This invention generally relates to intravascular catheters, such as balloon catheters used in percutaneous transluminal coronary angioplasty (PTCA) and stent delivery.
PTCA is a widely used procedure for the treatment of coronary heart disease. In this procedure, a balloon dilatation catheter is advanced into the patient's coronary artery and the balloon on the catheter is inflated within the stenotic region of the patient's artery to open up the arterial passageway and thereby increase the blood flow there through. To facilitate the advancement of the dilatation catheter into the patient's coronary artery, a guiding catheter having a pre-shaped distal tip is first percutaneously introduced into the cardiovascular system of a patient by the Seldinger technique through the brachial or femoral arteries.
The catheter is advanced until the pre-shaped distal tip of the guiding catheter is disposed within the aorta adjacent the ostium of the desired coronary artery, and the distal tip of the guiding catheter is then maneuvered into the ostium. A balloon dilatation catheter may then be advanced through the guiding catheter into the patient's coronary artery over a guidewire until the balloon on the catheter is disposed within the stenotic region of the patient's artery. The balloon is inflated to open up the arterial passageway and increase the blood flow through the artery. Generally, the inflated diameter of the balloon is approximately the same diameter as the native diameter of the body lumen being dilated so as to complete the dilatation but not over expand the artery wall. After the balloon is finally deflated, blood flow resumes through the dilated artery and the dilatation catheter can be removed therefrom.
In a large number of angioplasty procedures, there may be a restenosis, i.e. reformation of the arterial plaque. To reduce the restenosis rate and to strengthen the dilated area, physicians now frequently implant an intravascular prosthesis called a stent inside the artery at the site of the lesion. Stents may also be used to repair vessels having an intimal flap or dissection or to generally strengthen a weakened section of a vessel. Stents are usually delivered to a desired location within a coronary artery in a contracted condition on a balloon of a catheter which is similar in many respects to a balloon angioplasty catheter, and expanded to a larger diameter by expansion of the balloon. The balloon is deflated to remove the catheter and the stent is left in place within the artery at the site of the dilated lesion.
In both applications, the catheter must be advanced through the body to the heart. Control and advancement of catheters is difficult because of their construction. The user must frequently manipulate, or torque, the catheter shaft on the proximal end to facilitate advancement of the catheter with a desired orientation on the distal end. To provide the needed control over the movement of the catheter, it is necessary that these tubular catheters be made somewhat rigid. However, catheters must be flexible enough to navigate through the body lumen to arrive at the desired location within the body where the medical procedures will be performed. An overly rigid catheter shaft will not track, or follow, the guidewire. Therefore, reaching the desired location with a rigid catheter is more difficult. In some catheters the elongate tubular body is a hypotube formed of stainless steel, nitinol, or other suitable materials where, although the material is stronger, the diameter-to-length ratio is sufficiently low that the tubular body is flexible. This increases the capacity of the catheter to be advanced through the tortuous arterial passages of a patient and also improves pushability. Still, the catheter body is narrow with respect to a practitioner's hand/thumb/finger and thus it is often difficult to obtain and maintain a sure grip on the catheter shaft that allows for the necessary control, especially when various fluids are involved. Therefore, what has been needed is a device that improves torque ability of the catheter without interfering with the tracking and advancing of the catheter. The present invention satisfies these and other needs.
The present invention is directed to a clamping member for gripping a catheter shaft to facilitate advancement on a patient's body lumen. The clamp is configured to be releasably compressed between a practitioner's thumb and forefinger to squeeze the catheter shaft. The clamp includes a cylindrical body portion that releasably attaches to the catheter proximal arm, a central lumen through which the catheter shaft is supported and translated, and resilient fingers extending from the body portion to flex against the catheter shaft upon digital pressure from the practitioner to frictionally grip and release the hypotube as needed for increased pushability.
The clamping member may be attached to a conventional catheter at the arm member via a thread on the nose piece. The clamping member can be threaded, push-fit, or otherwise coupled to the catheter arm at the initiation of the procedure. As the need for greater control over the distal portion of the catheter is needed, the practitioner detaches the clamping member from the catheter arm and advances it distally along the catheter body to the desired location. This may be close to the rotational hemostatic valve (“RHV”) in order to reduce the distance the practitioner must advance the clamping member, thereby increasing the usable force. The practitioner then grips the clamping member between the thumb and forefinger and squeezes the resilient fingers against the hypotube to frictionally grip the catheter body, increasing the surface area and control when compared to the bare catheter tube.
In one preferred embodiment of the present invention, the clamping member has a roughened surface on its inner opposing faces of the resilient fingers to effect an increased coefficient of friction when gripping the catheter body, which is useful if the catheter body has a lubricious or slick outer surface. An important aspect of this invention is not only the additional control it provides the user, but the added comfort the user experiences as the invention allows for more comfortable prolonged gripping. The user is thereby able to work with more control for a long period of time.
As shown in
As shown in detail in
The clamping member also includes a plurality of resilient fingers 35 extending in a cantilevered arrangement from the body portion 26 of the clamping member 22, such that the proximal ends 41 of the resilient fingers 35 are connected to the body portion 26 while the distal ends 43 of the resilient fingers 35 are free. In a preferred embodiment, the resilient fingers 35 are substantially semi-circular in cross-section and are integral with the body portion 26 as shown in
In use, the catheter is initially configured as shown in
Although individual features of embodiments of the invention may be shown in some of the drawings and not in others, those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment.