Most catheter placement devices require various medical devices coupled with separate stand-alone display devices, showing information or overlay imaging of the medical device location. Inevitably the display devices are positioned away from the medical device location and the patient, and requires the user to divide their time between medical device insertion location and the display device. This is of particular relevance with medical device tracking systems that require the user to both manipulate one or more medical devices at an insertion site on a patient as well as provide consistent attention to a display device positioned elsewhere. What is needed, therefore is a system and a method of tip location devices located on or near the patient and indicates to a user the location of a medical device that is within a patient.
Briefly summarized, embodiments disclosed herein are directed to a tracking system configured to track the movement of the medical device. The system includes a tip location system (“TLS”) sensor that includes an LED array. The LED array can indicate a proximity of the medical device to the TLS sensor. The LED array can provide different colors or project images to display information regarding the location, orientation, distance, or depth of the medical device. In embodiments, a display is disposed on an upper surface of the TLS sensor and is configured to show an image of the medical device disposed therebelow, along with additional information and imagery.
In an aspect of the invention, a medical device tracking system is disclosed, comprising a tracking circuit designed to track movement of a medical device in a body, the tracking circuit including a reception component designed to detect a magnetic field associated with the medical device and to generate magnetic field strength data; and a processor designed to iteratively compute position data of the medical device according to the magnetic field strength data; and a sensor disposed on a skin surface of the patient, the sensor including a light emitting diode (LED) array, the LED array including one or more LED lights, the LED array indicating a proximity of the medical device to the sensor.
In some embodiments, the LED array includes a first LED light disposed proximate a first side of the sensor, a second LED light disposed proximate a second side of the sensor, and a third LED light disposed proximate a central portion of the sensor, and wherein one LED light of the first, second, and third LED lights illuminates when the medical device is proximate thereto. The one-or-more LED lights of the LED array display more than one color. The more-than-one color indicates one of a distance or a depth of the medical device relative to the sensor. The LED array includes a matrix of LED lights disposed on an upper surface of the sensor.
Also disclosed is a tracking system for tracking a medical device, the medical device including a magnetic element attached to a distal portion thereof, the system comprising a sensor configured to track movement of the medical device. The sensor comprises a reception component configured to detect a magnetic field associated with the magnetic element and to generate magnetic field strength data, a processor designed to iteratively compute position data of the distal portion of the medical device according to the magnetic field strength data, and to simulate insertion of the distal portion of the medical device into a body of a patient. The system includes a display disposed on an upper surface of the sensor. The display is configured to depict an image from the computed position data of the distal portion of the medical device.
In some embodiments, the display depicts a symbol to indicate one of a location, an orientation, a distance, or a depth of the medical device when the medical device is proximate to the sensor. The display depicts an image of the medical device when the medical device is disposed below the sensor. The symbol includes one of an alphanumeric symbol, an image, or an icon. The display further depicts one of additional information or imaging of the patient, to provide an augmented view of the medical device within the patient and disposed below the sensor. The imaging of the patient includes one of an x-ray, an ultrasound, a PET, a CT, or an MM image of the patient. The imaging of the patient is modified in accordance with a position of the sensor on the patient to correspond the imaging with a portion of the patient disposed below the sensor.
Also disclosed is a method of tracking a medical device, comprising positioning a sensor on a target area of a patient, the sensor including an LED array of one or more LED lights, inserting a medical device in a vasculature of the patient, and indicating a proximity of the medical device to the sensor by illuminating the one-or-more LED lights of the LED array.
In some embodiments, the proximity of the medical device to the sensor includes one of a distance or a depth of the medical device in three-dimensional space. The one-or-more LED lights of the LED array display more than one color, the more-than-one color indicating the proximity of the medical device relative to the sensor. The one-or-more LED lights of the LED array illuminate when the medical device is disposed directly thereunder. The one-or-more LED lights of the LED array project a symbol onto a surface of the patient indicating one of a location, a direction, a distance, or a depth of the medical device relative the sensor. The symbol includes one of an alphanumeric symbol, an image, or an icon. The LED array is a display configured to provide an image of the medical device when the medical device is disposed below the sensor.
A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the concepts provided herein, and are neither limiting nor necessarily drawn to scale.
For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Also, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”
The terms “upper,” “lower,” “top,” “bottom,” “underside,” “upperside” and the like, which also are used to describe the present system, are used in reference to the illustrated orientation of the embodiment. The terms “left” and “right” are used consistently throughout the disclosure and are used to describe structures from the perspective of the user or clinician using the device.
Assisted Catheter Placement
Embodiments are generally directed to a catheter placement system configured for accurately placing a catheter within the vasculature of a patient. In one embodiment, the catheter placement system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location/navigation system (“TLS”), or magnetically-based tracking of the catheter tip during its advancement through the tortuous vasculature path to detect and facilitate correction of any tip malposition during such advancement. The ultrasound guidance and tip location features of the present system according to one embodiment are integrated into a single device for use by a clinician placing the catheter. Integration of these two modalities into a single device simplifies the catheter placement process and results in relatively faster catheter placements. For instance, the integrated catheter placement system enables ultrasound and TLS activities to be viewed from a single display of the integrated system. Also, controls located on an ultrasound probe or the TLS sensor of the integrated device, which are maintained within the sterile field of the patient during catheter placement, can be used to control functionality of the system, thus precluding the need for a clinician to reach out of the sterile field in order to control the system.
In another embodiment, a third modality, i.e., ECG signal-based catheter tip guidance, is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate. Such ECG-based positional assistance is also referred to herein as “tip confirmation.”
Combination of the three modalities above according to one embodiment enables the catheter placement system to facilitate catheter placement within the patient's vasculature with a relatively high level of accuracy, i.e., placement of the distal tip of the catheter in a predetermined and desired position. Moreover, because of the ECG-based guidance of the catheter tip, correct tip placement may be confirmed without the need for a confirmatory X-ray. This, in turn, reduces the patient's exposure to potentially harmful x-rays, the cost and time involved in transporting the patient to and from the x-ray department, costly and inconvenient catheter repositioning procedures, etc.
Reference is first made to
An example implementation of the console 20 is shown in
The system 10 further includes ports 52 for connection with the sensor 50 and optional components 54 including a printer, storage media, keyboard, etc. The ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections described herein. A power connection 56 is included with the console 20 to enable operable connection to an external power supply 58. An internal battery 60 can also be employed, either with or exclusive of an external power supply. Power management circuitry 59 is included with the digital controller/analog interface 24 of the console to regulate power use and distribution.
The display 30 in the present embodiment is integrated into the console 20 and is used to display information to the clinician during the catheter placement procedure. In another embodiment, the display may be separate from the console. As will be seen, the content depicted by the display 30 changes according to which mode the catheter placement system is in: US, TLS, or in other embodiments, ECG tip confirmation. In one embodiment, a console button interface 32 (see
Further details of the catheter placement system 10 can be found in U.S. Pat. Nos. 8,388,541; 8,781,555; 8,849,382; 9,521,961; 9,526,440; 9,549,685; 9,636,031; 9,649,048; 9,681,823; 9,999,371; 10,105,121; 10,165,962; 10,238,418; and 10,602,958, each of which is incorporated by reference in its entirety into this application.
TLS Sensor LED Array
With reference to
In an embodiment, the LED array 200 can indicate a location of a medical device, for example catheter 72, relative to the sensor 50.
In an embodiment, one or more LED lights 201, 202, 203 of the array 200 can display more than one colors to provide a two-dimensional indication, compared with a one dimensional, or binary (on/off), indication. For example, each of the LED lights 201, 202, 203 of the array 200 can display a green, yellow, and red color. The color change can indicate a proximity of the catheter 72 relative to each of the LED lights 201, 202, 203 of the array 200. By interpreting the different color change in the individual LED lights 201, 202, 203 of the array 200 a user can determine the position of the catheter 72 relative to the sensor 50.
As shown in
It will be appreciated that any number and order of the zones, absolute spacing of the zones, types of colors displayed, and specific information represented by each color can vary without departing from the spirit of the invention. In an embodiment, each zone can denote a 5 cm spacing, for example, zone A is when the catheter 72 is <5 cm from the sensor 50, zone B is when the catheter 72 is between 5 cm and 10 cm from the sensor 50, and zone C is when the catheter 72 is between 10 cm and 15 cm from the sensor 50. Although it will be appreciated that each zone can denote different absolute distance ranges. In an embodiment a continuum of color variation can indicate and continuum of change in distance, depth, or combinations thereof.
In an embodiment, as shown in
Accordingly, each of the LED lights of the array 200 can indicate a location, direction, distance, depth of a catheter 72 relative to the sensor 50. It will be appreciated that any combination of shapes, symbols, alphanumeric symbols, colors, and the like can be used to indicate any combination of location, direction, orientation, distance, or depth of the catheter 72 relative to the sensor 50 without departing from the spirit of the invention. Further it will be appreciated that the position of more than one medical device can be displayed by the LED array 200.
Advantageously, the LED lights 201, 202, 203 of the array 200 included with the sensor 50 provide a visual indication of the location of the inserted medical device, catheter 72. Accordingly, the visual indication is provided to the user without requiring a separate console 20 and display 30, thereby providing a lower cost system. Alternatively, with the visual indication provided by the sensor 50, such information is no longer required to be displayed on the display 30, thereby freeing up display real estate. This provides a cleaner, less confusing interface on the display 30, or allows for different information to be provided, or allows for a smaller, more compact display, or combinations thereof. Further, a user does not have to divert their attention away from the patient 70, and insertion site, in order to determine if a distal tip 76A of the catheter 72 is approaching a target location. A user can determine a location of the distal tip 76a of the catheter 72 while manipulating the proximal portion 74 without having to divert their attention to a display 30, located remotely.
In an embodiment the sensor 50 can be used to track the location of the distal tip of the catheter as the catheter is advanced. The sensor can be moved along with the tip so a user can track its location within the body. Since the location of the medical device is measured as a relative distance between the medical device and the sensor 50, the sensor 50 can also be moved along with, or a head of, the medical device as it is advanced within the vasculature of the patient 70. The LED array 200 can indicate to a user where to move the sensor 50 across a surface of the patient 70 in order to maintain proximity with the distal tip 76A disposed within the patient 70. Accordingly, the user can visually determine a location of the medical device as it is advanced.
In an embodiment, the density of LED lights within the array 200 can vary from what is shown in
As shown in
Display 30A can show an image of the catheter 72 disposed therebelow, within the patient 70. Further, additional imaging and information of the patient 70 can also be shown on display 30A to provide an augmented view of the medical device within the patient 70, disposed below system 50A and the sensor thereof. It will be appreciated that the imaging and information of the patient 70 can include x-ray, Ultrasound, PET, CT, MRI images, combinations thereof, or the like.
In an embodiment, the system 50A is configured to transform the imaging and information, into objects of three-dimensionally rendered virtual anatomy with a virtualization algorithm. Further details of three-dimensional rendering of images can be found in U.S. Publication No. 2019/0167148; U.S. Publication No. 2019/0223757; and U.S. Publication No. 2019/0307419, each of which is incorporated by reference in its entirety into this application. The display 30A is configured to display both the image of the medical device and the objects of virtual anatomy that correspond to portions of the patient disposed below the system 50A. The imaging can be linked with the position of the sensor of the system 50A relative to the patient 70. Accordingly, as the system 50A is moved with respect to the patient 70, the objects of virtual anatomy displayed can also be modified to correspond with the position of the system 50A.
The display 30A therefore displays objects of virtual anatomy that corresponds with internal portions of the patient 70 disposed below the system 50A and the sensor thereof. In an embodiment, the imaging can be performed prior to the sensor being implemented and saved to the system 50A. In an embodiment, the images can be constantly updated to the display 30A to reflect a dynamic image of the internal portions of the patient 70 as the catheter 72 is advanced. In an embodiment, the system 50A can further include one or more fiduciary point(s) 230 disposed on the patient 70. Accordingly, the system 50A can use the fiduciary point 230 to determine the location of the sensor of the system 50A relative to the patient 70. The system 50A can then anchor the images, information, three-dimensional renderings of the virtual anatomy, and the like, to the patient 70.
In an embodiment, the display 30A can be a touch screen display and include various buttons 226 displayed thereon for controlling the functionality of the system 10. For example, buttons included on the probe 40, can also be included on the system 50A and can be used to immediately call up a desired mode to the display 30A by the clinician to assist in the placement procedure. In an embodiment, as shown in
Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of priority to U.S. Provisional Application No. 62/873,778, filed Jul. 12, 2019, which is incorporated in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
6138681 | Chen et al. | Oct 2000 | A |
6690964 | Bieger | Feb 2004 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8781555 | Burnside et al. | Jul 2014 | B2 |
8849382 | Cox et al. | Sep 2014 | B2 |
9456766 | Cox et al. | Oct 2016 | B2 |
9492097 | Wilkes et al. | Nov 2016 | B2 |
9521961 | Silverstein et al. | Dec 2016 | B2 |
9526440 | Burnside et al. | Dec 2016 | B2 |
9549685 | Cox et al. | Jan 2017 | B2 |
9554716 | Burnside et al. | Jan 2017 | B2 |
9636031 | Cox | May 2017 | B2 |
9649048 | Cox et al. | May 2017 | B2 |
9681823 | Messerly et al. | Jun 2017 | B2 |
9999371 | Messerly et al. | Jun 2018 | B2 |
10105121 | Burnside et al. | Oct 2018 | B2 |
10165962 | Messerly et al. | Jan 2019 | B2 |
10231753 | Burnside et al. | Mar 2019 | B2 |
10238418 | Cox et al. | Mar 2019 | B2 |
10342575 | Cox et al. | Jul 2019 | B2 |
10449330 | Newman et al. | Oct 2019 | B2 |
10524691 | Newman et al. | Jan 2020 | B2 |
10602958 | Silverstein et al. | Mar 2020 | B2 |
10751509 | Misener | Aug 2020 | B2 |
20080097475 | Jaggi et al. | Apr 2008 | A1 |
20090001569 | Messerly et al. | Jun 2009 | A1 |
20090002343 | Cox et al. | Sep 2009 | A1 |
20100000362 | Cox et al. | Feb 2010 | A1 |
20100094116 | Silverstein | Apr 2010 | A1 |
20100002045 | Burnside et al. | Aug 2010 | A1 |
20110000155 | Cox et al. | Jan 2011 | A1 |
20110166442 | Sarvazyan | Jul 2011 | A1 |
20110002821 | Burnside et al. | Nov 2011 | A1 |
20110002951 | Cox et al. | Dec 2011 | A1 |
20120001430 | Silverstein et al. | Jun 2012 | A1 |
20120002208 | Messerly et al. | Aug 2012 | A1 |
20130000061 | Wilkes et al. | Jan 2013 | A1 |
20130000601 | Messerly et al. | Mar 2013 | A1 |
20130002454 | Messerly et al. | Sep 2013 | A1 |
20140000316 | Newman et al. | Jan 2014 | A1 |
20140000462 | Newman et al. | Feb 2014 | A1 |
20140001074 | Cox et al. | Apr 2014 | A1 |
20140001881 | Misener | Jul 2014 | A1 |
20140003034 | Burnside et al. | Oct 2014 | A1 |
20140296694 | Jaworski | Oct 2014 | A1 |
20150000187 | Cox et al. | Jan 2015 | A1 |
20150012077 | Parker et al. | Jan 2015 | A1 |
20150002971 | Cox et al. | Oct 2015 | A1 |
20160287134 | Foong et al. | Oct 2016 | A1 |
20170000205 | Cox et al. | Jan 2017 | A1 |
20170000795 | Silverstein et al. | Mar 2017 | A1 |
20170000796 | Burnside et al. | Mar 2017 | A1 |
20170079548 | Silverstein et al. | Mar 2017 | A1 |
20170002317 | Cox et al. | Aug 2017 | A1 |
20170002810 | Messerly et al. | Oct 2017 | A1 |
20180042517 | van der Weide et al. | Feb 2018 | A1 |
20180001165 | Newman et al. | May 2018 | A1 |
20180002961 | Messerly et al. | Oct 2018 | A1 |
20190000698 | Burnside et al. | Mar 2019 | A1 |
20190000991 | Messerly et al. | Apr 2019 | A1 |
20200000548 | Newman et al. | Feb 2020 | A1 |
20200001383 | Newman et al. | May 2020 | A1 |
20200002372 | Silverstein et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
1698266 | Jun 2010 | EP |
2021011411 | Jan 2021 | WO |
Entry |
---|
PCT/US2020/41700 filed Jul. 10, 2020 International Search Report and Written Opinion dated Nov. 20, 2020. |
PCT/US2020/41700 filed Jul. 10, 2020 International Preliminary Report on Patentability dated Jan. 18, 2022. |
EP 20841590.1 filed Feb. 4, 2022 Extended European Search Report dated May 25, 2023. |
Number | Date | Country | |
---|---|---|---|
20210007626 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62873778 | Jul 2019 | US |