dec 2011 B2
8110267 Houston et al. Feb 2012 B2
8114008 Hidaka et al. Feb 2012 B2
8123669 Siess et al. Feb 2012 B2
8142400 Rotem et al. Mar 2012 B2
8177703 Smith et al. May 2012 B2
8206350 Mann et al. Jun 2012 B2
8209015 Glenn Jun 2012 B2
8216122 Kung et al. Jul 2012 B2
8235943 Breznock et al. Aug 2012 B2
8236040 Mayberry et al. Aug 2012 B2
8236044 Robaina Aug 2012 B2
8255050 Mohl Aug 2012 B2
8257054 Voltenburg et al. Sep 2012 B2
8257312 Duffy Sep 2012 B2
8262619 Chebator et al. Sep 2012 B2
8277470 Demarais et al. Oct 2012 B2
8317715 Belleville et al. Nov 2012 B2
8329913 Murata et al. Dec 2012 B2
8333687 Farnan et al. Dec 2012 B2
8348991 Weber et al. Jan 2013 B2
8364278 Pianca et al. Jan 2013 B2
8371832 Rotem et al. Feb 2013 B2
8376707 McBride et al. Feb 2013 B2
8382818 Davis et al. Feb 2013 B2
8388565 Shifflette et al. Mar 2013 B2
8388582 Eubanks et al. Mar 2013 B2
8409128 Ferrari Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8439859 Pfeffer et al. May 2013 B2
8449443 Rodefeld et al. May 2013 B2
8485961 Campbell et al. Jul 2013 B2
8489190 Pfeffer et al. Jul 2013 B2
8491285 Haser et al. Jul 2013 B2
8535211 Campbell et al. Sep 2013 B2
8540615 Aboul-Hosn et al. Sep 2013 B2
8545379 Marseille et al. Oct 2013 B2
8545380 Farnan et al. Oct 2013 B2
8579858 Reitan et al. Nov 2013 B2
8585572 Mehmanesh Nov 2013 B2
8591110 Smith et al. Nov 2013 B2
8591393 Walters et al. Nov 2013 B2
8597110 Kammler et al. Dec 2013 B2
8597170 Walters et al. Dec 2013 B2
8608635 Yomtov et al. Dec 2013 B2
8617239 Reitan Dec 2013 B2
8618239 Gray et al. Dec 2013 B2
8684904 Campbell et al. Apr 2014 B2
8690749 Nunez Apr 2014 B1
8721516 Scheckel May 2014 B2
8721517 Zeng et al. May 2014 B2
8727959 Reitan et al. May 2014 B2
8734331 Evans et al. May 2014 B2
8734334 Haramaty et al. May 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8790236 Larose et al. Jul 2014 B2
8795576 Tao et al. Aug 2014 B2
8801590 Mohl Aug 2014 B2
8814776 Hastie et al. Aug 2014 B2
8814933 Siess Aug 2014 B2
8849398 Evans Sep 2014 B2
8944748 Liebing Feb 2015 B2
8992406 Corbett Mar 2015 B2
8998792 Scheckel Apr 2015 B2
9028216 Schumacher et al. May 2015 B2
9089634 Schumacher et al. Jul 2015 B2
9089670 Scheckel Jul 2015 B2
9162017 Evans et al. Oct 2015 B2
9217442 Wiessler et al. Dec 2015 B2
9308302 Zeng Apr 2016 B2
9314558 Er Apr 2016 B2
9327067 Zeng et al. May 2016 B2
9328741 Liebing May 2016 B2
9358329 Fitzgerald Jun 2016 B2
9358330 Schumacher Jun 2016 B2
9381288 Schenck et al. Jul 2016 B2
9421311 Tanner et al. Aug 2016 B2
9446179 Kennan et al. Sep 2016 B2
9675739 Tanner et al. Jun 2017 B2
9717833 Mcbride et al. Aug 2017 B2
9872947 Keenan et al. Jan 2018 B2
10086121 Fitzgerald et al. Oct 2018 B2
10117980 Keenan et al. Nov 2018 B2
10195323 Tiller et al. Feb 2019 B2
10520025 Peterson et al. Dec 2019 B1
11033728 Schenck et al. Jun 2021 B2
11058865 Fitzgerald et al. Jul 2021 B2
11654276 Fitzgerald May 2023 B2
11660441 Fitzgerald May 2023 B2
11925795 Muller et al. Mar 2024 B2
20010016676 Williams et al. Aug 2001 A1
20010016729 Divino et al. Aug 2001 A1
20020010487 Evans et al. Jan 2002 A1
20020047435 Takahashi et al. Apr 2002 A1
20020094287 Davis Jul 2002 A1
20020107506 Mcguckin et al. Aug 2002 A1
20020111663 Dahl et al. Aug 2002 A1
20020115933 Duchon et al. Aug 2002 A1
20020151761 Viole et al. Oct 2002 A1
20020169413 Keren et al. Nov 2002 A1
20030018380 Craig et al. Jan 2003 A1
20030023201 Aboul-Hosn et al. Jan 2003 A1
20030028118 Dupree et al. Feb 2003 A1
20030088147 Bolling et al. May 2003 A1
20030093086 Briggs et al. May 2003 A1
20030100816 Siess May 2003 A1
20030135086 Khaw et al. Jul 2003 A1
20030187322 Siess Oct 2003 A1
20030205233 Aboul-Hosn et al. Nov 2003 A1
20030208097 Aboul-Hosn et al. Nov 2003 A1
20030212430 Bose et al. Nov 2003 A1
20030225366 Morgan et al. Dec 2003 A1
20030231959 Snider Dec 2003 A1
20040010229 Houde et al. Jan 2004 A1
20040019251 Viole et al. Jan 2004 A1
20040044266 Siess et al. Mar 2004 A1
20040101406 Hoover May 2004 A1
20040113502 Li et al. Jun 2004 A1
20040116862 Ray Jun 2004 A1
20040152944 Medvedev et al. Aug 2004 A1
20040236173 Viole et al. Nov 2004 A1
20040253129 Sorensen et al. Dec 2004 A1
20050013698 Davis Jan 2005 A1
20050027281 Lennox Feb 2005 A1
20050038408 von Segesser Feb 2005 A1
20050049664 Harris et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050085683 Bolling et al. Apr 2005 A1
20050090883 Westlund et al. Apr 2005 A1
20050095124 Arnold et al. May 2005 A1
20050113631 Bolling et al. May 2005 A1
20050135924 Prasad et al. Jun 2005 A1
20050135942 Wood et al. Jun 2005 A1
20050137680 Ortiz et al. Jun 2005 A1
20050165269 Hosn et al. Jul 2005 A9
20050165466 Morris et al. Jul 2005 A1
20050218022 Cervantes Oct 2005 A1
20050250975 Carrier et al. Nov 2005 A1
20050277912 John Dec 2005 A1
20060005886 Parrino et al. Jan 2006 A1
20060008349 Khaw Jan 2006 A1
20060018943 Bechert et al. Jan 2006 A1
20060036127 Delgado, III et al. Feb 2006 A1
20060058869 Olson et al. Mar 2006 A1
20060062672 Mcbride et al. Mar 2006 A1
20060063965 Aboul-Hosn et al. Mar 2006 A1
20060089521 Chang Apr 2006 A1
20060155158 Aboul-Hosn Jul 2006 A1
20060167404 Pirovano et al. Jul 2006 A1
20060195005 Sakai Aug 2006 A1
20060222533 Reeves et al. Oct 2006 A1
20060264695 Viole et al. Nov 2006 A1
20060270894 Viole et al. Nov 2006 A1
20070005010 Mori et al. Jan 2007 A1
20070100314 Keren et al. May 2007 A1
20070142785 Lundgaard et al. Jun 2007 A1
20070156006 Smith et al. Jul 2007 A1
20070203442 Bechert et al. Aug 2007 A1
20070208298 Ainsworth et al. Sep 2007 A1
20070212240 Voyeux et al. Sep 2007 A1
20070217932 Voyeux et al. Sep 2007 A1
20070217933 Haser et al. Sep 2007 A1
20070233270 Weber et al. Oct 2007 A1
20070237739 Doty Oct 2007 A1
20070248477 Nazarifar et al. Oct 2007 A1
20070282417 Houston et al. Dec 2007 A1
20080004645 To et al. Jan 2008 A1
20080004690 Robaina Jan 2008 A1
20080011640 Cervantes Jan 2008 A1
20080015506 Davis Jan 2008 A1
20080031953 Takakusagi et al. Feb 2008 A1
20080093764 Ito et al. Apr 2008 A1
20080103442 Kesten et al. May 2008 A1
20080103516 Wulfman et al. May 2008 A1
20080103591 Siess May 2008 A1
20080114339 Mcbride et al. May 2008 A1
20080119943 Armstrong et al. May 2008 A1
20080132748 Shifflette Jun 2008 A1
20080167679 Papp Jul 2008 A1
20080168796 Masoudipour et al. Jul 2008 A1
20080200878 Davis et al. Aug 2008 A1
20080275290 Viole et al. Nov 2008 A1
20080306327 Shifflette Dec 2008 A1
20090018567 Escudero et al. Jan 2009 A1
20090023975 Marseille et al. Jan 2009 A1
20090024085 To et al. Jan 2009 A1
20090053085 Thompson et al. Feb 2009 A1
20090060743 Mcbride et al. Mar 2009 A1
20090062597 Shifflette Mar 2009 A1
20090073037 Penna et al. Mar 2009 A1
20090087325 Voltenburg, Jr. et al. Apr 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090093765 Glenn Apr 2009 A1
20090093796 Pfeffer et al. Apr 2009 A1
20090099638 Grewe Apr 2009 A1
20090112312 Larose et al. Apr 2009 A1
20090118567 Siess May 2009 A1
20090163864 Breznock et al. Jun 2009 A1
20090167679 Klier et al. Jul 2009 A1
20090171137 Farnan et al. Jul 2009 A1
20090182188 Marseille et al. Jul 2009 A1
20090234378 Escudero et al. Sep 2009 A1
20090259089 Gelbart Oct 2009 A1
20090306588 Nguyen et al. Dec 2009 A1
20100004595 Nguyen et al. Jan 2010 A1
20100016960 Bolling Jan 2010 A1
20100030161 Duffy Feb 2010 A1
20100030186 Stivland Feb 2010 A1
20100041939 Siess Feb 2010 A1
20100047099 Miyazaki et al. Feb 2010 A1
20100087773 Ferrari Apr 2010 A1
20100094089 Litscher et al. Apr 2010 A1
20100127871 Pontin May 2010 A1
20100137802 Yodfat et al. Jun 2010 A1
20100174239 Yodfat et al. Jul 2010 A1
20100191035 Kang et al. Jul 2010 A1
20100197994 Mehmanesh Aug 2010 A1
20100210895 Aboul-Hosn et al. Aug 2010 A1
20100245523 Howell Sep 2010 A1
20100268017 Siess et al. Oct 2010 A1
20100274330 Burwell et al. Oct 2010 A1
20100286210 Murata et al. Nov 2010 A1
20100286791 Goldsmith Nov 2010 A1
20110004045 Larsen et al. Jan 2011 A1
20110004046 Campbell et al. Jan 2011 A1
20110004291 Davis et al. Jan 2011 A1
20110009687 Mohl Jan 2011 A1
20110015610 Plahey et al. Jan 2011 A1
20110021865 Aboul-Hosn et al. Jan 2011 A1
20110034874 Reitan et al. Feb 2011 A1
20110071338 McBride et al. Mar 2011 A1
20110076439 Zeilon Mar 2011 A1
20110098805 Dwork et al. Apr 2011 A1
20110106004 Eubanks et al. May 2011 A1
20110106115 Haselby et al. May 2011 A1
20110152831 Rotem et al. Jun 2011 A1
20110152906 Escudero et al. Jun 2011 A1
20110152907 Escudero et al. Jun 2011 A1
20110218516 Grigorov Sep 2011 A1
20110236210 Mcbride et al. Sep 2011 A1
20110237863 Ricci et al. Sep 2011 A1
20110238172 Akdis Sep 2011 A1
20110257462 Rodefeld et al. Oct 2011 A1
20110270182 Breznock et al. Nov 2011 A1
20110275884 Scheckel Nov 2011 A1
20110300010 Jarnagin et al. Dec 2011 A1
20110311383 White Dec 2011 A1
20120004495 Bolling et al. Jan 2012 A1
20120004496 Farnan et al. Jan 2012 A1
20120029265 LaRose et al. Feb 2012 A1
20120045352 Lawyer et al. Feb 2012 A1
20120059213 Spence et al. Mar 2012 A1
20120059460 Reitan Mar 2012 A1
20120083740 Chebator et al. Apr 2012 A1
20120093628 Liebing Apr 2012 A1
20120109172 Schmitz et al. May 2012 A1
20120142994 Toellner Jun 2012 A1
20120172654 Bates Jul 2012 A1
20120172655 Campbell et al. Jul 2012 A1
20120172656 Walters et al. Jul 2012 A1
20120178985 Walters et al. Jul 2012 A1
20120178986 Campbell et al. Jul 2012 A1
20120184803 Simon et al. Jul 2012 A1
20120203056 Corbett Aug 2012 A1
20120220854 Messerly et al. Aug 2012 A1
20120224970 Schumacher et al. Sep 2012 A1
20120226097 Smith et al. Sep 2012 A1
20120234411 Scheckel et al. Sep 2012 A1
20120237357 Schumacher et al. Sep 2012 A1
20120245404 Smith et al. Sep 2012 A1
20120255657 Carlson Oct 2012 A1
20120264523 Liebing Oct 2012 A1
20120265002 Roehn et al. Oct 2012 A1
20130031936 Goncalves et al. Feb 2013 A1
20130039465 Okuno Feb 2013 A1
20130041202 Toellner et al. Feb 2013 A1
20130053622 Corbett Feb 2013 A1
20130053623 Evans et al. Feb 2013 A1
20130053693 Breznock et al. Feb 2013 A1
20130066140 McBride et al. Mar 2013 A1
20130085318 Toellner et al. Apr 2013 A1
20130085319 Evans et al. Apr 2013 A1
20130096364 Reichenbach et al. Apr 2013 A1
20130103063 Escudero et al. Apr 2013 A1
20130106212 Nakazumi et al. May 2013 A1
20130129503 McBride et al. May 2013 A1
20130138205 Kushwaha et al. May 2013 A1
20130204362 Toellner et al. Aug 2013 A1
20130209292 Baykut et al. Aug 2013 A1
20130237744 Pfeffer et al. Sep 2013 A1
20130245360 Schumacher et al. Sep 2013 A1
20130303830 Zeng et al. Nov 2013 A1
20130303831 Evans et al. Nov 2013 A1
20130303969 Keenan et al. Nov 2013 A1
20130303970 Keenan et al. Nov 2013 A1
20130331639 Campbell et al. Dec 2013 A1
20130338559 Franano et al. Dec 2013 A1
20130345492 Pfeffer et al. Dec 2013 A1
20140005467 Farnan et al. Jan 2014 A1
20140010686 Tanner et al. Jan 2014 A1
20140012065 Fitzgerald et al. Jan 2014 A1
20140039465 Heike et al. Feb 2014 A1
20140051908 Khanal et al. Feb 2014 A1
20140066691 Siebenhaar Mar 2014 A1
20140067057 Callaway et al. Mar 2014 A1
20140088455 Christensen et al. Mar 2014 A1
20140128659 Heuring et al. May 2014 A1
20140148638 LaRose et al. May 2014 A1
20140163664 Goldsmith Jun 2014 A1
20140188086 Govari et al. Jul 2014 A1
20140205434 Graichen Jul 2014 A1
20140255176 Bredenbreuker et al. Sep 2014 A1
20140275725 Schenck et al. Sep 2014 A1
20140275726 Zeng Sep 2014 A1
20140276948 Zirps Sep 2014 A1
20140301822 Scheckel Oct 2014 A1
20140303596 Schumacher et al. Oct 2014 A1
20150025558 Wulfman et al. Jan 2015 A1
20150031936 Larose et al. Jan 2015 A1
20150051435 Siess et al. Feb 2015 A1
20150051436 Spanier et al. Feb 2015 A1
20150080743 Siess et al. Mar 2015 A1
20150087890 Spanier et al. Mar 2015 A1
20150141738 Toellner et al. May 2015 A1
20150141739 Hsu et al. May 2015 A1
20150151032 Voskoboynikov et al. Jun 2015 A1
20150176582 Liebing Jun 2015 A1
20150209498 Franano et al. Jul 2015 A1
20150224970 Yasui et al. Aug 2015 A1
20150250935 Anderson et al. Sep 2015 A1
20150290371 Muller et al. Oct 2015 A1
20150290372 Muller et al. Oct 2015 A1
20150343179 Schumacher et al. Dec 2015 A1
20160123098 Marr May 2016 A1
20160184500 Zeng Jun 2016 A1
20160213826 Tanner et al. Jul 2016 A1
20160213827 Tanner et al. Jul 2016 A1
20160250399 Tiller et al. Sep 2016 A1
20160250400 Schumacher Sep 2016 A1
20160256620 Mario et al. Sep 2016 A1
20160279310 Scheckel et al. Sep 2016 A1
20160319846 Liebing Nov 2016 A1
20170014562 Liebing Jan 2017 A1
20170087287 Keenan et al. Mar 2017 A1
20180021495 Muller et al. Jan 2018 A1
20180055979 Corbett et al. Mar 2018 A1
20180064862 Keenan et al. Mar 2018 A1
20180243489 Haddadi Aug 2018 A1
20190030228 Keenan et al. Jan 2019 A1
20190148346 Feichtinger et al. May 2019 A1
20190254909 Lee et al. Aug 2019 A1
20190358382 Delgado, III Nov 2019 A1
20210046230 Fitzgerald et al. Feb 2021 A1
20210077690 Schenck et al. Mar 2021 A1
20210113827 Mcbride et al. Apr 2021 A1
20210187270 Schenck et al. Jun 2021 A1
20220372989 Mcbride et al. Nov 2022 A1
20230302271 Spanier et al. Sep 2023 A1
Foreign Referenced Citations (151)
Number Date Country
2013220350 Sep 2014 AU
2256427 Oct 1998 CA
2322012 Sep 1999 CA
2367469 Oct 2000 CA
2407938 Nov 2001 CA
2480467 Aug 2003 CA
2701810 Apr 2009 CA
2701870 Apr 2009 CA
101820933 Sep 2010 CN
211584537 Sep 2020 CN
19613565 Jul 1997 DE
10059714 May 2002 DE
112004001809 Nov 2006 DE
0193762 Sep 1986 EP
0364293 Apr 1990 EP
0453234 Oct 1991 EP
0533432 Mar 1993 EP
1207934 May 2002 EP
0691108 Dec 2002 EP
1393762 Mar 2004 EP
1591079 Nov 2005 EP
2151257 Feb 2010 EP
2263732 Dec 2010 EP
2298374 Mar 2011 EP
2399639 Dec 2011 EP
2427230 Mar 2012 EP
2662099 Nov 2013 EP
3115070 Jan 2017 EP
3453234 Mar 2019 EP
3520834 Aug 2019 EP
3533432 Sep 2019 EP
3808405 Apr 2021 EP
3800357 May 2024 EP
2267800 Nov 1975 FR
0886219 Jan 1962 GB
2239675 Jul 1991 GB
S4823295 Mar 1973 JP
S58190448 Nov 1983 JP
102211169 Aug 1990 JP
H06114101 Apr 1994 JP
08-500512 Jan 1996 JP
08-501466 Feb 1996 JP
H08196624 Aug 1996 JP
09-114101 May 1997 JP
10-099440 Apr 1998 JP
H1099447 Apr 1998 JP
2001-079093 Mar 2001 JP
3208454 Sep 2001 JP
2002-505168 Feb 2002 JP
2004-514506 May 2004 JP
2005-514085 May 2005 JP
2007-252960 Oct 2007 JP
2009-530041 Aug 2009 JP
2011-000620 Jan 2011 JP
2011-505902 Mar 2011 JP
2011-157961 Aug 2011 JP
2012-531975 Dec 2012 JP
2016-515000 May 2016 JP
6114101 Apr 2017 JP
500877 Sep 2002 TW
8904644 Jun 1989 WO
8905154 Jun 1989 WO
8905668 Jun 1989 WO
1989005164 Jun 1989 WO
9405347 Mar 1994 WO
9406486 Mar 1994 WO
9514500 Jun 1995 WO
9526695 Oct 1995 WO
9715228 May 1997 WO
9737694 Oct 1997 WO
9737698 Oct 1997 WO
1997037697 Oct 1997 WO
9811349 Mar 1998 WO
9900368 Jan 1999 WO
9902204 Jan 1999 WO
9916387 Apr 1999 WO
9937352 Jul 1999 WO
9944651 Sep 1999 WO
9944670 Sep 1999 WO
9959652 Nov 1999 WO
9965546 Dec 1999 WO
2000012148 Mar 2000 WO
0018448 Apr 2000 WO
0019097 Apr 2000 WO
0037139 Jun 2000 WO
0038591 Jul 2000 WO
0041612 Jul 2000 WO
0043053 Jul 2000 WO
0043062 Jul 2000 WO
0045874 Aug 2000 WO
0061207 Oct 2000 WO
0069489 Nov 2000 WO
0119444 Mar 2001 WO
2001017581 Mar 2001 WO
0124897 Apr 2001 WO
0124867 Apr 2001 WO
0178807 Oct 2001 WO
0183016 Nov 2001 WO
0243791 Jun 2002 WO
02070039 Sep 2002 WO
0281919 Oct 2002 WO
0348582 Jun 2003 WO
0354660 Jul 2003 WO
0368303 Aug 2003 WO
0370299 Aug 2003 WO
03103745 Dec 2003 WO
2005030296 Apr 2005 WO
2005089674 Sep 2005 WO
2005123158 Dec 2005 WO
2006034158 Mar 2006 WO
2006046779 May 2006 WO
2006051023 May 2006 WO
2007112033 Oct 2007 WO
2008034068 Mar 2008 WO
2009073037 Jun 2009 WO
2009076460 Jun 2009 WO
2010042546 Apr 2010 WO
2010063494 Jun 2010 WO
2010127871 Nov 2010 WO
2010133567 Nov 2010 WO
2010149393 Dec 2010 WO
2011003043 Jan 2011 WO
2011035927 Mar 2011 WO
2011035926 Mar 2011 WO
2011035929 Mar 2011 WO
2011039091 Apr 2011 WO
2011076439 Jun 2011 WO
2011089022 Jul 2011 WO
2011126895 Oct 2011 WO
2012007140 Jan 2012 WO
2012007141 Jan 2012 WO
2012094525 Jul 2012 WO
2012094534 Jul 2012 WO
2013032849 Mar 2013 WO
2013120957 Aug 2013 WO
2013148697 Oct 2013 WO
2013160407 Oct 2013 WO
2013173239 Nov 2013 WO
2013173245 Nov 2013 WO
2014008102 Jan 2014 WO
2014019274 Feb 2014 WO
2014174914 Oct 2014 WO
2015055515 Apr 2015 WO
2015063277 May 2015 WO
2015160942 Oct 2015 WO
2016028644 Feb 2016 WO
2016116608 Jul 2016 WO
2016118777 Jul 2016 WO
2016118781 Jul 2016 WO
2016183468 Nov 2016 WO
2017192775 Nov 2017 WO
Non-Patent Literature Citations (161)
Entry
Copending U.S. Appl. No. 18/054,482 (Year: 2022).
“Statistical Analysis and Clinical Experience with the Recover® Pump Systems”, Impella CardioSystems GmbH, Sep. 2005, 2 sheets.
Abiomed—Recovering Hearts. Saving Lives., Impella 2.5 System, Instructions for Use, Jul. 2007, in 86 sheets.
Abiomed, “Impella 5.0 with the Impella Console, Circulatory Support System, Instructions for Use & Clinical Reference Manual,” Jun. 2010, in 122 pages.
Aboul-Hosn et al., “The Hemopump: Clinical Results and Future Applications”, Assisted Circulation 4, 1995, in 14 pages.
Barras et al., “Nitinol—Its Use in Vascular Surgery and Other Applications,” Eur. J. Vasc. Endovasc. Surg., 2000, pp. 564-569; vol. 19.
Biscarini et al., “Enhanced Nitinol Properties for Biomedical Applications,” Recent Patents on Biomedical Engineering, 2008, pp. 180-196, vol. 1(3).
Cardiovascular Diseases (CVDs) Fact Sheet No. 317; World Health Organization [Online], Sep. 2011. http://www.who.int/mediacentre/factsheets/fs317/en/index.html, accessed on Aug. 29, 2012.
Compendium of Technical and Scientific Information for the Hemopump Temporary Cardiac Assist System, Johnson & Johnson Interventional Systems, 1988, in 15 pages.
Dekker et al., “Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pump*, An Animal Study”, Chest, Jun. 2003, vol. 123, No. 6, pp. 2089-2095.
Duerig et al., “An Overview of Nitinol Medical Applications,” Materials Science Engineering, 1999, pp. 149-160; vol. A273.
European Search Report received in European Patent Application No. 05799883.3, dated May 10, 2011, 4 pages.
Extended EP Search Report, dated Mar. 15, 2018, for related EP patent application No. EP 15833166.0, 7 pages.
Extended European Search Report received in European Patent Application No. 07753903.9, dated Oct. 8, 2012, 7 pages.
Extended European Search Report received in European Patent Application No. 13790890.1, dated Jan. 7, 2016, 6 pages.
Extended European Search Report received in European Patent Application No. 13791118.6, dated Jan. 7, 2016, 6 pages.
Extended European Search Report received in European Patent Application No. 13813687.4, dated Feb. 24, 2016, 6 pages.
Extended European Search Report received in European Patent Application No. 13813867.2, dated Feb. 26, 2016, 7 pages.
Extended European Search Report received in European Patent Application No. 14764392.8, dated Oct. 27, 2016, 7 pages.
Extended European Search Report received in European Patent Application No. 14779928.2, dated Oct. 7, 2016, 7 pages.
Federal and Drug Administration 510(k) Summary for Predicate Device Impella 2.5 (K112892), prepared Sep. 5, 2012.
Grech, “Percutaneous Coronary Intervention. I: History and Development,” BMJ., May 17, 2003, pp. 1080-1082, vol. 326.
Hsu et al., “Review of Recent Patents on Foldable Ventricular Assist Devices,” Recent Patents on Biomedical Engineering, 2012, pp. 208-222, vol. 5.
Ide et al., “Evaluation of the Pulsatility of a New Pulsatile Left Ventricular Assist Device—the Integrated Cardioassist Catheter—in Dogs,” J. of Thorac and Cardiovasc Sur, Feb. 1994, pp. 569-0575, vol. 107(2).
Ide et al., “Hemodynamic Evaluation of a New Left Ventricular Assist Device: An Integrated Cardioassist Catheter as a Pulsatile Left Ventricle-Femoral Artery Bypass,” Blackwell Scientific Publications, Inc., 1992, pp. 286-290, vol. 16(3).
Impella CP®—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Jul. 2014, 148 pages, www.abiomed.com.
Impella LD® with the Impella® Controller—Circulatory Support System—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Sep. 2010, 132 pages, www.abiomed.com.
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04401, dated May 18, 2004, in 4 pages.
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04853, mailed on Jul. 26, 2004, in 5 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received In International Patent Application No. PCT/US2005/033416, mailed on Mar. 20, 2007, in 7 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received In International Patent Application No. PCT/US2007/007313, mailed on Sep. 23, 2008, in 6 pages.
International Preliminary Report on Patentability and Written Opinion received in International Patent Application No. PCT/US2014/020878, mailed Sep. 15, 2015, in 8 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2005/033416, mailed on Dec. 11, 2006, in 8 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2007/007313, mailed on Mar. 4, 2008, in 6 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2010/040847, mailed on Jan. 6, 2011, in 15 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020369, mailed on Jul. 30, 2012, in 10 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020382, mailed on Jul. 31, 2012, in 11 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020383, mailed on Aug. 17, 2012; in 9 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020553, mailed on Aug. 17, 2012, in 8 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040798, mailed Aug. 21, 2013, in 16 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040799, mailed Aug. 21, 2013, in 19 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040809, mailed Sep. 2, 2013, in 25 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048332, mailed Oct. 16, 2013, in 14 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048343, mailed Oct. 11, 2013, in 15 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020790, mailed on Oct. 9, 2014, in 9 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020878, mailed May 7, 2014, in 11 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025959, mailed Oct. 22, 2015, in 9 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025960, mailed Oct. 22, 2015, in 11 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026013, mailed Oct. 22, 2015, in 8 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026014, mailed Oct. 22, 2015, in 8 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026025, mailed Oct. 22, 2015, in 12 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/045370, mailed Feb. 25, 2016, in 10 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014371, mailed Jul. 28, 2016, in 16 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014379, mailed Jul. 29, 2016, in 17 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014391, mailed Jul. 28, 2016, in 15 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/051553, mailed Mar. 23, 2017, in 11 pages.
International Search Report received in International Patent Application No. PCT/US2003/004401, mailed on Jan. 22, 2004, in 7 pages.
International Search Report received in International Patent Application No. PCT/US2003/004853, mailed on Nov. 10, 2003, in 5 pages.
Jomed Reitan Catheter Pump RCP, Feb. 18, 2003, in 4 pages.
Jomed Reitan Catheter Pump RCP, Percutaneous Circulatory Support, in 10 pages, believed to be published prior to Oct. 15, 2003.
Krishnamani et al., “Emerging Ventricular Assist Devices for Long-Term Cardiac Support,” National Review, Cardiology, Feb. 2010, pp. 71-76, vol. 7.
Kunst et al., “Integrated unit for programmable control of the 21F Hemopump and registration of physiological signals,” Medical & Biological Engineering & Computing, Nov. 1994, pp. 694-696.
Mihaylov et al., “Development of a New Introduction Technique for the Pulsatile Catheter Pump,” Artificial Organs, 1997, pp. 425-427; vol. 21(5).
Mihaylov et al., “Evaluation of the Optimal Driving Mode During Left Ventricular Assist with Pulsatile Catheter Pump in Calves,” Artificial Organs, 1999, pp. 1117-1122; vol. 23(12).
Minimally Invasive Cardiac Assist Jomed Catheter PumpTM, in 6 pages, believed to be published prior to Jun. 16, 1999.
Morgan, “Medical Shape Memory Alloy Applications—The Market and its Products,” Materials Science and Engineering, 2004, pp. 16-23, vol. A 378.
Morsink et al., “Numerical Modelling of Blood Flow Behaviour in the Valved Catheter of the PUCA-Pump, a LVAD,” The International Journal of Artificial Organs, 1997, pp. 277-284; vol. 20(5).
Nishimura et al, “The Enabler Cannula Pump: A Novel Circulatory Support System,” The International Journal of Artificial Organs, 1999, pp. 317-323; vol. 22(5).
Nullity Action against the owner of the German part DE 50 2007 005 015.6 of European patent EP 2 047 872 B1, dated Jul. 13, 2015, in 61 pages.
Petrini et al., “Biomedical Applications of Shape Memory Alloys,” Journal of Metallurgy, 2011, pp. 1-15.
Raess et al., “Impella 2.5,” J. Cardiovasc. Transl. Res., 2009, pp. 168-172, vol. 2(2).
Rakhorst et al., “In Vitro Evaluation of the Influence of Pulsatile Intraventricular Pumping on Ventricular Pressure Patterns,” Artificial Organs, 1994, pp. 494-499, vol. 18(7).
Reitan et al., “Hemodynamic Effects of a New Percutaneous Circulatory Support Device in a Left Ventricular Failure Model,” ASAIO Journal, 2003, pp. 731-736, vol. 49.
Reitan et al., “Hydrodynamic Properties of a New Percutaneous Intra-Aortic Axial Flow Pump,” ASAIO Journal 2000, pp. 323-328.
Reitan, Evaluation of a New Percutaneous Cardiac Assist Device, Department of Cardiology, Faculty of Medicine, Lund University, Sweden, 2002, in 172 pages.
Rothman, “The Reitan Catheter Pump: A New Versatile Approach for Hemodynamic Support”, London Chest Hospital Barts & The London NHS Trust, Oct. 22-27, 2006 (TCT 2006: Transcatheter Cardiovascular Therapeutics 18th Annual Scientific Symposium, Final Program), in 48 pages.
Schmitz-Rode et al., “An Expandable Percutaneous Catheter Pump for Left Ventricular Support,” Journal of the American College of Cardiology, 2005, pp. 1856-1861, vol. 45(11).
Shabari et al., “Improved Hemodynamics with a Novel Miniaturized Intra-Aortic Axial Flow Pump in a Porcine Model of Acute Left Ventricular Dysfunction,” ASAIO Journal, 2013, pp. 240-245; vol. 59.
Sharony et al, “Cardiopulmonary Support and Physiology—The Intra-Aortic Cannula Pump: A Novel Assist Device for the Acutely Failing Heart,” The Journal of Thoracic and Cardiovascular Surgery, Nov. 1992, pp. 924-929, vol. 118(5).
Sharony et al., “Right Heart Support During Off-Pump Coronary Artery Surgery—A Multi-Center Study,” The Heart Surgery Forum, 2002, pp. 13-16, vol. 5(1).
Siess et al., “Basic design criteria for rotary blood pumps,” H. Masuda, Rotary Blood Pumps, Springer, Japan, 2000, pp. 69-83.
Siess et al., “Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump,” Artificial Organs, 1995, pp. 644-652, vol. 19, No. 7, Blackwell Science, Inc., Boston, International Society for Artificial Organs.
Siess et al., “From a lab type to a product: A retrospective view on Impella's assist technology,” Artificial Organs, 2001, pp. 414-421, vol. 25, No. 5, Blackwell Science, Inc., International Society for Artificial Organs.
Siess et al., “System analysis and development of intravascular rotation pumps for cardiac assist,” Dissertation, Shaker Verlag, Aachen, 1999, 39 pages.
Sieß et al., “Hydraulic refinement of an intraarterial microaxial blood pump”, The International Journal of Artificial Organs, 1995, vol. 18, No. 5, pp. 273-285.
Sieß, “Systemanalyse und Entwicklung intravasaler Rotationspumpen zur Herzunterstützung”, Helmholtz-Institut fur Blomedixinische Technik an der RWTH Aachen, Jun. 24, 1998, in 105 pages.
Smith et al., “First-In-Man Study of the Reitan Catheter Pump for Circulatory Support in Patients Undergoing High-Risk Percutaneous Coronary Intervention,” Catheterization and Cardiovascular Interventions, 2009, pp. 859-865, vol. 73(7).
Sokolowski et al., “Medical Applications of Shape Memory Polymers,” Biomed. Mater. 2007, pp. S23-S27, vol. 2.
Stoeckel et al., “Self-Expanding Nitinol Stents—Material and Design Considerations,” European Radiology, 2003, in 13 sheets.
Stolinski et al., “The heart-pump interaction: effects of a microaxial blood pump,” International Journal of Artificial Organs, 2002, pp. 1082-1088, vol. 25, Issue 11.
Supplemental European Search Report received from the European Patent Office in EP Application No. EP 05799883 dated Mar. 19, 2010, 3 pages.
Takagaki et al., “A Novel Miniature Ventricular Assist Device for Hemodynamic Support,” ASAIO Journal, 2001, pp. 412-416; vol. 47.
Throckmorton et al., “Flexible Impeller Blades in an Axial Flow Pump for Intravascular Cavopulmonary Assistance of the Fontan Physiology,” Cardiovascular Engineering and Technology, Dec. 2010, pp. 244-255, vol. 1(4).
Throckmorton et al., “Uniquely shaped cardiovascular stents enhance the pressure generation of intravascular blood pumps,” The Journal of Thoracic and Cardiovascular Surgery, Sep. 2012, pp. 704-709, vol. 133, No. 3.
Verkerke et al., “Numerical Simulation of the PUCA Pump, A Left Ventricular Assist Device,” Abstracts of the XIXth ESAO Congress, The International Journal of Artificial Organs, 1992, p. 543, vol. 15(9).
Verkerke et al., “Numerical Simulation of the Pulsating Catheter Pump: A Left Ventricular Assist Device,” Artificial Organs, 1999, pp. 924-931, vol. 23(10).
Verkerke et al., “The PUCA Pump: A Left Ventricular Assist Device,” Artificial Organs, 1993, pp. 365-368, vol. 17(5).
Wampler et al., “The Sternotomy Hemopump, A Second Generation Intraarterial Ventricular Assist Device,” ASAIO Journal, 1993, pp. M218-M223, vol. 39.
Weber et al., “Principles of Impella Cardiac Support,” Supplemental to Cardiac Interventions Today, Aug./Sep. 2009.
Written Opinion received in International Patent Application No. PCT/US2003/04853, dated Feb. 25, 2004, 5 pages.
Extended European Search Report received in Patent Application No. 20205009.2, dated Mar. 16, 2021 (8 pages).
Statement of Appeal, dated Feb. 6, 2015, European Patent No. 1 651 290, Opponent and Appellant Thoratec Corporation, 30 pages.
Synopse zu Anspruchen 1 bis 5 der EP 2 047 872, in 11 pages.
U.S. Appl. No. 12/565,651, filed Sep. 23, 2009.
U.S. Appl. No. 12/772,810, filed May 3, 2010.
Wikipedia, “Ball Bearing,” accessed Feb. 28, 2025, wikipedia.com, https://en.wikipedia.org/wiki/Ball_bearing (Year: 2025).
Wikipedia, “Ball Bearing,” accessed Nov. 21, 2023, wikipedia.com, https://en.wikipedia.org/wiki/Ball_bearing (Year: 2023).
wikipedia.org, “Bearing (mechanical)”, accessed Jan. 4, 2023, https://en.wikipedia.org/wiki/Bearing_(mechanical). (Year: 2023).
1st Auxiliary Application dated Oct. 11, 2013, European Application No. 07019657.1, 23 pages.
Arvand et al.: “A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump”, Artificial Organs, vol. 29, No. 7, 2005, pp. 531-540.
Combined Search and Examination Report for Great Britain Application No. 1308544.4, dated Nov. 13, 2013, 6 pages.
Combined Search and Examination Report for Great Britain Application No. 1414709.4, dated Dec. 16, 2014, 5 pages.
Copending U.S. Appl. No. 12/829,359, filed Jul. 1, 2010.
Decision on Rejection of the objection, dated Oct. 1, 2014, European Application No. 04763480.3, 3 pages.
Decision rejecting the opposition (EPC Art. 101(2)), dated Oct. 1, 2014, European Application No. 07 019 657.1, 13 pages.
European Search Report for App. No. 21183329.8, dated Oct. 22, 2021, 10 pgs.
European Search Report for Patent Application No. 20187258.7, dated Apr. 9, 2021 (16 pages).
Extended EP Search Report, dated Dec. 13, 2019, for EP patent application No. EP 19195969.1 (4 pgs.).
Extended European Search Report for European Patent Application No. 21156867.0, dated Jun. 10, 2021, 6 pages.
Extended European Search Report for Patent Application No. EP24170611.8 dated Jul. 23, 2024; 10 pp.
Extended European Search Report received in European Patent Application No. 19161643.2, dated Jun. 24, 2019, in 9 pages.
Extended European Search Report received in European Patent Application No. 20176135.0, dated Aug. 31, 2020, 7 pages.
Extended European Search Report received in European Patent Application No. 22195112.2, dated Jan. 2, 2023, 12 pgs.
Fact and Arguments from Hoffmann Eitle, Opposition, EP 2 234 658 81, Proprietor: AIS GmbH Aachen Innovative Solutions (DE), Opponent: Dr. Niels Holder (DE), dated Feb. 3, 2012; 29 pages.
Fact and Arguments from Hoffmann Eitle. Opposition, EP 2 047 872 81, Proprietor: AIS GmbH Aachen Innovative Solutions (DE), Opponent: Dr. Niels Holder (DE), dated Jun. 8, 2011; 32 pages.
Facts and Ground for the Opposition dated Oct. 17, 2012, European Application No. 04763480.3, 43 pages.
Facts of the Case and Petitions, dated Feb. 7, 2014, European Application No. 04763480.3, 13 pages.
Facts of the Case and Petitions, dated Oct. 1, 2014, European Application No. 04763480.3, 16 pages.
Fuentes et al. “Phase Change Behavior of Nitinol Shape Memory Alloys,” Advanced Engineering Materials, 2002, 4, No. 7, 437-451.
Garonfarinas: “Fast Three Dimensional Numerical Hemolysis Approximation”, Artificial Organs, vol. 28, No. 11, 2004, pp. 1016-1025.
Giersiepen et al.: “Estimation of Shear Stress-related Blood Damage in Heart Valve Prostheses—In vitro Comparison of 25 Aortic Valves”, International Journal of Artificial Organs, vol. 13, No. 5, 1990, pp. 300-306.
Gu et al.: “Evaluation of Computational Models for Hemolysis Estimation”, ASAIO Journal, 2005, pp. 202-207.
In response to the Proprietor's letter of Jul. 18, 2012 from Hoffmann Eitle dated Oct. 24, 2012, Opposition, EP 2 234 658 81, Proprietor: AIS GmbH Aachen Innovative Solutions (DE), Opponent Dr. Niels Holder (DE), 7 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2017/042803, mailed Jan. 31, 2019, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/028482, mailed Jul. 25, 2019, 15 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/042803, mailed Oct. 5, 2017, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/042810, mailed Sep. 28, 2017, 18 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US2019/015680, mailed Apr. 4, 2019, 15 pages.
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025950, mailed Sep. 3, 2015, in 15 pages.
International Search Report received in International Patent Application No. PCT/US2003/004353, dated Jul. 3, 2003, in 3 pages.
International Search Report received in PCT Application No. PCT/US2005/033416, dated Dec. 11, 2006, 4 pages.
JP Notice of Allowance, dated Apr. 22, 2019 for related JP patent application No. 2016-500668.
Motion to dismiss the objection by Dr. Niels Holder dated Jan. 17, 2012 to EPO in European Patent No. 2 04 7 872 B 1, 12 pages.
Notice of Reasons for Refusal and Search Report received in Japanese Patent Application No. 2015-512724, dated Mar. 28, 2017, 24 pages.
Office Action dated Jun. 24, 2020 for U.S. Appl. No. 16/296,952 (pp. 1-13).
Office Action issued in European Application No. 19732754.7, dated Oct. 20, 2021, 8 pages.
Office Action Received in German Patent Application No. 102013008158.0, dated Feb. 15, 2019, 14 pages.
Opinion on behalf of the Opponent dated Aug. 26, 2013, filed with the European Patent Office in European Application No. 04763480.3 (EP Patent No. 1 651 290 81 ), 23 pages.
Opposition by Dr. Niels Holder dated Jul. 18, 2012 to EPO in European Patent No. 2 234 658 81, 14 pages.
Opposition Opinion of EP 2 234 658, dated Jan. 20, 2014; 3 pages.
Partial EP search report, dated Dec. 1, 2020, for related EP patent application No. 20187258.7 (12 pgs.).
Reply to the Objection by Thoratec Corporation of Oct. 17, 2012, from the European Patent Office dated Mar. 22, 2013 , European Patent No. 1 651 290, 14 pages.
Response to Memorandum of Aug. 26, 2013 with the invitation to an oral hearing, dated Oct. 11, 2013, European Patent No. 2 234 658, 28 pages.
Response to the Summons dated Jun. 14, 2013: from Fish & Richardson P.C., dated Oct. 7, 2013, Opposition against EP 2 047 872 81, 12 pages.
Responsive to the Summons dated Aug. 26, 2013: from Fish & Richardson P.C., dated Oct. 7, 2013, Opposition against EP 2 234 658 81, 9 pages.
Schmitz-Rode et al., “Axial flow catheter pump for circulatory support,” Biomedizinische Technik, 2002, Band 47, Erganzungsband 1, Teil 1, pp. 142-143.
Spini et al. “Transition temperature range of thermally activated nickel-titanium archwires”, J. Appl. Oral Sci. 2014:22 (2):109-117.
Andrew J. Carter et al., (1998), Progressive Vascular Remodeling and Reduced Neointimal Formation After Placement of a Thermoelastic Self-Expanding Nitinol Stent in an Experimental Model, Catheterization and Cardiovascular Diagnosis, (44), 193-201.
Applicant's Submission in Application No. 20204996.1, dated Oct. 7, 2021.
European Search Opinion in Application No. 20204996.1, dated Feb. 19, 2021.
Definitions of “undulating” and “undulation,” Shorter Oxford English Dictionary, 5th edition, p. 3436 (2002) (4 pages).
Related Publications (1)
Number Date Country
20230173254 A1 Jun 2023 US
Provisional Applications (1)
Number Date Country
61667903 Jul 2012 US
Divisions (2)
Number Date Country
Parent 15172664 Jun 2016 US
Child 16110648 US
Parent 13801528 Mar 2013 US
Child 15172664 US
Continuations (2)
Number Date Country
Parent 17086377 Oct 2020 US
Child 18154373 US
Parent 16110648 Aug 2018 US
Child 17086377 US