Catheter system for valvuloplasty procedure

Information

  • Patent Grant
  • 12016610
  • Patent Number
    12,016,610
  • Date Filed
    Monday, December 6, 2021
    3 years ago
  • Date Issued
    Tuesday, June 25, 2024
    6 months ago
  • Inventors
  • Original Assignees
    • BOLT MEDICAL, INC. (Carlsbad, CA, US)
  • Examiners
    • Getzow; Scott M.
    Agents
    • ROEDER & BRODER LLP
    • Broder; James P.
Abstract
A catheter system (100) for treating one or more treatment sites (106) within or adjacent to the heart valve (108) includes an energy source (124), a plurality of energy guides (122A), and a balloon assembly (104). The energy source (124) generates energy. The plurality of energy guides (122A) are configured to receive energy from the energy source (124). The balloon assembly (104) includes a plurality of balloons (104A) that are each positionable substantially adjacent to one or more treatment site(s) (106). Each of the plurality of balloons (104A) has a balloon wall (130) that defines a balloon interior (146). Each of the plurality of balloons (104A) is configured to retain a balloon fluid (132) within the balloon interior (146). A portion of at least one of the plurality of energy guides (122A) that receive the energy from the energy source (124) is positioned within the balloon interior (146) of each of the plurality of balloons (104A) so that plasma is formed in the balloon fluid (132) within the balloon interior (146).
Description
BACKGROUND

Vascular lesions, such as calcium deposits, within and adjacent to heart valves in the body can be associated with an increased risk for major adverse events, such as myocardial infarction, embolism, deep vein thrombosis, stroke, and the like. Severe vascular lesions, such as severely calcified vascular lesions, can be difficult to treat and achieve patency for a physician in a clinical setting.


The tricuspid valve, also known as the right atrioventricular valve, includes three leaflets which open and close in unison when the valve is functioning properly. The tricuspid valve functions as a one-way valve that opens during ventricular diastole, allowing blood to flow from the right atrium into the right ventricle, and closes during ventricular systole to prevent regurgitation of blood from the right ventricle back into the right atrium. The back flow of blood, also known as regression or tricuspid regurgitation, can result in increased ventricular preload because the blood refluxed back into the atrium is added to the volume of blood that must be pumped back into the ventricle during the next cycle of ventricular diastole. Increased right ventricular preload over a prolonged period of time may lead to right ventricular enlargement (dilatation), which can progress to right heart failure if left uncorrected.


A calcium deposit on the tricuspid valve, known as valvular stenosis, can form adjacent to a valve wall of the tricuspid valve and/or on or between the leaflets of the tricuspid valve. Valvular stenosis can prevent the leaflets from opening and closing completely, which can, in turn, result in the undesired tricuspid regurgitation. Over time, such calcium deposits can cause the leaflets to become less mobile and ultimately prevent the heart from supplying enough blood to the rest of the body.


Certain methods are currently available which attempt to address valvular stenosis, but such methods have not been altogether satisfactory. One such method includes using a standard balloon valvuloplasty catheter. Unfortunately, this type of catheter typically does not have enough strength to sufficiently disrupt the calcium deposit between the leaflets or at the base of the leaflets. Another such method includes artificial tricuspid valve replacement, which can be used to restore functionality of the tricuspid valve. However, this procedure is highly invasive and extremely expensive. In still another such method, a valvular stent can be placed between the leaflets to bypass the leaflets. This procedure is relatively costly, and results have found that the pressure gradient does not appreciably improve.


Thus, there is an ongoing desire to develop improved methodologies for valvuloplasty in order to more effectively and efficiently break up calcium deposits adjacent to the valve wall of the tricuspid valve and/or on or between the leaflets of the tricuspid valve. Additionally, it is desired that such improved methodologies work effectively to address not only valvular stenosis related to the tricuspid valve, but also calcification on other heart valves, such as mitral valve stenosis within the mitral valve, aorta valve stenosis within the aorta valve, and pulmonary valve stenosis of the pulmonary valve.


SUMMARY

The present invention is directed toward a catheter system that can be used for treating one or more treatment sites within or adjacent to the heart valve within a body of a patient. In various embodiments, the catheter system includes an energy source, a plurality of energy guides, and a balloon assembly. The energy source generates energy. The plurality of energy guides are configured to receive energy from the energy source. The balloon assembly includes a plurality of balloons that are each positionable substantially adjacent to the treatment site(s). Each of the plurality of balloons has a balloon wall that defines a balloon interior. Each of the plurality of balloons is configured to retain a balloon fluid within the balloon interior. A portion of at least one of the plurality of energy guides that receive the energy from the energy source is positioned within the balloon interior of each of the plurality of balloons so that plasma is formed in the balloon fluid within the balloon interior.


In various implementations, the heart valve includes a valve wall, and at least one of the plurality of balloons is positioned adjacent to the valve wall. In another implementation, the heart valve includes a plurality of leaflets, and at least one of the plurality of balloons is positioned adjacent to at least one of the plurality of leaflets.


In some embodiments, each of the plurality of balloons is selectively inflatable with the balloon fluid to expand to an inflated state. In such embodiments, when the balloon is in the inflated state the balloon wall is configured to be positioned substantially adjacent to the treatment site.


In certain embodiments, the catheter system further includes a plurality of plasma generators, with one plasma generator being positioned near a guide distal end of each of the plurality of energy guides. The plasma generator is configured to generate the plasma in the balloon fluid within the balloon interior of each of the plurality of balloons.


In various embodiments, the guide distal end of at least one of the plurality of energy guides is positioned within the balloon interior of one of the plurality of balloons approximately at a midpoint of the heart valve.


In some embodiments, the plasma formation causes rapid bubble formation and imparts pressure waves upon the balloon wall of each of the balloons adjacent to the treatment site.


In certain embodiments, the energy source generates pulses of energy that are guided along each of the plurality of energy guides into the balloon interior of each balloon to induce the plasma formation in the balloon fluid within the balloon interior of each of the balloons.


In some embodiments, the energy source is a laser source that provides pulses of laser energy. In certain such embodiments, at least one of the plurality of energy guides includes an optical fiber.


In various embodiments, the energy source is a high voltage energy source that provides pulses of high voltage. In such embodiments, at least one of the plurality of energy guides can include an electrode pair including spaced apart electrodes that extend into the balloon interior; and wherein pulses of high voltage from the energy source are applied to the electrodes and form an electrical arc across the electrodes.


In certain embodiments, the catheter system further includes a catheter shaft. In such embodiments, a balloon proximal end of each of the plurality of balloons can be coupled to the catheter shaft. In some such embodiments, the catheter system further includes (i) a guide shaft that is positioned at least partially within the catheter shaft, the guide shaft defining a guidewire lumen, and (ii) a guidewire that is positioned to extend through the guidewire lumen, the guidewire being configured to guide movement of the balloon assembly so that each of the plurality of balloons is positioned substantially adjacent to the treatment site.


In various embodiments, the balloon assembly includes three balloons. In another embodiment, the balloon assembly includes two balloons.


In some embodiments, each of the plurality of balloons is independently steerable to be positioned substantially adjacent to the treatment site.


In one embodiment, at least one of the plurality of balloons is formed from a braided nitinol material.


In certain embodiments, at least one of the balloons includes a drug-eluting coating.


The present invention is further directed toward a catheter system for treating one or more treatment sites within or adjacent to a heart valve within a body of a patient, the catheter system including an energy source that generates energy; a plurality of energy guides that are configured to receive energy from the energy source; and a balloon assembly including a multi-lobed balloon including a plurality of balloon lobes that are each positionable substantially adjacent to the treatment site(s), the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid in the balloon interior within each of the plurality of balloon lobes; and wherein a portion of at least one of the plurality of energy guides that receive the energy from the energy source is positioned within the balloon interior of each of the plurality of balloon lobes so that plasma is formed in the balloon fluid within the balloon interior.


Additionally, the present invention is also directed toward a method for treating one or more treatment sites within or adjacent to a heart valve within a body of a patient, the method including the steps of (i) generating energy with an energy source; (ii) receiving energy from the energy source with a plurality of energy guides; (iii) positioning a plurality of balloons substantially adjacent to the treatment site(s), each of the plurality of balloons having a balloon wall that defines a balloon interior, each of the plurality of balloons being configured to retain a balloon fluid within the balloon interior; and (iv) positioning at least one of the plurality of energy guides that receive the energy from the energy source within the balloon interior of each of the plurality of balloons so that plasma is formed in the balloon fluid within the balloon interior.


Further, the present invention is also directed toward a method for treating one or more treatment sites within or adjacent to a heart valve within a body of a patient, the method including the steps of (i) generating energy with an energy source; (ii) receiving energy from the energy source with a plurality of energy guides; (iii) positioning each of a plurality of balloon lobes of a multi-lobed balloon substantially adjacent to the treatment site(s), the balloon having a balloon wall that defines a balloon interior, the balloon being configured to retain a balloon fluid within the balloon interior of each of the plurality of balloon lobes; and (iv) positioning at least one of the plurality of energy guides that receive the energy from the energy source within the balloon interior of each of the plurality of balloon lobes so that plasma is formed in the balloon fluid within the balloon interior.


This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope herein is defined by the appended claims and their legal equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:



FIG. 1 is a schematic cross-sectional view of an embodiment of a catheter system in accordance with various embodiments herein, the catheter system including a valvular lithoplasty balloon assembly having features of the present invention;



FIG. 2A is a simplified side view of a portion of a heart valve and a portion of an embodiment of the catheter system including an embodiment of the valvular lithoplasty balloon assembly;



FIG. 2B is a simplified cutaway view of the heart valve and the valvular lithoplasty balloon assembly taken on line 2B-2B in FIG. 2A;



FIG. 3A is a simplified side view of a portion of the heart valve and a portion of another embodiment of the catheter system including another embodiment of the valvular lithoplasty balloon assembly;



FIG. 3B is a simplified cutaway view of the heart valve and the valvular lithoplasty balloon assembly taken on line 3B-3B in FIG. 3A;



FIG. 4A is a simplified side view of a portion of the heart valve and a portion of still another embodiment of the catheter system including still another embodiment of the valvular lithoplasty balloon assembly;



FIG. 4B is a simplified cutaway view of the heart valve and the valvular lithoplasty balloon assembly taken on line 4B-4B in FIG. 4A;



FIG. 5A is a simplified side view of a portion of the heart valve and a portion of yet another embodiment of the catheter system including yet another embodiment of the valvular lithoplasty balloon assembly; and



FIG. 5B is a simplified cutaway view of the heart valve and the valvular lithoplasty balloon assembly taken on line 5B-5B in FIG. 5A.





While embodiments of the present invention are susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and are described in detail herein. It is understood, however, that the scope herein is not limited to the particular embodiments described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope herein.


DESCRIPTION

Treatment of vascular lesions (also sometimes herein referred to as “treatment sites”) can reduce major adverse events or death in affected subjects. As referred to herein, a major adverse event is one that can occur anywhere within the body due to the presence of a vascular lesion. Major adverse events can include, but are not limited to, major adverse cardiac events, major adverse events in the peripheral or central vasculature, major adverse events in the brain, major adverse events in the musculature, or major adverse events in any of the internal organs.


The catheter systems and related methods disclosed herein are configured to incorporate improved methodologies for valvuloplasty in order to more effectively and efficiently break up any calcified vascular lesions that may have developed on and/or within the heart valves over time. More particularly, the catheter systems and related methods generally include a valvular lithoplasty balloon assembly (also sometimes referred to simply as a “balloon assembly”) that incorporates the use of a plurality of balloons and/or a single balloon with multiple lobes, which are moved so as to be positioned within and/or adjacent to the heart valve. Each of the balloons and/or the balloon lobes are then anchored in specific locations so that energy can be directed to the precise locations necessary at the heart valve, such as adjacent to the valve wall and/or on or between adjacent leaflets within the heart valve, in order to break up the calcified vascular lesions. While such methodologies are often described herein as being useful for treatment of valvular stenosis in relation to the tricuspid valve, it is appreciated that such methodologies are also useful in treatment of calcium deposits on other heart valves, such as for mitral valve stenosis within the mitral valve, for aorta valve stenosis within the aorta valve, and/or for pulmonary valve stenosis within the pulmonary valve.


In various embodiments, the catheter systems can include a catheter configured to advance to the vascular lesion located at the treatment site within or adjacent a heart valve within the body of the patient. The catheter includes a catheter shaft, and the valvular lithoplasty balloon assembly that is coupled and/or secured to the catheter shaft. Each balloon of the valvular lithoplasty balloon assembly can include a balloon wall that defines a balloon interior. Additionally, in embodiments where the balloon assembly includes a single balloon with multiple lobes, each lobe of the balloon can include a lobe wall (a portion of the balloon wall) that helps to define a lobe interior. Each balloon can be configured to receive a balloon fluid within the balloon interior and/or the lobe interior to expand from a deflated state suitable for advancing the balloon(s) through a patient's vasculature, to an inflated state suitable for anchoring the balloon(s) in position relative to the treatment site.


The catheter systems further utilize an energy source, e.g., a light source such as a laser source or another suitable energy source, which provides energy that is guided by energy guides, e.g., light guides, to create a localized plasma in the balloon fluid that is retained within the balloon interior of each of the plurality of balloons and/or within the lobe interior of each of the multiple lobes of the single balloon of the valvular lithoplasty balloon assembly. As such, the energy guides can sometimes be referred to as, or can be said to incorporate a “plasma generator” at or near a guide distal end of the energy guide that is positioned within the balloon interior and/or the lobe interior.


In particular, a portion of at least one energy guide, such as the guide distal end of the energy guide, can be positioned within each balloon and/or each lobe of the balloon assembly. Each energy guide can be configured for generating pressure waves within the balloon fluid for disrupting the vascular lesions. More specifically, each energy guide can be configured to guide energy from the energy source into the balloon interior and/or the lobe interior to generate the localized plasma, such as via the plasma generator, within the balloon fluid at or near the guide distal end of the energy guide disposed within the balloon interior of each of the balloons and/or the lobe interior of each balloon lobe located at the treatment site. The creation of the localized plasma can initiate the rapid formation of one or more bubbles that can rapidly expand to a maximum size and then dissipate through a cavitation event that can launch a pressure wave upon collapse. Thus, the rapid expansion of the plasma-induced bubbles (also sometimes referred to simply as “plasma bubbles”) can generate one or more pressure waves within the balloon fluid retained within the balloon interior of the balloon and/or the lobe interior of the balloon lobes and thereby impart such pressure waves onto and induce fractures in the vascular lesions at the treatment site within or adjacent to the heart valve within the body of the patient.


By selectively positioning the balloon assembly adjacent to the treatment site, the energy guides in each balloon and/or each balloon lobe can be applied to break up the calcified vascular lesions in a different precise location at the treatment site. In some embodiments, the energy source can be configured to provide sub-millisecond pulses of energy from the energy source to initiate the plasma formation in the balloon fluid within the balloons and/or balloon lobes to cause rapid bubble formation and to impart pressure waves upon the balloon wall at the treatment site. Thus, the pressure waves can transfer mechanical energy through an incompressible balloon fluid to the treatment site to impart a fracture force on the intravascular lesion. Without wishing to be bound by any particular theory, it is believed that the rapid change in balloon fluid momentum upon the balloon wall that is in contact with the intravascular lesion is transferred to the intravascular lesion to induce fractures to the lesion.


As described in detail herein, the catheter systems of the present invention include the valvular lithoplasty balloon assembly that includes the plurality of balloons, e.g., two, three or greater individual balloons, and/or the single balloon having multiple lobes, two, three or greater individual lobes within the single balloon, that can be utilized to impart pressure onto and induce fractures in calcified vascular lesions adjacent to the valve wall and/or on or between adjacent leaflets within the tricuspid valve (or other heart valve), in order to break up the calcified vascular lesions. It is appreciated that in different embodiments, the number of balloons and/or the number of balloon lobes in the multi-lobed balloon is intended to match the number of leaflets in the heart valve in which the catheter system is being used. More specifically, in a heart valve that includes three leaflets, the balloon assembly will typically include three individual balloons or three balloon lobes in the single multi-lobed balloon; and in a heart valve that includes two leaflets, the balloon assembly will typically include two individual balloons or two balloon lobes within the single multi-lobed balloon. As used herein, the terms “treatment site”, “intravascular lesion” and “vascular lesion” can be used interchangeably unless otherwise noted.


Those of ordinary skill in the art will realize that the following detailed description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Additionally, other methods of delivering energy to the lesion can be utilized, including, but not limited to electric current induced plasma generation. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same or similar nomenclature and/or reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.


In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It is appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application-related and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it is recognized that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.


The catheter systems disclosed herein can include many different forms. Referring now to FIG. 1, a schematic cross-sectional view is shown of a catheter system 100 in accordance with various embodiments. The catheter system 100 is suitable for imparting pressure waves to induce fractures in one or more treatment sites within or adjacent leaflets within the tricuspid valve or other appropriate heart valve. In the embodiment illustrated in FIG. 1, the catheter system 100 can include one or more of a catheter 102, an energy guide bundle 122 including one or more energy guides 122A, a source manifold 136, a fluid pump 138, a system console 123 including one or more of an energy source 124, a power source 125, a system controller 126, and a graphic user interface 127 (a “GUI”), and a handle assembly 128. Additionally, as described herein, the catheter 102 includes a valvular lithoplasty balloon assembly 104 (also sometimes referred to herein simply as a “balloon assembly”) that is configured to be selectively positioned adjacent to a valve wall 108A (including annulus and commissures) and/or on or between adjacent leaflets 1088 within a heart valve 108 at a treatment site 106. Alternatively, the catheter system 100 can have more components or fewer components than those specifically illustrated and described in relation to FIG. 1.


The catheter 102 is configured to move to the treatment site 106 within or adjacent to the heart valve 108 within a body 107 of a patient 109. The treatment site 106 can include one or more vascular lesions 106A such as calcified vascular lesions, for example. Additionally, or in the alternative, the treatment site 106 can include vascular lesions 106A such as fibrous vascular lesions.


The catheter 102 can include a catheter shaft 110, a guide shaft 118, the valvular lithoplasty balloon assembly 104, and a guidewire 112.


The catheter shaft 110 can extend from a proximal portion 114 of the catheter system 100 to a distal portion 116 of the catheter system 100. The catheter shaft 110 can include a longitudinal axis 144. The guide shaft 118 can be positioned, at least in part, within the catheter shaft 110. The guide shaft 118 can define a guidewire lumen which is configured to move over the guidewire 112 and/or through which the guidewire 112 extends. The catheter shaft 110 can further include one or more inflation lumens (not shown) and/or various other lumens for various other purposes. For example, in one embodiment, the catheter shaft 110 includes a separate inflation lumen that is configured to provide a balloon fluid 132 for each balloon and/or each balloon lobe of the balloon assembly 104. Alternatively, in another embodiment, the catheter shaft 110 can include an inflation lumen that is configured to provide the balloon fluid 132 to more than one balloon and/or more than one balloon lobe of the balloon assembly 104. In some embodiments, the catheter 102 can have a distal end opening 120 and can accommodate and be tracked over the guidewire 112 as the catheter 102 is moved and positioned at or near the treatment site 106.


The balloon assembly 104 can be coupled to the catheter shaft 110. In some embodiments, the balloon assembly 104 includes a plurality of balloons 104A that can each be positioned adjacent to the valve wall 108A and/or on or between adjacent leaflets 1088 within the heart valve 108 at the treatment site 106. In one such embodiment, the balloon assembly 104 includes three individual balloons 104A that are positioned substantially adjacent to one another. Alternatively, in another such embodiment, the balloon assembly 104 can only include two balloons 104A. Still alternatively, in other embodiments, the balloon assembly 104 can include only a single balloon that includes multiple balloon lobes, i.e., two balloon lobes or three balloon lobes, with each balloon lobe being positionable adjacent to the valve wall 108A and/or on or between adjacent leaflets 108B within the heart valve 108 at the treatment site 106.


Each balloon 104A of the balloon assembly 104 can include a balloon proximal end 104P and a balloon distal end 104D. In some embodiments, the balloon proximal end 104P of each balloon 104A can be coupled to the catheter shaft 110. Additionally, in certain embodiments, the balloon distal end 104D of each balloon 104A can be coupled to the guide shaft 118.


Each balloon 104A includes a balloon wall 130 that defines a balloon interior 146. Each balloon 104A can be selectively inflated with a balloon fluid 132 to expand from a deflated state suitable for advancing the catheter 102 through a patient's vasculature, to an inflated state (as shown in FIG. 1) suitable for anchoring the catheter 102 in position relative to the treatment site 106. Stated in another manner, when each balloon 104A is in the inflated state, the balloon wall 130 of each balloon 104A is configured to be positioned substantially adjacent to a different specific area at the treatment site 106.


The balloons 104A suitable for use in the balloon assembly 104 within the catheter system 100 include those that can be passed through the vasculature of a patient when in the deflated state. In some embodiments, the balloons 104A are made from silicone. In other embodiments, the balloon 104A can be made from materials such as polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™ material, nylon, or any other suitable material. In still other embodiments, the balloons 104A can be provided in the form of braided nitinol balloons. Additionally, in certain embodiments, the balloons 104A are impermeable whether fully inflated or not, such that no apertures are intentionally formed into and/or through the balloon wall 130 to allow the balloon fluid 132 and/or any substances such as therapeutic agents to pass therethrough.


The balloons 104A can have any suitable diameter (in the inflated state). In various embodiments, the balloons 104A can have a diameter (in the inflated state) ranging from less than one millimeter (mm) up to 25 mm. In some embodiments, the balloons 104A can have a diameter (in the inflated state) ranging from at least 1.5 mm up to 14 mm. In some embodiments, the balloons 104A can have a diameter (in the inflated state) ranging from at least two mm up to five mm.


In some embodiments, the balloons 104A can have a length ranging from at least three mm to 300 mm. More particularly, in some embodiments, the balloons 104A can have a length ranging from at least eight mm to 200 mm. It is appreciated that a balloon 104 having a relatively longer length can be positioned adjacent to larger treatment sites 106, and, thus, may be usable for imparting pressure waves onto and inducing fractures in larger vascular lesions 106A or multiple vascular lesions 106A at precise locations within the treatment site 106. It is further appreciated that a longer balloon 104A can also be positioned adjacent to multiple treatment sites 106 at any one given time.


The balloons 104A can be inflated to inflation pressures of between approximately one atmosphere (atm) and 70 atm. In some embodiments, the balloons 104A can be inflated to inflation pressures of from at least 20 atm to 60 atm. In other embodiments, the balloons 104A can be inflated to inflation pressures of from at least six atm to 20 atm. In still other embodiments, the balloons 104A can be inflated to inflation pressures of from at least three atm to 20 atm. In yet other embodiments, the balloons 104A can be inflated to inflation pressures of from at least two atm to ten atm.


The balloons 104A can have various shapes, including, but not to be limited to, a conical shape, a square shape, a rectangular shape, a spherical shape, a conical/square shape, a conical/spherical shape, an extended spherical shape, an oval shape, a tapered shape, a bone shape, a stepped diameter shape, an offset shape, or a conical offset shape. Additionally, in certain embodiments, a single, multi-lobed balloon can be utilized. In some embodiments, the balloons 104A can include a drug eluting coating or a drug eluting stent structure. The drug eluting coating or drug eluting stent can include one or more therapeutic agents including anti-inflammatory agents, anti-neoplastic agents, anti-angiogenic agents, and the like.


The balloon fluid 132 can be a liquid or a gas. Some examples of the balloon fluid 132 suitable for use can include, but are not limited to one or more of water, saline, contrast medium, fluorocarbons, perfluorocarbons, gases, such as carbon dioxide, or any other suitable balloon fluid 132. In some embodiments, the balloon fluid 132 can be used as a base inflation fluid. In some embodiments, the balloon fluid 132 can include a mixture of saline to contrast medium in a volume ratio of approximately 50:50. In other embodiments, the balloon fluid 132 can include a mixture of saline to contrast medium in a volume ratio of approximately 25:75. In still other embodiments, the balloon fluid 132 can include a mixture of saline to contrast medium in a volume ratio of approximately 75:25. However, it is understood that any suitable ratio of saline to contrast medium can be used. The balloon fluid 132 can be tailored on the basis of composition, viscosity, and the like so that the rate of travel of the pressure waves are appropriately manipulated. In certain embodiments, the balloon fluids 132 suitable for use are biocompatible. A volume of balloon fluid 132 can be tailored by the chosen energy source 124 and the type of balloon fluid 132 used.


In some embodiments, the contrast agents used in the contrast media can include, but are not to be limited to, iodine-based contrast agents, such as ionic or non-ionic iodine-based contrast agents. Some non-limiting examples of ionic iodine-based contrast agents include diatrizoate, metrizoate, iothalamate, and ioxaglate. Some non-limiting examples of non-ionic iodine-based contrast agents include iopamidol, iohexol, ioxilan, iopromide, iodixanol, and ioversol. In other embodiments, non-iodine-based contrast agents can be used. Suitable non-iodine containing contrast agents can include gadolinium (III)-based contrast agents. Suitable fluorocarbon and perfluorocarbon agents can include, but are not to be limited to, agents such as the perfluorocarbon dodecafluoropentane (DDFP, C5F12).


The balloon fluids 132 can include those that include absorptive agents that can selectively absorb light in the ultraviolet region (e.g., at least ten nanometers (nm) to 400 nm), the visible region (e.g., at least 400 nm to 780 nm), or the near-infrared region (e.g., at least 780 nm to 2.5 μm) of the electromagnetic spectrum. Suitable absorptive agents can include those with absorption maxima along the spectrum from at least ten nm to 2.5 μm. Alternatively, the balloon fluids 132 can include those that include absorptive agents that can selectively absorb light in the mid-infrared region (e.g., at least 2.5 μm to 15 μm), or the far-infrared region (e.g., at least 15 μm to one mm) of the electromagnetic spectrum. In various embodiments, the absorptive agent can be those that have an absorption maximum matched with the emission maximum of the laser used in the catheter system 100. By way of non-limiting examples, various lasers usable in the catheter system 100 can include neodymium:yttrium-aluminum-garnet (Nd:YAG−emission maximum=1064 nm) lasers, holmium:YAG (Ho:YAG−emission maximum=2.1 μm) lasers, or erbium:YAG (Er:YAG−emission maximum=2.94 μm) lasers. In some embodiments, the absorptive agents can be water soluble. In other embodiments, the absorptive agents are not water soluble. In some embodiments, the absorptive agents used in the balloon fluids 132 can be tailored to match the peak emission of the energy source 124. Various energy sources 124 having emission wavelengths of at least ten nanometers to one millimeter are discussed elsewhere herein.


The catheter shaft 110 of the catheter 102 can be coupled to the one or more energy guides 122A of the energy guide bundle 122 that are in optical communication with the energy source 124. Each energy guide(s) 122A can be disposed along the catheter shaft 110 and within one of the balloons 104A or balloon lobes of the balloon assembly 104. In some embodiments, each energy guide 122A can be an optical fiber and the energy source 124 can be a laser. The energy source 124 can be in optical communication with the energy guides 122A at the proximal portion 114 of the catheter system 100.


In some embodiments, the catheter shaft 110 can be coupled to multiple energy guides 122A such as a first energy guide, a second energy guide, a third energy guide, etc., which can be disposed at any suitable positions about the guide shaft 118 and/or the catheter shaft 110. For example, in certain non-exclusive embodiments, two energy guides 122A can be spaced apart by approximately 180 degrees about the circumference of the guide shaft 118 and/or the catheter shaft 110; three energy guides 122A can be spaced apart by approximately 120 degrees about the circumference of the guide shaft 118 and/or the catheter shaft 110; or four energy guides 122A can be spaced apart by approximately 90 degrees about the circumference of the guide shaft 118 and/or the catheter shaft 110. Still alternatively, multiple energy guides 122A need not be uniformly spaced apart from one another about the circumference of the guide shaft 118 and/or the catheter shaft 110. More particularly, it is further appreciated that the energy guides 122A can be disposed uniformly or non-uniformly about the guide shaft 118 and/or the catheter shaft 110 to achieve the desired effect in the desired locations.


The catheter system 100 and/or the energy guide bundle 122 can include any number of energy guides 122A in optical communication with the energy source 124 at the proximal portion 114, and with the balloon fluid 132 within the balloon interior 146 of the balloons 104A at the distal portion 116. For example, in some embodiments, the catheter system 100 and/or the energy guide bundle 122 can include from one energy guide 122A to greater than 30 energy guides 122A.


The energy guides 122A can have any suitable design for purposes of generating plasma and/or pressure waves in the balloon fluid 132 within the balloon interior 146 of each balloon 104A. Thus, the general description of the energy guides 122A as light guides is not intended to be limiting in any manner, except for as set forth in the claims appended hereto. More particularly, although the catheter systems 100 are often described with the energy source 124 as a light source and the one or more energy guides 122A as light guides, the catheter system 100 can alternatively include any suitable energy source 124 and energy guides 122A for purposes of generating the desired plasma in the balloon fluid 132 within the balloon interior 146 of each balloon 104A and/or each balloon lobe. For example, in one non-exclusive alternative embodiment, the energy source 124 can be configured to provide high voltage pulses, and each energy guide 122A can include an electrode pair including spaced apart electrodes that extend into the balloon interior 146. In such embodiment, each pulse of high voltage is applied to the electrodes and forms an electrical arc across the electrodes, which, in turn, generates the plasma and forms the pressure waves within the balloon fluid 132 that are utilized to provide the fracture force onto the vascular lesions 106A at the treatment site 106. Still alternatively, the energy source 124 and/or the energy guides 122A can have another suitable design and/or configuration.


In certain embodiments, the energy guides 122A can include an optical fiber or flexible light pipe. The energy guides 122A can be thin and flexible and can allow light signals to be sent with very little loss of strength. The energy guides 122A can include a core surrounded by a cladding about its circumference. In some embodiments, the core can be a cylindrical core or a partially cylindrical core. The core and cladding of the energy guides 122A can be formed from one or more materials, including but not limited to one or more types of glass, silica, or one or more polymers. The energy guides 122A may also include a protective coating, such as a polymer. It is appreciated that the index of refraction of the core will be greater than the index of refraction of the cladding.


Each energy guide 122A can guide energy along its length from a guide proximal end 122P to the guide distal end 122D having at least one optical window (not shown) that is positioned within the balloon interior 146. In one non-exclusive embodiment, the guide distal end 122D of each energy guide 122A can be positioned within the balloon interior 146 so as to be positioned approximately at a midpoint of the heart valve 108. With such design, upon expansion of the balloons 104A to the inflated state, the pressure waves generated within the balloon fluid 132 can put pressure on any desired portion of the heart valve 108, e.g., the valve wall 108A, the commissures, the annulus and/or the leaflets 1088. Alternatively, the energy guides 122A can have another suitable design and/or the energy from the energy source 124 can be guided into the balloon interior 146 by another suitable method.


The energy guides 122A can assume many configurations about and/or relative to the catheter shaft 110 of the catheter 102. In some embodiments, the energy guides 122A can run parallel to the longitudinal axis 144 of the catheter shaft 110. In some embodiments, the energy guides 122A can be physically coupled to the catheter shaft 110. In other embodiments, the energy guides 122A can be disposed along a length of an outer diameter of the catheter shaft 110. In yet other embodiments, the energy guides 122A can be disposed within one or more energy guide lumens within the catheter shaft 110.


The energy guides 122A can also be disposed at any suitable positions about the circumference of the guide shaft 118 and/or the catheter shaft 110, and the guide distal end 122D of each of the energy guides 122A can be disposed at any suitable longitudinal position relative to the length of the balloons 104A and/or relative to the length of the guide shaft 118.


In certain embodiments, the energy guides 122A can include one or more photoacoustic transducers 154, where each photoacoustic transducer 154 can be in optical communication with the energy guide 122A within which it is disposed. In some embodiments, the photoacoustic transducers 154 can be in optical communication with the guide distal end 122D of the energy guide 122A. Additionally, in such embodiments, the photoacoustic transducers 154 can have a shape that corresponds with and/or conforms to the guide distal end 122D of the energy guide 122A.


The photoacoustic transducer 154 is configured to convert light energy into an acoustic wave at or near the guide distal end 122D of the energy guide 122A. The direction of the acoustic wave can be tailored by changing an angle of the guide distal end 122D of the energy guide 122A.


In certain embodiments, the photoacoustic transducers 154 disposed at the guide distal end 122D of the energy guide 122A can assume the same shape as the guide distal end 122D of the energy guide 122A. For example, in certain non-exclusive embodiments, the photoacoustic transducer 154 and/or the guide distal end 122D can have a conical shape, a convex shape, a concave shape, a bulbous shape, a square shape, a stepped shape, a half-circle shape, an ovoid shape, and the like. The energy guide 122A can further include additional photoacoustic transducers 154 disposed along one or more side surfaces of the length of the energy guide 122A.


In some embodiments, the energy guides 122A can further include one or more diverting features or “diverters” (not shown in FIG. 1) within the energy guide 122A that are configured to direct energy to exit the energy guide 122A toward a side surface which can be located at or near the guide distal end 122D of the energy guide 122A, and toward the balloon wall 130. A diverting feature can include any feature of the system that diverts energy from the energy guide 122A away from its axial path toward a side surface of the energy guide 122A. Additionally, the energy guides 122A can each include one or more optical windows disposed along the longitudinal or circumferential surfaces of each energy guide 122A and in optical communication with a diverting feature. Stated in another manner, the diverting features can be configured to direct energy in the energy guide 122A toward a side surface that is at or near the guide distal end 122D, where the side surface is in optical communication with an optical window. The optical windows can include a portion of the energy guide 122A that allows energy to exit the energy guide 122A from within the energy guide 122A, such as a portion of the energy guide 122A lacking a cladding material on or about the energy guide 122A.


Examples of the diverting features suitable for use include a reflecting element, a refracting element, and a fiber diffuser. The diverting features suitable for focusing energy away from the tip of the energy guides 122A can include, but are not to be limited to, those having a convex surface, a gradient-index (GRIN) lens, and a mirror focus lens. Upon contact with the diverting feature, the energy is diverted within the energy guide 122A to one or more of a plasma generator 133 and the photoacoustic transducer 154 that is in optical communication with a side surface of the energy guide 122A. The photoacoustic transducer 154 then converts light energy into an acoustic wave that extends away from the side surface of the energy guide 122A.


The source manifold 136 can be positioned at or near the proximal portion 114 of the catheter system 100. The source manifold 136 can include one or more proximal end openings that can receive the one or more energy guides 122A of the energy guide bundle 122, the guidewire 112, and/or an inflation conduit 140 that is coupled in fluid communication with the fluid pump 138. The catheter system 100 can also include the fluid pump 138 that is configured to inflate each balloon 104A of the balloon assembly 104 with the balloon fluid 132, i.e. via the inflation conduit 140, as needed.


As noted above, in the embodiment illustrated in FIG. 1, the system console 123 includes one or more of the energy source 124, the power source 125, the system controller 126, and the GUI 127. Alternatively, the system console 123 can include more components or fewer components than those specifically illustrated in FIG. 1. For example, in certain non-exclusive alternative embodiments, the system console 123 can be designed without the GUI 127. Still alternatively, one or more of the energy source 124, the power source 125, the system controller 126, and the GUI 127 can be provided within the catheter system 100 without the specific need for the system console 123.


As shown, the system console 123, and the components included therewith, is operatively coupled to the catheter 102, the energy guide bundle 122, and the remainder of the catheter system 100. For example, in some embodiments, as illustrated in FIG. 1, the system console 123 can include a console connection aperture 148 (also sometimes referred to generally as a “socket”) by which the energy guide bundle 122 is mechanically coupled to the system console 123. In such embodiments, the energy guide bundle 122 can include a guide coupling housing 150 (also sometimes referred to generally as a “ferrule”) that houses a portion, e.g., the guide proximal end 122P, of each of the energy guides 122A. The guide coupling housing 150 is configured to fit and be selectively retained within the console connection aperture 148 to provide the mechanical coupling between the energy guide bundle 122 and the system console 123.


The energy guide bundle 122 can also include a guide bundler 152 (or “shell”) that brings each of the individual energy guides 122A closer together so that the energy guides 122A and/or the energy guide bundle 122 can be in a more compact form as it extends with the catheter 102 into the heart valve 108 during use of the catheter system 100.


The energy source 124 can be selectively and/or alternatively coupled in optical communication with each of the energy guides 122A, i.e. to the guide proximal end 122P of each of the energy guides 122A, in the energy guide bundle 122. In particular, the energy source 124 is configured to generate energy in the form of a source beam 124A, such as a pulsed source beam, that can be selectively and/or alternatively directed to and received by each of the energy guides 122A in the energy guide bundle 122 as an individual guide beam 124B. Alternatively, the catheter system 100 can include more than one energy source 124. For example, in one non-exclusive alternative embodiment, the catheter system 100 can include a separate energy source 124 for each of the energy guides 122A in the energy guide bundle 122.


The energy source 124 can have any suitable design. In certain embodiments, the energy source 124 can be configured to provide sub-millisecond pulses of energy from the energy source 124 that are focused onto a small spot in order to couple it into the guide proximal end 122P of the energy guide 122A. Such pulses of energy are then directed and/or guided along the energy guides 122A to a location within the balloon interior 146 of each balloon 104A and/or balloon lobe, thereby inducing plasma formation in the balloon fluid 132 within the balloon interior 146 of each balloon 104A and/or balloon lobe, e.g., via the plasma generator 133 that can be located at or near the guide distal end 122D of the energy guide 122A. In particular, the energy emitted at the guide distal end 122D of the energy guide 122A energizes the plasma generator 133 to form the plasma within the balloon fluid 132 within the balloon interior 146 of each balloon 104A and/or balloon lobe. The plasma formation causes rapid bubble formation, and imparts pressure waves upon the treatment site 106. An exemplary plasma-induced bubble 134 is illustrated in FIG. 1.


In various non-exclusive alternative embodiments, the sub-millisecond pulses of energy from the energy source 124 can be delivered to the treatment site 106 at a frequency of between approximately one hertz (Hz) and 5000 Hz, approximately 30 Hz and 1000 Hz, approximately ten Hz and 100 Hz, or approximately one Hz and 30 Hz. Alternatively, the sub-millisecond pulses of energy can be delivered to the treatment site 106 at a frequency that can be greater than 5000 Hz or less than one Hz, or any other suitable range of frequencies.


It is appreciated that although the energy source 124 is typically utilized to provide pulses of energy, the energy source 124 can still be described as providing a single source beam 124A, i.e. a single pulsed source beam.


The energy sources 124 suitable for use can include various types of light sources including lasers and lamps. Alternatively, the energy sources 124 can include any suitable type of energy source.


Suitable lasers can include short pulse lasers on the sub-millisecond timescale. In some embodiments, the energy source 124 can include lasers on the nanosecond (ns) timescale. The lasers can also include short pulse lasers on the picosecond (ps), femtosecond (fs), and microsecond (us) timescales. It is appreciated that there are many combinations of laser wavelengths, pulse widths and energy levels that can be employed to achieve plasma in the balloon fluid 132 of the catheter 102. In various non-exclusive alternative embodiments, the pulse widths can include those falling within a range including from at least ten ns to 3000 ns, at least 20 ns to 100 ns, or at least one ns to 500 ns. Alternatively, any other suitable pulse width range can be used.


Exemplary nanosecond lasers can include those within the UV to IR spectrum, spanning wavelengths of about ten nanometers (nm) to one millimeter (mm). In some embodiments, the energy sources 124 suitable for use in the catheter systems 100 can include those capable of producing light at wavelengths of from at least 750 nm to 2000 nm. In other embodiments, the energy sources 124 can include those capable of producing light at wavelengths of from at least 700 nm to 3000 nm. In still other embodiments, the energy sources 124 can include those capable of producing light at wavelengths of from at least 100 nm to ten micrometers (μm). Nanosecond lasers can include those having repetition rates of up to 200 kHz.


In some embodiments, the laser can include a Q-switched thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In other embodiments, the laser can include a neodymium:yttrium-aluminum-garnet (Nd:YAG) laser, holmium:yttrium-aluminum-garnet (Ho:YAG) laser, erbium:yttrium-aluminum-garnet (Er:YAG) laser, excimer laser, helium-neon laser, carbon dioxide laser, as well as doped, pulsed, fiber lasers.


The catheter system 100 can generate pressure waves having maximum pressures in the range of at least one megapascal (MPa) to 100 MPa. The maximum pressure generated by a particular catheter system 100 will depend on the energy source 124, the absorbing material, the bubble expansion, the propagation medium, the balloon material, and other factors. In various non-exclusive alternative embodiments, the catheter systems 100 can generate pressure waves having maximum pressures in the range of at least approximately two MPa to 50 MPa, at least approximately two MPa to 30 MPa, or approximately at least 15 MPa to 25 MPa.


The pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least approximately 0.1 millimeters (mm) to greater than approximately 25 mm extending radially from the energy guides 122A when the catheter 102 is placed at the treatment site 106. In various non-exclusive alternative embodiments, the pressure waves can be imparted upon the treatment site 106 from a distance within a range from at least approximately ten mm to 20 mm, at least approximately one mm to ten mm, at least approximately 1.5 mm to four mm, or at least approximately 0.1 mm to ten mm extending radially from the energy guides 122A when the catheter 102 is placed at the treatment site 106. In other embodiments, the pressure waves can be imparted upon the treatment site 106 from another suitable distance that is different than the foregoing ranges. In some embodiments, the pressure waves can be imparted upon the treatment site 106 within a range of at least approximately two MPa to 30 MPa at a distance from at least approximately 0.1 mm to ten mm. In some embodiments, the pressure waves can be imparted upon the treatment site 106 from a range of at least approximately two MPa to 25 MPa at a distance from at least approximately 0.1 mm to ten mm. Still alternatively, other suitable pressure ranges and distances can be used.


The power source 125 is electrically coupled to and is configured to provide necessary power to each of the energy source 124, the system controller 126, the GUI 127, and the handle assembly 128. The power source 125 can have any suitable design for such purposes.


The system controller 126 is electrically coupled to and receives power from the power source 125. Additionally, the system controller 126 is coupled to and is configured to control operation of each of the energy source 124 and the GUI 127. The system controller 126 can include one or more processors or circuits for purposes of controlling the operation of at least the energy source 124 and the GUI 127. For example, the system controller 126 can control the energy source 124 for generating pulses of energy as desired and/or at any desired firing rate. Additionally, the system controller 126 can operate to effectively and efficiently provide the desired fracture forces adjacent to and/or on or between adjacent leaflets 1088 within the heart valve 108 at the treatment site 106.


The system controller 126 can also be configured to control operation of other components of the catheter system 100 such as the positioning of the catheter 102 adjacent to the treatment site 106, the inflation of each balloon 104A with the balloon fluid 132, etc. Further, or in the alternative, the catheter system 100 can include one or more additional controllers that can be positioned in any suitable manner for purposes of controlling the various operations of the catheter system 100. For example, in certain embodiments, an additional controller and/or a portion of the system controller 126 can be positioned and/or incorporated within the handle assembly 128.


The GUI 127 is accessible by the user or operator of the catheter system 100. Additionally, the GUI 127 is electrically connected to the system controller 126. With such design, the GUI 127 can be used by the user or operator to ensure that the catheter system 100 is effectively utilized to impart pressure onto and induce fractures into the vascular lesions 106A at the treatment site 106. The GUI 127 can provide the user or operator with information that can be used before, during and after use of the catheter system 100. In one embodiment, the GUI 127 can provide static visual data and/or information to the user or operator. In addition, or in the alternative, the GUI 127 can provide dynamic visual data and/or information to the user or operator, such as video data or any other data that changes over time during use of the catheter system 100. In various embodiments, the GUI 127 can include one or more colors, different sizes, varying brightness, etc., that may act as alerts to the user or operator. Additionally, or in the alternative, the GUI 127 can provide audio data or information to the user or operator. The specifics of the GUI 127 can vary depending upon the design requirements of the catheter system 100, or the specific needs, specifications and/or desires of the user or operator.


As shown in FIG. 1, the handle assembly 128 can be positioned at or near the proximal portion 114 of the catheter system 100, and/or near the source manifold 136. In this embodiment, the handle assembly 128 is coupled to the balloon assembly 104 and is positioned spaced apart from the balloon assembly 104. Alternatively, the handle assembly 128 can be positioned at another suitable location.


The handle assembly 128 is handled and used by the user or operator to operate, position and control the catheter 102. The design and specific features of the handle assembly 128 can vary to suit the design requirements of the catheter system 100. In the embodiment illustrated in FIG. 1, the handle assembly 128 is separate from, but in electrical and/or fluid communication with one or more of the system controller 126, the energy source 124, the fluid pump 138, and the GUI 127. In some embodiments, the handle assembly 128 can integrate and/or include at least a portion of the system controller 126 within an interior of the handle assembly 128. For example, as shown, in certain such embodiments, the handle assembly 128 can include circuitry 156 that can form at least a portion of the system controller 126. In one embodiment, the circuitry 156 can include a printed circuit board having one or more integrated circuits, or any other suitable circuitry. In an alternative embodiment, the circuitry 156 can be omitted, or can be included within the system controller 126, which in various embodiments can be positioned outside of the handle assembly 128, e.g., within the system console 123. It is understood that the handle assembly 128 can include fewer or additional components than those specifically illustrated and described herein.


Descriptions of various embodiments and implementations of the balloon assembly 104, and usages thereof, are described in detail herein below, such as shown in FIGS. 2A-5B. However, it is further appreciated that alternative embodiments and implementations may also be employed that would be apparent to those skilled in the relevant art based on the teachings provided herein. Thus, the scope of the present embodiments and implementations is not intended to be limited to just those specifically described herein, except as recited in the claims appended hereto.



FIG. 2A is a simplified side view of a portion of the heart valve 108, including the valve wall 108A and the leaflets 108B, and a portion of an embodiment of the catheter system 200 including an embodiment of the valvular lithoplasty balloon assembly 204. The balloon assembly 204 is again configured to be selectively positioned adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108 at a treatment site 106 including vascular lesions 106A within the body 107 and the patient 109.


Similar to the previous embodiments, the catheter system 200 includes a catheter 202 including a catheter shaft 210, a guide shaft 218, and a guidewire 212, such as described above, and the balloon assembly 204. Additionally, the catheter system 200 will typically include various other components such as illustrated and described in relation to FIG. 1. However, such additional components are not shown in FIG. 2A for purposes of clarity.


As shown in the embodiment illustrated in FIG. 2A, the balloon assembly 204 includes three individual balloons, i.e. a first balloon 204A, a second balloon 204B, and a third balloon 204C, that can each be positioned adjacent to the treatment site 106 to break up the vascular lesions 106A at different precise locations within the treatment site 106. Each balloon 204A, 204B, 204C can include a balloon proximal end 204P and a balloon distal end 204D. As illustrated, in certain implementations, the balloon proximal end 204P of each balloon 204A, 204B, 204C can be coupled to the catheter shaft 210, and the balloon distal end 204D of each balloon 204A, 204B, 204C can be coupled to the guide shaft 218.



FIG. 2B is a simplified cutaway view of the heart valve 108, including the valve wall 108A and the leaflets 108B, and the valvular lithoplasty balloon assembly 204 taken on line 2B-2B in FIG. 2A. As shown, each of the three balloons 204A, 204B, 204C of the balloon assembly 204 can be positioned at different specific locations within the heart valve 108, i.e. adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108. Each balloon 204A, 204B, 204C is also illustrated as being positioned substantially adjacent to the guide shaft 218, which provides the conduit through which the guidewire 212 extends, in this non-exclusive implementation. In some embodiments, the balloon assembly 204 can further include one or more steerable shafts (not shown), e.g., one steerable shaft for each balloon 204A, 204B, 204C, that are usable to assist in manipulating each balloon 204A, 204B, 204C into the desired locations within the heart valve 108. With such design, each of the balloons 204A, 204B, 204C can be independently steerable to be positioned at the desired locations within the heart valve 108. Further, in certain embodiments, the catheter 202 and/or the balloon assembly 204 can also incorporate the use of an imaging channel (not shown) that is configured to enable real-time imaging of the treatment site 106 (illustrated in FIG. 2A) during positioning of the balloon assembly 204 as well as while the treatment therapy is applied.


Additionally, each balloon 204A, 204B, 204C can include a balloon wall 230 that defines a balloon interior 246, and that is configured to receive the balloon fluid 232 (illustrated in FIG. 2A) within the balloon interior 246. Each balloon 204A, 204B, 204C can thus be selectively inflated with the balloon fluid 232 to expand from the deflated state to the inflated state (as shown in FIG. 2B).


Also illustrated in FIG. 2B is a plurality of energy guides 222A. A portion of each energy guide 222A, i.e. the guide distal end 222D, can be positioned in the balloon fluid 232 within the balloon interior 246 of one of the balloons 204A, 204B, 204C such that each balloon 204A, 204B, 204C includes the guide distal end 222D of at least one energy guide 222A. More particularly, in this embodiment, the catheter system 200 includes three energy guides 222A, with the guide distal end 222D of each of the three energy guides 222A positioned in the balloon fluid 232 within the balloon interior 246 of a different balloon 204A, 204B, 204C. In one non-exclusive embodiment, the guide distal end 222D of the three energy guides 222A can be substantially uniformly spaced apart from one another by approximately 120 degrees about the guide shaft 218. Alternatively, the catheter system 200 can include greater than three energy guides 222A provided that the guide distal end 222D of at least one energy guide 222A is positioned within each balloon 204A, 204B, 204C.


The energy guides 222A are configured to guide energy from the energy source 124 (illustrated in FIG. 1) to induce plasma formation in the balloon fluid 232 within the balloon interior 246 of each balloon 204A, 204B, 204C, e.g., via a plasma generator 233 located at or near the guide distal end 222D of the respective energy guide 222A. The plasma formation causes rapid bubble formation, and imparts pressure waves and/or fracture forces upon the treatment site 106. Such pressure waves and/or fracture forces are utilized to break apart the vascular lesions 106A (illustrated in FIG. 2A) at specific precise locations within the heart valve 108 at the treatment site 106. More particularly, by selectively positioning the balloon assembly 204 adjacent to the treatment site 106, the energy guides 222A in each balloon 204A, 204B, 204C can be applied to break up the calcified vascular lesions 106A in a different precise location at the treatment site 106.


As shown in FIG. 2B, it is appreciated that by using three individual balloons 204A, 204B, 204C to impart pressure waves and/or fracture forces at specific locations within the heart valve 108, there is ample spacing 260 available between the contours of the balloons 204A, 204B, 204C and within the heart valve 108 to enable continued blood flow while the treatment therapy is being applied.



FIG. 3A is a simplified side view of a portion of the heart valve 108, including the valve wall 108A and the leaflets 108B, and a portion of another embodiment of the catheter system 300 including another embodiment of the valvular lithoplasty balloon assembly 304. In this embodiment, the balloon assembly 304 is again configured to be selectively positioned adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108 at a treatment site 106 including vascular lesions 106A within the body 107 and the patient 109.


Similar to the previous embodiments, the catheter system 300 again includes a catheter 302 including a catheter shaft 310, a guide shaft 318, and a guidewire 312, such as described above, and the balloon assembly 304. Additionally, the catheter system 300 will again typically include various other components such as illustrated and described in relation to FIG. 1. However, such additional components are not shown in FIG. 3A for purposes of clarity.


As shown in the embodiment illustrated in FIG. 3A (and more clearly illustrated in FIG. 3B), the balloon assembly 304 includes a single balloon 304A having a multi-lobed configuration. More specifically, in this embodiment, the balloon 304A is shaped to include three individual balloon lobes, i.e., a first balloon lobe 304L1, a second balloon lobe 304L2, and a third balloon lobe 304L3. Each of the balloon lobes 304L1, 304L2, 304L3 can be positioned adjacent to the treatment site 106 to break up the vascular lesions 106A at different precise locations within the treatment site 106. Additionally, the balloon 304A can include a balloon proximal end 304P and a balloon distal end 304D. As illustrated, in certain implementations, the balloon proximal end 304P can be coupled to the catheter shaft 310, and the balloon distal end 304D can be coupled to the guide shaft 318.



FIG. 3B is a simplified cutaway view of the heart valve 108, including the valve wall 108A and the leaflets 108B, and the valvular lithoplasty balloon assembly 304 taken on line 3B-3B in FIG. 3A. As shown, each of the three balloon lobes 304L1, 304L2, 304L3 of the balloon 304A can be positioned at different specific locations within the heart valve 108, i.e. adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108. The balloon 304A is also illustrated as being positioned substantially adjacent to and substantially encircling the guide shaft 318, which provides the conduit through which the guidewire 312 extends, in this non-exclusive implementation. In some embodiments, the balloon assembly 304 can further include one or more steerable shafts (not shown) that are usable to assist in manipulating the balloon 304A and/or each of the balloon lobes 304L1, 304L2, 304L3 into the desired locations within the heart valve 108. Further, in certain embodiments, the catheter 302 and/or the balloon assembly 304 can also incorporate the use of an imaging channel (not shown) that is configured to enable real-time imaging of the treatment site 106 (illustrated in FIG. 3A) during positioning of the balloon assembly 304 as well as while the treatment therapy is applied.


Additionally, the balloon 304A can include a balloon wall 330 that defines a balloon interior 346, and that is configured to receive the balloon fluid 332 (illustrated in FIG. 3A) within the balloon interior 346. It is appreciated that with the balloon 304A including the multi-lobed design having a single balloon interior 346, each of the balloon lobes 304L1, 304L2, 304L3 will receive the balloon fluid 332 substantially contemporaneously. The balloon 304A, and, thus, each of the balloon lobes 304L1, 304L2, 304L3, can thus be selectively inflated with the balloon fluid 332 to expand from the deflated state to the inflated state (as shown in FIG. 3B).


Also illustrated in FIG. 3B is a plurality of energy guides 322A. A portion of each energy guide 322A, i.e., the guide distal end 322D, can be positioned in the balloon fluid 332 within the balloon interior 346 of one of the balloon lobes 304L1, 304L2, 304L3 such that each balloon lobe 304L1, 304L2, 304L3 includes the guide distal end 322D of at least one energy guide 322A. More particularly, in this embodiment, the catheter system 300 includes three energy guides 322A, with the guide distal end 322D of each of the three energy guides 322A positioned in the balloon fluid 332 within the balloon interior 346 of a different balloon lobe 304L1, 304L2, 304L3. In one non-exclusive embodiment, the guide distal end 322D of the three energy guides 322A can be substantially uniformly spaced apart from one another by approximately 120 degrees about the guide shaft 318. Alternatively, the catheter system 300 can include greater than three energy guides 322A provided that the guide distal end 322D of at least one energy guide 322A is positioned within each balloon lobe 304L1, 304L2, 304L3.


The energy guides 322A are configured to guide energy from the energy source 124 (illustrated in FIG. 1) to induce plasma formation in the balloon fluid 332 within the balloon interior 346 of each balloon lobe 304L1, 304L2, 304L3, e.g., via a plasma generator 333 located at or near the guide distal end 322D of the respective energy guide 322A. The plasma formation causes rapid bubble formation, and imparts pressure waves and/or fracture forces upon the treatment site 106. Such pressure waves and/or fracture forces are utilized to break apart the vascular lesions 106A (illustrated in FIG. 3A) at specific precise locations within the heart valve 108 at the treatment site 106. More particularly, by selectively positioning the balloon assembly 304 adjacent to the treatment site 106, the energy guides 322A in each balloon lobe 304L1, 304L2, 304L3 can be applied to break up the calcified vascular lesions 106A in a different precise location at the treatment site 106.


As shown in FIG. 3B, it is appreciated that by using a balloon 304A including three individual balloon lobes 304L1, 304L2, 304L3 to impart pressure waves and/or fracture forces at specific locations within the heart valve 108, there is ample spacing 360 available between the contours of the balloon lobes 304L1, 304L2, 304L3 and within the heart valve 108 to enable continued blood flow while the treatment therapy is being applied.



FIG. 4A is a simplified side view of a portion of the heart valve 108, including the valve wall 108A and the leaflets 108B, and a portion of still another embodiment of the catheter system 400 including still another embodiment of the valvular lithoplasty balloon assembly 404. The balloon assembly 404 is again configured to be selectively positioned adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108 at a treatment site 106 including vascular lesions 106A within the body 107 and the patient 109.


Similar to the previous embodiments, the catheter system 400 again includes a catheter 402 including a catheter shaft 410, a guide shaft 418, and a guidewire 412, such as described above, and the balloon assembly 404. Additionally, the catheter system 400 will typically include various other components such as illustrated and described in relation to FIG. 1. However, such additional components are not shown in FIG. 4A for purposes of clarity.


As shown in the embodiment illustrated in FIG. 4A, the balloon assembly 404 includes two individual balloons, i.e. a first balloon 404A, and a second balloon 404B, that can each be positioned adjacent to the treatment site 106 to break up the vascular lesions 106A at different precise locations within the treatment site 106. Each balloon 404A, 404B can include a balloon proximal end 404P and a balloon distal end 404D. As illustrated, in certain implementations, the balloon proximal end 404P of each balloon 404A, 404B can be coupled to the catheter shaft 410, and the balloon distal end 404D of each balloon 404A, 404B can be coupled to the guide shaft 418.



FIG. 4B is a simplified cutaway view of the heart valve 108, including the valve wall 108A and the leaflets 108B, and the valvular lithoplasty balloon assembly 404 taken on line 4B-4B in FIG. 4A. As shown, each of the two balloons 404A, 404B of the balloon assembly 404 can be positioned at different specific locations within the heart valve 108, i.e., adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108. Each balloon 404A, 404B is also illustrated as being positioned substantially adjacent to the guide shaft 418, which provides the conduit through which the guidewire 412 extends, in this non-exclusive implementation. In some embodiments, the balloon assembly 404 can further include one or more steerable shafts (not shown), e.g., one steerable shaft for each balloon 404A, 404B, that are usable to assist in manipulating each balloon 404A, 404B into the desired locations within the heart valve 108. Further, in certain embodiments, the catheter 402 and/or the balloon assembly 404 can also incorporate the use of an imaging channel (not shown) that is configured to enable real-time imaging of the treatment site 106 (illustrated in FIG. 4A) during positioning of the balloon assembly 404 as well as while the treatment therapy is applied.


Additionally, each balloon 404A, 404B can include a balloon wall 430 that defines a balloon interior 446, and that is configured to receive the balloon fluid 432 (illustrated in FIG. 4A) within the balloon interior 446. Each balloon 404A, 404B can thus be selectively inflated with the balloon fluid 432 to expand from the deflated state to the inflated state (as shown in FIG. 4B).


Also illustrated in FIG. 4B is a plurality of energy guides 422A. A portion of each energy guide 422A, i.e. the guide distal end 422D, can be positioned in the balloon fluid 432 within the balloon interior 446 of one of the balloons 404A, 404B such that each balloon 404A, 404B includes the guide distal end 422D of at least one energy guide 422A. More particularly, in this embodiment, the catheter system 400 includes two energy guides 422A, with the guide distal end 422D of each of the two energy guides 422A positioned in the balloon fluid 432 within the balloon interior 446 of a different balloon 404A, 404B. In one non-exclusive embodiment, the guide distal end 422D of the two energy guides 422A can be substantially uniformly spaced apart from one another by approximately 180 degrees about the guide shaft 418. Alternatively, the catheter system 400 can include greater than two energy guides 422A provided that the guide distal end 422D of at least one energy guide 422A is positioned within each balloon 404A, 404B.


The energy guides 422A are configured to guide energy from the energy source 124 (illustrated in FIG. 1) to induce plasma formation in the balloon fluid 432 within the balloon interior 446 of each balloon 404A, 404B, e.g., via a plasma generator 433 located at or near the guide distal end 422D of the respective energy guide 422A. The plasma formation causes rapid bubble formation, and imparts pressure waves and/or fracture forces upon the treatment site 106. Such pressure waves and/or fracture forces are utilized to break apart the vascular lesions 106A (illustrated in FIG. 4A) at specific precise locations within the heart valve 108 at the treatment site 106. More particularly, by selectively positioning the balloon assembly 404 adjacent to the treatment site 106, the energy guides 422A in each balloon 404A, 404B can be applied to break up the calcified vascular lesions 106A in a different precise location at the treatment site 106.


As shown in FIG. 4B, it is appreciated that by using two individual balloons 404A, 404B to impart pressure waves and/or fracture forces at specific locations within the heart valve 108, there is ample spacing 460 available between the contours of the balloons 404A, 404B and within the heart valve 108 to enable continued blood flow while the treatment therapy is being applied.



FIG. 5A is a simplified side view of a portion of the heart valve 108, including the valve wall 108A and the leaflets 108B, and a portion of yet another embodiment of the catheter system 500 including yet another embodiment of the valvular lithoplasty balloon assembly 504. In this embodiment, the balloon assembly 504 is again configured to be selectively positioned adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108 at a treatment site 106 including vascular lesions 106A within the body 107 and the patient 109.


Similar to the previous embodiments, the catheter system 500 again includes a catheter 502 including a catheter shaft 510, a guide shaft 518, and a guidewire 512, such as described above, and the balloon assembly 504. Additionally, the catheter system 500 will again typically include various other components such as illustrated and described in relation to FIG. 1. However, such additional components are not shown in FIG. 5A for purposes of clarity.


As shown in the embodiment illustrated in FIG. 5A (and more clearly illustrated in FIG. 5B), the balloon assembly 504 includes a single balloon 504A having a multi-lobed configuration. More specifically, in this embodiment, the balloon 504A is shaped to include two individual balloon lobes, i.e., a first balloon lobe 504L1, and a second balloon lobe 504L2. Each of the balloon lobes 504L1, 504L2 can be positioned adjacent to the treatment site 106 to break up the vascular lesions 106A at different precise locations within the treatment site 106. Additionally, the balloon 504A can include a balloon proximal end 504P and a balloon distal end 504D. As illustrated, in certain implementations, the balloon proximal end 504P can be coupled to the catheter shaft 510, and the balloon distal end 504D can be coupled to the guide shaft 518.



FIG. 5B is a simplified cutaway view of the heart valve 108, including the valve wall 108A and the leaflets 108B, and the valvular lithoplasty balloon assembly 504 taken on line 5B-5B in FIG. 5A. As shown, each of the two balloon lobes 504L1, 504L2 of the balloon 504A can be positioned at different specific locations within the heart valve 108, i.e. adjacent to the valve wall 108A and/or between adjacent leaflets 108B within the heart valve 108. The balloon 504A is also illustrated as being positioned substantially adjacent to and substantially encircling the guide shaft 518, which provides the conduit through which the guidewire 512 extends, in this non-exclusive implementation. In some embodiments, the balloon assembly 504 can further include one or more steerable shafts (not shown) that are usable to assist in manipulating the balloon 504A and/or each of the balloon lobes 504L1, 504L2 into the desired locations within the heart valve 108. Further, in certain embodiments, the catheter 502 and/or the balloon assembly 504 can also incorporate the use of an imaging channel (not shown) that is configured to enable real-time imaging of the treatment site 106 (illustrated in FIG. 5A) during positioning of the balloon assembly 504 as well as while the treatment therapy is applied.


Additionally, the balloon 504A can include a balloon wall 530 that defines a balloon interior 546, and that is configured to receive the balloon fluid 532 (illustrated in FIG. 5A) within the balloon interior 546. It is appreciated that with the balloon 504A including the multi-lobed design having a single balloon interior 546, each of the balloon lobes 504L1, 504L2 will receive the balloon fluid 532 substantially contemporaneously. The balloon 504A, and, thus, each of the balloon lobes 504L1, 504L2 can thus be selectively inflated with the balloon fluid 532 to expand from the deflated state to the inflated state (as shown in FIG. 5B).


Also illustrated in FIG. 5B is a plurality of energy guides 522A. A portion of each energy guide 522A, i.e., the guide distal end 522D, can be positioned in the balloon fluid 532 within the balloon interior 546 of one of the balloon lobes 504L1, 504L2, 504L3 such that each balloon lobe 504L1, 504L2 includes the guide distal end 522D of at least one energy guide 522A. More particularly, in this embodiment, the catheter system 500 includes two energy guides 522A, with the guide distal end 522D of each of the two energy guides 522A positioned in the balloon fluid 532 within the balloon interior 546 of a different balloon lobe 504L1, 504L2. In one non-exclusive embodiment, the guide distal end 522D of the two energy guides 522A can be substantially uniformly spaced apart from one another by approximately 180 degrees about the guide shaft 518. Alternatively, the catheter system 500 can include greater than three energy guides 522A provided that the guide distal end 522D of at least one energy guide 522A is positioned within each balloon lobe 504L1, 504L2.


The energy guides 522A are configured to guide energy from the energy source 124 (illustrated in FIG. 1) to induce plasma formation in the balloon fluid 532 within the balloon interior 546 of each balloon lobe 504L1, 504L2, e.g., via a plasma generator 533 located at or near the guide distal end 522D of the respective energy guide 522A. The plasma formation causes rapid bubble formation, and imparts pressure waves and/or fracture forces upon the treatment site 106. Such pressure waves and/or fracture forces are utilized to break apart the vascular lesions 106A (illustrated in FIG. 5A) at specific precise locations within the heart valve 108 at the treatment site 106. More particularly, by selectively positioning the balloon assembly 504 adjacent to the treatment site 106, the energy guides 522A in each balloon lobe 504L1, 504L2 can be applied to break up the calcified vascular lesions 106A in a different precise location at the treatment site 106.


As shown in FIG. 5B, it is appreciated that by using a balloon 504A including two individual balloon lobes 504L1, 504L2 to impart pressure waves and/or fracture forces at specific locations within the heart valve 108, there is ample spacing 560 available between the contours of the balloon lobes 504L1, 504L2 and within the heart valve 108 to enable continued blood flow while the treatment therapy is being applied.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content and/or context clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content or context clearly dictates otherwise.


It should also be noted that, as used in this specification and the appended claims, the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration. The phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.


The headings used herein are provided for consistency with suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not be viewed to limit or characterize the invention(s) set out in any claims that may issue from this disclosure. As an example, a description of a technology in the “Background” is not an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” or “Abstract” to be considered as a characterization of the invention(s) set forth in issued claims.


The embodiments described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices. As such, aspects have been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope herein.


It is understood that although a number of different embodiments of the catheter systems have been illustrated and described herein, one or more features of any one embodiment can be combined with one or more features of one or more of the other embodiments, provided that such combination satisfies the intent of the present invention.


While a number of exemplary aspects and embodiments of the catheter systems have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope, and no limitations are intended to the details of construction or design herein shown.

Claims
  • 1. A catheter system for treating one or more treatment sites within or adjacent to a heart valve within a body of a patient, the catheter system comprising: an energy source that generates energy;a catheter shaft;a guide shaft that is positioned at least partially within the catheter shaft;a balloon assembly including a plurality of balloons that are positioned laterally adjacent to one another so that one of the balloons is positionable substantially adjacent to one of the treatment sites, each of the plurality of balloons having a balloon wall that defines a balloon interior that is configured to retain a balloon fluid, the balloon interior of each of the balloons being independent of the balloon interior of each of the other balloons, and each of the balloons including a balloon distal end that is coupled to the guide shaft; anda plurality of energy guides that are each configured to receive energy from the energy source, each of the energy guides being at least partially positioned within a corresponding balloon interior of a corresponding balloon so that upon one or more of the energy guides receiving the energy, a plasma is formed in the balloon interior of the corresponding balloon.
  • 2. The catheter system of claim 1 wherein the heart valve includes a valve wall, and at least one of the plurality of balloons is positioned adjacent to the valve wall.
  • 3. The catheter system of claim 1 wherein the heart valve includes a plurality of leaflets, and at least one of the plurality of balloons is positioned adjacent to at least one of the plurality of leaflets.
  • 4. The catheter system of claim 1 wherein each of the plurality of balloons is inflatable with the balloon fluid to expand to an inflated state, and wherein when the balloon is in the inflated state the balloon wall is configured to be positioned substantially adjacent to one of the treatment sites.
  • 5. The catheter system of claim 1 further comprising a plurality of plasma generators, with each of the plasma generators being positioned near a guide distal end of a corresponding energy guide, each plasma generator being configured to generate plasma in the balloon fluid within the balloon interior of each of the plurality of balloons.
  • 6. The catheter system of claim 5 wherein the guide distal end of at least one of the plurality of energy guides is positioned within the balloon interior of one of the plurality of balloons approximately at a midpoint of the heart valve.
  • 7. The catheter system of claim 1 wherein the plasma formation causes rapid bubble formation and imparts pressure waves upon the balloon wall of each of the balloons adjacent to one of the treatment sites.
  • 8. The catheter system of claim 1 wherein the energy source generates pulses of energy that are guided along each of the plurality of energy guides into the balloon interior of each balloon to induce plasma formation in the balloon fluid within the balloon interior of each of the balloons.
  • 9. The catheter system of claim 1 wherein the energy source is a laser that provides pulses of light energy.
  • 10. The catheter system of claim 1 wherein at least one of the plurality of energy guides includes an optical fiber.
  • 11. The catheter system of claim 1 wherein the energy source is a high voltage energy source that provides pulses of high voltage.
  • 12. The catheter system of claim 11 wherein at least one of the plurality of energy guides includes an electrode pair including spaced apart electrodes that extend into the balloon interior; and wherein pulses of high voltage from the energy source are applied to the electrodes and form an electrical arc across the electrodes.
  • 13. The catheter system of claim 1 wherein a balloon proximal end of each of the plurality of balloons is coupled to the catheter shaft.
  • 14. The catheter system of claim 13 wherein the guide shaft defines a guidewire lumen; and further comprising a guidewire that is positioned to extend through the guidewire lumen, the guidewire being configured to guide movement of the balloon assembly so that each of the plurality of balloons is positioned substantially adjacent to at least one of the treatment sites.
  • 15. The catheter system of claim 1 wherein the balloon assembly includes three balloons.
  • 16. The catheter system of claim 1 wherein each of the plurality of balloons is independently steerable to be positioned substantially adjacent to one of the treatment sites.
  • 17. The catheter system of claim 1 wherein at least one of the plurality of balloons is formed from a braided nitinol material.
  • 18. The catheter system of claim 1 wherein at least one of the plurality of balloons includes a drug-eluting coating.
  • 19. A method for treating one or more treatment sites within or adjacent to a heart valve within a body of a patient, the method comprising the steps of: generating energy with an energy source;receiving energy from the energy source with a plurality of energy guides;positioning a guide shaft at least partially within a catheter shaft;positioning a plurality of balloons laterally adjacent to one another and substantially adjacent to one or more of the treatment sites, each of the plurality of balloons having a balloon wall that defines a balloon interior, each of the plurality of balloons being configured to retain a balloon fluid within the balloon interior, the balloon interior of each of the balloons being independent of the balloon interior of each of the other balloons;coupling a balloon distal end of each of the balloons to the guide shaft; andpositioning at least one of the plurality of energy guides that receive the energy from the energy source within the balloon interior of each of the plurality of balloons so that plasma is formed in the balloon fluid within the balloon interior when one of the energy guides receives energy from the energy source.
  • 20. The method of claim 19 wherein the step of positioning the plurality of balloons includes independently steering each of the plurality of balloons to be positioned substantially adjacent to one of the treatment sites.
RELATED APPLICATION

This application claims priority from U.S. Provisional Application Ser. No. 63/124,685, filed on Dec. 11, 2020. To the extent permitted, the contents of U.S. Provisional Application Ser. No. 63/124,685 are incorporated in their entirety herein by reference.

US Referenced Citations (534)
Number Name Date Kind
4649924 Taccardi Mar 1987 A
4699147 Chilson et al. Oct 1987 A
4799479 Spears Jan 1989 A
4850351 Herman Jul 1989 A
4913142 Kittrell et al. Apr 1990 A
4932954 Wondrazek et al. Jun 1990 A
4955895 Suglyama Sep 1990 A
4960108 Reichel et al. Oct 1990 A
4994059 Kosa et al. Feb 1991 A
4998930 Lundahl Mar 1991 A
5034010 Kittrell et al. Jul 1991 A
5041121 Wondrazek et al. Aug 1991 A
5082343 Coult et al. Jan 1992 A
5093877 Aita et al. Mar 1992 A
5104391 Ingle Apr 1992 A
5104392 Kittrell et al. Apr 1992 A
5109452 Selvin et al. Apr 1992 A
5116227 Levy May 1992 A
5126165 Akihama et al. Jun 1992 A
5152768 Bhatta Oct 1992 A
5173049 Levy Dec 1992 A
5176674 Hofmann Jan 1993 A
5181921 Makita et al. Jan 1993 A
5200838 Nudelman Apr 1993 A
5290277 Vercimak et al. Mar 1994 A
5324282 Dodick Jun 1994 A
5372138 Crowley Dec 1994 A
5387225 Euteneur Feb 1995 A
5400428 Grace Mar 1995 A
5422926 Smith Jun 1995 A
5454809 Janssen Oct 1995 A
5456680 Taylor Oct 1995 A
5474537 Solar Dec 1995 A
5509917 Cecchetti Apr 1996 A
5540679 Fram Jul 1996 A
5562657 Griffin Oct 1996 A
5598494 Behrmann et al. Jan 1997 A
5609606 O'Boyle Mar 1997 A
5611807 O'Boyle Mar 1997 A
5661829 Zheng Aug 1997 A
5697377 Wittkamph Dec 1997 A
5718241 Ben-Haim et al. Feb 1998 A
5729583 Tang Mar 1998 A
5764843 Macken et al. Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5860974 Abele Jan 1999 A
5891135 Jackson et al. Apr 1999 A
5906611 Dodick et al. May 1999 A
5944697 Benett et al. Aug 1999 A
6015404 Altshuler Jan 2000 A
6080119 Schwarze et al. Jun 2000 A
6123923 Unger Sep 2000 A
6139510 Palermo Oct 2000 A
6186963 Schwarze et al. Feb 2001 B1
6203537 Adrian Mar 2001 B1
6210404 Shadduck Apr 2001 B1
6339470 Papademetriou et al. Jan 2002 B1
6356575 Fukumoto Mar 2002 B1
6368318 Visuri et al. Apr 2002 B1
6500174 Maguire et al. Dec 2002 B1
6514203 Bukshpan Feb 2003 B2
6514249 Maguire Feb 2003 B1
6524251 Rabiner et al. Mar 2003 B2
6538739 Visuri et al. Mar 2003 B1
6560387 Hehlen et al. May 2003 B1
6607502 Maguire et al. Aug 2003 B1
6631220 Liang et al. Oct 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6666834 Restle et al. Dec 2003 B2
6773447 Laguna Aug 2004 B2
6849994 White et al. Feb 2005 B1
6947785 Beatty et al. Sep 2005 B1
6966890 Coyle et al. Nov 2005 B2
6978168 Beatty et al. Dec 2005 B2
6990370 Beatty et al. Jan 2006 B1
7309324 Hayes et al. Dec 2007 B2
7470240 Schultheiss et al. Dec 2008 B2
7539231 Honea et al. May 2009 B1
7569032 Naimark et al. Aug 2009 B2
7599588 Eberle et al. Oct 2009 B2
7713260 Lessard May 2010 B2
7758572 Weber et al. Jul 2010 B2
7810395 Zhou Oct 2010 B2
7850685 Kunis et al. Dec 2010 B2
7867178 Simnacher Jan 2011 B2
7972299 Carter Jul 2011 B2
7985189 Ogden et al. Jul 2011 B1
8162859 Schultheiss et al. Apr 2012 B2
8166825 Zhou May 2012 B2
8192368 Woodruff Jun 2012 B2
8292913 Warnack Oct 2012 B2
8328820 Diamant Dec 2012 B2
8364235 Kordis et al. Jan 2013 B2
8419613 Saadat Apr 2013 B2
8439890 Beyar May 2013 B2
8556813 Cashman et al. Oct 2013 B2
8574247 Adams et al. Nov 2013 B2
8657814 Werneth Feb 2014 B2
8709075 Adams et al. Apr 2014 B2
8728091 Hakala et al. May 2014 B2
8747416 Hakala et al. Jun 2014 B2
8888788 Hakala et al. Nov 2014 B2
8956371 Hawkins et al. Feb 2015 B2
8956374 Hawkins et al. Feb 2015 B2
8986339 Warnack Mar 2015 B2
8992817 Stamberg Mar 2015 B2
9005216 Hakala et al. Apr 2015 B2
9011462 Adams et al. Apr 2015 B2
9011463 Adams et al. Apr 2015 B2
9044618 Hawkins et al. Jun 2015 B2
9044619 Hawkins et al. Jun 2015 B2
9072534 Adams et al. Jul 2015 B2
9131949 Coleman et al. Sep 2015 B2
9138249 Adams et al. Sep 2015 B2
9138260 Miller et al. Sep 2015 B2
9180280 Hawkins et al. Nov 2015 B2
9220521 Hawkins et al. Dec 2015 B2
9237984 Hawkins et al. Jan 2016 B2
9289132 Ghaffari et al. Mar 2016 B2
9289224 Adams et al. Mar 2016 B2
9320530 Grace Apr 2016 B2
9333000 Hakala et al. May 2016 B2
9375223 Wallace Jun 2016 B2
9421025 Hawkins et al. Aug 2016 B2
9433428 Hakala et al. Sep 2016 B2
9504809 Bo Nov 2016 B2
9510887 Burnett Dec 2016 B2
9522012 Adams Dec 2016 B2
9554815 Adams et al. Jan 2017 B2
9555267 Ein-gal Jan 2017 B2
9566209 Katragadda et al. Feb 2017 B2
9579114 Mantell et al. Feb 2017 B2
9629567 Porath et al. Apr 2017 B2
9642673 Adams May 2017 B2
9662069 De Graff et al. May 2017 B2
9687166 Subramaniam Jun 2017 B2
9730715 Adams Aug 2017 B2
9764142 Imran Sep 2017 B2
9814476 Adams et al. Nov 2017 B2
9861377 Mantell et al. Jan 2018 B2
9867629 Hawkins et al. Jan 2018 B2
9894756 Weinkam et al. Feb 2018 B2
9955946 Miller et al. May 2018 B2
9974963 Imran May 2018 B2
9974970 Nuta et al. May 2018 B2
9993292 Adams et al. Jun 2018 B2
10039561 Adams et al. Aug 2018 B2
10136829 Deno et al. Nov 2018 B2
10149690 Hawkins et al. Dec 2018 B2
10159505 Hakala et al. Dec 2018 B2
10194994 Deno et al. Feb 2019 B2
10201387 Grace et al. Feb 2019 B2
10206698 Hakala et al. Feb 2019 B2
10226265 Ku et al. Mar 2019 B2
10357264 Kat-Kuoy Jul 2019 B2
10405923 Yu et al. Sep 2019 B2
10406031 Thyzel Sep 2019 B2
10420569 Adams Sep 2019 B2
10441300 Hawkins Oct 2019 B2
10478202 Adams et al. Nov 2019 B2
10517620 Adams Dec 2019 B2
10517621 Hakala et al. Dec 2019 B1
10537287 Braido et al. Jan 2020 B2
10555744 Nguyen et al. Feb 2020 B2
10561428 Eggert et al. Feb 2020 B2
10646240 Betelia et al. May 2020 B2
10682178 Adams et al. Jun 2020 B2
10702293 Adams et al. Jul 2020 B2
10709462 Nguyen et al. Jul 2020 B2
10758255 Adams Sep 2020 B2
10797684 Benz et al. Oct 2020 B1
10842567 Grace et al. Nov 2020 B2
10959743 Adams et al. Mar 2021 B2
10966737 Nguyen Apr 2021 B2
10967156 Gulachenski Apr 2021 B2
10973538 Hakala et al. Apr 2021 B2
11000299 Hawkins et al. May 2021 B2
11020135 Hawkins Jun 2021 B1
11026707 Ku et al. Jun 2021 B2
11058492 Grace et al. Jul 2021 B2
11076874 Hakala et al. Aug 2021 B2
11213661 Spindler Jan 2022 B2
11229772 Nita Jan 2022 B2
11229776 Kugler et al. Jan 2022 B2
11246659 Grace et al. Feb 2022 B2
11484327 Anderson et al. Nov 2022 B2
11633200 Anderson et al. Apr 2023 B2
11779363 Vo Oct 2023 B2
20010016761 Rudie Aug 2001 A1
20010049464 Ganz Dec 2001 A1
20010051784 Brisken Dec 2001 A1
20020045811 Kittrell et al. Apr 2002 A1
20020052621 Fried et al. May 2002 A1
20020065512 Fjield et al. May 2002 A1
20020082553 Duchamp Jun 2002 A1
20020183729 Farr et al. Dec 2002 A1
20020188204 McNamara et al. Dec 2002 A1
20030009157 Levine et al. Jan 2003 A1
20030050632 Fjield et al. Mar 2003 A1
20030065316 Levine et al. Apr 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030125719 Furnish Jul 2003 A1
20030176873 Chernenko et al. Sep 2003 A1
20040002677 Gentsler Jan 2004 A1
20040024349 Flock et al. Feb 2004 A1
20040073251 Weber Apr 2004 A1
20040097996 Rabiner May 2004 A1
20040133254 Sterzer et al. Jul 2004 A1
20040162508 Uebelacker Aug 2004 A1
20040243119 Lane et al. Dec 2004 A1
20040249401 Rabiner Dec 2004 A1
20040254570 Hadsjicostis Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050021013 Visuri Jan 2005 A1
20050080396 Rontal Apr 2005 A1
20050113722 Schultheiss May 2005 A1
20050171437 Carberry Aug 2005 A1
20050171527 Bhola Aug 2005 A1
20050251131 Lesh Nov 2005 A1
20050259319 Brooker Nov 2005 A1
20050273014 Gianchandani et al. Dec 2005 A1
20050277839 Alderman et al. Dec 2005 A1
20060033241 Schewe et al. Feb 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060098921 Benaron et al. May 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060200039 Brockway et al. Sep 2006 A1
20060221528 Li et al. Oct 2006 A1
20060241524 Lee et al. Oct 2006 A1
20060241572 Zhou Oct 2006 A1
20060241733 Zhang et al. Oct 2006 A1
20060270976 Savage et al. Nov 2006 A1
20070027524 Johnson Feb 2007 A1
20070043340 Thyzel Feb 2007 A1
20070060990 Satake Mar 2007 A1
20070088380 Hirszowicz et al. Apr 2007 A1
20070118057 Ein-gal May 2007 A1
20070142819 El-Nounou et al. Jun 2007 A1
20070179496 Swoyer Aug 2007 A1
20070239082 Schultheiss et al. Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070264353 Myntti et al. Nov 2007 A1
20070270897 Skerven Nov 2007 A1
20070280311 Hofmann Dec 2007 A1
20070299392 Beyar et al. Dec 2007 A1
20080033519 Burwell Feb 2008 A1
20080081950 Koenig et al. Apr 2008 A1
20080086118 Lai Apr 2008 A1
20080095714 Castella et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080108867 Zhou May 2008 A1
20080114341 Thyzel May 2008 A1
20080132810 Scoseria et al. Jun 2008 A1
20080195088 Farr et al. Aug 2008 A1
20080214891 Slenker et al. Sep 2008 A1
20080281157 Miyagi et al. Nov 2008 A1
20080296152 Voss Dec 2008 A1
20080319356 Cain et al. Dec 2008 A1
20090036803 Warlick et al. Feb 2009 A1
20090043300 Reitmajer et al. Feb 2009 A1
20090054881 Krespi Feb 2009 A1
20090097806 Viellerobe et al. Apr 2009 A1
20090125007 Splinter May 2009 A1
20090131921 Kurtz et al. May 2009 A1
20090192495 Ostrovsky et al. Jul 2009 A1
20090247945 Levit Oct 2009 A1
20090296751 Kewitsch et al. Dec 2009 A1
20090299327 Tilson et al. Dec 2009 A1
20090306533 Rousche Dec 2009 A1
20090312768 Hawkins et al. Dec 2009 A1
20100016862 Hawkins et al. Jan 2010 A1
20100036294 Mantell et al. Feb 2010 A1
20100094209 Drasler et al. Apr 2010 A1
20100114020 Hawkins et al. May 2010 A1
20100114065 Hawkins et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100160838 Krespi Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100168572 Sliwa Jul 2010 A1
20100168862 Edie et al. Jul 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100191089 Stebler et al. Jul 2010 A1
20100198114 Novak et al. Aug 2010 A1
20100199773 Zhou Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100234875 Allex et al. Sep 2010 A1
20100256535 Novak et al. Oct 2010 A1
20110034832 Cioanta et al. Feb 2011 A1
20110059415 Kasenbacher Mar 2011 A1
20110082452 Melsky Apr 2011 A1
20110082534 Wallace Apr 2011 A1
20110118634 Golan May 2011 A1
20110144502 Zhou et al. Jun 2011 A1
20110184244 Kagaya et al. Jul 2011 A1
20110208185 Diamant et al. Aug 2011 A1
20110213349 Brown Sep 2011 A1
20110245740 Novak et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110275990 Besser et al. Nov 2011 A1
20120064141 Andreacchi et al. Mar 2012 A1
20120071715 Beyar et al. Mar 2012 A1
20120071867 Ryan Mar 2012 A1
20120071889 Mantell et al. Mar 2012 A1
20120089132 Dick et al. Apr 2012 A1
20120095335 Sverdlik et al. Apr 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120116289 Hawkins et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123331 Satake May 2012 A1
20120123399 Belikov May 2012 A1
20120157892 Reitmajer et al. Jun 2012 A1
20120203255 Hawkins et al. Aug 2012 A1
20120221013 Hawkins et al. Aug 2012 A1
20120232409 Stahmann Sep 2012 A1
20120296367 Grovender et al. Nov 2012 A1
20120330293 Arai Dec 2012 A1
20130030431 Adams Jan 2013 A1
20130030447 Adams Jan 2013 A1
20130041355 Heeren et al. Feb 2013 A1
20130046207 Capelli Feb 2013 A1
20130046293 Arai et al. Feb 2013 A1
20130053762 Rontal et al. Feb 2013 A1
20130116714 Adams et al. May 2013 A1
20130190803 Angel et al. Jul 2013 A1
20130197614 Gustus Aug 2013 A1
20130218054 Sverdlik et al. Aug 2013 A1
20130226131 Bacino et al. Aug 2013 A1
20130253466 Campbell Sep 2013 A1
20130345617 Wallace Dec 2013 A1
20140005576 Adams Jan 2014 A1
20140005706 Gelfand et al. Jan 2014 A1
20140012186 Thyzel Jan 2014 A1
20140039002 Adams et al. Jan 2014 A1
20140039358 Zhou et al. Feb 2014 A1
20140039513 Hakala Feb 2014 A1
20140046229 Hawkins et al. Feb 2014 A1
20140046353 Adams Feb 2014 A1
20140052146 Curtis et al. Feb 2014 A1
20140052147 Hakala et al. Feb 2014 A1
20140058294 Gross et al. Feb 2014 A1
20140074111 Hakala Mar 2014 A1
20140114198 Samada et al. Apr 2014 A1
20140153087 Hutchings et al. Jun 2014 A1
20140155990 Nyuli Jun 2014 A1
20140180069 Millett Jun 2014 A1
20140180126 Millett Jun 2014 A1
20140180134 Hoseit Jun 2014 A1
20140188094 Islam Jul 2014 A1
20140228829 Schmitt Aug 2014 A1
20140257144 Capelli et al. Sep 2014 A1
20140257148 Jie Sep 2014 A1
20140276573 Miesel Sep 2014 A1
20140288570 Adams Sep 2014 A1
20140357997 Hartmann Dec 2014 A1
20150005576 Diodone et al. Jan 2015 A1
20150039002 Hawkins Feb 2015 A1
20150057648 Swift et al. Feb 2015 A1
20150073430 Hakala et al. Mar 2015 A1
20150080875 Kasprzyk et al. Mar 2015 A1
20150100048 Hiereth et al. Apr 2015 A1
20150105715 Pikus et al. Apr 2015 A1
20150119870 Rudie Apr 2015 A1
20150126990 Sharma May 2015 A1
20150141764 Harks et al. May 2015 A1
20150250542 Islam Sep 2015 A1
20150276689 Watanabe et al. Oct 2015 A1
20150313732 Fulton, III Nov 2015 A1
20150342678 Deladurantaye et al. Dec 2015 A1
20150359432 Ehrenreich Dec 2015 A1
20160008016 Cioanta et al. Jan 2016 A1
20160016016 Taylor et al. Jan 2016 A1
20160018602 Govari et al. Jan 2016 A1
20160022294 Cioanta et al. Jan 2016 A1
20160038087 Hunter Feb 2016 A1
20160095610 Lipowski et al. Apr 2016 A1
20160135828 Hawkins et al. May 2016 A1
20160143522 Ransbury May 2016 A1
20160151639 Scharf et al. Jun 2016 A1
20160183819 Burnett Jun 2016 A1
20160183957 Hakala et al. Jun 2016 A1
20160184020 Kowalewski et al. Jun 2016 A1
20160184022 Grace et al. Jun 2016 A1
20160184023 Grace et al. Jun 2016 A1
20160184570 Grace et al. Jun 2016 A1
20160262784 Grace et al. Sep 2016 A1
20160270806 Wallace Sep 2016 A1
20160234534 Hawkins et al. Nov 2016 A1
20160324564 Gerlach et al. Nov 2016 A1
20160331389 Hakala et al. Nov 2016 A1
20160367274 Wallace Dec 2016 A1
20160367275 Wallace Dec 2016 A1
20170049463 Popovic et al. Feb 2017 A1
20170056035 Adams Mar 2017 A1
20170086867 Adams Mar 2017 A1
20170119469 Shimizu et al. May 2017 A1
20170119470 Diamant et al. May 2017 A1
20170135709 Nguyen et al. May 2017 A1
20170151421 Asher Jun 2017 A1
20170209050 Fengler et al. Jul 2017 A1
20170265942 Grace et al. Sep 2017 A1
20170303946 Ku et al. Oct 2017 A1
20170311965 Adams Nov 2017 A1
20180008348 Grace et al. Jan 2018 A1
20180042661 Long Feb 2018 A1
20180042677 Yu et al. Feb 2018 A1
20180049877 Venkatasubramanian Feb 2018 A1
20180085174 Radtke et al. Mar 2018 A1
20180092763 Dagan et al. Apr 2018 A1
20180095287 Jeng et al. Apr 2018 A1
20180098779 Betelia et al. Apr 2018 A1
20180152568 Kat-kuoy Jun 2018 A1
20180238675 Wan Aug 2018 A1
20180256250 Adams et al. Sep 2018 A1
20180280005 Parmentier Oct 2018 A1
20180303501 Hawkins Oct 2018 A1
20180303503 Eggert et al. Oct 2018 A1
20180303504 Eggert et al. Oct 2018 A1
20180304053 Eggert et al. Oct 2018 A1
20180323571 Brown et al. Nov 2018 A1
20180333043 Teriluc Nov 2018 A1
20180360482 Nguyen Dec 2018 A1
20190029702 De Cicco Jan 2019 A1
20190029703 Wasdyke et al. Jan 2019 A1
20190069916 Hawkins et al. Mar 2019 A1
20190072378 Hane et al. Mar 2019 A1
20190097380 Luft et al. Mar 2019 A1
20190099588 Ramanath et al. Apr 2019 A1
20190104933 Stern Apr 2019 A1
20190117242 Lawinger Apr 2019 A1
20190150960 Nguyen et al. May 2019 A1
20190175111 Genereux et al. Jun 2019 A1
20190175300 Hom Jun 2019 A1
20190175372 Boyden et al. Jun 2019 A1
20190175407 Bacher Jun 2019 A1
20190209368 Park et al. Jul 2019 A1
20190232066 Lim et al. Aug 2019 A1
20190247680 Mayer Aug 2019 A1
20190262594 Ogata et al. Aug 2019 A1
20190265419 Tayebati Aug 2019 A1
20190282249 Tran et al. Sep 2019 A1
20190282250 Tran et al. Sep 2019 A1
20190321100 Masotti et al. Oct 2019 A1
20190321101 Massoti et al. Oct 2019 A1
20190328259 Deno et al. Oct 2019 A1
20190365400 Adams et al. Dec 2019 A1
20190380589 Lloret Dec 2019 A1
20190388002 Bozsak et al. Dec 2019 A1
20190388110 Nguyen et al. Dec 2019 A1
20190388133 Sharma Dec 2019 A1
20190388151 Bhawalkar Dec 2019 A1
20200000484 Hawkins Jan 2020 A1
20200008856 Harmouche Jan 2020 A1
20200022754 Cottone Jan 2020 A1
20200038087 Harmouche Feb 2020 A1
20200046429 Tschida et al. Feb 2020 A1
20200046949 Chisena et al. Feb 2020 A1
20200054352 Brouillette et al. Feb 2020 A1
20200060814 Murphy Feb 2020 A1
20200061931 Brown et al. Feb 2020 A1
20200069371 Brown et al. Mar 2020 A1
20200085458 Nguyen et al. Mar 2020 A1
20200085459 Adams Mar 2020 A1
20200101269 Hayes Apr 2020 A1
20200107960 Bacher Apr 2020 A1
20200108236 Salazar et al. Apr 2020 A1
20200129195 McGowan et al. Apr 2020 A1
20200129741 Kawwas Apr 2020 A1
20200155812 Zhang et al. May 2020 A1
20200197019 Harper Jun 2020 A1
20200205890 Harlev Jul 2020 A1
20200246032 Betelia et al. Aug 2020 A1
20200289202 Miyagawa et al. Sep 2020 A1
20200297366 Nguyen et al. Sep 2020 A1
20200337717 Walzman Oct 2020 A1
20200383724 Adams et al. Dec 2020 A1
20200397230 Massimini et al. Dec 2020 A1
20200397453 McGowan Dec 2020 A1
20200398033 McGowan et al. Dec 2020 A1
20200405333 Massimini et al. Dec 2020 A1
20200405391 Massimini et al. Dec 2020 A1
20200406009 Massimini Dec 2020 A1
20200406010 Massimini et al. Dec 2020 A1
20210038237 Adams Feb 2021 A1
20210085347 Phan et al. Mar 2021 A1
20210085348 Nguyen Mar 2021 A1
20210085383 Vo et al. Mar 2021 A1
20210128241 Schultheis May 2021 A1
20210137598 Cook et al. May 2021 A1
20210153939 Cook May 2021 A1
20210177442 Girdhar et al. Jun 2021 A1
20210177445 Nguyen Jun 2021 A1
20210186613 Cook Jun 2021 A1
20210212765 Verhagen Jul 2021 A1
20210220052 Cook Jul 2021 A1
20210220053 Cook Jul 2021 A1
20210244473 Cook et al. Aug 2021 A1
20210267685 Schultheis Sep 2021 A1
20210275247 Schultheis Sep 2021 A1
20210275249 Massimini et al. Sep 2021 A1
20210282792 Adams et al. Sep 2021 A1
20210290259 Hakala et al. Sep 2021 A1
20210290286 Cook Sep 2021 A1
20210290305 Cook Sep 2021 A1
20210298603 Feldman Sep 2021 A1
20210338258 Hawkins et al. Nov 2021 A1
20210353359 Cook Nov 2021 A1
20210369348 Cook Dec 2021 A1
20210378743 Massimini et al. Dec 2021 A1
20210378744 Fanier et al. Dec 2021 A1
20210386479 Massimini et al. Dec 2021 A1
20220000505 Hauser Jan 2022 A1
20220000506 Hauser Jan 2022 A1
20220000507 Hauser Jan 2022 A1
20220000508 Schmitt et al. Jan 2022 A1
20220000509 Laser et al. Jan 2022 A1
20220000551 Govari et al. Jan 2022 A1
20220008130 Massimini et al. Jan 2022 A1
20220008693 Humbert et al. Jan 2022 A1
20220015785 Hakala et al. Jan 2022 A1
20220021190 Pecquois Jan 2022 A1
20220022902 Spano Jan 2022 A1
20220022912 Efremkin Jan 2022 A1
20220023528 Long et al. Jan 2022 A1
20220071704 Le Mar 2022 A1
20220168594 Mayer Jun 2022 A1
20220183738 Flores et al. Jun 2022 A1
20220218402 Schultheis Jul 2022 A1
20220249165 Cook Aug 2022 A1
20220273324 Schultheis Sep 2022 A1
20220354578 Cook Nov 2022 A1
20220387106 Cook Dec 2022 A1
20230013920 Massimini Jan 2023 A1
20230310073 Adams et al. Oct 2023 A1
Foreign Referenced Citations (159)
Number Date Country
2017205323 Jan 2022 AU
2019452180 Jan 2022 AU
2229806 Mar 1997 CA
2983655 Oct 2016 CA
102057422 May 2011 CN
109223100 Jan 2019 CN
110638501 Jan 2020 CN
110638501 Jan 2020 CN
106794043 Mar 2020 CN
11399346 Jan 2022 CN
107411805 Jan 2022 CN
107899126 Jan 2022 CN
109475378 Jan 2022 CN
113876388 Jan 2022 CN
113877044 Jan 2022 CN
113907838 Jan 2022 CN
113951972 Jan 2022 CN
113951973 Jan 2022 CN
113974765 Jan 2022 CN
113974826 Jan 2022 CN
215384399 Jan 2022 CN
215386905 Jan 2022 CN
215458400 Jan 2022 CN
215458401 Jan 2022 CN
215505065 Jan 2022 CN
215534803 Jan 2022 CN
215537694 Jan 2022 CN
215584286 Jan 2022 CN
215606068 Jan 2022 CN
215651393 Jan 2022 CN
215651394 Jan 2022 CN
215651484 Jan 2022 CN
215653328 Jan 2022 CN
3038445 May 1982 DE
3836337 Apr 1990 DE
3913027 Oct 1990 DE
202008016760 Mar 2009 DE
102007046902 Apr 2009 DE
102008034702 Jan 2010 DE
102009007129 Aug 2010 DE
202010009899 Nov 2010 DE
102013201928 Aug 2014 DE
102020117713 Jan 2022 DE
0119296 Sep 1984 EP
0261831 Jun 1992 EP
558297 Sep 1993 EP
0571306 Nov 1993 EP
1179993 Feb 2002 EP
1946712 Jul 2008 EP
1946712 Jul 2008 EP
1453566 Sep 2008 EP
2157569 Feb 2010 EP
2879595 Jun 2015 EP
2879595 Jun 2015 EP
2944264 Jun 2015 EP
3226795 Oct 2017 EP
3318204 May 2018 EP
2879607 Feb 2019 EP
3461438 Apr 2019 EP
3473195 Apr 2019 EP
3643260 Apr 2020 EP
3076881 Jan 2022 EP
3932342 Jan 2022 EP
3936140 Jan 2022 EP
3960099 Mar 2022 EP
4051154 Sep 2022 EP
1082397 Sep 1967 GB
S62275446 Nov 1987 JP
20050098932 Oct 2005 KR
20080040111 May 2008 KR
20160090877 Aug 2016 KR
WO9007904 Jul 1990 WO
WO9105332 Apr 1991 WO
9203095 Mar 1992 WO
WO9208515 May 1992 WO
9902095 Jan 1999 WO
1999002095 Jan 1999 WO
9920189 Apr 1999 WO
1999020189 Apr 1999 WO
WO200067648 Nov 2000 WO
WO2000067648 Nov 2000 WO
WO0103599 Jan 2001 WO
WO0103599 Jan 2001 WO
20060006169 Jan 2006 WO
WO2006006169 Jan 2006 WO
WO2009121017 Oct 2009 WO
WO2009149321 Dec 2009 WO
WO2009152352 Dec 2009 WO
2010042653 Apr 2010 WO
WO2011094379 Aug 2011 WO
20110126580 Oct 2011 WO
WO2011126580 Oct 2011 WO
WO2012025833 Mar 2012 WO
WO20120052924 Apr 2012 WO
WO2012058156 May 2012 WO
WO20120120495 Sep 2012 WO
WO2013119662 Aug 2013 WO
20130169807 Nov 2013 WO
WO2013169807 Nov 2013 WO
WO2014025397 Feb 2014 WO
WO20140022867 Feb 2014 WO
WO2014138582 Sep 2014 WO
WO2015056662 Apr 2015 WO
WO2015097251 Jul 2015 WO
20150177790 Nov 2015 WO
WO2016014999 Jan 2016 WO
WO2016089683 Jun 2016 WO
WO2016090175 Jun 2016 WO
WO2016109739 Jul 2016 WO
WO2016151595 Sep 2016 WO
WO20170192869 Nov 2017 WO
20180022641 Feb 2018 WO
WO2018022593 Feb 2018 WO
WO2018083666 May 2018 WO
20180175322 Sep 2018 WO
WO2018175322 Sep 2018 WO
WO2018191013 Oct 2018 WO
WO2019200201 Oct 2019 WO
WO2019222843 Nov 2019 WO
WO2020056031 Mar 2020 WO
WO20200086361 Apr 2020 WO
WO2020089876 May 2020 WO
WO2020157648 Aug 2020 WO
WO2020256898 Dec 2020 WO
WO2020256898 Dec 2020 WO
WO2020256949 Dec 2020 WO
WO2020256949 Dec 2020 WO
WO2020263469 Dec 2020 WO
WO2020263685 Dec 2020 WO
WO2020263687 Dec 2020 WO
WO2020263688 Dec 2020 WO
WO2020263689 Dec 2020 WO
WO2021061451 Apr 2021 WO
WO2021067563 Apr 2021 WO
WO2021086571 May 2021 WO
WO2021096922 May 2021 WO
WO2021101766 May 2021 WO
WO2021101766 May 2021 WO
WO2021126762 Jun 2021 WO
WO2021150502 Jul 2021 WO
WO2021162855 Aug 2021 WO
WO2021173417 Sep 2021 WO
WO2021183367 Sep 2021 WO
WO2021183401 Sep 2021 WO
WO2021188233 Sep 2021 WO
WO2021231178 Nov 2021 WO
WO2021247685 Dec 2021 WO
WO2021257425 Dec 2021 WO
WO2022007490 Jan 2022 WO
WO2022008440 Jan 2022 WO
WO2022010767 Jan 2022 WO
WO2022055784 Mar 2022 WO
WO2022125525 Jun 2022 WO
WO2022154954 Jul 2022 WO
WO2022173719 Aug 2022 WO
WO2022187058 Sep 2022 WO
WO2022216488 Oct 2022 WO
WO2022240674 Nov 2022 WO
WO2022260932 Dec 2022 WO
Non-Patent Literature Citations (199)
Entry
U.S. Appl. No. 62/863,506 (Year: 2020).
International Search Report and Written Opinion dated Nov. 8, 2022 in PCT Application Serial No. PCT US/2022/039678.
Accucoat, “Beamsplitter: Divide, combine & conquer”; 2023.
Lin et al., “Photoacoustic imaging”, Science Direct; 2021.
Zhou et al., “Photoacoustic Imaging with fiber optic technology: A review”, Science Direct; 2020.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2022/053775, dated Apr. 21, 2023.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/011497, dated Apr. 28, 2023.
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/012599, dated May 19, 2023.
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/062170.
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/065073.
Partial Search Report and Provisional Opinion dated May 3, 2022 in PCT Application No. PCT/US2022/015577.
International Search Report and Written Opinion dated May 13, 2022 in PCT Application Serial No. PCT/US2022/017562.
International Preliminary Report on Patentability dated Sep. 15, 2020 in PCT Application Serial No. PCT/US2019/022009.
International Search Report and Written Opinion dated Sep. 14, 2020 in PCT Application Serial No. PCT/US2020/038523.
International Search Report and Written Opinion dated Oct. 2, 2020 in PCT Application Serial No. PCT/US2020/036107.
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany.
International Search Report and Written Opinion dated Jan. 29, 2020 in PCT Application Serial No. PCT/US2020/059961.
International Search Report and Written Opinion dated Jan. 20, 2020 in PCT Application Serial No. PCT/US2020/054792.
Partial Search Report and Provisional Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960.
Shariat, Mohammad H., et al. “Localization of the ectopic spiral electrical source using intracardiac electrograms during atrial fibrillation.” 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015.
Nademanee, Koonlawee, et al. “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate.” Journal of the American College of Cardiology 43.11 (2004): 2044-2053.
Calkins, Hugh. “Three dimensional mapping of atrial fibrillation: techniques and necessity.” Journal of interventional cardiac electrophysiology 13.1 (2005): 53-59.
Shariat, Mohammad Hassan. Processing the intracardiac electrogram for atrial fibrillation ablation. Diss. Queen's University (Canada), 2016.
Meng et al., “Accurate Recovery Of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421).
Jiang et al., “Multielectrode Catheter For Substrate Mapping For Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368).
Sacher et al., “Comparison Of Manual Vs Automatic Annotation To Identify Abnormal Substrate For Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336).
Oriel Instruments, “Introduction to Beam Splitters for Optical Research Applications”, Apr. 2014, pp. 1-9, https://www.azoptics.com/Article.aspx?ArticaID=871.
International Search Report and Written Opinion dated Apr. 12, 2021 in PCT Application Serial No. PCT/US2020/059960.
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2020/064846.
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2021/013944.
International Search Report and Written Opinion dated May 25, 2021 in PCT Application Serial No. PCT/US2021/017604.
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/018522.
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/015204.
International Search Report and Written Opinion dated Jun. 17, 2021 in PCT Application Serial No. PCT/US2021/020934.
International Search Report and Written Opinion dated Jul. 13, 2021 in PCT Application Serial No. PCT/US2021/024216.
International Search Report and Written Opinion dated Jun. 22, 2021 in PCT Application Serial No. PCT/US2021/020937.
International Search Report and Written Opinion dated Jun. 24, 2021 in PCT Application Serial No. PCT/US2021/021272.
International Search Report and Written Opinion dated Aug. 20, 2021 in PCT Application Serial No. PCT/US2021/031130.
International Search Report and Written Opinion dated Aug. 25, 2022 in PCT Application Serial No. PCTUS/2022/028035.
International Search Report and Written Opinion dated Sep. 15, 2022 in PCT Application Serial No. PCTUS/2022/032045.
International Search Report and Written Opinion, PCT Application Serial No. PCT/US2022/047751 issued Feb. 10, 2023, by the European Patent Office.
PathFinder Digital, “Free Space Optics vs. Fiber Optics”, 2023.
International Search Report and Written Opinion, issued in Application Serial No. PCT/US2023/016152, dated Jul. 12, 2023.
International Search Report and Written Opinion dated Jun. 28, 2022, in PCT Application Serial No. PCT/US2022/015577.
International Search Report and Written Opinion dated Jun. 27, 2022, in PCT Application Serial No. PCT/US2022/022460.
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland. 2015.
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland. 2015.
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing. Oct. 2015.
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany. Dec. 2, 2021.
Meng et al., “Accurate Recovery Of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421). May 2019.
Jiang et al., “Multielectrode Catheter For Substrate Mapping For Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368). Poster for conference in San Francisco, May 8-11, 2019.
Sacher et al., “Comparison Of Manual Vs Automatic Annotation To Identify Abnormal Substrate For Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336). Poster for conference in San Francisco, May 8-11, 2019.
Vogel, A., et al. “Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina”, Investigative Ophthalmology & Visual Science, Jun. 1994, pp. 3032-3044, vol. 35, No. 7, Association for Research in Vision and Ophthalmology.
Jones, H. M., et al. “Pulsed dielectric breakdown of pressurized water and salt solutions”, Journal of Applied Physics, Jun. 1998, pp. 795-805, vol. 77, No. 2, American Institute of Physics.
Kozulin, I., et al. “The dynamic of the water explosive vaporization on the flat microheater”, Journal of Physics: Conference Series, 2018, pp. 1-4, IOP Publishing, Russia.
Cross, F., “Laser Angioplasty”, Vascular Medicine Review, 1992, pp. 21-30, Edward Arnold.
Doukas, A. G., et al. “Laser-generated stress waves and their effects on the cell membrane”, IEEE Journal of Selected Topics in Quantum Electronics, 1999, pp. 997-1003, vol. 5, Issue 4, IEEE.
Noack, J., et al. “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density”, IEEE Journal of Quantum Electronics, 1999, pp. 1156-1167, vol. 35, No. 8, IEEE.
Pratsos, A., “The use of Laser for the treatment of coronary artery disease”, Bryn Mawr Hospital, 2010.
Li, Xian-Dong, et al. “Influence of deposited energy on shock wave induced by underwater pulsed current discharge”, Physics of Plasmas, 2016, vol. 23, American Institute of Physics.
Logunov, S., et al. “Light diffusing optical fiber illumination”, Renewable Energy and the Environment Congress, 2013, Corning, NY, USA.
Maxwell, A. D., et al. “Cavitation clouds created by shock scattering from bubbles during histotripsy”, Acoustical Society of America, 2011, pp. 1888-1898, vol. 130, No. 4, Acoustical Society of America.
McAteer, James A., et al. “Ultracal-30 Gypsum Artificial Stones For Research On The Mechinisms Of Stone Breakage In Shock Wave Lithotripsy”, 2005, pp. 429-434, Springer-Verlag.
Vogel, A., et al. “Mechanisms of Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses”, Lasers in Surgery and Medicine, 1994, pp. 32-43, vol. 15, Wiley-Liss Inc., Lubeck, Germany.
Vogel, A., et al. “Mechanisms of Pulsed Laser Ablation of Biological Tissues”, Chemical Reviews, 2003, pp. 577-644, vol. 103, No. 2, American Chemical Society.
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland.
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland.
Mayo, Michael E., “Interaction of Laser Radiation with Urinary Calculi”, Cranfield University Defense and Security, PhD Thesis, 2009, Cranfield University.
Vogel, A., et al. “Minimization of Cavitation Effects in Pulsed Laser Ablation Illustrated on Laser Angioplasty”, Applied Physics, 1996, pp. 173-182, vol. 62, Springer-Verlag.
Mirshekari, G., et al. “Microscale Shock Tube”, Journal of Microelectromechanical Systems, 2012, pp. 739-747, vol. 21, No. 3, IEEE.
“Polymicro Sculpted Silica Fiber Tips”, Molex, 2013, Molex.
Zhou, J., et al. “Optical Fiber Tips and Their Applications”, Polymicro Technologies A Subsidiary of Molex, Nov. 2007.
Liang, Xiao-Xuan, et al. “Multi-Rate-Equation modeling of the energy spectrum of laser-induced conduction band electrons in water”, Optics Express, 2019, vol. 27, No. 4, Optical Society of America.
Nachabe, R., et al. “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods”, Journal of Biomedical Optics, 2011, vol. 16(8), SPIE.
Naugol'nykh, K. A., et al. “Spark Discharges in Water”, Academy of Sciences USSR Institute of Acoustics, 1971, Nauka Publishing Co., Moscow, USSR.
Van Leeuwen, Ton G., et al. “Noncontact Tissue Ablation by Holmium: YSGG Laser Pulses in Blood”, Lasers in Surgery and Medicine, 1991, vol. 11, pp. 26-34, Wiley-Liss Inc.
Nyame, Yaw A., et al. “Kidney Stone Models for In Vitro Lithotripsy Research: A Comprehensive Review”, Journal of Endourology, Oct. 2015, pp. 1106-1109, vol. 29, No. 10, Mary Ann Liebert Inc., Cleveland, USA.
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing.
Zheng, W., “Optical Lenses Manufactured on Fiber Ends”, IEEE, 2015, Splicer Engineering, Duncan SC USA.
Dwyer, P. J., et al. “Optically integrating balloon device for photodynamic therapy”, Lasers in Surgery and Medicine, 2000, pp. 58-66, vol. 26, Issue 1, Wiley-Liss Inc., Boston MA USA.
“The New Optiguide DCYL700 Fiber Optic Diffuser Series”, Optiguide Fiber Optic Spec Sheet, Pinnacle Biologics, 2014, Pinnacle Biologics, Illinois, USA.
Van Leeuwen, Ton G., et al. “Origin of arterial wall dissections induced by pulsed excimer and mid-infared laser ablation in the pig”, JACC, 1992, pp. 1610-1618, vol. 19, No. 7, American College of Cardiology.
Oshita, D., et al. “Characteristic of Cavitation Bubbles and Shock Waves Generated by Pulsed Electric Discharges with Different Voltages”, IEEE, 2012, pp. 102-105, Kumamoto, Japan.
Karsch, Karl R., et al. “Percutaneous Coronary Excimer Laser Angioplasty in Patients With Stable and Unstable Angina Pectoris”, Circulation, 1990, pp. 1849-1859, vol. 81, No. 6, American Heart Association, Dallas TX, USA.
Murray, A., et al. “Peripheral laser angioplasty with pulsed dye laser and ball tipped optical fibres”, The Lancet, 1989, pp. 1471-1474, vol. 2, Issue 8678-8679.
Mohammadzadeh, M., et al. “Photoacoustic Shock Wave Emission and Cavitation from Structured Optical Fiber Tips”, Applied Physics Letters, 2016, vol. 108, American Institute of Physics Publishing LLC.
Doukas, A. G., et al. “Physical characteristics and biological effects of laser-induced stress waves”, Ultrasound in Medicine and Biology, 1996, pp. 151-164, vol. 22, Issue 2, World Federation for Ultrasound in Medicine and Biology, USA.
Doukas, A. G., et al. “Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient”, Ultrasound in Medicine and Biology, 1995, pp. 961-967, vol. 21, Issue 7, Elsevier Science Ltd., USA.
Piedrahita, Francisco S., “Experimental Research Work On A Sub-Millimeter Spark-Gap For Sub Nanosecond Gas Breakdown”, Thesis for Universidad Nacional De Colombia, 2012, Bogota, Colombia.
Vogel, A., et al. “Plasma Formation in Water by Picosecond and Nanosecond Nd: YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance”, IEEE Journal of Selected Topics in Quantum Electronics, 1996, pp. 847-859, vol. 2, No. 4, IEEE.
Park, Hee K., et al. “Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface”, Journal of Applied Physics, 1996, pp. 4072-4081, vol. 80, No. 7, American Institute of Physics.
Cummings, Joseph P., et al. “Q-Switched laser ablation of tissue: plume dynamics and the effect of tissue mechanical properties”, SPIE, Laser-Tissue Interaction III, 1992, pp. 242-253, vol. 1646.
Lee, Seung H., et al. “Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications”, Optics Express, 2015, vol. 23, No. 16, Optical Society of America.
Hui, C., et al. “Research on sound fields generated by laser-induced liquid breakdown”, Optica Applicata, 2010, pp. 898-907, vol. XL, No. 4, Xi'an, China.
Riel, Louis-Philippe, et al. “Characterization of Calcified Plaques Retrieved From Occluded Arteries and Comparison with Potential Artificial Analogues”, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, pp. 1-11, ASME, Canada.
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, 1996, pp. 3465-3475, vol. 99, No. 6, Acoustical Society of America.
Rocha, R., et al. “Fluorescence and Reflectance Spectroscopy for Identification of Atherosclerosis in Human Carotid Arteries Using Principal Components Analysis”, Photomedicine and Lsser Surgery, 2008, pp. 329-335, vol. 26, No. 4, Mary Ann Liebert Inc.
Scepanovic, Obrad R., et al. “Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque”, Journal of Biomedical Optics, 2011, pp. 1-10, vol. 16, No. 1, SPIE.
Serruys, P. W., et al. “Shaking and Breaking Calcified Plaque Lithoplasty, a Breakthrough in Interventional Armamentarium?”, JACC: Cardiovascular Imaging, 2017, pp. 907-911, vol. 10, No. 8, Elsevier.
Vogel, A., et al. “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water”, The Journal of the Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, Acoustical Society of America.
Vogel, A., et al. “Shock-Wave Energy and Acoustic Energy Dissipation After Laser-induced Breakdown”, SPIE, 1998, pp. 180-189, vol. 3254, SPIE.
International Search Report and Written Opinion, issued by the EP/ISA, in PCT/US2021/048819, dated Jan. 14, 2022.
Davletshin, Yevgeniy R., “A Computational Analysis of Nanoparticle-Mediated Optical Breakdown”, A dissertation presented to Ryerson University in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in the Program of Physics, Toronto, Ontario, CA 2017.
Vogel, A., et al. “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries”, Journal Acoustical Society of America, 1988, pp. 719-731, vol. 84.
Asshauer, T., et al. “Acoustic transient generation by holmium-laser-induced cavitation bubbles”, Journal of Applied Physics, Nov. 1, 1994, pp. 5007-5013, vol. 76, No. 9, American Institute of Physics.
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, Splicer Engineering AFL, Duncan, SC USA.
Ali, Ziad A., et al. “Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions”, JACC: Cardiovascular Imaging, 2017, pp. 897-906, vol. 109, No. 8, Elsevier.
Ali, Ziad A., et al. “Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification” 2018, European Society of Cardiology.
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—full article”, Journal of Biophotonics, 2014, pp. 103-109, vol. 7, No. 1-2.
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—proof” Journal of Biophotonics 7, 2014, No. 1-2.
Bian, D. C., et al. “Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water”, Hindawi Advances in Materials Science and Engineering, Jan. 2018, 12 pages, vol. 2018, Article ID 8025708.
Bian, D. C., et al. “Study on Breakdown Delay Characteristics Based on High-voltage Pulse Discharge in Water with Hydrostatic Pressure”, Journal of Power Technologies 97(2), 2017, pp. 89-102.
Doukas, A. G., et al. “Biological effects of laser induced shock waves: Structural and functional cell damage in vitro”, Ultrasound in Medicine and Biology, 1993, pp. 137-146, vol. 19, Issue 2, Pergamon Press, USA.
Brodmann, Marianne et al. “Safety and Performance of Lithoplasty for Treatment of Calcified Peripheral Artery Lesions”, JACC, 2017, vol. 70, No. 7.
Brouillette, M., “Shock Waves at Microscales”, 2003, pp. 3-12, Springer-Verlag.
Mirshekari, G., et al. “Shock Waves in Microchannels”, 2013, pp. 259-283, vol. 724, Cambridge University Press.
“Bubble Dynamics and Shock Waves”, Springer, 2013, Springer-Verlag, Berlin Heildelberg.
Hardy, Luke A., et al. “Cavitation Bubble Dynamics During Thulium Fiber Laser Lithotripsy”, SPIE, Feb. 29, 2016, vol. 9689, San Francisco, California, USA.
Claverie, A., et al. “Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge”, Review of Scientific Instruments, 2014, American Institute of Physics.
Blackmon, Richard L., et al. “Comparison of holmium: YAG and thulium fiber laser lithotripsy ablation thresholds, ablation rates, and retropulsion effects”, Journal of Biomedical Optics, 2011, vol. 16(7), SPIE.
Debasis, P., et al. “Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations”, Applied Optics, Aug. 10, 2016, vol. 55, No. 23, Optical Society of America.
Cook, Jason R., et al. “Tissue mimicking phantoms for photoacoustic and ultrasonic imaging”, Biomedical Optics Express, 2011, vol. 2, No. 11, Optical Society of America.
Deckelbaum, Lawrence I., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, Wiley-Liss Inc.
Costanzo, F., “Underwater Explosion Phenomena and Shock Physics”, Research Gate, 2011.
Mizeret, J. C., et al. “Cylindrical fiber optic light diffuser for medical applications”, Lasers in Surgery and Medicine, 1996, pp. 159-167, vol. 19, Issue 2, Wiley-Liss Inc., Lausanne, Switzerland.
De Silva, K., et al. “A Calcific, Undilatable Stenosis Lithoplasty, a New Tool in the Box?”, JACC: Cardiovascular Interventions, 2017, vol. 10, No. 3, Elsevier.
Vesselov, L., et al. “Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers”, Applied Optics, 2005, pp. 2754-2758, vol. 44, Issue 14, Optical Society of America.
Hutchens, Thomas C., et al. “Detachable fiber optic tips for use in thulium fiber laser lithotripsy”, Journal of Biomedical Optics, Mar. 2013, vol. 18(3), SPIE.
Kostanski, Kris L., et al. “Development of Novel Tunable Light Scattering Coating Materials for Fiber Optic Diffusers in Photodynamic Cancer Therapy”, Journal of Applied Polymer Science, 2009, pp. 1516-1523, vol. 112, Wiley InterScience.
Kristiansen, M., et al. “High Voltage Water Breakdown Studies”, DoD, 1998, Alexandria, VA, USA.
Dwyer, J. R., et al. “A study of X-ray emission from laboratory sparks in air at atmospheric pressure”, Journal of Geophysical Research, 2008, vol. 113, American Geophysical Union.
Jansen, Duco E., et al. “Effect of Pulse Duration on Bubble Formation and Laser-Induced Pressure Waves During Holmium Laser Ablation”, Lasers in Surgery and Medicine 18, 1996, pp. 278-293, Wiley-Liss Inc., Austin, TX, USA.
Shangguan, HanQun et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and On Submerged Targets”, SPIE, 1997, pp. 783-791, vol. 2869.
Varghese, B., et al. “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation”, SPIE, Mar. 9, 2016, vol. 9740, SPIE, San Francisco, USA.
Varghese, B., et al. “Effects of polarization and apodization on laser induced optical breakdown threshold”, Optics Express, Jul. 29, 2013, vol. 21, No. 15, Optical Society of America.
Bonito, Valentina, “Effects of polarization, plasma and thermal initiation pathway on irradiance threshold of laser induced optical breakdown”, Philips Research, 2013, The Netherlands.
Vogel, A. et al. “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales”, Applied Physics B 68, 1999, pp. 271-280, Springer-Verlag.
Kang, Hyun W., et al. “Enhanced photocoagulation with catheter based diffusing optical device”, Journal of Biomedical Optics, Nov. 2012, vol. 17(11), SPIE.
Esch, E., et al. “A Simple Method For Fabricating Artificial Kidney Stones Of Different Physical Properties”, National Institute of Health Public Access Author Manuscript, Aug. 2010.
Isner, Jeffrey M., et al. “Excimer Laser Atherectomy”, Circulation, Jun. 1990, vol. 81, No. 6, American Heart Association, Dallas, TX, USA.
Israel, Douglas H., et al. “Excimer Laser-Facilitated Balloon Angioplasty of a Nondilateable Lesion”, JACC, Oct. 1991, vol. 18, No. 4, American College of Cardiology, New York, USA.
Van Leeuwen, Ton G., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine 18, 1996, pp. 381-390, Wiley-Liss Inc., Utrecht, The Netherlands.
Nguyen, H., et al. “Fabrication of multipoint side-firing optical fiber by laser micro-ablation”, Optics Letters, May 1, 2017, vol. 42, No. 9, Optical Society of America.
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, IEEE, Duncan, SC, USA.
Whitesides, George M., et al. “Fluidic Optics”, 2006, vol. 6329, SPIE, Cambridge, MA, USA.
Forero, M., et al. “Coronary lithoplasty: a novel treatment for stent underexpansion”, Cardiovascular Flashlight, 2018, European Society of Cardiology.
Ghanate, A. D., et al. “Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario”, Journal of Biomedical Optics, Feb. 2011, pp. 1-9, vol. 16(2), SPIE.
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, Jun. 1996, pp. 3465-3474, Acoustical Society of America, Austin, TX, USA.
Blackmon, Richard L., et al. “Holmium: YAG Versus Thulium Fiber Laser Lithotripsy”, Lasers in Surgery and Medicine, 2010, pp. 232-236, Wiley-Liss Inc.
Varghese, B., “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America.
Noack, J., “Influence of pulse duration on mechanical effects after laser-induced breakdown in water”, Journal of Applied Physics, 1998, pp. 7488-EOA, vol. 83, American Institute of Physics.
Van Leeuwen, Ton G., et al. “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit”, Circulation, Apr. 1993, vol. 87, No. 4, American Heart Association, Dallas, TX, USA.
Stelzle, F., et al. “Diffuse Reflectance Spectroscopy for Optical Soft Tissue Differentiation as Remote Feedback Control for Tissue-Specific Laser Surgery”, Lasers in Surgery and Medicine, 2010, pp. 319-325, vol. 42, Wiley-Liss Inc.
Stelzle, F., et al. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery, Sensors, 2013, pp. 13717-13731, vol. 13, Basel, Switzerland.
Tagawa, Y., et al. “Structure of laser-induced shock wave in water”, Japan Society for the Promotion of Science, 2016.
Shen, Y., et al. “Theoretical and experimental studies of directivity of sound field generated by pulsed laser induced breakdown in liquid water”, SPIE, 2013, pp. 8796141-8796148, vol. 8796, SPIE.
Preisack, M., et al. “Ultrafast imaging of tissue ablation by a XeCl excimer laser in saline”, Lasers in Surgery and Medicine, 1992, pp. 520-527, vol. 12, Wiley-Liss Inc.
Versluis, M., et al. “How Snapping Shrimp Snap: Through Cavitating Bubbles”, Science Mag, 2000, pp. 2114-2117, vol. 289, American Association for the Advancement of Science, Washington DC, USA.
Yan, D., et al. “Study of the Electrical Characteristics, Shock-Wave Pressure Characteristics, and Attenuation Law Based on Pulse Discharge in Water”, Shock and Vibration, 2016, pp. 1-11, vol. 2016, Article ID 6412309, Hindawi Publishing Corporation.
Zhang, Q., et al. “Improved Instruments and Methods for the Photographic Study of Spark-Induced Cavitation Bubbles”, Water, 2018, pp. 1-12, vol. 10, No. 1683.
“Damage threshold of fiber facets”, NKT Photonics, 2012, pp. 1-4, Denmark.
Smith, A., et al. “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm”, Applied Optics, 2008, pp. 4812-4832, vol. 47, No. 26, Optical Society of America.
Smith, A., et al. “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3 Doped Fused Silica”, SPIE, 2007, pp. 6453171-64531712, vol. 6453, SPIE.
Sun, X., et al. “Laser Induced Damage to Large Core Optical Fiber by High Peak Power Laser”, Specialty Photonics Division, 2010.
Smith, A., et al. “Nanosecond laser-induced breakdown in pure and Yb3 doped fused silica”, SPIE, 2007, vol. 6403, SPIE.
Smith, A., et al. “Optical Damage Limits to Pulse Energy From Fibers”, IEEE Journal of Selected Topics in Quantum Electronics, 2009, pp. 153-158, vol. 15, No. 1, IEEE.
Reichel, E., et al. “A Special Irrigation Liquid to Increase the Reliability of Laser-Induced Shockwave Lithotripsy”, Lasers in Surgery and Medicine, 1992, pp. 204-209, vol. 12, Wiley-Liss Inc., Graz, Austria.
Reichel, E., et al. “Bifunctional irrigation liquid as an ideal energy converter for laser lithotripsy with nanosecond laser pulses”, SPIE Lasers in Urology, Laparoscopy, and General Surgery, 1991, pp. 129-133, vol. 1421, SPIE.
Reichel, E., et al. “Laser-induced Shock Wave Lithotripsy with a Regenerative Energy Converter”, Lasers in Medical Science, 1992, pp. 423-425, vol. 7, Bailliere Tindall.
Hardy, L., et al. “Cavitation Bubble Dynamics during Thulium Fiber Laser Lithotripsy”, SPIE BiOS, 2016, vol. 9689, SPIE.
Deckelbaum, L., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, vol. 14, Wiley-Liss Inc., Conneticuit, USA.
Shangguan, H., et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and On Submerged Targets”, Diagnostic and Therapeutic Cardiovascular Interventions VII, SPIE, 1997, pp. 783-791, vol. 2869, SPIE.
Van Leeuwen, T., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine, 1996, pp. 381-390, vol. 18, Wiley-Liss Inc., The Netherlands.
Vogel, A., et al. “Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water”, The Journal of Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, The Acoustical Society of America.
Varghese, B., et al. “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America.
Linz, N., et al. “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state”, Physical Review, 2015, pp. 134114.1-1341141.10, vol. 91, American Physical Society.
International Search Report and Written Opinion dated Jun. 27, 2018, in PCT Application Serial No. PCT/US2018/027121.
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027801.
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027784.
European Search Report, for European Patent Application No. 18185152, mailed Dec. 13, 2018.
International Search Report and Written Opinion dated May 22, 2019, in PCT Application Serial No. PCT/US2019/022009.
International Search Report and Written Opinion dated May 29, 2019, in PCT Application Serial No. PCT/US2019/022016.
International Search Report and Written Opinion dated Jun. 22, 2018, in Application Serial No. NL2019807, issued by the European Patent Office.
Noimark, Sacha, et al., “Carbon-Nanotube-PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging”, Advanced Functional Materials, 2016, pp. 8390-8396, vol. 26, Wiley-Liss Inc.
Chen, Sung-Liang, “Review of Laser-Generated Ultrasound Transmitters and their Applications to All-Optical Ultrasound Transducers and Imaging”, Appl. Sci. 2017, 7, 25.
Colchester, R., et al. “Laser-Generated ultrasound with optica fibres using functionalised carbon nanotube composite coatings”, Appl. Phys. Lett., 2014, vol. 104, 173504, American Institute of Physics.
Poduval, R., et al. “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite”, Appl. Phys. Lett., 2017, vol. 110, 223701, American Institute of Physics.
Tian, J., et al. “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings”, Optics Express, Mar. 2013, pp. 6109-6114, vol. 21, No. 5, Optical Society of America.
Kim, J., et al. “Optical Fiber Laser-Generated-Focused-Ultrasound Transducers for Intravascular Therapies”, IEEE, 2017.
Kang, H., et al. “Enhanced photocoagulation with catheter-based diffusing optical device”, Journal of Biomedical Optics, 2012, vol. 17, Issue 11, 118001, SPIE.
International Search Report and Written Opinion dated Jan. 3, 2020, in PCT Application Serial No. PCT/US2019/056579.
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 18185152.8, mailed Jan. 16, 2019.
European Search Report, for European Patent Application No. 18185152.8, mailed Dec. 20, 2018.
International Search Report and Written Opinion dated Jul. 29, 2020 in PCT Application Serial No. PCT/US2020/034005.
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038517.
International Search Report and Written Opinion dated Sep. 9, 2020 in PCT Application Serial No. PCT/US2020/038530.
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038521.
International Search Report and Written Opinion dated Sep. 7, 2020 in PCT Application Serial No. PCT/US2020/034642.
Shen, Yajie et al. “High-peak-power and narrow-linewidth Q-switched Ho: YAG laser in-band pumped at 1931 nm.” Applied Physics Express 13.5 (2020): 052006. (Year 2020).
Related Publications (1)
Number Date Country
20220183738 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
63124685 Dec 2020 US