Catheter shaft with improved manifold bond

Information

  • Patent Grant
  • 8858529
  • Patent Number
    8,858,529
  • Date Filed
    Friday, August 31, 2012
    12 years ago
  • Date Issued
    Tuesday, October 14, 2014
    9 years ago
Abstract
A catheter shaft with an improved manifold bond and methods for making and using the same. The catheter shaft may include a sleeve disposed, for example, near its proximal end. The sleeve may include a first layer that is attached to the catheter shaft and a second layer to which a hub or manifold may be attached.
Description
FIELD OF THE INVENTION

The invention relates to intraluminal medical devices, for example, intravascular catheters and catheter shafts. More particularly, the invention relates to catheter shafts with improved hub or manifold bonding.


BACKGROUND

A wide variety of intraluminal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include catheters and catheter shafts that can have hubs or manifolds attached thereto. Of the known catheters and catheter shafts, each has certain advantages and disadvantages. There is an ongoing need to provide alternative designs and methods of making and using catheter shafts with desirable characteristics.


BRIEF SUMMARY

The invention provides design, material, and manufacturing method alternatives for catheters and catheter shafts. In at least some embodiments, a catheter shaft may include a proximal and a distal end region. A sleeve can be attached or otherwise affixed to the shaft adjacent the proximal end region. A hub or manifold can be attached to the catheter shaft at least in part via the sleeve. The sleeve can include multiple layers. In a preferred embodiment, one of the layers can have desirable bonding compatibility with the shaft. Another one of the layers can have desirable bonding compatibility with the hub or manifold. The use of the sleeve, therefore, can improve and facilitate the bond between the catheter shaft and the hub or manifold, particularly when a portion of the shaft is metallic.


The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and Detailed Description which follow more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:



FIG. 1 is a schematic plan view of an example catheter;



FIG. 2 is a partial cross-sectional side view of an example sleeve coupled to a catheter shaft and a hub coupled to the sleeve;



FIG. 3 is a cross-sectional side view of an example sleeve for use with a catheter;



FIG. 4 is a transverse cross-sectional view of the sleeve shown in FIG. 3;



FIG. 5 is a partial cross-sectional side view of a hub coupled to another example sleeve and a catheter shaft;



FIG. 6 is a partial cross-sectional side view of a hub coupled to another example sleeve and a catheter shaft;



FIG. 7 is a partial cross-sectional side view of another example sleeve and a catheter shaft; and



FIG. 8 is a partial cross-sectional side view of another example sleeve and a catheter shaft.





DETAILED DESCRIPTION

The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.



FIG. 1 is a plan view of an example catheter 10. Catheter 10 includes a catheter shaft 12 having a proximal end region 14 and a distal end region 16. In some embodiments, catheter 10 is a balloon catheter. According to these embodiments, a balloon 18 may be disposed adjacent distal end region 16. Catheter 10, in alternative embodiments, need not be a balloon catheter, as catheter 10 can be any suitable catheter or related medical device such as a guide catheter or diagnostic catheter. As detailed in FIG. 2, a hub or manifold 20 is disposed adjacent proximal end region 14. In a representative embodiment, a sleeve 22 is also disposed adjacent proximal end region 14. For example, sleeve 22 may be attached to proximal end region 14, and hub 20 may at least in part be attached to sleeve 22. Sleeve 22 and some of the alternative embodiments thereof are described in more detail below.


The use of catheter 10 can be similar to the use of typical catheters. For example, catheter 10 may be advanced through the vasculature of a patient over a guidewire 23 to a location adjacent a target region. Catheter 10 may then be used for its intended purpose. For example, if catheter 10 is a balloon catheter (as shown) then balloon 18 may be inflated. Inflated balloon 18 may, for example, expand a stenosis, position and/or expand an intravascular stent (not shown, but may be disposed on balloon 18), and the like, or perform any other suitable function.


Injection molding techniques have proven quite useful for forming and attaching hubs and manifolds, like hub 20, to catheter shafts, like catheter shaft 12. Some of the polymeric materials commonly used for catheter hubs, however, have been found not highly bond compatible with materials used for catheter shafts of exemplary embodiments disclosed herein. In at least some embodiments, sleeve 22 can overcome this by providing a bonding compatible contact surface for hub 20 to bond with. Accordingly, sleeve 22 is specifically designed to be sufficiently or highly bond compatible with both catheter shaft 12 and with hub 20, thereby improving the integrity of the bond. At least one of the specific designs utilized by sleeve 22 is the inclusion of multiple layers. One of the layers is configured to securely bond with catheter shaft 12, and another layer is configured to securely bond with hub 20 (i.e., hub 20 that is injection molded thereto). Some of the other features, characteristics, and design attributes of sleeve 22 are described in more detail below.



FIG. 2 is a partial cross-sectional view of catheter shaft 12 adjacent proximal end region 14 with a portion of hub 20 cut away to better show a preferred shaft/hub interface. Here it can be seen that catheter shaft 12 may include an inner tubular member 24 and outer tubular member 26. Tubular members 24/26 may be manufactured from a number of different materials. For example, tubular members 24/26 may be made of metals, metal alloys, polymers, metal-polymer composites or any other suitable materials. Some examples of suitable metals and metal alloys include stainless steel, such as 300 series stainless steel (including 304V, 304L, and 316L); 400 series martensitic stainless steel; tool steel; nickel-titanium alloy such as linear-elastic or super-elastic Nitinol, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, tungsten or tungsten alloys, MP35-N (having a composition of about 35% Ni, 35% Co, 20% Cr, 9.75% Mo, a maximum 1% Fe, a maximum 1% Ti, a maximum 0.25% C, a maximum 0.15% Mn, and a maximum 0.15% Si), hastelloy, monel 400, inconel 825, or the like; or other suitable material.


Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polybutylene terephthalate (PBT), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, a polyether-ester elastomer such as ARNITEL® available from DSM Engineering Plastics), polyester (for example, a polyester elastomer such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example, available under the trade name PEBAX®), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example, REXELL®), polyethylene terephthalate (PET), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments tubular members 24/26, or any other portion of catheter 10, can be blended with a liquid crystal polymer (LCP). Of course, any other polymer or other suitable material including ceramics may be used without departing from the spirit of the invention. The materials used to manufacture inner tubular member 24 may be the same as or be different from the materials used to manufacture outer tubular member 26. The inner tubular member 24 may also be a micromachined hypotube including slots, spiral cuts or some other form of aperture which gives desired bending characteristics to the hypotube. Those materials listed herein may also be used for manufacturing other components of catheter 10.


Tubular members 24/26 may be arranged in any appropriate way. For example, in some embodiments inner tubular member 24 can be disposed coaxially within outer tubular member 26. According to these embodiments, inner tubular member 24 and outer tubular member 26 may or may not be secured to one another along the general longitudinal axis of shaft 12. Alternatively, inner tubular member 24 may follow the inner wall or otherwise be disposed adjacent the inner wall of outer tubular member 26. Again, inner tubular member 24 and outer tubular member 26 may or may not be secured to one another. For example, inner tubular member 24 and outer tubular member 26 may be bonded, welded (including tack welding or any other welding technique), or otherwise secured at a bond point. In still other embodiments, inner tubular member 24 and outer tubular member 26 may be adjacent to and substantially parallel to one another so that they are non-overlapping. In these embodiments, shaft 12 may include an outer sheath that is disposed over tubular members 24/26. In still another embodiment, inner tubular member 24 may comprise a liner or lubricious coating disposed along the inner wall of outer tubular member 26.


Inner tubular member 24 may include or otherwise define an inner lumen 28. In at least some embodiments, inner lumen 28 is a guidewire lumen. Accordingly, catheter 10 can be advanced over guidewire 23 to the desired location. The guidewire lumen may extend along essentially the entire length of catheter shaft 12 so that catheter 10 resembles traditional “over-the-wire” catheters. Alternatively, the guidewire lumen may extend along only a portion of shaft 12 so that catheter 10 resembles a “single-operator-exchange” or a “rapid-exchange” catheter. Regardless of which type of catheter is contemplated, catheter 10 may be configured so that balloon 18 is disposed over at least a region of inner lumen 28. In at least some of these embodiments, inner lumen 28 (i.e., the portion of inner lumen 28 that balloon 18 is disposed over) may be substantially coaxial with balloon 18. Alternatively, inner lumen 28 may be an inflation lumen that may be used, for example, to transport inflation media to and from balloon 18.


In at least some embodiments, inner tubular member 24 extends proximally from the proximal end of outer tubular member 26. This arrangement may be desirable for a number of reasons. For example, extending inner tubular member 24 proximally from outer tubular member 26 may allow a user to gain access to a lumen (e.g., an inflation lumen) that might be defined between inner tubular member 24 and outer tubular member 26. Accordingly, hub 20 may include a first port 30 in communication with lumen 28 and a second port (not shown) in communication with the inflation lumen. Moreover, extending inner tubular member 24 proximally from outer tubular member 26 may also be desirable because it allows the position of inner tubular member 24 to be secured relative to the position of outer tubular member 26 by virtue of attaching sleeve 22 to both inner tubular member 24 and outer tubular member 26.


Hub or manifold 20 may be generally similar to other typical hubs. For example, hub 20 may be made from a polymeric material (such as polyamide, PEBA, PU, PVC, PP, PE, and the like, or any other material listed herein) and may include a flanged portion 32 exemplified by the inclusion of one, two, or more flanges. In addition, hub 20 may include a strain relief 34. Generally, strain relief 34 may ease the transition from catheter shaft 12 to hub 20. Strain relief 34 may attach to hub 20 on the distal side of hub 20 and extend distally therefrom. In some embodiments, strain relief 34 may be disposed over sleeve 22. This is illustrated in FIG. 2 by sleeve 22 being shown in phantom lines under strain relief 34. In other embodiments, strain relief 34 may not be disposed over sleeve 22 or only be disposed over a portion of sleeve 22. It can be appreciated that a number of different types, arrangements, and configurations can be utilized for strain relief 34 without departing from the spirit of the invention.


Sleeve 22 is shown in FIG. 2 with a solid line interface with hub 20. It is, however, recognized that this interface may become indistinct due to hear during assembly such as by insert molding the hub to the shaft. Further, sleeve 22 is shown as a single layer, but may include a plurality of layers. This feature is not shown in FIG. 2 but made explicit in FIGS. 3 and 4. First layer 36 may be the inner layer of sleeve 22 that is disposed over and attached to catheter shaft 12. Second layer 38 may be the outer layer of sleeve 22 that hub 20 is attached to. In some embodiments, one or more additional layers may be disposed between first layer 36 and second layer 38 or on top of or below first layer 36 and/or second layer 38. In some embodiments, sleeve 22 may function or otherwise take the form of a “tie layer” that ties together catheter shaft 12 and hub 20. Some discussion of tie layers that may be applicable to the present invention can be found in U.S. Patent Application Publication No. US 2003/0120207, the disclosure of which is herein incorporated by reference.


Sleeve 22 and the layers 36/38 thereof may be made from any suitable material including, for example, any of the polymers and other materials listed herein. In some embodiments, first layer 36 and second layer 38 are made from different materials. First layer 36 may be made from a material that is well suited for bonding with inner tubular member 24 (i.e., in embodiments where inner tubular member 24 extends proximally out from outer tubular member 26 or is otherwise available for bonding with sleeve 22) and outer tubular member 26. For example, first layer 36 may include a polymer manufactured by Equistar Chemical Company under the trademark PLEXAR®. PLEXAR® tie-layer resins are anhydride-modified polyolefins (or linear low-density polyethylene) that can bond to dissimilar materials such as ethylene vinyl alcohol, nylon (polyamides), polyolefins, polyethylene terephthalate (PET), polystyrene (PS), epoxy, polyurethane (PU), polyvinylidene chloride (PVdC), metal, paper, and other substrates while still providing excellent adhesion to polyethylene. Alternatively, first layer 36 may include a modified polyolefin with functional groups such as ADMER®, which is manufactured by Mitsui Chemicals. ADMER® resins can similarly bond to a variety of materials such as polyolefins, ionomers, polyamides, ethylene vinyl alcohol, PET, polycarbonates, PS, and metals. Suitable varieties include, for example, ADMER® QB520E and QB510E, available from Mitsui Chemicals. Other appropriate materials include BYNEL® (such as BYNEL® 50E571, which is available from DuPont), a mixture of Finapro PPC 2660 (e.g., about 97%) and FUSABOND® MD 353D (e.g., about 3%, which is available from DuPont), polypropylene acrylic acid copolymers like PolyBond (such as PolyBond PB 3002, which is available Uniroyal Chemicals), and the like. Materials like those listed above may be well suited for first layer 36, for example, because they bond well to both polymeric materials (including those from which inner tubular member 24 may be made) and to metal materials (from which outer tubular member 26 may be made). It can be appreciated that a number of other materials could also be used. As suggested above, second layer 38 may be made from a different material. For example, second layer 38 may be made from another polymer such as polyamide, nylon, nylon-12 (e.g., GRILAMID® TR55LX), polyether block amide, and the like, or any other suitable material including those disclosed herein. Generally, second layer 38 includes a material suitable for bonding hub 20 thereto (e.g., via injection molding).


The thickness and/or other dimensional aspects of sleeve 22 may vary. For example, first layer 36 may be from about 0.0001 to about 0.0015 inches thick. Second layer 38 may be from about 0.001 to about 0.015 inches thick. In some embodiments, the thickness of first layer 36 may be about the same as the thickness of second layer 38. In other embodiments, the thickness is different. For example, first layer 36 may be thinner than second layer 38.


Manufacturing sleeve 22 may include a co-extrusion process that defines a generally tubular sleeve 22 having first layer 36 and second layer 38. Co-extruded sleeve 22 can be disposed at a suitable location such as adjacent proximal portion 14 of catheter shaft 12. As suggested above, sleeve 22 may be disposed over a portion of both inner tubular member 24 and outer tubular member 26 as seen in FIG. 2. The properly positioned sleeve 22 can be thermally bonded to shaft 12 using standard thermal bonding techniques. Thermally bonding sleeve 22 to catheter shaft 12 includes thermally bonding first layer 36 to catheter shaft 12. Alternatively, any other suitable bonding technique may be used. As stated above, the material chosen for first layer 36 may be selected so that it can bond to both inner tubular member 24 and outer tubular member 26. In alternative embodiments, sleeve 22 can be co-extruded directly onto catheter shaft 12. Depending on the thermal conditions of the co-extrusion, this embodiment may or may not include an additional heating step to thermally bond sleeve 22 to shaft 12. Hub 22 can be attached to catheter shaft 12 by injection molding it over sleeve 22 (i.e., second layer 38) according to typical injection molding techniques.


Another example catheter 110 is shown in FIG. 5. Catheter 110 is similar in form and function as catheter 10, except that sleeve 122 includes first layer 136, second layer 138, and a third layer 140. First layer 136 and second layer 138 may be similar to the aforementioned first layer 36 and second layer 38. Third layer 140 may be made from a polymer including any of those listed herein. For example, third layer 140 may be made from polyether block amide, nylon, GRILAMID®, and the like. Third layer 140 may be fused onto the subassembly defined by co-extrusion of first layer 136 and second layer 138. In at least some embodiments, third layer 140 may be used as a heat shield to reduce melting of first layer 136, second layer 138, or any other portion of catheter 110 that might otherwise occur due to heat generated during the injection molding of hub 20 onto catheter shaft 12 or other heat-related manufacturing steps.



FIGS. 6, 7 and 8 show specific alternative embodiments of the present invention. In the embodiment of FIG. 6, the inner layer 24 is a metallic hypotube having an outer polymer layer 26 that extends proximally beyond the proximal end of inner layer 24. The embodiment of FIG. 7 is similar to FIG. 2 discussed above, but further includes a three-layer shaft, which can, in some embodiments, include an inner layer 23, which can be a polymer, a middle hypotube or metallic layer 24 and an outer polymeric layer 26. The embodiment of FIG. 8 also includes a three-layer shaft. However, inner layer 23 is a tubular member sized to fit within middle layer 24 while retaining an annular space therebetween. This inner layer 23 can be a hypotube or polymeric layer. The inner tube 23 is preferably attached to the middle layer 24 near its proximal end, such as by an adhesive 25.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A medical device, comprising: a catheter shaft having an inner surface;an inner tube having an inner surface and an outer surface, wherein an annular space is defined between the outer surface of the inner tube and the inner surface of the catheter shaft;a sleeve attached to an outer surface of the catheter shaft;wherein the sleeve includes two or more layers; anda hub, wherein an outer surface of the sleeve is bonded to an inner surface of the hub.
  • 2. The medical device of claim 1, wherein the catheter shaft includes a first layer and a second layer.
  • 3. The medical device of claim 2, wherein a proximal end of the first layer is disposed proximal of a proximal end of the second layer.
  • 4. The medical device of claim 3, wherein the first layer is an outer layer and the second layer is an inner layer.
  • 5. The medical device of claim 3, wherein the second layer is an outer layer and the first layer is an inner layer.
  • 6. The medical device of claim 1, wherein the inner tube is bonded to the catheter shaft at a proximal end of the inner tube.
  • 7. The medical device of claim 1, wherein the inner tube includes a hypotube.
  • 8. The medical device of claim 1, wherein the inner tube includes a lubricious material.
  • 9. A medical device, comprising: a catheter shaft having a first layer and a second layer, the first layer having a proximal end, the second layer having a proximal end, wherein the proximal end of the first layer is disposed proximal of the proximal end of the second layer;wherein the first layer is an outer layer and the second layer is an inner layer;a liner having a proximal end and an outer surface;a sleeve having an inner surface and a proximal end, wherein the outer surface of the liner is bonded to the inner surface of the sleeve at a position adjacent the proximal end of the liner; anda hub, wherein an outer surface of the sleeve is bonded to an inner surface of the hub.
  • 10. The medical device of claim 9, wherein the sleeve extends along an outer surface, an inner surface and the proximal end of the outer layer.
  • 11. The medical device of claim 9, wherein the first layer includes a metal.
  • 12. The medical device of claim 9, wherein the second layer includes a metal.
  • 13. The medical device of claim 9, wherein the liner includes a metal.
  • 14. The medical device of claim 9, wherein the liner includes a hypotube.
  • 15. A medical device, comprising: a catheter shaft having a outer layer, wherein the outer layer has a proximal end;an inner layer, wherein the inner layer has a proximal end, and wherein the proximal end of the outer layer extends proximal of the proximal end of the inner layer;a sleeve disposed about the outer layer of the catheter shaft, wherein the sleeve extends along the outer surface, inner surface and the proximal end of the outer layer;a hub, wherein an outer surface of the sleeve is bonded to an inner surface of the hub.
  • 16. The medical device of claim 15, wherein the sleeve includes a first layer and a second layer.
  • 17. The medical device of claim 15, further comprising a liner disposed along the inner layer of the catheter shaft.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/703,729, filed Feb. 10, 2010, now U.S. Pat. No. 8,257,343; which is a continuation of U.S. application Ser. No. 10/873,585, filed Jun. 22, 2004, now U.S. Pat. No. 7,662,144; the disclosures of which are hereby incorporated herein by reference in their entirety.

US Referenced Citations (155)
Number Name Date Kind
2185741 Sorg et al. Jan 1940 A
RE25788 Sheridan Jun 1965 E
3318335 Heller May 1967 A
3348544 Braun Oct 1967 A
3470869 Fenton et al. Oct 1969 A
3633758 Morse Jan 1972 A
3720210 Diettrich Mar 1973 A
3725522 Sheridan et al. Apr 1973 A
3752510 Windischman et al. Aug 1973 A
3861972 Glover et al. Jan 1975 A
3865666 Shoney Feb 1975 A
3873391 Plauka et al. Mar 1975 A
3914002 Berliner et al. Oct 1975 A
3950052 Walter et al. Apr 1976 A
3959429 Benning May 1976 A
3985601 Panagrossi Oct 1976 A
3989571 Harautuneian Nov 1976 A
4085185 Adair Apr 1978 A
4093484 Harrison et al. Jun 1978 A
4154244 Becker et al. May 1979 A
4171943 Tschanz et al. Oct 1979 A
4191185 Lemieux Mar 1980 A
4198983 Becker et al. Apr 1980 A
4207900 Patel et al. Jun 1980 A
4210478 Shoney Jul 1980 A
4273128 Lary Jun 1981 A
4284459 Patel et al. Aug 1981 A
4326519 D'Alo et al. Apr 1982 A
4328056 Snooks May 1982 A
4354495 Bodicky Oct 1982 A
4355721 Knott, II et al. Oct 1982 A
4489961 Laidig Dec 1984 A
4509877 Sobin et al. Apr 1985 A
4511163 Harris et al. Apr 1985 A
4531943 Van Tassel et al. Jul 1985 A
4557781 Hoppie Dec 1985 A
4592749 Ebling et al. Jun 1986 A
4596563 Pande Jun 1986 A
4602808 Herron et al. Jul 1986 A
4607746 Stinnette Aug 1986 A
4610674 Suzuki et al. Sep 1986 A
4655762 Rogers Apr 1987 A
4705507 Boyles Nov 1987 A
4737219 Taller et al. Apr 1988 A
4753765 Pande Jun 1988 A
4778550 Barton et al. Oct 1988 A
4802947 Bartholomew Feb 1989 A
4806182 Rydell et al. Feb 1989 A
4826480 Diaz et al. May 1989 A
4838269 Robinson et al. Jun 1989 A
4842590 Tanabe et al. Jun 1989 A
4863441 Lindsay et al. Sep 1989 A
4863442 DeMello et al. Sep 1989 A
4874373 Luther et al. Oct 1989 A
4875481 Higgins Oct 1989 A
4886506 Lovgren et al. Dec 1989 A
4950257 Hibbs et al. Aug 1990 A
4959067 Muller Sep 1990 A
4960412 Fink Oct 1990 A
4964409 Termulis Oct 1990 A
5031775 Kane Jul 1991 A
5035686 Crittenden et al. Jul 1991 A
5041095 Littrell Aug 1991 A
5085645 Purdy et al. Feb 1992 A
5125903 McLaughlin et al. Jun 1992 A
5125913 Quackenbush Jun 1992 A
5129887 Euteneuer et al. Jul 1992 A
5139032 Jahrmarkt et al. Aug 1992 A
5143409 Lalikos Sep 1992 A
5160559 Scovil et al. Nov 1992 A
5167647 Wijkamp et al. Dec 1992 A
5181750 Reum Jan 1993 A
5190529 McCrory et al. Mar 1993 A
5201723 Quinn Apr 1993 A
5217555 Franklin, III et al. Jun 1993 A
5221270 Parker Jun 1993 A
5226898 Gross Jul 1993 A
5240537 Bodicky Aug 1993 A
5248305 Zdrahala Sep 1993 A
5254107 Soltesz Oct 1993 A
5279596 Castaneda et al. Jan 1994 A
5300032 Hibbs et al. Apr 1994 A
5312356 Engelson et al. May 1994 A
5318032 Lonsbury et al. Jun 1994 A
5330444 Webler et al. Jul 1994 A
5330449 Prichard et al. Jul 1994 A
5358493 Schweich et al. Oct 1994 A
5366444 Martin Nov 1994 A
5376077 Gomringer Dec 1994 A
5380301 Prichard et al. Jan 1995 A
5387193 Miraki Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5403292 Ju Apr 1995 A
5466230 Davila Nov 1995 A
5484409 Atkinson et al. Jan 1996 A
5507300 Mukai et al. Apr 1996 A
5507728 Erskine Apr 1996 A
5533988 Dickerson et al. Jul 1996 A
5545151 O'Connor et al. Aug 1996 A
5558635 Cannon Sep 1996 A
5558652 Henke Sep 1996 A
5569218 Berg Oct 1996 A
5599325 Ju et al. Feb 1997 A
5599326 Carter Feb 1997 A
5607055 Bettinger Mar 1997 A
5658251 Ressemann et al. Aug 1997 A
5695467 Miyata et al. Dec 1997 A
5702439 Keith et al. Dec 1997 A
5725513 Ju et al. Mar 1998 A
5743875 Sirham et al. Apr 1998 A
5746701 Noone May 1998 A
5762637 Berg et al. Jun 1998 A
5772642 Ciamacco, Jr. et al. Jun 1998 A
5782797 Schweich, Jr. et al. Jul 1998 A
5803510 Dorsey, III Sep 1998 A
5827242 Follmer et al. Oct 1998 A
5830401 Prichard et al. Nov 1998 A
5867883 Iorio et al. Feb 1999 A
5876374 Alba et al. Mar 1999 A
5897537 Berg et al. Apr 1999 A
5897584 Herman Apr 1999 A
5931812 Andersen et al. Aug 1999 A
5980486 Enger Nov 1999 A
5984907 McGee et al. Nov 1999 A
5993399 Pruitt et al. Nov 1999 A
6027475 Sirhan et al. Feb 2000 A
6033388 Nordstrom et al. Mar 2000 A
6036715 Yock Mar 2000 A
6042578 Dinh et al. Mar 2000 A
6047825 Samuels Apr 2000 A
6053313 Farrell et al. Apr 2000 A
6068121 McGlinch May 2000 A
6068622 Sater et al. May 2000 A
6074379 Prichard Jun 2000 A
6102890 Stivland et al. Aug 2000 A
6156054 Zadno-Azizi et al. Dec 2000 A
6228073 Noone et al. May 2001 B1
6238376 Peterson May 2001 B1
6264630 Mickley et al. Jul 2001 B1
6273404 Holman et al. Aug 2001 B1
6273879 Keith et al. Aug 2001 B1
6332874 Eliasen et al. Dec 2001 B1
6440119 Nakada et al. Aug 2002 B1
6475184 Wang et al. Nov 2002 B1
6475208 Mauch Nov 2002 B2
6500157 Luther Dec 2002 B2
6575959 Sarge et al. Jun 2003 B1
6585719 Wang Jul 2003 B2
6648854 Patterson et al. Nov 2003 B1
6733487 Keith et al. May 2004 B2
7662144 Chan et al. Feb 2010 B2
20010016702 Benjamin Aug 2001 A1
20020095133 Gillis et al. Jul 2002 A1
20030120207 Wang Jun 2003 A1
20030152788 Velliky Aug 2003 A1
Foreign Referenced Citations (8)
Number Date Country
0 437 291 Jul 1991 EP
0 761 253 Mar 1997 EP
0 782 868 Jul 1997 EP
0 937 480 Aug 1999 EP
2092970 Jan 1972 FR
2 187 670 Sep 1987 GB
WO 9911313 Mar 1999 WO
WO 0341783 May 2003 WO
Related Publications (1)
Number Date Country
20120323189 A1 Dec 2012 US
Continuations (1)
Number Date Country
Parent 12703729 Feb 2010 US
Child 13601478 US
Continuation in Parts (1)
Number Date Country
Parent 10873585 Jun 2004 US
Child 12703729 US