Catheter system and methods of using same

Information

  • Patent Grant
  • 9549835
  • Patent Number
    9,549,835
  • Date Filed
    Monday, August 18, 2014
    10 years ago
  • Date Issued
    Tuesday, January 24, 2017
    8 years ago
Abstract
A modular catheter system including a sheath projecting distally from a delivery catheter having a main body module An inner core module carrying a stent thereon, the inner core being axially movable through the main body of the delivery catheter and the delivery catheter sheath, a handle member supported by the main body of the delivery catheter, the handle member being selectively axially engageable with the inner core such that the handle member and the inner core move together in an axial direction when the handle member is engaged with the inner core; and an adjustment member supported by the main body, the adjustment member being configured such that rotation of the adjustment member causes the adjustment member to move axially along the main body by either axially sliding the handle member relative to the main body or by rotating the adjustment member.
Description
INCORPORATION BY REFERENCE

U.S. application Ser. No. 11/623,022, filed Jan. 12, 2007, entitled “DUAL CONCENTRIC GUIDEWIRE AND METHODS OF BIFURCATED GRAFT DEPLOYMENT,” U.S. application Ser. No. 12/101,863, filed Apr. 11, 2008, entitled “BIFURCATED GRAFT DEPLOYMENT SYSTEMS AND METHODS,” U.S. application Ser. No. 12/496,446, filed Jul. 1, 2009, entitled “CATHETER SYSTEM AND METHODS OF USING SAME,” U.S. application Ser. No. 12/769,506, filed Apr. 28, 2010, entitled “APPARATUS AND METHOD OF PLACEMENT OF A GRAFT OR GRAFT SYSTEM,” and U.S. Pat. No. 6,077,296, entitled “ENDOLUMINAL VASCULAR PROSTHESIS,” are hereby incorporated by reference as if fully set forth herein.


TECHNICAL FIELD

The present disclosure relates to catheter systems, in particular, catheter systems for delivering a medical prosthesis.


BACKGROUND

Introducer catheters or introducer sheaths can be used for minimal invasive placement of catheters into blood vessels. Introducer catheter sheaths typically comprise tubing that is inserted into the blood vessel and a seal or valve at the proximal end of the tubing which is positioned outside of the body. The seal can provide a hemostatic seal against blood loss. Stents or other medical prostheses are typically passed through the introducer sheath into the blood vessel or body passageway. The introducer sheath thus provides continuous access for the delivery of stents or other medical prostheses, protects the inner wall of the blood vessel or body passageway against damage when the stent or other prostheses is advanced through the body passageway, and provides a hemostasis seal against blood loss.


There are situations in which the catheters require substantial maneuvering within the blood vessel. For example, placement of a stent or stent graft may require the delivery catheter to be positioned precisely axially as well as rotationally at a specific location within the blood vessel. In addition deployment of the stent may require precise operation of the delivery system within the introducer. In these situations, the operator has to carefully control both the position of the introducer and the delivery system. A need exists for a delivery system that permits a user or medical practitioner to precisely control the axial position of the stent or prosthesis during deployment.


SUMMARY

Embodiments disclosed herein pertain to a catheter system for the insertion and positioning of diagnostic or therapeutic devices into blood vessels. The system comprises an introducer or an introducer sheath (also referred to herein as an outer sheath) and at least one delivery catheter. The introducer catheter can be introduced through a percutaneous puncture site into the blood stream. A docking mechanism can engage the proximal end of the introducer catheter assembly with a distal end portion of a delivery catheter and can prevent axial movement between the introducer catheter assembly and the delivery catheter assembly.


The catheter system can include an introducer catheter and a delivery catheter, where the introducer catheter includes an outer sheath and a seal that has an adjustable hemostasis valve connected to the proximal portion of the outer sheath. The introducer catheter and the delivery catheter can be configured such that the delivery catheter can removably engage with the introducer catheter such that, when the delivery catheter is engaged with the introducer catheter, the delivery catheter can be axially fixed to the introducer catheter so as to prevent substantial axial movement between the introducer catheter and the delivery catheter and to enable the catheters to be manipulated in an axial direction as a single unit.


Alternatively, the delivery catheter and introducer catheter can be configured such that, when the delivery catheter is engaged with the introducer catheter, an inner core of the delivery catheter can be rotated relative to the introducer catheter and the introducer sheath (also referred to herein as an outer sheath). Alternatively, the delivery catheter can be configured such that the inner core thereof can be locked or substantially prevented from rotational movement relative to the outer sheath of the introducer catheter and/or relative to the introducer catheter. Also disclosed is a method of placement of a stent or medical prosthesis into a blood vessel, wherein the stent or medical prosthesis is passed through an introducer sheath and the proximal end of the introducer catheter physically engages with or is removably docked with a distal end portion of the delivery catheter to prevent substantial axial motion between the introducer sheath and the delivery catheter.


Some endoprostheses, including stents, grafts, stent grafts, and dissection treatment devices, (all such endoprostheses are collectively referred to herein as a stent or stents) may require precise placement in both axial and rotational direction. For example, stents or stent grafts with fenestrations require accurate placement of those fenestrations relative to the branch vessels. The catheter systems disclosed herein can be configured to allow for the rotation of the delivery catheter and, hence, the stent, relative to the introducer sheath. In some embodiments, the friction that can otherwise impede the rotational freedom of the delivery catheter can be further reduced by lining the inner surface of the introducer sheath and/or the tubular sheath of the deployment catheter with a low-friction coating such as polytetrafluoroethylene, silicone, hydrophobic silicone, or other lubricating substance, or by applying a hydrophilic coating to the outer surface of the inner core or restraining sheaths of the delivery catheter. The lubrication can be swabbed onto the target surface.


Thus, the introducer sheath can remain rotationally static or fixed while the delivery catheter is rotated within the introducer sheath. This can protect the delivery catheter and stent from being damaged, torqued, or stressed during the rotational manipulation of the delivery catheter and stent, and also prevent any damage or stress on the vessel wall from the rotation of the delivery catheter or stent.


Additionally, the delivery catheter can be configured to permit a user or medical practitioner to selectively control or prevent the rotational movement of the delivery catheter and stent relative to the introducer catheter, or the inner core of the delivery catheter and stent relative to the outer sheath of the delivery catheter. For example, the delivery catheter can comprise a threaded hub supported at the proximal end portion of the delivery catheter configured to selectively constrict or tighten against an outer wall of the inner core of the delivery catheter. By constricting the hub against the inner core, the inner core can be prevented or inhibited from rotating relative to the introducer catheter. By loosening the hub relative to the inner core, the rotational freedom of the inner core or delivery catheter relative to the introducer sheath can be restored.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages will now be described in connection with certain embodiments, in reference to the accompanying drawings. The illustrated embodiments, however, are merely examples and are not intended to be limiting. The following are brief descriptions of the drawings.



FIG. 1A is a schematic representation of a catheter system comprising a docking arrangement to physically engage a catheter with an introducer sheath.



FIG. 1B is a schematic representation of the catheter system shown in FIG. 1A, showing the catheter engaged with the introducer sheath.



FIG. 2A is a schematic representation of another catheter system comprising a docking arrangement to physically engage a catheter with an introducer sheath.



FIG. 2B is a schematic representation of the catheter system shown in FIG. 2A, showing the catheter engaged with the introducer sheath.



FIG. 2C is a schematic representation of the catheter system shown in FIG. 2A, showing a mechanism for disengaging the catheter from the introducer sheath.



FIG. 3A is a schematic representation of another catheter system comprising a docking arrangement to physically engage a catheter with an introducer sheath, the catheter system being configured to deliver a stent or stent graft into a blood vessel.



FIG. 3B is a schematic representation of the catheter system shown in FIG. 3A, showing the catheter engaged with the introducer sheath.



FIG. 3C is a schematic representation of the catheter system shown in FIG. 3A, illustrating the axial insertion of a stent into the tubular sheath of the introducer sheath shown in FIG. 3A.



FIG. 3D is a schematic representation of the catheter system shown in FIG. 3A, illustrating the stent being deployed after the tubular sheath of the introducer sheath shown in FIG. 3A has been retracted from the stent.



FIG. 4 is an oblique view of a catheter system comprising an introducer and a delivery catheter.



FIG. 5 is an oblique view of the introducer shown in FIG. 4.



FIG. 6A is a first exploded assembly view of the introducer shown in FIG. 5.



FIG. 6B is a second exploded assembly view of the introducer shown in FIG. 5.



FIG. 7 is an oblique view of the delivery catheter shown in FIG. 4.



FIG. 8A is a first exploded assembly view of the delivery catheter shown in FIG. 7.



FIG. 8B is a second exploded assembly view of the delivery catheter shown in FIG. 7.



FIG. 9 is an oblique view of the catheter system shown in FIG. 4, showing the delivery catheter before the docking mechanism of the delivery catheter has been engaged with the docking mechanism of the introducer.



FIG. 10 is an oblique view of the catheter system shown in FIG. 4, showing the delivery catheter after the docking mechanism of the delivery catheter has been engaged with the docking mechanism of the introducer.



FIG. 11 is an end view of the catheter system shown in FIG. 4.



FIG. 12 is a cross-sectional view of the catheter system shown in FIG. 4, taken at line 12-12 of FIG. 11.



FIG. 13 is an enlarged cross-sectional view of the catheter system shown in FIG. 4, showing a close up of 13-13 of FIG. 12.



FIG. 14 is an enlarged section view of the catheter system shown in FIG. 4, showing a close up of 14-14 of FIG. 13.



FIG. 15 is a cross-sectional view of the catheter system shown in FIG. 4, taken at line 15-15 of FIG. 11.



FIG. 16 is an oblique view of a catheter system, having a delivery catheter assembly docked to an introducer catheter assembly.



FIG. 17 is an oblique view of the delivery catheter assembly of FIG. 16.



FIG. 18 is a top view of the delivery catheter assembly of FIG. 16.



FIG. 19 is a side view of the delivery catheter assembly of FIG. 16.



FIG. 20 is an oblique view of the delivery catheter assembly of FIG. 16, illustrating the sheath in a fully retracted position relative to the inner core member.



FIG. 21 is a side view of the delivery catheter of FIG. 16, showing the handle member and the inner core in a pre-deployment first position relative to the housing shaft of the delivery catheter.



FIG. 22 is a side view of the delivery catheter of FIG. 16, showing the handle member and the inner core in a second, partial deployment position relative to the housing shaft of the delivery catheter.



FIG. 23 is a side view of the delivery catheter of FIG. 16, showing the handle member and the inner core in a third, fully advanced position on the housing shaft of the delivery catheter.



FIG. 24 is an oblique view of the inner core engagement assembly and the inner core, showing the inner core in a first, disengaged position relative to the inner core engagement assembly, other components of the delivery catheter being removed from this view for clarity.



FIG. 25 is a cross-sectional view of a portion of the delivery catheter through the axial centerline of the delivery catheter, showing the inner core in the first, disengaged position relative to the inner core engagement assembly.



FIG. 26 is an oblique view of the inner core engagement assembly and the inner core as in FIG. 24, showing the inner core in a second, partially engaged position relative to the inner core engagement assembly.



FIG. 27 is a side view of the inner core engagement assembly and the inner core as in FIG. 26, showing the inner core in the second, partially engaged position relative to the inner core engagement assembly.



FIG. 27A is a cross-sectional view of a portion of the delivery catheter taken through the line 27A-27A of FIG. 29, showing one or more components of the delivery catheter in a first position.



FIG. 27B is a cross-sectional view of a portion of the delivery catheter taken through the line 27A-27A of FIG. 29, showing one or more components of the delivery catheter in a second position.



FIG. 28 is a top view of the inner core engagement assembly and the inner core as in FIG. 26, showing the inner core in the second, partially engaged position relative to the inner core engagement assembly.



FIG. 29 is a cross-sectional view of a portion of the delivery catheter through the axial centerline of the delivery catheter, showing the inner core in a second, partially engaged position relative to the inner core engagement assembly.



FIG. 30 is an oblique view of the inner core engagement assembly and the inner core as in FIG. 24, showing the inner core in a third, engaged position relative to the inner core engagement assembly.



FIG. 31 is a side view of the inner core engagement assembly and the inner core as in FIG. 30, showing the inner core in the third, engaged position relative to the inner core engagement assembly.



FIG. 32 is a top view of the inner core engagement assembly and the inner core as in FIG. 30, showing the inner core in the third, engaged position relative to the inner core engagement assembly.



FIG. 33 is a cross-sectional view of a portion of the delivery catheter through the axial centerline of the delivery catheter, showing the inner core in the third, engaged position relative to the inner core engagement assembly.



FIG. 34 is a cross-sectional view of a portion of the delivery catheter through the axial centerline of the delivery catheter, showing the inner core in the disengaged position relative to the inner core engagement assembly.



FIG. 35 is a cross-sectional view of a portion of the delivery catheter through the axial centerline of the delivery catheter, showing the inner core in the engaged position relative to the inner core engagement assembly.



FIG. 36 is an illustration of a prosthesis partially deployed by the delivery catheter.



FIG. 37 is a side view of an exemplifying stent that can be deployed with the delivery catheter illustrated in FIG. 36.



FIG. 38 is a schematic side view of a catheter system having an introducer catheter assembly showing a stent being loaded into an outer sheath of the introducer catheter.



FIG. 39 is a schematic side view of a catheter system having a deployment catheter assembly showing a stent supported therein, and a branch vessel wire assembly loaded in the delivery catheter.



FIG. 40 is a cross-sectional view of the branch vessel wire assembly taken at line 40-40 of FIG. 39.



FIG. 41 is an enlarged schematic view of a portion 41-41 of the branch vessel wire assembly of FIG. 39.





DETAILED DESCRIPTION

The following detailed description is now directed to certain specific embodiments. In this description, reference is made to the figures wherein like parts are designated with like numerals throughout the description and the drawings. Described below are various embodiments of a catheter system that can comprise an introducer sheath and a docking arrangement. The catheter systems disclosed herein can be used in diagnostic or therapeutic procedures such as, but not limited to, endoluminal vascular prosthesis deployment procedures.



FIG. 1A is a schematic representation of a catheter system 10 comprising a docking arrangement configured to physically engage a catheter 20 with an introducer 12. FIG. 1B is a schematic representation of the catheter system 10 shown in FIG. 1A, showing the catheter 20 engaged with the introducer 12. The catheter 20 or any catheter disclosed herein can be a diagnostic or therapeutic catheter, or any other suitable catheter. The introducer 12 can comprise a tubular sheath 14, a seal 16, and a female docking mechanism 18. The first seal 16 can be a rubber seal, an interference or close tolerance fit between adjacent components, an adjustable hemostasis valve, or any other suitable sealing component or feature.


The catheter 20 catheter has a shaft 24 and a male docking mechanism 22. As illustrated in FIG. 1B, the catheter 20 is inserted into the introducer 12 and the female docking mechanism 18 is engaged with the male docking mechanism 22. The docking mechanism prevents the introducer 12 and the catheter 20 from moving axially with respect to each other when the docking mechanism is engaged. Additionally, the catheter system 10 is configured so that the catheter 20 can rotate within the introducer 12, even when the catheter 20 is docked with the introducer 12.


The introducer 12 comprises a tubular introducer sheath 14 and a seal 16 (which, again, can be a rubber seal, an interference or close tolerance fit, an adjustable hemostasis valve, or any other suitable sealing component or feature) connected to the proximal end of the introducer sheath 14. The overall design of the sheath 14 and seal 16 may be similar to the design of commercially available introducers, or any other introducers presently known or later developed. The catheter 20 has an outside dimensional profile (crossing profile) that is sized and/or configured to pass through the introducer sheath 14. The proximal end of the catheter 20 and the proximal end of the introducer sheath 14 are configured to permanently or removably engage with each other, and to allow for the rotation of the catheter 20 within the introducer sheath 14 while substantially limiting the axial movement of the catheter 20 with respect to the introducer sheath 14.


With respect to the sizing of the introducer lumen versus the size of the outer sheath (containing the stent graft), in one configuration they are the same size and the introducer acts as a sheath, as the stent graft is pushed from its initial position within the outer sheath through to the lumen of the introducer. In a second configuration, the introducer lumen is larger than the outside diameter of the outer sheath and the two easily rotate relative to one another as needed for rotational alignment. Further, the introducer material can be softer or more flexible material than the outer sheath, so while the stent graft could be initially loaded into a strong high-strength sheath material, it could be extruded through to the lower strength more highly flexible introducer material for the short time needed to deliver the stent grafts to its treatment site. the materials that might be used to provide this feature, include any kind of soft polymer extrusion including Nylon, PEBAX, and PE.


After engagement of the catheter and introducer, the combined system is operable by a single operator. The catheter system 10 is configured so that the catheter 20 can substantially freely rotate within the introducer sheath 14, which can allow for precise rotational positioning of the catheter within the introducer. After completion of the procedure, the catheter 20 is disengaged from the introducer 12 so that the catheter 20 can be removed from the patient's body. Additionally, the introducer 12 can be repositioned for a second intervention and a second catheter can be inserted and engaged with the introducer 12 for additional procedures.



FIG. 2A is a schematic representation of a catheter system 40 comprising a docking arrangement to physically engage a catheter 50 with an introducer 42. FIG. 2B is a schematic representation of the catheter system 40, showing the catheter 50 engaged with the introducer 42. FIG. 2C is a schematic representation of the catheter system 40 shown in FIG. 2A, showing a mechanism for disengaging the catheter 50 from the introducer 42.


In particular, FIG. 2C schematically illustrate that the catheter 50 can be disengaged from the male docking mechanism 52 and the introducer 42 by compressing the levers or tabs 56. Accordingly, as illustrated the male docking mechanism 52 can be elongated and can comprise levers 56.



FIG. 3A is a schematic representation of a catheter system 60 comprising a docking arrangement to physically engage a catheter 70 with an introducer 62, the catheter system 60 being configured to deliver a stent or stent graft 80 into a blood vessel.



FIG. 3B is a schematic representation of the catheter system 60 shown in FIG. 3A, showing the catheter 70 engaged with the introducer 62. FIG. 3C is a schematic representation of the catheter system 60 shown in FIG. 3A, illustrating the axial insertion of a stent or stent graft 80 into the tubular sheath 64 of the introducer 62 shown in FIG. 3A. FIG. 3D is a schematic representation of the catheter system 60 shown in FIG. 3A, illustrating the stent 80 being deployed after the tubular sheath 64 of the introducer 62 shown in FIG. 3A has been retracted from the stent 80.


Self-expanding stent or stents grafts are typically retained in a deployment sheath within the delivery catheter. The deployment sheath can protect the stent or stent graft and the vessel wall from damage during insertion and can retain the stent or stent graft in a collapsed low-profile configuration during delivery. The stent or stent graft can be deployed in the desired position of the blood vessel by removing the deployment sheath and allowing the stent or stent graft to radially expand against the wall of the blood vessel. To pass such a delivery catheter into the desired blood vessel, the catheter system can be configured so that the inner diameter of the introducer sheath is larger than the outer diameter of the deployment sheath. Clinicians prefer a low profile of the introducer sheath to minimize damage to the blood vessel and allowing for access into small blood vessels.


Cartridge systems have been developed, in which the stent or stent graft can be transferred from delivery sheath into the introducer sheath and the stent or stent graft can be passed through the introducer sheath to the target location. In such cartridge systems, the introducer sheath effectively acts as a deployment sheath. The transfer eliminates the need for a second sheath and minimizes the profile of the system in the blood vessel. The docking arrangement provides a secure engagement of the delivery catheter and the introducer sheath prior to transfer of the stent or stent graft into the introducer sheath. This prevents potential user errors in the transfer and further converts the delivery catheter and introducer sheath into a single-user system.


As illustrated in FIGS. 3A-3D, the catheter system 60 is used to transfer and deploy a stent or stent graft 80 into a blood vessel (blood vessel not shown). As illustrated therein, the introducer 62 comprises a tubular sheath 64 that is inserted into the body of the patient. The proximal end 62a of the introducer 62 can be sized and/or configured to accommodate the deployment sheath 74 of the catheter 70. The introducer sheath can also have a seal 66 (referred to herein as a first seal) and a female docking mechanism 68, similar to any of the embodiments of the seal, hemostasis valve, and/or docking mechanisms described above. The seal 66 can be an annular rubber seal (as illustrated), an interference or close tolerance fit between adjacent components, an adjustable hemostasis valve, or any other suitable sealing component or feature. The stent delivery catheter 70 can comprise an inner core 78, a pocket 82 that can house the collapsed stent 80, a deployment sheath 74 that can retain the collapsed stent 80, and a catheter tip 76.


As illustrated in FIG. 3B, the catheter 70 can be inserted into the introducer 62 when the docking mechanisms 68 and 72 are engaged. In some embodiments (not illustrated), the deployment sheath 74 of the delivery catheter 70 can be sized and configured to be received within the larger diameter proximal end 62a of the introducer sheath and to extend into the distal tubular sheath 64 of the introducer 62. Alternatively, the deployment sheath 74 of the delivery catheter 70 can be sized and configured to be received within the larger diameter proximal end 62a of the introducer sheath but not the distal tubular sheath 64 of the introducer 62. In some embodiments, as illustrated in FIGS. 3C and 3D, the deployment sheath 74 and the tubular sheath 64 can be sized and configured such that, when the deployment sheath 74 has advanced through the proximal end 62a of the introducer sheath, the similar size or shape of the distal tubular sheath 64 can prevent the deployment sheath 74 from advancing through the distal tubular sheath 64. The inner and/or outer diameters of the deployment sheath 74 and the tubular sheath 64 can be substantially the same.


As illustrated in FIG. 3C, The inner core 78 of the catheter 70 can be pushed distally, thereby transferring the stent 80 from the deployment sheath 74 into the tubular sheath 64 of the introducer 62. The stent 80 can be advanced until the catheter tip 76 reaches the distal end of the tubular sheath 64. In this configuration, the catheter/introducer system effectively becomes a single-unit deployment catheter. Thus, the tubular sheath 64 can function as a deployment sheath. The stent 80 can be advanced in a collapsed configuration within the protective introducer 62 to the target location in the blood vessel without increasing the profile of the delivery system. If the delivery catheter were passed through a traditional introducer sheath, the sheath of the introducer would have to be of a larger diameter than the deployment sheath of the delivery catheter to accommodate the stent and the deployment sheath. 2) other advantages which were mentioned:


In the configuration described the device can be rotated after it has been introduced to the introducer, but before it is deployed, further the device can be accurately position as a result of the low friction between the introducer and the outer sheath. When devices having an expanded diameter of 25 and 28 mm diameter devices are to be used, the same (one size) introducer sheath can be used for either and both devices delivery. Only when a larger 34 mm diameter device, having a larger compressed crossing profile, is to be delivered, is it necessary to use a larger introducer. The fact that the introducer and delivery catheter mechanically engage and create a single unitary structure which can be held by one hand, allows a single user to manipulate the whole system with two hands)one hand holding the core stationary and the second hand manipulating the sheath retraction mechanism.


As is known in the art, delivery catheters with loaded stent grafts typically have less trackability and pushability than an introducer sheath supported by a dilator. This is due to the fact that the stent grafts alter the local stiffness of the catheters. This can lead to kinking of the delivery catheter during insertion. By placing the introducer sheath with a dilator first, a conduit for placing the stent graft is established. Kinking of the delivery system pacing through the sheath is very unlikely.



FIG. 4 is an oblique view of another catheter system 100 comprising an introducer catheter 102 (also referred to as an introducer) and a delivery catheter 104. The delivery catheter 104 can be configured for the delivery of an endoluminal prosthesis, or for any other suitable use. Therefore, the embodiments of the catheters and introducers disclosed herein can be configured for any suitable purpose, and the embodiments of the introducers disclosed herein can be configured to receive any suitable catheter design.



FIG. 5 is an oblique view of the introducer 102 of the catheter system 100 shown in FIG. 4. FIGS. 6A and 6B are a first and a second exploded assembly view of the introducer 102 shown in FIG. 5. With reference to FIGS. 4-6, the introducer 102 can have a main body 106, a threadably engageable hub portion 108, an introducer sheath 110, and a threaded cap 111 configured to threadably engage with a threaded end portion of the main body 106.


In some embodiments, a first tube 107 can be supported by the main body 106 so as to provide an orifice or access port into the main body 106. The first tube 107 can be used to flush the introducer 102 with saline or other suitable substances at any stage, such as but not limited to prior to the advancement of an endoluminal prosthesis through the introducer 102, or prior to other procedures for which an introducer may be used. The first tube 107 can support any suitable medical connector and/or valve on the distal end thereof.


The introducer sheath 110 can have an elongate portion 110a extending to any predetermined or desired length. As will be discussed in greater detail below, similar to the introducer 12 of the catheter system 10 described above, the introducer sheath 110 can be configured such that an endoluminal prosthesis that is advanced into the introducer sheath 110 can be constrained or restrained by the introducer sheath 110. In this arrangement, the inside and/or outside diameter of the introducer sheath 110 can be approximately the same as or similar to the inside and/or outside diameter of the outer sheath of a delivery catheter that is engaged with the introducer 102. The elongate portion 110a can be circular in cross-section (as illustrated), or can define any suitable cross-sectional shape such as without limitation triangular, square, hexagonal, octagonal, or polygonal.


Further, as shown most clearly in FIG. 6A, the introducer sheath 110 can have a flared end portion 110b that can be configured to abut against a fore surface 106a of the main body 106. With reference to FIG. 6A, the elongate portion 110a of the introducer sheath 110 can pass through an opening formed in the cap 111 so that the flared portion 110b of the introducer sheath 110 can be engaged with and/or overlap an inside surface of the cap 111. In this configuration, the cap 111 supporting the introducer sheath 110 can be threadedly engaged with the main body 106 so that the introducer sheath 110 can be supported by the main body 106.


Additionally, with reference to FIGS. 6A and 6B, a tubular support or spacer 109 can be inserted over the elongate portion 110a of the introducer sheath 110 and positioned approximately adjacent to the flared portion 110b. The tubular spacer 109 can improve the fit and, hence, the seal between the outside surface of the introducer sheath 110 and the cap 111. The tubular spacer 109 can also provide additional support to the introducer sheath 110.



FIG. 7 is an oblique view of the delivery catheter 104 of the embodiment of the catheter system 100 shown in FIG. 4.



FIGS. 8A and 8B are a first and second exploded assembly view of the delivery catheter 104 shown in FIG. 7.



FIG. 9 is an oblique view of the catheter system 100 shown in FIG. 4, showing the delivery catheter 104 before the docking mechanism of the delivery catheter 104 has been engaged with the docking mechanism of introducer 102.



FIG. 10 is an oblique view of the catheter system 100 shown in FIG. 4, showing the delivery catheter 104 after the docking mechanism of the delivery catheter 104 has been engaged with the docking mechanism of the introducer 102.



FIG. 11 is an end view of the catheter system shown in FIG. 4, with the delivery catheter 104 engaged with the introducer 102. FIG. 12 is a section view of the embodiment of the catheter system 100 shown in FIG. 4, taken at line 12-12 of FIG. 11. FIG. 13 is an enlarged section view of the catheter system 100 shown in FIG. 4, defined by curve 13-13 of FIG. 12. FIG. 14 is an enlarged section view of the embodiment of the catheter system shown in FIG. 4, defined by curve 14-14 of FIG. 13. Finally, FIG. 15 is a section view of the catheter system shown in FIG. 4, taken at line 15-15 of FIG. 11.


As shown most clearly in FIGS. 12 and 15, the hub portion 108 of the introducer 102 can have a docking mechanism or flange 112 or can be configured to removably receive or engage with the delivery catheter 104. In some embodiments, as in the illustrated embodiment, the docking mechanism 112 of the introducer 102 can be configured to be a female receiver, con-figured to receive a male docking member of the catheter 104, as will be described below. The hub portion 108 can comprise one or more tabs 114 configured to improve a user's grip on the hub portion 108, and ability to rotate the hub portion 108 relative to the main body 106.


With reference to FIGS. 12, 13, and 15, some embodiments of the seal portion of the introducer 102 will be described. As mentioned above, the hub portion 108 can be configured to be threadably engageable with the main body 106. The main body 108 can define an inner annular surface 116 that can be angled (so as to not be perpendicular to the axial centerline of the catheter system 100). The surface 116 can be angled approximately 75 degrees relative to the axial centerline of the catheter system 100, or from approximately 65 degrees or less to approximately 80 degrees or more relative to the axial centerline of the catheter system 100. The surface 116 can be approximately perpendicular to the axial centerline of the catheter system 100.


Similarly, the hub portion 108 can define an inner annular surface 118 that can be angled so as to not be perpendicular to the axial centerline of the catheter system 100. The surface 118 of the hub portion 108 can be angled approximately 75 degrees relative to the axial centerline of the catheter system 100, or from approximately 65 degrees or less to approximately 80 degrees or more and relative to the axial centerline of the catheter system 100 in a direction that is opposite to the direction of the angle defined by the surface 116 of the main body 106. In some embodiments, as in the illustrated embodiment, the shape and angular orientation of the surface 118 of the hub portion 108 can approximately minor the shape and angular orientation of the surface 116 of the main body 106. The surface 118 can be approximately perpendicular to the axial centerline of the catheter system 100.


An annular seal member 120 can be supported by the introducer 102 and positioned between the surface 116 of the main body 106 and the surface 118 of the hub portion 108. The seal member 120 can be formed from a resilient material, such as silicone, rubber or any other suitable material. The seal member 120 can be configured such that, when the hub portion 108 is threaded onto the main body 106, the surface 118 of the hub portion 108 can be moved axially toward the surface 116 of the main body 106, thereby compressing or squeezing the seal member 120. The relative angles of the surface 116 of the main body 106 and the surface 118 of the hub portion 108 can cause the seal member 120 to be forced against an outer sheath 122 of the delivery catheter 104 or other component of the delivery catheter 104 that is engaged with the introducer 102, thereby creating an adjustable seal between the outer sheath 122 of the delivery catheter 104, which can project distally from an end portion of the delivery catheter 104, and the introducer 102. The level of seal can be adjusted by tightening or loosening the hub portion 108 of the introducer 102 relative to the main body 106 of the introducer 102. The introducer 102 can be configured to provide a seal against devices with a profile ranging from 1 Fr to 20 Fr.


Alternatively, in some embodiments, any of the seals or seal portions described herein can be an interference or close tolerance fit between adjacent components such as, the outer sheath 122 and one or more inside surfaces of the main body 106 or the hub portion 108 of the introducer 102. In some embodiments, any of the seals or seal portions described herein can be an interference or close tolerance fit between the inner core 154 and one or more inside surfaces of the main body 140 or the hub portion 142 of the catheter 104.


As shown in FIGS. 7, 8A, and 8B, some embodiments of the delivery catheter 104 can comprise a main body 140 and a hub portion 142 threadably engageable with the main body 140. Some embodiments of the delivery catheter 104 can also have an outer sheath 122 supported by the main body 140. In particular, the outer sheath 122 can be removably sup-ported by the main body 140 using a cap 123 threadably supported by the main body 140. Further, the outer sheath 122 can have an elongate portion 122a extending to any predetermined or desired length.


As mentioned above, the inside and/or outside diameter of the outer sheath 122 of a delivery catheter 104 can be approximately the same as or similar to the inside and/or outside diameter of the introducer sheath 110. The elongate portion 122a can be circular in cross-section (as illustrated), or can define any suitable cross-sectional shape such as without limitation triangular, square, hexagonal, octagonal, or polygonal.


The outer sheath 122 can have a flared end portion 122b that can be configured to abut against a fore surface 140a of the main body 140. With reference to FIG. 8A, the elongate portion 122a of the outer sheath 122 can pass through an opening formed in the cap 123 so that the flared portion 122b of the outer sheath 122 can be engaged with and/or overlap an inside surface of the cap 123. In this configuration, the cap 123 supporting the outer sheath 122 can be threadedly engaged with the main body 140 as mentioned above so that the outer sheath 122 is supported by the main body 140.


Additionally, with reference to FIGS. 8A and 8B, a tubular support or spacer 125 can be inserted over the elongate portion 122a of the outer sheath 122 and positioned approximately adjacent to the flared portion 122b of the outer sheath 122. The tubular spacer 125 can improve the fit and, hence, the seal between the outside surface of the outer sheath 122 and the cap 123. The tubular spacer 125 can also provide additional support to the outer sheath 122.


Similar to the hub portion 108 of the introducer 102, the hub portion 142 of the delivery catheter 104 can be configured to be threadably engageable with the main body 140 of the delivery catheter 104. The main body 140 can define an inner annular surface 146 that can be angled so as to not be perpendicular to the axial centerline of the catheter system 100. The surface 146 can be angled approximately 75 degrees relative to the axial centerline of the catheter system 100, or from approximately 80 degrees or more to approximately 65 degrees or less relative to the axial centerline of the catheter system 100. The surface 146 can be approximately perpendicular to the axial centerline of the catheter system 100.


In some embodiments, a second tube 141 can be supported by the main body 140 so as to provide an orifice or access port into the main body 140. The second tube 141 can be used to flush the delivery catheter 104 with saline or other suitable substances at any stage, such as but not limited to prior to the advancement of an endoluminal prosthesis through the delivery catheter 104 and/or introducer 102, or prior to other procedures for which an delivery catheter may be used. The second tube 141 can support any suitable medical connector and/or valve on the distal end thereof.


Similarly, the hub portion 142 can define an inner annular surface 148 that can be angled so as to not be perpendicular to the axial centerline of the catheter system 100. The surface 148 of the hub portion 142 can be angled approximately 75 degrees relative to the axial centerline of the catheter system 100, or from approximately 65 degrees or less to approximately 80 degrees or more relative to the axial centerline of the catheter system 100 in a direction that is opposite to the direction of the angle defined by the surface 146 of the main body 140. The surface 148 can be approximately perpendicular to the axial centerline of the catheter system 100.


Similar to that of the introducer, in some embodiments, a seal or seal portion comprising an annular seal member 150 can be supported by the delivery catheter 104 and positioned between the surface 146 of the main body 140 and the surface 148 of the hub portion 142. The seal member 150 can be formed from a resilient material, such as silicone, rubber or any other suitable material. The seal member 150 can be configured such that, when the hub portion 142 is threaded onto the main body 140, the surface 148 of the hub portion 142 can be moved axially toward the surface 146 of the main body 140, thereby compressing or squeezing the seal member 150. The relative angles of the surface 146 of the main body 140 and the surface 148 of the hub portion 142 can cause the seal member 150 to be forced against the inner core 154 of the delivery catheter 104, thereby creating an adjustable seal between the inner core 154 the outer sheath 122 of the delivery catheter 104.


The level of seal can be adjusted by tightening or loosening the hub portion 142 of the delivery catheter 104 relative to the main body 140 of the delivery catheter 104. Additionally, The rotational freedom of inner core 154 of the delivery catheter 104 can be inhibited or prevented by tightening the seal member 150 as described above. Thus, the force exerted by the seal member 150 on the inner core 154 can be adjusted to permit the inner core 154 and/or other components to rotate relative to the main body 140 and hub portion 142 of the delivery catheter 104. As illustrated in FIG. 4, an end portion or cap 158 can be supported at the proximal end of the inner core 154 to facilitate a user's ability to axially slide and/or rotate that inner core 154 relative to the main body 140 and hub portion 142 of the delivery catheter 104. The cap 158 can have wings or tabs formed thereon to increase the torque or rotational force that can be exerted on the inner core 154. Alternatively, The seal or seal portion within the catheter 104 can be formed from an interference or close tolerance fit between adjacent components such as, without limitation, the inner core 154 and one or more inside surfaces of the main body 140 or the hub portion 142 of the catheter 104.


The inner core 154 can have a band or other marking 155 near a distal end thereof. The marking 155 can be sized, positioned, and configured to provide a visual indication to the medical practitioner as to the location of the end portion 154a of the inner core 154 and/or the location of a catheter tip 162 as the inner core 154 is being advanced into or withdrawn from the introducer 102.


In some embodiments, as illustrated most clearly in FIGS. 12 and 13, an additional seal member 160 can be supported by the main body 106 of the introducer 102 to provide an additional seal between the outer sheath 122 of the delivery catheter 104 and the introducer 102. The seal 160 can be a flap type seal formed from a conically shaped piece of resilient material such as, but not limited to, rubber having one or more slits therein to allow the distal tip 162 and the outer sheath 122 to pass therethrough. In some embodiments, a supported flange 161 can be supported within the main body 106 and positioned behind the seal 160 to support the seal 160 and maintain the position of the seal 160 so that the seal 160 does not become inverted when the delivery catheter 104 is removed from the introducer 102. The distal tip 162 can be formed from a soft material such as rubber and can be configured to be atraumatic so as to prevent any damage to a patient's vasculature as the catheter 104 is being advanced through the patient's vasculature.


As mentioned above, in some embodiments, as in the illustrated embodiment, the docking mechanism 112 of the introducer 102 can be configured to receive a male docking member or portion of the catheter 104. In particular, with reference to FIGS. 7, 8A and 8B, one or more deflectable tabs 170 can be supported by the main body 140 of the catheter 104. The tabs 170 can be deflected by pressing or exerting a radial inward force against pads 172, causing the ends of the tabs 170 to move radially inward toward the axial centerline of the main body 104. By deflecting the tabs 170 inwardly, the main body 140 of the catheter 104 can be moved axially into engagement with the hub portion 108 of the introducer 102. The tabs 170 can be automatically deflected inwardly when the main body 140 of the catheter 104 is moved axially into engagement with the hub portion 108 of the introducer 102. Once the main body 140 of the catheter 104 is moved axially into engagement with the hub portion 108 of the introducer 102 so as to abut against the hub portion 108 of the introducer, the tabs 170 can be released, thereby removably locking the main body 140 of the catheter 104 to the hub portion 108 of the introducer 102.


In this configuration, the catheter 104 can be axially engaged with or locked to the introducer 102 so that a user can axially manipulate the introducer 102 and the catheter 104 simultaneously. Additionally, in some embodiments, in this configuration, as discussed above, the catheter system 100 can be configured such that at least the inner core 154 of the catheter 104 can be rotated relative to the main body 140 of the catheter 104 and the introducer 102.


In some embodiments, as shown in FIGS. 7, 8A, and 8B, the inner core 154 has a central tube or wire 176 configured to support a stent, such as stent 157 illustrated in FIGS. 7 and 12-14. Additionally, one or more beads or tabs 174 can be formed on or supported by the central tube or wire 176. The tabs 174 can be configured to increase the axial support or connection between the inner core 154 and an endoluminal prosthesis supported by the central tube 176 when the prosthesis is supported in a collapsed configuration by the central tube 176. The catheter 104 can be configured such that an opening passes through the distal tip 162, the central tube 176, and the inner core 154. The opening can be configured so that at least the distal tip 162, the central tube 176, and the inner core 154 can be advanced over a guidewire positioned within a patient's vasculature, such as is described in U.S. patent application Ser. No. 12/101,863 filed on Apr. 11, 2008 (titled: BIFURCATED GRAFT DEPLOYMENT SYSTEMS AND METHODS), which application is hereby incorporated by reference in its entirety as if fully set forth herein.


Additionally, in some embodiments (not illustrated), the tabs 174 can be sized, spaced, and otherwise configured to provide axially support to multiple individual stent segments. For example, without limitation, multiple independent or tethered stent segments can be positioned within a tubular or bifurcated graft, and the stent graft can be positioned relative to the tabs 174 such that the tabs 174 are positioned between the stent segments. This arrangement can reduce the overall diameter of the outer sheath 122, the introducer sheath 110, and other components comprising the catheter system, can enhance the axial support provided by the tabs 174 to the endoluminal prosthesis, and can allow for a more uniform distribution of support forces between the tabs 174 and the endoluminal prosthesis. The tabs 174 can be sized, spaced, and otherwise configured so as to be positioned adjacent to the links, bends, loops, and/or other connectors formed in a tubular or bifurcated stent, such as the links, bends, loops, and/or other connectors comprising the embodiments of the stents disclosed in U.S. Pat. No. 6,077,296 titled ENDOLUMINAL VASCULAR PROSTHESIS, which patent is hereby incorporated by reference as if fully set forth herein.


With reference to FIGS. 13-15, the outer sheath 122 of the deployment catheter 104 can be advanced into an axial opening within the introducer 102 when the deployment catheter 104 is engaged with the introducer 102. The outer sheath 122 can be sized and configured such that the distal end portion 122c of the outer sheath 122 can terminate within the introducer 102 prior or proximal to the proximal end or flared portion 110b of the introducer sheath 110. Although not required, the introducer 102 can have a constricted portion 113 formed in the main body 106 of the introducer. In some embodiments, as shown most clearly in FIG. 14, the catheter system 100 can be configured such that the distal end 122c of the outer sheath 122 terminates prior to or approximately adjacent to a constricted portion 113 of the main body 106 of the introducer 102.


In some embodiments (not illustrated), the distal end portion 122c of the outer sheath 122 can be positioned near to or approximately adjacent to the proximal end portion or the flared portion 110b of the introducer sheath 110, regardless of whether the catheter 104 has a constricted portion 113. The inner diameter of the constricted portion 113 can be approximately the same as the inner diameter of the outer sheath 122 and/or the inner diameter of the introducer sheath 110.


Therefore, The outer sheath 122 of the catheter 104 and the introducer sheath 110 can be configured to provide a lumen having a generally uniform cross-sectional size through the catheter system through which the endoluminal prosthesis can be advanced. The lumen through the catheter system 100 through which the endoluminal prosthesis can be advanced can be substantially continuous, so that the endoluminal prosthesis can be advanced through the catheter system 100 without the pros-thesis being obstructed by or snagging on any components or features of the catheter system 100 as it is being advanced. The lumen can be substantially continuous but have short gaps on the order of approximately 1 mm to approximately 3 mm in the lumen such as, without limitation, adjacent to the distal end of the outer sheath 122 of the catheter 104 and/or adjacent to the proximal or flared end 110b of the introducer sheath 110. For example, in some embodiments, short gaps can be formed adjacent to the distal end of the outer sheath 122 of the catheter 104 and/or adjacent to the proximal or flared end 110b of the introducer sheath 110 as some components comprising the catheter system 100 are threadedly engaged with other components comprising the catheter system 100. Further, in some embodiments, one or more surfaces of other components comprising the catheter 104 or the introducer 102 in addition to the outer sheath 122 and the introducer sheath 110, such as without limitation the constricted portion 113 of the main body 106 of the introducer 102 as discussed above, can form portions of the lumen through the catheter system 100.


The outer sheath 122 can constrain or restrain an endoluminal prosthesis supported by the central tube 176 as described above. In this configuration, as the catheter tip 162, central core 154, and an endoluminal prosthesis (such as, but not limited to, stent 157 illustrated in FIGS. 7 and 12-14) are advanced through the outer sheath 122, the outer sheath 122 can restrain the endoluminal prosthesis and prevent the endoluminal pros-thesis from expanding before reaching the target position within the patient's vasculature. Additionally, the catheter system 100 can be configured such that, as the catheter tip 162, central core 154, and endoluminal prosthesis are advanced past the distal end 122c of the outer sheath 122, the constricted portion 113 and, subsequently, the introducer sheath 110 can radially restrain the endoluminal prosthesis as the endoluminal prosthesis is advanced through the introducer sheath 110.


The endoluminal prosthesis or the stent 157 can be a tubular stent, a bifurcated stent, or any other desirable stent, graft, stent graft, or endoluminal prosthesis (collectively referred to herein as stent or stents), including without limitation any of the stents or grafts disclosed in U.S. patent application Ser. No. 12/101,863 referenced above and incorporated herein by reference as if fully set forth herein. Accordingly, the catheter system 100 or catheter 104 can be configured to deploy any suitable or desirable stent or stents.


Thus, in this configuration, the endoluminal prosthesis can be transferred from the outer sheath 122 to the introducer sheath 110. In this arrangement, using the introducer sheath 110 as the restraint can allow the outside diameter of the introducer sheath 110 to be reduced, which can minimize trauma to the patient's vasculature and assist in the deployment of the endoluminal prosthesis.


Many embodiments of the docking mechanism and catheter system have been described in connection with FIGS. 1-15. It will apparent to one of ordinary skill in the art that there are many potential embodiments of a permanent or removable docking mechanism that may be suitable for medical use and which are contemplated herein. For example, in some embodiments, a nut-screw combination could be used to connect the introducer sheath and the catheter. As another example, a bayonet style locking mechanism, such as is used for camera lenses, can also be used. In some embodiments, any of the components or features of some embodiments of the catheters disclosed herein or other catheters available in the field can be combined to form additional embodiments, all of which are contemplated herein.


The catheter system disclosed in FIG. 16 has an introducer catheter assembly, also referred to herein as an introducer catheter, and a delivery catheter assembly, also referred to herein as a delivery catheter.


The catheter systems disclosed herein can be used for diagnostic or therapeutic procedures such as, but not limited to, endoluminal vascular prosthesis deployment procedures. It should be apparent to one skilled in the art that the catheter system embodiments disclosed herein can be used for delivering prostheses for supporting body tissue in general as well as various blood vessels and aneurysms. Examples of such blood vessels that can be treated with the catheter system embodiments disclosed herein include the aorta, aortic aneurysms such as abdominal aortic aneurysms, saphenous vein grafts, the vena cava, the renal arteries, the iliac arteries, the femoral arteries, the popliteal artery, the carotid artery, the cranial arteries, pulmonary arteries, etc. Other organs or body tissue that can be treated with some catheter system embodiments disclosed herein include the prostate, the biliary tract, the esophagus, the trachea, the fallopian tubes, the vas deferens, the ureters, the tear ducts, the salivary ducts.


The catheter systems disclosed herein can be configured for deployment of a wide range of endoluminal prostheses, including mechanically expandable stents, self-expanding stents, drug eluting stents, grafts, bifurcated and non-bifurcated stent grafts, fenestrated stent grafts, suprarenal stent extensions, stent segments, dissection treatment devices, medical prostheses deployable in any suitable region of the body, and any of the stents or prostheses disclosed in U.S. application Ser. No. 12/101,863, filed Apr. 11, 2008, U.S. application Ser. No. 12/496,446, filed Jul. 1, 2009, U.S. application Ser. No. 12/769,506, filed Apr. 28, 2010, and U.S. Pat. No. 6,077,296, which are hereby incorporated by reference as if fully set forth herein.


The stent can have an oversized graft have a mid portion that is not sutured or otherwise attached to the stent frame. In this configuration, the mid portion can be permitted to expand against an inside wall of the vessel or passageway to further improve the seal between the graft and the vessel wall. Additionally, the stent can have an oversized graft of highly collapsible, flexible material (e.g., expanded polytetrafluoroethylene) such that, when the stent is expanded, the graft can form tight folds in the seal zone to reduce cross-sectional area of leak zones between the stent and the vessel wall.


For simplicity, all such foregoing stents or prostheses are collectively referred to herein as a stent or stents unless otherwise defined. Therefore, while illustrations and the disclosure that follows may describe stents and may show deployment in a particular passageway or in a region of the body, it is contemplated that any of the embodiments disclosed herein can be used, with or without modifications within the capabilities of one of ordinary skill in the art, for deployment of any desired prosthesis in any suitable portion of the body.



FIG. 16 is an oblique view of a catheter system 100, having a delivery catheter assembly 104 docked to an introducer catheter assembly 102. FIGS. 17-19 are oblique, top, and side views, respectively, of the delivery catheter assembly 104 of FIG. 1. With reference to FIGS. 16-17, the catheter system 100 has a docking arrangement wherein a proximal end portion of an introducer catheter assembly 102 can receive and dock with a distal end portion 121a of the main body 121 (also referred to herein as housing member or housing shaft) of a delivery catheter assembly 104. The introducer catheter 102 can have an outer sheath 110 (also referred to herein as an introducer sheath) supported by and extending from a distal end portion of the introducer catheter 102. Similarly, the delivery catheter assembly 104 has a tubular sheath 127 (also referred to herein as a delivery catheter sheath) extending from a distal end portion 121a of the housing shaft 121. The sheath 127 can be made from polyether ether ketone (PEEK), or any other suitable material.


Additional details regarding the features and components of such a docking arrangement and other details regarding the catheter system are disclosed in U.S. application Ser. No. 12/101,863, filed Apr. 11, 2008, entitled “BIFURCATED GRAFT DEPLOYMENT SYSTEMS AND METHODS” and U.S. application Ser. No. 12/496,446, filed Jul. 1, 2009, entitled “CATHETER SYSTEM AND METHODS OF USING SAME,” both incorporated by reference as if fully set forth herein. Any of the embodiments of the catheter systems, the delivery catheters, and the introducer catheters disclosed herein can have any of the components, features, materials, or other details of any of the embodiments of the catheters disclosed in the foregoing applications, which combinations are made part of this disclosure.


One or more stents can be loaded in, supported by, and delivered by the catheter system 100 embodiments disclosed herein. A stent or stents can be loaded into the delivery catheter assembly 104 during assembly of the delivery catheter assembly 104 or just before the surgical procedure by compressing the stent around an outer surface of an inner core member 115 of the delivery catheter assembly 104.


A removable restraint and/or an outer sheath of the introducer catheter and/or delivery catheter can hold the stent in a compressed state. In the compressed state, the stent can be held in a generally fixed axial position relative to the inner core such that axial or rotational movement of the inner core will result in axial and rotationally movement of the stent. As will be discussed, the inner core can have features, such as fins, beads, tabs, or other projections, to improve the traction or grip between the compressed stent and the inner core or inner core wire. the inner core with the stent compressed around the outer surface thereof will be advanced through a constriction element in or adjacent to the introducer catheter to compress the stent to the approximate inner diameter of the outer sheath projecting from the introducer catheter.


the inner core member 115 can have a core wire 117 forming a portion of the inner core member 115. An atraumatic distal tip 119 can be supported at a distal end portion of the core wire 117. The inner core member 115, core wire 117, and the distal tip 119 can comprise a continuous lumen therethrough, being configured to receive a guide wire therein such that the inner core member 115, the core wire 117, and the distal tip 119 can be advanced over the guide wire. the stent can be collapsed or compressed about at least a portion of the inner core wire 117 in the stent loaded condition.


As mentioned, the catheter system can be configured such that the inner core member 115 is axially slidable relative to the outer sheath 110. In this configuration, the stent can be deployed in the target region of the patient's vasculature by retracting the outer sheath 110 relative to the inner core member 115, thereby exposing the stent. In some embodiments where the outer sheath 110 provides radial constraint to the stent, exposing the stent will permit a self-expanding stent to self-expand against the vessel wall as the outer sheath 110 is being retracted.


As will be described in greater detail, some embodiments of the catheter system 100 disclosed herein are configured such that, when a user or surgeon manipulates the delivery catheter assembly 104 slowly and with mechanical advantage in a first manner, the delivery catheter can be used to slowly and controllably deploy a stent or a portion of a stent from the delivery catheter assembly 104. Some embodiments of the catheter system disclosed herein are further configured such that, when a user or surgeon manipulates the delivery catheter assembly 104 quickly by directly pulling the adjustment member in a second manner, the delivery catheter assembly 104 is used to more rapidly deploy the stent or a portion of the stent from the delivery catheter assembly 104.


The catheter systems disclosed herein can be configured to accommodate any combination of the manners of deployment described above. For example, the user or surgeon can initially manipulate the delivery catheter in the first manner to slowly deploy the stent from the delivery catheter assembly 104 and then, once the proper positioning of the partially deployed stent is confirmed, the surgeon can then manipulate the delivery catheter assembly 104 in the second manner to rapidly deploy the remainder of the stent.


With reference to FIG. 16, a distal end portion 121a of the housing shaft 121 of the delivery catheter assembly 104 is removably and axially supported by a female receiving portion 105 supported at a proximal end portion of the introducer catheter 102. The introducer catheter 102 supports an outer sheath 110 at a distal end thereof, the outer sheath 110 defining a lumen therethrough that is configured to slidably receive an inner core member 115 therein. The inner core member 115 can be slidably advanced through an opening or lumen in the delivery catheter assembly 104, through an opening or lumen in the introducer catheter 102, and through a lumen in the outer sheath 110.


The delivery catheter assembly 104 has a main body or housing shaft 121 having a distal end portion 121a and a proximal end portion 121b. The housing shaft 121 pounds a generally tubular cross-sectional shape, and has external threads 126 along a portion of the housing shaft 121 (referred to as the threaded portion 126).


The housing shaft 121 supports a slidable handle member 128 that can be configured to slide axially along the housing shaft 121 between the distal end portion 121a of the housing shaft 121 and an rotatable adjustment member 130 supported by the housing shaft 121. As will be described, the delivery catheter assembly 104 is configured such that the handle member 128 is selectively engageable with the inner core member 115. When in the engaged configuration, movement of the handle member 128 results in simultaneous and equal movement of the inner core member 115. the delivery catheter assembly 104 can be configured such that the handle member 128 is prevented from rotating relative to the housing shaft 121 and, consequently, the introducer catheter 102 and outer sheath 110, to prevent any inadvertent rotation of the inner core member 115 when the handle member 128 is engaged with the inner core member 115.


The threaded portion 126 extends along approximately 60% of the length of the housing shaft 121. The threaded portion 126 can extend along approximately 40% to approximately 70% of the length of the housing shaft 121. The threaded portion 126 can be positioned adjacent to the proximal end portion 121b of the housing shaft 121. The length of the threaded portion 126 can be from approximately 20% to approximately 200% of the length of the stent to be deployed by the catheter. For example, if only the proximal end portion of the stent is to be deployed by rotation of the adjustment member 130, the length of the threaded portion can be approximately from 20% to approximately 50% of the length of the stent. As used throughout this disclosure, the term approximately can mean plus or minus 15% of the stated value.


Preventing the rotational movement of the handle member 128 can be achieved in any number of ways. For example, the handle member 128 has a tab, protrusion, or similar feature or features that can project into one or more channels or slots formed in the housing shaft 121. As illustrated in FIG. 16, the housing shaft 121 can have a single slot 134 extending in a linear fashion along a portion of the length of the housing shaft 121, the slot 134 configured to slidingly receive therein a tab, protrusion, or other similar feature supported by the handle member 128.


The handle member 128 pounds an inner core engagement assembly 139 supported by the handle member 128. As mentioned, the delivery catheter assembly 104 is configured such that, when the inner core member 115 is axially engaged with the handle member 128, any axial movement of the handle member 128 will result in simultaneous axial movement of the inner core member 115 relative to the introducer catheter 102 and the outer sheath 110. Depressing the inner core engagement assembly 139 can release the inner core member 115 from the handle member 128 so that the inner core member 115 can be axially moved relative to the handle member 128. In some configurations, the inner core member 115 can be rotated relative to the handle member 128 even when the inner core member 115 is axially engaged with the handle member 128.


As mentioned, the rotatable adjustment member 130 is supported by the housing shaft 121. The rotatable adjustment member 130 is threadedly engaged with the outer threads on the threaded portion 126 of the handle member 128. In this configuration, rotating or turning the rotatable adjustment member 130 in one direction causes the rotatable adjustment member 130 to advance along the threads and move in an axial direction toward the distal end portion 121a of the housing shaft 121. Rotating or turning the rotatable adjustment member 130 in a second, opposite direction causes the rotatable adjustment member 130 to move in an axial direction away from the distal end portion 121a of the housing shaft 121 of the delivery catheter assembly 104. As a result of the threaded engagement between the rotatable adjustment member 130 and the housing shaft 121, the rotatable adjustment member 130 can be prevented from axially sliding relative to the housing shaft 121. Accordingly, the handle member 128 can axially slide but be prevented from rotating relative to the housing shaft 121, and the rotatable adjustment member 130 can rotate but be prevented from axially sliding relative to the housing shaft 121.


In use, a surgeon may grasp the handle member 128 with one hand (for example, the left hand) and the rotatable adjustment member 130 (which is initially axially positioned adjacent the proximal 130a of the housing shaft) with the other hand. The surgeon moves the inner core member 115 to engage with the handle member 128. To retract the outer sheath 110 of the introducer catheter 102 relative to the inner core member 115, the surgeon holds the handle member 128 in a fixed position while axially withdrawing the housing shaft 121 of the delivery catheter assembly 104, which is axially fixed to the introducer catheter 102 and to outer sheath 110. Holding the handle member 128 in a fixed position, with the inner core engagement (and release) assembly 139 engaged with the inner core member 115, holds the inner core member 115 fixed as the outer sheath 110 is axially retracted relatively inner core member 115 fixed to the housing shaft 121. Retracting the housing shaft 121 portion of the delivery catheter assembly 104 can be done by grasping and rotating the rotatable adjustment member 130 or directly by applying a pull force to retracting the rotatable adjustment member 130 relative to the handle member 128. This step causes withdrawal of the outer sheath 110 relative to the inner core member 115 is desired.


The slower incremental withdrawal of the outer sheath 110 relative to the inner core member 115 is accomplished as the rotatable adjustment member 130 axially abuts a proximal end 128a of the handle member 128. Rotating the rotatable adjustment member 130 in a first direction while holding the handle member 128 in a fixed axial position will slowly and incrementally and controllably retract or withdraw the housing shaft 121 of the delivery catheter assembly 104 and, consequently, the outer sheath 110. This controlled withdrawal of the outer sheath 110 is usually performed during the initial deployment phase of exposing and deploying a stent, to allow the surgeon greater control and accuracy in positioning the stent in the target location.


In sum, in this configuration, with the handle member 128 initially positioned on a proximal portion of the housing shaft 121, a surgeon can controllably retract the outer sheath 110 to expose the stent by holding the handle member 128 in a fixed position relative to the patient in one hand, while using his or her other hand to turn the rotatable adjustment member 130 in a first direction to retract the housing shaft 121 and outer sheath 110 relative to the handle member 128 and inner core member 115. Once the surgeon is confident that the stent is in the desired position, the surgeon can then more rapidly retract the outer sheath 110 relative to the inner core member 115 by grabbing and axially retracting the housing shaft 121 relative to the handle member 128.


As illustrated in FIGS. 17-19, the delivery catheter assembly 104 can have a selectively engageable locking feature positioned on the inner core member 115, such as the lock engagement ring 147. As will be described in greater detail below, the engagement ring 147 can be configured to removably engage with the inner core engagement assembly 139. As discussed above, when the inner core member 115 is engaged with the engagement assembly 139, the inner core member 115 is axially locked to the engagement assembly 139 such that axial movement of the handle member 128 results in simultaneous axial movement of the inner core member 115. the inner core member 115 can be free to rotate relative to the engagement assembly 139 and the handle member 128 even when in the locked or engaged position. The engagement ring 147 can be adhered to, integrally formed with, or otherwise permanently fixed to an outer surface of the inner core member 115.


With reference to FIGS. 17-19, some embodiments of the engagement ring 147 can have a tapered surface 149 and an annular channel 152. The tapered surface 149 can improve the ease with which the engagement ring 147 can be advanced into the engagement assembly 139. Additional details regarding these components will be described below.



FIG. 20 is an oblique view of the delivery catheter assembly 104 of FIG. 16, illustrating the inner core member 115 in a fully or approximately fully advanced position relative to the delivery catheter assembly 104. In this position, the inner core member 115, the inner core wire 117, and the distal tip 119 are all advanced past the end of the sheath 127 of the delivery catheter assembly 104. When the delivery catheter assembly 104 is engaged with the introducer catheter 102, the inner core member 115, the inner core wire 117, and the distal tip 119 are also be advanced relative to the end of the outer sheath 110 such that a stent supported by the inner core member 115 would be at least partially, and in some cases fully, exposed.



FIGS. 21-23 are side views of the delivery catheter of FIG. 16, showing the sheath in a first, pre-deployment position, a second, partial deployment position, and a third, fully retracted position, respectively, and the positions of the housing shaft 121, handle member 128, and the inner core member 115 of the delivery catheter assembly 104. The delivery catheter assembly 104 is configured such that the handle member 128 slides along the housing shaft 121 between the first position, as illustrated in FIG. 21, and at least a third position, as illustrated in FIG. 23. Therefore, in this configuration, the handle member 128 is held stationary while the user or surgeon can retract the housing shaft 121 by sliding it relative to the handle member 128. Accordingly, when the handle member 128 is engaged with the inner core member 115, a surgeon can very rapidly advance the inner core member 115 relative to the distal end portion 121a of the housing shaft 121 of the delivery catheter assembly 104 by sliding the handle member 128 toward the distal end portion 121a of the housing shaft 121. Similarly, if the surgeon desires to hold the inner core member 115 and prosthesis in a fixed position within the patient's vasculature, the surgeon or user can hold the handle member 128 in a fixed position and axially slide or retract the delivery catheter assembly 104 away from the patient's body so as to retract the outer sheath 110 of the introducer catheter 102 relative to the inner core member 115 and prosthesis, thereby exposing the prosthesis.


The rotatable adjustment member 130 is separable from the handle member 128 so that the adjustment member 130 and housing shaft 121 can move independently of the handle member 128. The adjustment member 130 includes inside threads that engage with the external threads on the threaded portion 126 of the housing shaft 121. Rotating the adjustment member 130 in a first direction axially retracts the housing shaft 121 and sheath as the adjustment member 130 maintains contact with the handle member 128 as the adjustment member rotates. Rotation of the adjustment member 130 is used to control the speed of slow retraction of the housing shaft 121 or an axial force applied to the adjustment member provides the option of a quick retraction.


The handle member 128 is selectively engageable with the inner core member 115. FIG. 24 is an oblique view of the inner core engagement assembly 139 and the inner core member 115, showing the inner core member 115 in a first, disengaged position relative to the inner core engagement assembly 139, other components of the delivery catheter being removed from this view for clarity. FIG. 25 is a cross-sectional view of a portion of the delivery catheter assembly 104 through the axial centerline of the delivery catheter assembly 104, showing the inner core member 115 in a first, disengaged position relative to the inner core engagement assembly 139. FIG. 26 is an oblique view of the inner core engagement assembly 139 and the inner core member 115 as in FIG. 24, showing the inner core in a second, partially engaged position relative to the inner core engagement assembly.


With reference to FIGS. 24-26, in some embodiments of the delivery catheter assembly 104, an engagement ring 147 is supported by the inner core member 115. The engagement ring 147 has a tapered fore surface 149 and a channel or depression 152 formed around an outside surface of the engagement ring 147. The fore surface 149 can have a generally frustoconical shape, and the channel 152 can be formed all around the engagement ring 147 forming a ring groove. The engagement ring 147 is adhered to, formed integrally with, or otherwise fastened to or supported by the inner core member 115 at any desired position along the length of the inner core member 115.


With reference to FIGS. 24-26, a body member 155 of the engagement assembly 139 supports one or more tabs or arms 159 configured to engage with the engagement ring 147. The one or more arms 159 can have inward facing tabs or projections 166 supported at the proximal end 159b of the one or more arms 159. The arms 159 are supported by the body member 155 in a cantilevered configuration so that the base portion 159a of the one or more arms 159 is fixed to the body member 155 and such that the proximal end portion 159b of the one or more arms 159 is unsupported. The arms 159 are supported by the body member 155.


The engagement ring 147 is configured to be received by the inner core engagement assembly 139 by sliding the inner core member 115 in a first (distal) direction (represented by arrow A1 in FIG. 24) until the engagement ring 147 is engaged with the engagement assembly 139. As illustrated in FIG. 26, as the inner core member 115 and engagement ring 147 are moved toward the engagement assembly 139, a tapered fore surface 149 of the engagement ring 147 causes the tabs or arms 163 spread apart as the engagement ring 147 is advanced into the engagement assembly 139, as illustrated in FIGS. 26-28. With further advancement of the inner core member 115 relative to the handle member 128, when the protruding portions 166 of the arms 159 are in axial alignment with the channel 152, the protruding portions 166 of the arms 159 can compress and shrink (spring) toward each other and into the channel 152 due to the bias of the one or more arms 159. As illustrated in FIGS. 30-32, the inner core member 115 is axially engaged with the handle member 128 until the user disengages the engagement assembly 139 from the engagement ring 147. the inner core member 115 can be freely rotated relative to the handle member 128 even when axially engaged with the handle member 128.


The engagement assembly 139 is further configured so that moving the one or more arms 159 in a radial direction (spreading them, as shown in FIG. 27B) will cause the protruding portions 166 of the arms 159 to be lifted away from the channel 152 of the engagement ring 147. The one or more spread tabs 173 supported by a body portion 175 or configured to exert the necessary radial force (spreading) on the arms 159 to lift the protruding portions 166 away from the engagement ring 147. The spread tabs 173 can have a tapering shape such that, moving the spread tabs 173 in a downward direction relative to the one or more arms 159 deflects the arms 159 outward. Depressing button 180 forces the spread tabs 173 downward, thereby deflecting the arms 159 outward so that the engagement ring 147 is axially released and axially moved away from the engagement assembly 139.



FIG. 34 is a cross-sectional view of a portion of the delivery catheter through the axial centerline of the delivery catheter, showing the inner core member 115 in a disengaged position relative to the inner core engagement assembly 139.



FIG. 35 is a cross-sectional view of a portion of the delivery catheter assembly 104 through the axial centerline of the delivery catheter assembly 104, showing the inner core member 115 in an engaged position relative to the inner core engagement assembly 139. As illustrated therein, a biasing mechanism or spring member 184 is supported by the handle member 128 and is configured to bias the button 180 and, consequently, the spread tabs 175, in a first direction away from the inner core member 115.


Further, with reference to FIGS. 34-35, the handle member 128 has a stop member 198 configured to limit the range of motion of the engagement ring 147 and inner core member 115 relative to the handle member 128. For example, the first end portion 198a of the stop member 198 is configured to abut against a fore surface 149 of the engagement ring 147 when the engagement ring 147 is advanced into the handle member 128.


The stent can be preloaded in the introducer catheter assembly or introducer sheath such that the stent need not be transferred into the catheter assembly or introducer sheath during the surgical operation. The delivery catheter system can have an introducer sheath, inner core, and some or all of the other features of the delivery catheter disclosed herein in one apparatus. In of this inclusive apparatus, the inner core can be permanently joined to the handle member 128 such that there would be no need to configure the delivery catheter to be selectively engageable with the inner core, thereby simplifying the assembly and potentially simplifying the surgical procedures. Therefore, some embodiments of this inclusive delivery catheter assembly, the delivery catheter assembly can have all of the components, features, details, or configurations of the embodiments of the catheter system 100 described above, wherein the inner core engagement assembly 139 and the lock engagement ring 147 of the inner core member 115 can be replaced with a non-selectable coupling or other connection between the inner core member 115 and the handle member 128.



FIG. 36 is an illustration of a prosthesis partially deployed by the delivery catheter assembly 104. FIG. 37 is a partial side view exemplifying a stent that can be deployed with the delivery catheter assembly 104. The deployment catheter illustrated in FIG. 36 can be adapted for deployment of any suitable prosthesis and is not limited to deployment of the stent illustrated in FIG. 37. With reference to FIGS. 20, 36, and 37, one or more beads or tabs 174 can be formed on or supported by the core wire 117. The tabs 174 can be configured to increase the axial support or connection between the inner core wire 117 and a stent 214 supported by the core wire 117 when the stent is supported in a compressed on the core wire 117. Additionally, the tabs 174 can be sized, spaced, and otherwise configured to provide axial support to multiple individual stent segments (not illustrated). For example, multiple independent or tethered stent segments can be positioned within a tubular or bifurcated graft or otherwise, and the stent can be positioned relative to the tabs 174 such that the tabs 174 are positioned between the stent segments 216 or between the apices, knuckles, or connection points 218 interconnecting the struts.


In the configuration shown, the beads or tabs 174 supported by the core wire 117 can engage the struts 216 or connection points 218 of the stent 214 to help prevent the stent from axially slipping relative to the inner core wire 117 for portions of the stent 214 that remain compressed within the outer sheath 110. This arrangement provides greater control over the stent 214 during the final stages of deployment of the stent 214, for example, when only an end portion of the stent 214 remains compressed within the outer sheath 110, as illustrated in FIG. 36.


Additionally, positioning the tabs 174 between the struts 216 or connection points 218 can reduce the compressed diameter or crossing profile of the compressed prosthesis, the outer sheath 110, and other components comprising the catheter system. This arrangement can also allow for a more uniform distribution of support forces between the tabs 174, the inner core wire 117, and the stent 214. the tabs 174 can be sized, spaced, and otherwise configured so as to be positioned adjacent to the links, bends, loops, and/or other connectors formed in a tubular or bifurcated stent, such as the links, bends, loops, and/or other connectors comprising the embodiments of the stents disclosed in U.S. Pat. No. 6,077,296, entitled ENDOLUMINAL VASCULAR PROSTHESIS, which patent is hereby incorporated by reference as if fully set forth herein.


In any of the catheter system embodiments disclosed herein, the catheter system can be configured as described herein such that the stent can be compressed from a first diameter or size to a second diameter or size as the stent is being loaded into the introducer or introducer sheath. The first diameter or size can be the fully relaxed or expanded diameter of the stent, or the first diameter or size can be a partially compressed diameter. For example, for some of the embodiments disclosed herein, the stent can be compressed from a first diameter, as defined or controlled by the sheath of the delivery catheter or by an assembly apparatus surrounding the stent, to a second diameter, as defined or controlled by the introducer sheath. The reduction ratios of the stent when advanced into the introducer can be from approximately 50% to approximately 95%, meaning that the second diameter can be from approximately 50% to approximately 95% of the first diameter.



FIG. 38 is a side view of a catheter system 300 having an introducer catheter assembly 302, showing a stent being loaded into an outer sheath of the introducer catheter assembly 302. Only a portion of the delivery catheter 304 is illustrated and certain features of the introducer catheter assembly 302 have been omitted for clarity. The catheter system 300 and/or the introducer catheter assembly 302 can have any of the components, features, materials, or other details of any of the embodiments of the catheter systems or introducer catheter assemblies disclosed or incorporated by reference herein, including U.S. application Ser. No. 12/496,446, filed Jul. 1, 2009, entitled “CATHETER SYSTEM AND METHODS OF USING SAME.” Further, the embodiments of the introducer catheter assembly 302 can be configured to work with any of the delivery catheter assembly embodiments disclosed or incorporated by reference herein.


With reference to FIG. 38, the introducer catheter assembly 302 can have a main body portion 306 and an outer sheath 310 supported at a distal end 306a of the main body portion 306. An inner aperture or opening 312 on the inside of the introducer catheter assembly 302 can be coaxial with the opening formed through the outer sheath 310. the introducer catheter assembly 302 can have tapered or curved wall portions 314 that are configured to compress the stent 320 from a first diameter “a” to a second diameter “b” that is equal to an inside diameter of the (introducer) outer sheath 310 as the stent 320 is being advanced through the introducer catheter assembly 302.


The introducer catheter assembly 302 and the delivery catheter can be configured such that the distal end 316a of the sheath 316 terminates prior to or approximately adjacent to the constricted portion of the main body portion 306. In this configuration, the stent can be loaded into the delivery catheter in a relaxed or mostly relaxed (i.e., expanded) state having diameter “a”, and be compressed by the tapered wall portions 314 of the introducer catheter assembly 302 to a final, compressed diameter “b”, thereby reducing the stresses applied to the stent prior to loading the stent in the introducer catheter assembly 302.


The sheaths supported by the delivery catheter, for example sheath 316 or the sheath 127 discussed above, can overlap or be advanceable into at least the proximal portion of the introducer or outer sheath 310, 110, or so that the sheath 316 or the sheath 127 discussed above can be advanceable through the entire length of the introducer or outer sheath 310, 110. A distal portion of the sheath supported by the delivery catheter can be tapered. In this configuration, the stent can be further compressed or compressed as it is being passed through the distal portion of the delivery catheter sheath into the introducer or introducer sheath.


The introducer catheter assembly 302 can be configured to receive and deploy any of a variety of prostheses, including non-bifurcated and bifurcated stents and stent grafts, stent segments, fenestrated stents, and other similar stents or stent grafts disclosed herein or otherwise. the introducer catheter assembly 302 or any other introducer catheter assembly embodiment disclosed herein can be configured to receive and removably couple with any of a variety of delivery catheters, including accessory stent catheters, suprarenal stents or stent extension catheters, or bifurcated stent delivery catheters.


The outer sheath 310 or any other outer sheath embodiment disclosed herein has an inner diameter of approximately 0.237 in. and an outer diameter of approximately 0.253 in. When used for the delivery of a bifurcated stent, the sheath 316 has an inner diameter of approximately 0.251 in. and an outer diameter of approximately 0.263 in. When used for the delivery of an accessory stent or non-bifurcated stent, the sheath 316 has an inner diameter of approximately 0.241 in. and an outer diameter of approximately 0.263 in.


When used for the delivery of a bifurcated stent, the inner core (not illustrated in FIG. 38) the catheter system has an outer diameter of approximately 0.212 in. When used for the delivery of a non-bifurcated stent, the inner core of any catheter system has an outer diameter of approximately 0.213 in.



FIG. 39 is a schematic side view of a catheter system 400 having a deployment catheter assembly 404 comprising an inner core 408, an outer sheath 410, a plurality of tabs 412 supported by a core wire 414 axially attached to the inner core 408, and a distal tip 415 axially attached to the core wire 414. A stent 416 is supported by the delivery catheter 404 and is surrounded by the outer sheath 410. The stent 416 is a self-expanding bifurcated stent, as herein illustrated, or can be any other stent or medical prosthesis disclosed or incorporated by reference herein or otherwise. The delivery catheter 404 can further comprise a branch vessel wire assembly 417 loaded in the delivery catheter 404.



FIG. 40 is a cross-sectional view of the branch vessel wire assembly 417 taken at line 40-40 of FIG. 39, and FIG. 41 is an enlarged schematic view of a portion of the branch vessel wire assembly 417 defined by curve 41-41 of FIG. 39. The branch vessel wire assembly 417 includes an inner wire 418 positioned at least partially within a hollow tube or guidewire 420. The branch vessel wire assembly 417, the inner wire 418, or the hollow tube 420 can have any of the sizes, features, materials, or other details of the dual concentric guidewire disclosed in U.S. application Ser. No. 11/623,022, filed Jan. 12, 2007, which is incorporated by reference as if fully set forth herein.


The hollow tube 420 can project through an inside lumen of the stent 416 such that a distal end 420a of the hollow tube 420 projects past an end portion 416a of the stent 416. Additionally, the hollow tube 420 has a curved or kinked portion 420b proximal to the end of the stent 416. The outer sheath 410 holds the curved portion 420b of the hollow tube 420 in the curved position or orientation (the first state) so as to mechanically link or lock the inner wire 418 axially to the hollow tube 420 until the curve or bend in the curved portion 420b is relaxed. As will be discussed, the curve or bend in the curved portion 420b can be relaxed by retracting or withdrawing the outer sheath 410 past the curved portion 420b of the hollow tube 420, thereby allowing the hollow tube 420 and inner wire 418 to relax and straighten. Therefore, when the hollow tube 420 is in the first state, the inner wire 418 will be axially fixed to the hollow tube 420 such that the inner wire 418 is axially retracted without becoming disengaged from the hollow tube 420. When the outer sheath 410 is retracted past the curved portion 420b of the hollow tube 420, the hollow tube 420 relaxes so that the curved portion 420b is no longer be axially locked to the inner wire 418. In this second, relaxed state, the inner wire 418 can be axially advanced or retracted into and out of the hollow tube 420.


In this arrangement, the inner wire 418 can be advanced through a first puncture site in a first branch vessel or passageway (such as the ipsilateral iliac artery) and then withdrawn though a second branch vessel or passageway (such as the contralateral iliac artery), using any suitable cross-over techniques. For example, the inner wire can be advanced through the ipsilateral iliac artery in a slitted lumen formed in a dual lumen dilator. The dilator can be withdrawn and set aside, allowing the inner wire 418 to pass through the slit in the lumen of the dual lumen dilator, thereby leaving a proximal end of the inner wire 418 positioned within the abdominal aorta. In this position, the inner wire 418 can be snared and retracted through the contralateral iliac artery and through a second puncture site.


Many embodiments of the catheter system have been described in connection with the accompanying figures. It will apparent to one of ordinary skill in the art that there are many potential embodiments of the catheter system that may be suitable for medical use and which are contemplated herein. For example, any of the components or features of some embodiments of the catheters disclosed herein or other catheters available in the field can be combined to form additional embodiments, all of which are contemplated herein.


While the above description has shown, described, and pointed out features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made without departing from the spirit of the disclosure. Additionally, the various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. Further, as will be recognized, certain embodiments described herein may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.

Claims
  • 1. A delivery catheter system configured to deliver a stent, the delivery catheter system comprising: a main body having a proximal end portion and a distal end portion;an outer sheath projecting from the distal end portion of the main body;a first restraint for restraining a main body portion of the stent;a second restraint for restraining a branch portion of the stent;a first hollow release wire axially coupled with the second restraint;a second wire having a proximal and a distal end portion, the second wire advanced into the first hollow release wire in a stent loaded state such that at least a portion of the hollow release wire is coaxial with the second wire;wherein a bend formed in the first hollow release wire removably locks a distal end portion of the second wire to the first hollow release wire.
  • 2. The delivery catheter system of claim 1, wherein the bend in the first hollow release wire is formed such that when the outer sheath is retracted past the bend in the first hollow release wire, the first hollow release wire is adapted to relax such that the distal end portion of the second wire is unlocked from the first hollow release wire.
  • 3. The delivery catheter system of claim 1, wherein the first hollow release wire projects through an inside lumen of the stent in the stent loaded state.
  • 4. The delivery catheter system of claim 3, wherein a distal end of the hollow release wire projects past an end portion of the stent.
  • 5. The delivery catheter system of claim 1, further comprising an inner core configured to support the stent thereon, the inner core being axially advanceable through the main body of the delivery catheter and the outer sheath.
  • 6. The delivery catheter system of claim 5, wherein the inner core comprises a core wire.
  • 7. The delivery catheter system of claim 1, wherein the stent comprises a graft that is attached to the stent on at least a distal end portion of the graft.
  • 8. The delivery catheter system of claim 7, wherein the graft is not attached to a midportion of the stent such that the midportion can expand against an inside wall of a vessel.
  • 9. A method of delivering a bifurcated stent, the method comprising: delivering a delivery catheter system to a branch vessel, the delivery catheter comprising: an outer sheath;an inner core configured to a support the stent thereon, the inner core being axially advanceable through the outer sheath;a first restraint for restraining a main body portion of the stent;a second restraint for restraining a branch portion of the stent;a first hollow release wire axially coupled with the second restraint;a second wire having a proximal and a distal end portion, the second wire configured to be advanced into the first hollow release wire in a stent loaded state such that at least a portion of the hollow release wire is coaxial with the second wire;wherein a bend formed in the first hollow release wire removably locks a distal end portion of the second wire to the first hollow release wire;withdrawing the outer sheath past the bend to allow the first hollow release wire and the second wire to straighten; andaxially advancing the second wire through the first hollow release wire.
  • 10. The method of claim 9, further comprising advancing the second wire through a first puncture site in a first branch vessel and withdrawing the second wire through a second branch vessel.
  • 11. The method of claim 10, wherein the first branch vessel is the ipsilateral iliac artery and the second branch vessel is the contralateral iliac artery.
  • 12. The method of claim 9, wherein the first hollow release wire projects through an inside lumen of the stent in the stent loaded state.
PRIORITY CLAIM

The present application is a divisional of U.S. patent application Ser. No. 13/408,952, filed Feb. 29, 2012, which claims priority from U.S. Patent Application No. 61/448,154, filed Mar. 1, 2011, the content of both of which is incorporated by reference herein in its entirety. The benefit of priority is claimed under the appropriate legal basis including, without limitation, under 35 U.S.C. §119(e).

US Referenced Citations (866)
Number Name Date Kind
519928 Schanck May 1894 A
1065935 Gail Jul 1913 A
2127903 Bowen Aug 1938 A
2335333 Wysong Nov 1943 A
2437542 Krippendorf May 1944 A
2845959 Sidebotham Aug 1958 A
2990605 Demsyk Jul 1961 A
3029819 Starks Apr 1962 A
3096560 Liebig Jul 1963 A
3245703 Manly Apr 1966 A
3805301 Liebig Apr 1974 A
3994149 Dahlman Nov 1976 A
4362156 Feller, Jr. et al. Dec 1982 A
4473067 Schiff Sep 1984 A
4497074 Ray et al. Feb 1985 A
4501263 Harbuck Feb 1985 A
4503568 Madras Mar 1985 A
4525157 Vaillancourt Jun 1985 A
4562596 Kornberg Jan 1986 A
4580568 Gianturco Apr 1986 A
4592754 Gupte et al. Jun 1986 A
4617932 Kornberg Oct 1986 A
4723550 Bales et al. Feb 1988 A
4723938 Goodin et al. Feb 1988 A
4756307 Crownshield Jul 1988 A
4768507 Fischell et al. Sep 1988 A
4772266 Groshong Sep 1988 A
4795465 Marten Jan 1989 A
4800882 Gianturco Jan 1989 A
4816028 Kapadia et al. Mar 1989 A
4840940 Sottiurai Jun 1989 A
4856516 Hillstead Aug 1989 A
4878906 Lindemann et al. Nov 1989 A
4907336 Gianturco Mar 1990 A
4917668 Haindl Apr 1990 A
4922905 Strecker May 1990 A
4960412 Fink Oct 1990 A
4978334 Toye et al. Dec 1990 A
4981478 Evard et al. Jan 1991 A
4981947 Tomagou et al. Jan 1991 A
4994069 Ritchrt et al. Feb 1991 A
4994071 MacGregor Feb 1991 A
5019090 Pinchuk May 1991 A
5026377 Burton et al. Jun 1991 A
5035706 Giantureo et al. Jul 1991 A
5064414 Revane Nov 1991 A
5064435 Porter Nov 1991 A
5078726 Kreamer Jan 1992 A
5084010 Plaia et al. Jan 1992 A
5098392 Fleischhacker et al. Mar 1992 A
5098395 Fields Mar 1992 A
5104399 Lazarus Apr 1992 A
5108380 Herlitze et al. Apr 1992 A
5108424 Hoffman, Jr. et al. Apr 1992 A
5116349 Aranyi May 1992 A
5123917 Lee Jun 1992 A
5133732 Wiktor Jul 1992 A
5135535 Kramer Aug 1992 A
5135536 Hillstead Aug 1992 A
5137519 Littrell et al. Aug 1992 A
5141497 Erskine Aug 1992 A
5151105 Kwan-Gett Sep 1992 A
5156619 Ehrenfeld Oct 1992 A
5178634 Martinez Jan 1993 A
5186712 Kelso et al. Feb 1993 A
5195978 Schiffer Mar 1993 A
5195980 Catlin Mar 1993 A
5197976 Herweck et al. Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5203774 Gilson et al. Apr 1993 A
5205829 Lituchy Apr 1993 A
5211658 Clouse May 1993 A
5222969 Gillis Jun 1993 A
5250036 Farivar Oct 1993 A
5256141 Gancheff et al. Oct 1993 A
5263932 Jang Nov 1993 A
5267982 Sylvanowicz Dec 1993 A
5275622 Lazarus et al. Jan 1994 A
5279592 Amor et al. Jan 1994 A
5282824 Gianturco Feb 1994 A
5282860 Matsuno et al. Feb 1994 A
5290310 Makower et al. Mar 1994 A
5304200 Spaulding Apr 1994 A
5314444 Gianturco May 1994 A
5314472 Fontaine May 1994 A
5316023 Palmaz et al. May 1994 A
5320602 Karpeil Jun 1994 A
5324306 Makower et al. Jun 1994 A
5330500 Song Jul 1994 A
5334157 Klein et al. Aug 1994 A
5342387 Summers Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5354308 Simon et al. Oct 1994 A
5360443 Barone et al. Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5370683 Fontaine Dec 1994 A
5376077 Gomringer Dec 1994 A
5383892 Cardon et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5389087 Miraki Feb 1995 A
5391152 Patterson Feb 1995 A
5397310 Chu et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5403283 Luther Apr 1995 A
5403341 Solar Apr 1995 A
5405323 Rogers et al. Apr 1995 A
5405377 Cragg Apr 1995 A
5405378 Strecker Apr 1995 A
5415664 Pinchuk May 1995 A
5423886 Arru et al. Jun 1995 A
5425765 Tiefenbrun et al. Jun 1995 A
5443477 Marin et al. Aug 1995 A
5443498 Fontaine Aug 1995 A
5443500 Sigwart Aug 1995 A
5453090 Martinez et al. Sep 1995 A
5456713 Chuter Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5462530 Jang Oct 1995 A
5464449 Ryan et al. Nov 1995 A
5464450 Buscemi et al. Nov 1995 A
5464499 Moslehi et al. Nov 1995 A
5472417 Martin et al. Dec 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5496365 Sgro Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5507727 Crainich Apr 1996 A
5507767 Maeda et al. Apr 1996 A
5507768 Lau et al. Apr 1996 A
5507769 Marin et al. Apr 1996 A
5507771 Gianturco Apr 1996 A
5522880 Barone et al. Jun 1996 A
5522881 Lentz Jun 1996 A
5522883 Slater et al. Jun 1996 A
5545152 Funderburk et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5549635 Solar Aug 1996 A
5554118 Jang Sep 1996 A
5554181 Das Sep 1996 A
5562697 Christiansen Oct 1996 A
5562726 Chuter Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5571169 Plaia et al. Nov 1996 A
5571172 Chin Nov 1996 A
5571173 Parodi Nov 1996 A
5575816 Rudnick et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5578071 Parodi Nov 1996 A
5578072 Barone et al. Nov 1996 A
5591195 Taheri et al. Jan 1997 A
5591197 Orth et al. Jan 1997 A
5591198 Boyle et al. Jan 1997 A
5591226 Trerotola et al. Jan 1997 A
5591228 Edoga Jan 1997 A
5591229 Parodi Jan 1997 A
5591230 Horn et al. Jan 1997 A
5593417 Rhodes Jan 1997 A
5599305 Hermann et al. Feb 1997 A
5604435 Foo et al. Feb 1997 A
5607445 Summers Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5609628 Keranen Mar 1997 A
5628755 Heller et al. May 1997 A
5628783 Quiachon et al. May 1997 A
5628786 Banas et al. May 1997 A
5628788 Pinchuk May 1997 A
5630829 Lauterjung May 1997 A
5630830 Verbeek May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5634928 Fischell et al. Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5641373 Shannon et al. Jun 1997 A
5643171 Bradshaw et al. Jul 1997 A
5643278 Wijay Jul 1997 A
5643339 Kavteladze et al. Jul 1997 A
5647857 Anderson et al. Jul 1997 A
5649952 Lam Jul 1997 A
5651174 Schwartz et al. Jul 1997 A
5653727 Wiktor Aug 1997 A
5653743 Martin Aug 1997 A
5653746 Schmitt Aug 1997 A
5653747 Dereume Aug 1997 A
5653748 Strecker Aug 1997 A
5662580 Bradshaw et al. Sep 1997 A
5662614 Edoga Sep 1997 A
5662675 Polanskyj Stockert et al. Sep 1997 A
5662700 Lazarus Sep 1997 A
5662701 Plaia et al. Sep 1997 A
5662702 Keranen Sep 1997 A
5662703 Yurek et al. Sep 1997 A
5665115 Cragg Sep 1997 A
5665117 Rhodes Sep 1997 A
5669880 Solar Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669934 Sawyer Sep 1997 A
5674241 Bley et al. Oct 1997 A
5674276 Andersen et al. Oct 1997 A
5676671 Inoue Oct 1997 A
5676685 Razaivi Oct 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5679400 Tuch Oct 1997 A
5681345 Tuteneuer Oct 1997 A
5681346 Orth et al. Oct 1997 A
5683448 Cragg Nov 1997 A
5683449 Marcade Nov 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683451 Lenker et al. Nov 1997 A
5683452 Barone et al. Nov 1997 A
5683453 Palmaz Nov 1997 A
5690642 Osborne et al. Nov 1997 A
5690643 Wijay Nov 1997 A
5690644 Yurek et al. Nov 1997 A
5693066 Rupp et al. Dec 1997 A
5693084 Chuter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693087 Parodi Dec 1997 A
5693088 Lazarus Dec 1997 A
5695516 Fischell et al. Dec 1997 A
5695517 Marin et al. Dec 1997 A
5697948 Marin et al. Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5700269 Pinchuk et al. Dec 1997 A
5707354 Salmon et al. Jan 1998 A
5709703 Lukic et al. Jan 1998 A
5713917 Leonhardt Feb 1998 A
5716365 Goicoechea et al. Feb 1998 A
5716393 Lindenberg et al. Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5718973 Lewis et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5725519 Penner et al. Mar 1998 A
5733267 Del Toro Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5738660 Luther Apr 1998 A
5738674 Williams et al. Apr 1998 A
5741233 Riddle et al. Apr 1998 A
5746766 Edoga May 1998 A
5746776 Smith et al. May 1998 A
5749880 Banas et al. May 1998 A
5749921 Lenker et al. May 1998 A
5755735 Richter et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755777 Chuter May 1998 A
5765682 Bley et al. Jun 1998 A
5766203 Imran et al. Jun 1998 A
5769885 Quiachon et al. Jun 1998 A
5769887 Brown et al. Jun 1998 A
5772636 Brimhall et al. Jun 1998 A
5776142 Gunderson Jul 1998 A
5782807 Falvai et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5782855 Lau et al. Jul 1998 A
5782909 Quiachon et al. Jul 1998 A
5788707 Del Toro et al. Aug 1998 A
5797952 Klein Aug 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800517 Anderson et al. Sep 1998 A
5800526 Anderson et al. Sep 1998 A
5800540 Chin Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5810873 Morales Sep 1998 A
5817100 Igaki Oct 1998 A
5824037 Fogarty et al. Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824040 Cox et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5843046 Motisi et al. Dec 1998 A
5843092 Heller et al. Dec 1998 A
5843160 Rhodes Dec 1998 A
5843162 Inoue Dec 1998 A
5843164 Frantzen et al. Dec 1998 A
5843167 Dwyer et al. Dec 1998 A
5851228 Pinheiro Dec 1998 A
5855599 Wan Jan 1999 A
5860998 Robinson et al. Jan 1999 A
5865844 Plaia et al. Feb 1999 A
5867432 Toda Feb 1999 A
5868783 Tower Feb 1999 A
5871536 Lazarus Feb 1999 A
5876432 Lau et al. Mar 1999 A
5879321 Hill Mar 1999 A
5879333 Smith Mar 1999 A
5879334 Brimhall Mar 1999 A
5879366 Shaw et al. Mar 1999 A
5885217 Gisselberg et al. Mar 1999 A
5891193 Robinson et al. Apr 1999 A
5893868 Hanson et al. Apr 1999 A
5893887 Jayaraman Apr 1999 A
5902334 Dwyer et al. May 1999 A
5906619 Olson et al. May 1999 A
5906640 Penn et al. May 1999 A
5906641 Thompson et al. May 1999 A
5910145 Fischell et al. Jun 1999 A
5911710 Barry et al. Jun 1999 A
5911752 Dustrude et al. Jun 1999 A
5916263 Goicoceha et al. Jun 1999 A
5919225 Lau et al. Jul 1999 A
5925075 Myers et al. Jul 1999 A
5925076 Inoe Jul 1999 A
5928279 Shannon et al. Jul 1999 A
5935135 Bramfitt et al. Aug 1999 A
5935161 Robinson et al. Aug 1999 A
5938696 Goicoechea et al. Aug 1999 A
5948018 Dereume et al. Sep 1999 A
5954729 Bachmann et al. Sep 1999 A
5957973 Quiachon et al. Sep 1999 A
5961546 Robinson et al. Oct 1999 A
5961548 Shmulewitz Oct 1999 A
5971958 Zhang Oct 1999 A
5976153 Fischell et al. Nov 1999 A
5976155 Foreman et al. Nov 1999 A
5997562 Zadno-Azizi et al. Dec 1999 A
6001125 Golds et al. Dec 1999 A
6004294 Brimhall et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6004348 Banas et al. Dec 1999 A
6017363 Hojeibane Jan 2000 A
6019777 Mackenzie Feb 2000 A
6019785 Strecker Feb 2000 A
6027508 Ren et al. Feb 2000 A
6027779 Campbell et al. Feb 2000 A
6027811 Campbell et al. Feb 2000 A
6030414 Taheri Feb 2000 A
6030415 Chuter Feb 2000 A
6033413 Mikus et al. Mar 2000 A
6039749 Marin et al. Mar 2000 A
6039755 Edwin et al. Mar 2000 A
6039758 Quiachon et al. Mar 2000 A
6045557 White et al. Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6053940 Wijay Apr 2000 A
6056722 Jayaraman May 2000 A
6059813 Vrba et al. May 2000 A
6059824 Taheri May 2000 A
6063092 Shin May 2000 A
6063113 Kavteladze et al. May 2000 A
6068635 Gianotti May 2000 A
6070589 Keith et al. Jun 2000 A
6074398 Leschinsky Jun 2000 A
6077295 Limon et al. Jun 2000 A
6077296 Shokoohi et al. Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6080191 Summers Jun 2000 A
6086611 Duffy et al. Jul 2000 A
6090128 Douglas Jul 2000 A
6090135 Plaia et al. Jul 2000 A
6093194 Mikus et al. Jul 2000 A
6093203 Uflacker Jul 2000 A
6096005 Botich et al. Aug 2000 A
6096027 Layne Aug 2000 A
6106548 Reubin et al. Aug 2000 A
6110180 Foreman et al. Aug 2000 A
6113607 Lau et al. Sep 2000 A
6117142 Goodson et al. Sep 2000 A
6117167 Goicoechea et al. Sep 2000 A
6123722 Fogarty et al. Sep 2000 A
6123723 Konya et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129756 Kugler et al. Oct 2000 A
6132458 Stachle et al. Oct 2000 A
6139532 Howell et al. Oct 2000 A
6143016 Bleam et al. Nov 2000 A
6146389 Geitz Nov 2000 A
6146415 Fitz Nov 2000 A
6149680 Shelso et al. Nov 2000 A
6152944 Holman et al. Nov 2000 A
6159195 Ha et al. Dec 2000 A
6159198 Gardeski et al. Dec 2000 A
6162237 Chan Dec 2000 A
6165195 Wilson et al. Dec 2000 A
6165214 Lazarus Dec 2000 A
6168610 Marin et al. Jan 2001 B1
6171281 Zhang Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183443 Kratoska et al. Feb 2001 B1
6183481 Lee et al. Feb 2001 B1
6183509 Dibie Feb 2001 B1
6187036 Shaolian Feb 2001 B1
6187037 Satz Feb 2001 B1
6192944 Greenhalgh Feb 2001 B1
6193726 Vanney Feb 2001 B1
6197007 Thorne et al. Mar 2001 B1
6197016 Fourkas et al. Mar 2001 B1
6197049 Shaolian et al. Mar 2001 B1
6203735 Edwin et al. Mar 2001 B1
6210429 Vardi et al. Apr 2001 B1
6214038 Piplani et al. Apr 2001 B1
6221081 Mikus et al. Apr 2001 B1
6221090 Wilson Apr 2001 B1
6221098 Wilson Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6224627 Armstrong et al. May 2001 B1
6228062 Howell et al. May 2001 B1
6231563 White et al. May 2001 B1
6238410 Vrba et al. May 2001 B1
6254609 Vrba et al. Jul 2001 B1
6254628 Wallace et al. Jul 2001 B1
6258099 Mareiro et al. Jul 2001 B1
6261316 Shaolian et al. Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6273895 Pinchuk et al. Aug 2001 B1
6273909 Kugler et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6280467 Leonhardt Aug 2001 B1
6283991 Cox et al. Sep 2001 B1
6287329 Duering et al. Sep 2001 B1
6299634 Bergeron Oct 2001 B1
6302893 Limon et al. Oct 2001 B1
6312406 Jayaraman Nov 2001 B1
6331184 Abrams Dec 2001 B1
6331190 Shokoohi et al. Dec 2001 B1
6348066 Pinchuk et al. Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352553 Van der Burg et al. Mar 2002 B1
6352561 Leopold et al. Mar 2002 B1
6355060 Lenker et al. Mar 2002 B1
6361544 Wilson et al. Mar 2002 B1
6361555 Wilson Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6361637 Martin et al. Mar 2002 B2
6379365 Diaz Apr 2002 B1
6380457 Yurek et al. Apr 2002 B1
6383213 Wilson et al. May 2002 B2
6387120 Wilson et al. May 2002 B2
6395017 Dwyer et al. May 2002 B1
6395018 Castaneda May 2002 B1
6395019 Chobotov May 2002 B2
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6409757 Trout, III et al. Jun 2002 B1
6416474 Penner et al. Jul 2002 B1
6416529 Holman et al. Jul 2002 B1
6416542 Marcade et al. Jul 2002 B1
6428567 Wilson et al. Aug 2002 B2
6432130 Hanson Aug 2002 B1
6432131 Ravenscroft Aug 2002 B1
6432134 Anson et al. Aug 2002 B1
6440161 Madrid et al. Aug 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6451043 McInnes et al. Sep 2002 B1
6464721 Marcade et al. Oct 2002 B1
6468298 Pelton Oct 2002 B1
6475166 Escano Nov 2002 B1
6475170 Doron et al. Nov 2002 B1
6478777 Honeck et al. Nov 2002 B1
6482211 Choi Nov 2002 B1
6485513 Fan Nov 2002 B1
6491719 Fogrty et al. Dec 2002 B1
6500202 Shaolian et al. Dec 2002 B1
6508790 Lawrence Jan 2003 B1
6508833 Pavcnik et al. Jan 2003 B2
6508835 Shaolian et al. Jan 2003 B1
6508836 Wilson et al. Jan 2003 B2
6511325 Lalka et al. Jan 2003 B1
6514281 Blaeser et al. Feb 2003 B1
6517522 Bell et al. Feb 2003 B1
6517569 Mikus et al. Feb 2003 B2
6517572 Kugler et al. Feb 2003 B2
6517573 Pollock et al. Feb 2003 B1
6520988 Colombo et al. Feb 2003 B1
6524335 Hartley et al. Feb 2003 B1
6533811 Ryan et al. Mar 2003 B1
6544278 Vrba et al. Apr 2003 B1
6551350 Thornton et al. Apr 2003 B1
6554848 Boylan et al. Apr 2003 B2
6558396 Inoue May 2003 B1
6562063 Euteneuer et al. May 2003 B1
6565596 White et al. May 2003 B1
6565597 Fearnot et al. May 2003 B1
6569192 Foreman et al. May 2003 B1
RE38146 Palmaz et al. Jun 2003 E
6572643 Gharibadeh Jun 2003 B1
6572645 Leonhardt Jun 2003 B2
6576005 Geitz Jun 2003 B1
6576006 Limon et al. Jun 2003 B2
6576009 Ryan et al. Jun 2003 B2
6579312 Wilson et al. Jun 2003 B2
6582390 Sanderson Jun 2003 B1
6582394 Reiss et al. Jun 2003 B1
6582459 Lau et al. Jun 2003 B1
6582460 Cryer Jun 2003 B1
6585758 Chouinard et al. Jul 2003 B1
6589213 Reydel Jul 2003 B2
6589251 Yee et al. Jul 2003 B2
6589262 Honebrink et al. Jul 2003 B1
6592548 Jayaraman Jul 2003 B2
6592581 Bowe Jul 2003 B2
6592614 Lenker et al. Jul 2003 B2
6592615 Marcade et al. Jul 2003 B1
6599315 Wilson Jul 2003 B2
6602280 Chobotov Aug 2003 B2
6607551 Sullivan et al. Aug 2003 B1
6607552 Hanson Aug 2003 B1
6613073 White et al. Sep 2003 B1
6613075 Healy et al. Sep 2003 B1
6616675 Evard et al. Sep 2003 B1
6620191 Svensson Sep 2003 B1
6641564 Kraus Nov 2003 B1
6652492 Bell et al. Nov 2003 B1
6652579 Cox et al. Nov 2003 B1
6656213 Solem Dec 2003 B2
6660030 Shaolian et al. Dec 2003 B2
6663665 Shaolian et al. Dec 2003 B2
6669716 Gilson et al. Dec 2003 B1
6669718 Besselink Dec 2003 B2
6669719 Wallace et al. Dec 2003 B2
6673102 Vonesh et al. Jan 2004 B1
6676666 Vrba et al. Jan 2004 B2
6676667 Mareiro et al. Jan 2004 B2
6689157 Madrid et al. Feb 2004 B2
6699274 Stinson Mar 2004 B2
6699275 Knudson et al. Mar 2004 B1
6702843 Brown et al. Mar 2004 B1
6702845 Cully et al. Mar 2004 B1
6722705 Korkor Apr 2004 B2
6723075 Davey et al. Apr 2004 B2
6733523 Shaolian et al. May 2004 B2
6743210 Hart et al. Jun 2004 B2
6749627 Thompson et al. Jun 2004 B2
6752819 Brady et al. Jun 2004 B1
6755855 Yurek et al. Jun 2004 B2
6761733 Chobotov et al. Jul 2004 B2
6767359 Weadock Jul 2004 B2
6790224 Gerberding Sep 2004 B2
6800065 Duane et al. Oct 2004 B2
6808509 Davey Oct 2004 B1
6808520 Fourkas et al. Oct 2004 B1
6814752 Chuter Nov 2004 B1
6818014 Brown et al. Nov 2004 B2
6821292 Pazienza et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6840950 Stanford et al. Jan 2005 B2
6846316 Abrams Jan 2005 B2
6849084 Rabkin et al. Feb 2005 B2
6849086 Cragg Feb 2005 B2
6858038 Heuser Feb 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6872193 Shaw et al. Mar 2005 B2
6875229 Wilson et al. Apr 2005 B2
6878158 Shin et al. Apr 2005 B2
6887249 Houser et al. May 2005 B1
6887251 Suval May 2005 B1
6887256 Gilson et al. May 2005 B2
6896699 Wilson et al. May 2005 B2
6899727 Armstrong et al. May 2005 B2
6899728 Phillips et al. May 2005 B1
6908477 McGuckin Jun 2005 B2
6911039 Shiu et al. Jun 2005 B2
6918925 Tehrani Jul 2005 B2
6923829 Boyle et al. Aug 2005 B2
6926732 Derus et al. Aug 2005 B2
6929661 Bolduc et al. Aug 2005 B2
6932837 Amplatz et al. Aug 2005 B2
6939352 Buzzard et al. Sep 2005 B2
6939368 Simso Sep 2005 B2
6939370 Hartley et al. Sep 2005 B2
6939371 Kugler et al. Sep 2005 B2
6939377 Jayaraman et al. Sep 2005 B2
6942691 Chuter Sep 2005 B1
6942692 Landau et al. Sep 2005 B2
6942693 Chouinard et al. Sep 2005 B2
6945990 Greenean Sep 2005 B2
6953475 Shaolian et al. Oct 2005 B2
6955679 Hendricksen et al. Oct 2005 B1
6955688 Wilson et al. Oct 2005 B2
6960217 Bolduc Nov 2005 B2
6962602 Vardi Nov 2005 B2
6981982 Armstrong et al. Jan 2006 B2
6984244 Perez et al. Jan 2006 B2
6991639 Holman et al. Jan 2006 B2
6994722 DiCarlo Feb 2006 B2
7004926 Navia et al. Feb 2006 B2
7004964 Thompson et al. Feb 2006 B2
7004967 Chouinard et al. Feb 2006 B2
7014653 Ouriel et al. Mar 2006 B2
7022133 Yee et al. Apr 2006 B2
7025773 Gittings et al. Apr 2006 B2
7025779 Elliott Apr 2006 B2
7029496 Rakos et al. Apr 2006 B2
7052511 Weldon et al. May 2006 B2
7056323 Mareiro et al. Jun 2006 B2
7074236 Rabkin et al. Jul 2006 B2
7096554 Austin et al. Aug 2006 B2
7101390 Nelson Sep 2006 B2
7105016 Shiu et al. Sep 2006 B2
7105017 Kerr Sep 2006 B2
7122051 Dallara et al. Oct 2006 B1
7122052 Greenhalgh Oct 2006 B2
7125464 Chobotov et al. Oct 2006 B2
7127789 Stinson Oct 2006 B2
7137993 Acosta et al. Nov 2006 B2
7144422 Rao Dec 2006 B1
7160318 Greenberg et al. Jan 2007 B2
7162302 Wang et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7172577 Mangano et al. Feb 2007 B2
7175651 Kerr Feb 2007 B2
7175652 Cook et al. Feb 2007 B2
7175657 Khan et al. Feb 2007 B2
7189256 Smith Mar 2007 B2
7189257 Schmitt et al. Mar 2007 B2
7201770 Johnson et al. Apr 2007 B2
7229472 DePalma et al. Jun 2007 B2
7235095 Haverkost et al. Jun 2007 B2
7241308 Andreas et al. Jul 2007 B2
7244444 Bates Jul 2007 B2
7261733 Brown et al. Aug 2007 B1
7264631 DiCarlo Sep 2007 B2
7264632 Wright et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7270675 Chun et al. Sep 2007 B2
7285130 Austin Oct 2007 B2
7297156 Nelson Nov 2007 B2
7300454 Park et al. Nov 2007 B2
7314481 Karpiel Jan 2008 B2
7314483 Landau et al. Jan 2008 B2
7316708 Gordon et al. Jan 2008 B2
7320703 DiMatteo et al. Jan 2008 B2
7367980 Kida et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7402168 Acosta et al. Jul 2008 B2
7407509 Greenberg et al. Aug 2008 B2
7413560 Chong et al. Aug 2008 B2
7419501 Chiu et al. Sep 2008 B2
7425219 Quadri et al. Sep 2008 B2
7435253 Hartley et al. Oct 2008 B1
7473271 Gunderson Jan 2009 B2
7476244 Buzzard et al. Jan 2009 B2
7481805 Magnusson Jan 2009 B2
7491230 Holman et al. Feb 2009 B2
7520895 Douglas et al. Apr 2009 B2
7526849 Serrano May 2009 B2
7537606 Hartley May 2009 B2
7553324 Andreas et al. Jun 2009 B2
7572289 Sisken et al. Aug 2009 B2
7578838 Melsheimer Aug 2009 B2
7578841 Yadin et al. Aug 2009 B2
7591832 Eversull et al. Sep 2009 B2
7618398 Holman et al. Nov 2009 B2
7632299 Weber Dec 2009 B2
7635382 Pryor Dec 2009 B2
7635383 Gumm Dec 2009 B2
7637932 Bolduc et al. Dec 2009 B2
7641684 Hilaire et al. Jan 2010 B2
7651519 Dittman Jan 2010 B2
7666219 Rasmussen et al. Feb 2010 B2
7674284 Melsheimer Mar 2010 B2
7678141 Greenan et al. Mar 2010 B2
7691135 Shaolian et al. Apr 2010 B2
7691139 Baker et al. Apr 2010 B2
7695508 Van Der Leest et al. Apr 2010 B2
7699885 Leonhardt et al. Apr 2010 B2
7717923 Kennedy, II et al. May 2010 B2
7722657 Hartley May 2010 B2
7736337 Diep et al. Jun 2010 B2
7736383 Bressler et al. Jun 2010 B2
7736384 Bressler et al. Jun 2010 B2
7753951 Shaked et al. Jul 2010 B2
7758625 Wu et al. Jul 2010 B2
7763063 Arbefeuille et al. Jul 2010 B2
7766952 Horan et al. Aug 2010 B2
7771463 Ton et al. Aug 2010 B2
7785340 Heidner et al. Aug 2010 B2
7785361 Nikolchev et al. Aug 2010 B2
7794473 Tessmer et al. Sep 2010 B2
7799266 Parker et al. Sep 2010 B2
7833259 Boatman Nov 2010 B2
7837724 Keeble et al. Nov 2010 B2
7842066 Gilson et al. Nov 2010 B2
7846135 Runfola Dec 2010 B2
7867267 Sullivan et al. Jan 2011 B2
7867270 Hartley Jan 2011 B2
7871419 Devellian et al. Jan 2011 B2
7871430 Pavcnik et al. Jan 2011 B2
7879081 DeMatteo et al. Feb 2011 B2
7883537 Grayzel et al. Feb 2011 B2
7922755 Acosta et al. Apr 2011 B2
7935140 Griffin May 2011 B2
7942924 Perez et al. May 2011 B1
8002814 Kennedy, II et al. Aug 2011 B2
8021420 Dolan Sep 2011 B2
8025692 Feeser Sep 2011 B2
8062344 Dorn et al. Nov 2011 B2
8075607 Melsheimer Dec 2011 B2
8075608 Gordon et al. Dec 2011 B2
8092508 Leynov et al. Jan 2012 B2
8167892 Feller, III et al. May 2012 B2
8182522 Sarac et al. May 2012 B2
8216295 Benjamin et al. Jul 2012 B2
8357192 Mayberry et al. Jan 2013 B2
8568466 Shaolian et al. Oct 2013 B2
8808350 Schreck et al. Aug 2014 B2
8821564 Schreck et al. Sep 2014 B2
20020019660 Gianotti Feb 2002 A1
20020049412 Madrid et al. Apr 2002 A1
20020120322 Thompson et al. Aug 2002 A1
20020123786 Gittings et al. Sep 2002 A1
20020156516 Vardi Oct 2002 A1
20020193806 Moenning et al. Dec 2002 A1
20030004560 Chobotov et al. Jan 2003 A1
20030004561 Bigus et al. Jan 2003 A1
20030065386 Weadock Apr 2003 A1
20030074043 Thompson Apr 2003 A1
20030083730 Stinson May 2003 A1
20030097169 Brucker et al. May 2003 A1
20030125751 Griffin et al. Jul 2003 A1
20030167060 Buzzard et al. Sep 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030236565 DiMatteo et al. Dec 2003 A1
20040006380 Buck et al. Jan 2004 A1
20040039400 Schmieding et al. Feb 2004 A1
20040044395 Nelson Mar 2004 A1
20040111095 Gordon et al. Jun 2004 A1
20040167618 Shaolian et al. Aug 2004 A1
20040176832 Hartley et al. Sep 2004 A1
20040193180 Buzzard et al. Sep 2004 A1
20040215312 Andreas Oct 2004 A1
20040225344 Hoffa et al. Nov 2004 A1
20050021123 Dorn et al. Jan 2005 A1
20050027305 Shiu et al. Feb 2005 A1
20050027345 Horan et al. Feb 2005 A1
20050033403 Ward et al. Feb 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050038495 Greenan Feb 2005 A1
20050049607 Hart et al. Mar 2005 A1
20050049667 Arbefeuille et al. Mar 2005 A1
20050049672 Murphy Mar 2005 A1
20050049678 Cocks et al. Mar 2005 A1
20050058327 Pieper Mar 2005 A1
20050059994 Walak et al. Mar 2005 A1
20050060016 Wu et al. Mar 2005 A1
20050060025 Mackiewicz et al. Mar 2005 A1
20050080476 Gunderson et al. Apr 2005 A1
20050113693 Smith et al. May 2005 A1
20050113905 Greenberg et al. May 2005 A1
20050119731 Brucker et al. Jun 2005 A1
20050121043 Abrams Jun 2005 A1
20050121120 Van Dijk et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050154441 Schaeffer et al. Jul 2005 A1
20050159803 Lad et al. Jul 2005 A1
20050165480 Jordan et al. Jul 2005 A1
20050171598 Schaeffer Aug 2005 A1
20050171599 White Aug 2005 A1
20050216043 Blatter et al. Sep 2005 A1
20050222668 Schaeffer et al. Oct 2005 A1
20050240153 Opie Oct 2005 A1
20050240255 Schaeffer Oct 2005 A1
20050240258 Bolduc et al. Oct 2005 A1
20050240260 Bolduc Oct 2005 A1
20050246008 Hogendijk Nov 2005 A1
20050273150 Howel et al. Dec 2005 A1
20050288772 Douglas et al. Dec 2005 A1
20060018948 Guire et al. Jan 2006 A1
20060052750 Lenker et al. Mar 2006 A1
20060095050 Hartley et al. May 2006 A1
20060100658 Obana et al. May 2006 A1
20060129223 Jabbour et al. Jun 2006 A1
20060142838 Molaei et al. Jun 2006 A1
20060161244 Seguin Jul 2006 A1
20060184226 Austin Aug 2006 A1
20060184237 Weber et al. Aug 2006 A1
20060200223 Andreas et al. Sep 2006 A1
20060212107 Case et al. Sep 2006 A1
20060217794 Ruiz et al. Sep 2006 A1
20060233990 Humphrey et al. Oct 2006 A1
20060233991 Humphrey et al. Oct 2006 A1
20060264801 Bolling et al. Nov 2006 A1
20060265045 Shiu et al. Nov 2006 A1
20060276872 Arbefeuille et al. Dec 2006 A1
20070005001 Rowe et al. Jan 2007 A1
20070010867 Carter et al. Jan 2007 A1
20070027522 Chang et al. Feb 2007 A1
20070027526 Demetriades et al. Feb 2007 A1
20070043421 Mangiardi et al. Feb 2007 A1
20070043430 Stinson Feb 2007 A1
20070049906 Magnusson Mar 2007 A1
20070050006 Lavelle Mar 2007 A1
20070055339 George et al. Mar 2007 A1
20070055360 Hanson et al. Mar 2007 A1
20070060914 Magnusson Mar 2007 A1
20070112420 LaDuca May 2007 A1
20070118207 Amplatz et al. May 2007 A1
20070118208 Kerr May 2007 A1
20070156224 Cioanta et al. Jul 2007 A1
20070167955 Arnault De La Menardiere et al. Jul 2007 A1
20070168014 Jimenez Jul 2007 A1
20070191775 Diep et al. Aug 2007 A1
20070191927 Bowe et al. Aug 2007 A1
20070203571 Kaplan et al. Aug 2007 A1
20070213805 Schaeffer et al. Sep 2007 A1
20070225659 Melsheimer Sep 2007 A1
20070225797 Krivoruhko Sep 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070244540 Pryor Oct 2007 A1
20070260301 Chuter et al. Nov 2007 A1
20070260302 Igaki Nov 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20080015681 Wilson Jan 2008 A1
20080027528 Jagger et al. Jan 2008 A1
20080033354 Hartley et al. Feb 2008 A1
20080046005 Lenker et al. Feb 2008 A1
20080071343 Mayberry et al. Mar 2008 A1
20080082052 Schnell et al. Apr 2008 A1
20080082154 Tseng et al. Apr 2008 A1
20080086191 Valencia Apr 2008 A1
20080109065 Bowe May 2008 A1
20080125849 Burpee et al. May 2008 A1
20080140003 Bei et al. Jun 2008 A1
20080172042 House Jul 2008 A1
20080172122 Mayberry et al. Jul 2008 A1
20080208319 Rabkin et al. Aug 2008 A1
20080269867 Johnson Oct 2008 A1
20080294230 Parker Nov 2008 A1
20090012602 Quadri Jan 2009 A1
20090030495 Koch Jan 2009 A1
20090099638 Grewe Apr 2009 A1
20090105798 Koch Apr 2009 A1
20090105806 Benjamin et al. Apr 2009 A1
20090138065 Zhang et al. May 2009 A1
20090192586 Tabor et al. Jul 2009 A1
20090216315 Schreck et al. Aug 2009 A1
20090254165 Tabor et al. Oct 2009 A1
20090259298 Mayberry et al. Oct 2009 A1
20090276028 Bailey et al. Nov 2009 A1
20100004730 Benjamin et al. Jan 2010 A1
20100030318 Berra Feb 2010 A1
20100057185 Melsheimer et al. Mar 2010 A1
20100094393 Cordeiro et al. Apr 2010 A1
20100114290 Rasmussen et al. May 2010 A1
20100160863 Heuser Jun 2010 A1
20100168674 Shaw et al. Jul 2010 A1
20100168834 Ryan et al. Jul 2010 A1
20100179635 Dittman Jul 2010 A1
20100179636 Mayberry et al. Jul 2010 A1
20100179638 Shaolian et al. Jul 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100268234 Aho et al. Oct 2010 A1
20100274270 Patel et al. Oct 2010 A1
20100274340 Hartley et al. Oct 2010 A1
20110009945 Parker et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110046712 Melsheimer et al. Feb 2011 A1
20110121023 Milan May 2011 A1
20110178588 Haselby Jul 2011 A1
20110218607 Arbefeuille et al. Sep 2011 A1
20110218617 Nguyen Sep 2011 A1
20110224742 Weisel et al. Sep 2011 A1
20110224782 Douglas et al. Sep 2011 A1
20110251664 Acosta De Acevedo Oct 2011 A1
20110257718 Argentine Oct 2011 A1
20110270371 Argentine Nov 2011 A1
20110282425 Dwork Nov 2011 A1
20110313503 Berra et al. Dec 2011 A1
20120109279 Mayberry May 2012 A1
20120123517 Ouellette et al. May 2012 A1
20130184805 Sawada Jul 2013 A1
Foreign Referenced Citations (73)
Number Date Country
2220141 Nov 1996 CA
2287406 Dec 1997 CA
295 21 548 Feb 1995 DE
295 21 776 Feb 1995 DE
100 17 147 Oct 2001 DE
0 177 330 Jun 1991 EP
0 564 373 Oct 1993 EP
0 596 145 May 1994 EP
0 621 015 Oct 1994 EP
0 659 389 Jun 1995 EP
0 688 545 Dec 1995 EP
0 689 806 Jan 1996 EP
0 712 614 May 1996 EP
0 732 088 Sep 1996 EP
0 732 088 Sep 1996 EP
0 740 928 Nov 1996 EP
0 740 928 Nov 1996 EP
0 747 020 Dec 1996 EP
0 775 470 May 1997 EP
0 782 841 Jul 1997 EP
0 783 873 Jul 1997 EP
0 783 873 Jul 1997 EP
0 783 874 Jul 1997 EP
0 783 874 Jul 1997 EP
0 875 262 Nov 1998 EP
0 880 938 Dec 1998 EP
0 880 948 Dec 1998 EP
0 904 745 Mar 1999 EP
0 974 314 Jan 2000 EP
0 732 088 Apr 2000 EP
1 358 903 Nov 2003 EP
1 358 903 Nov 2003 EP
1 508 313 Feb 2005 EP
2 680 915 Jan 2014 EP
1 038 606 Jul 1998 ES
1 193 759 Jun 1970 GB
04-25755 Jan 1992 JP
H05-81257 Nov 1993 JP
30-09638 Apr 1994 JP
08-052165 Feb 1996 JP
08-336597 Dec 1996 JP
09-164209 Jun 1997 JP
9-511160 Nov 1997 JP
2000-500047 Jan 2000 JP
WO 9313825 Jul 1993 WO
WO 9424961 Nov 1994 WO
WO 9521592 Aug 1995 WO
WO 9634580 Nov 1996 WO
WO 9639999 Dec 1996 WO
WO 9641589 Dec 1996 WO
WO 9710757 Mar 1997 WO
WO 9710777 Mar 1997 WO
WO 9714375 Apr 1997 WO
WO 9717911 May 1997 WO
WO 9719652 Jun 1997 WO
WO 9726936 Jul 1997 WO
WO 9733532 Sep 1997 WO
WO 9745072 Dec 1997 WO
WO 9802100 Jan 1998 WO
WO 9853761 Dec 1998 WO
WO 9929262 Jun 1999 WO
WO 9944536 Sep 1999 WO
WO 9947077 Sep 1999 WO
WO 9958084 Nov 1999 WO
WO 0236179 May 2002 WO
WO 0239888 May 2002 WO
WO 02060345 Aug 2002 WO
WO 2005037076 Apr 2005 WO
WO 2005037141 Apr 2005 WO
WO 2005067819 Jul 2005 WO
WO 2006071915 Jul 2006 WO
WO 2007027830 Mar 2007 WO
WO 2012118901 Sep 2012 WO
Non-Patent Literature Citations (4)
Entry
US 5,690,647, 11/1997, Osborne (withdrawn)
US 6,413,270, 07/2002, Thornton et al. (withdrawn)
International Preliminary Report on Patentability, re PCT/US2012/027151, mailed Sep. 12, 2013, in 8 pages.
International Search Report and Written Opinion, re PCT/US2012/027151, mailed Jun. 26, 2012.
Related Publications (1)
Number Date Country
20140358214 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61448154 Mar 2011 US
Divisions (1)
Number Date Country
Parent 13408952 Feb 2012 US
Child 14462485 US