The present invention relates to an improved electrophysiologic catheter that is particularly useful for use in or near a tubular region of the heart.
Cardiac arrythmias, and atrial fibrillation in particular, persist as common and dangerous medical ailments, especially in the aging population. In patients with normal sinus rhythm, the heart, which is comprised of atrial, ventricular, and excitatory conduction tissue, is electrically excited to beat in a synchronous, patterned fashion. In patients with cardiac arrythmias, abnormal regions of cardiac tissue do not follow the synchronous beating cycle associated with normally conductive tissue as in patients with normal sinus rhythm. Instead, the abnormal regions of cardiac tissue aberrantly conduct to adjacent tissue, thereby disrupting the cardiac cycle into an asynchronous cardiac rhythm. Such abnormal conduction has been previously known to occur at various regions of the heart, such as, for example, in the region of the sino-atrial (SA) node, along the conduction pathways of the atrioventricular (AV) node and the Bundle of His, or in the cardiac muscle tissue forming the walls of the ventricular and atrial cardiac chambers.
Cardiac arrhythmias, including atrial arrhythmias, may be of a multiwavelet reentrant type, characterized by multiple asynchronous loops of electrical impulses that are scattered about the atrial chamber and are often self propagating. Alternatively, or in addition to the multiwavelet reenetrant type, cardiac arrhythmias may also have a focal origin, such as when an isolated region of tissue in an atrium fires autonomously in a rapid, repetitive fashion.
A host of clinical conditions may result from the irregular cardiac function and resulting hemodynamic abnormalities associated with atrial fibrillation, including stroke, heart failure, and other thromboembolic events. In fact, atrial fibrillation is believed to be a significant cause of cerebral stroke, wherein the abnormal hemodynamics in the left atrium caused by the fibrillatory wall motion precipitate the formation of thrombus within the atrial chamber. A thromboembolism is ultimately dislodged into the left ventricle, which thereafter pumps the embolism into the cerebral circulation where a stroke results. Accordingly, numerous procedures for treating atrial arrhythmias have been developed, including pharmacological, surgical, and catheter ablation procedures.
It has been found that by mapping the electrical properties of the endocardium and the heart volume, and selectively ablating cardiac tissue by application of energy, it is sometimes possible to cease or modify the propagation of unwanted electrical signals from one portion of the heart to another. The ablation process destroys the unwanted electrical pathways by formation of non-conducting lesions. Examples of catheter-based devices and treatment methods have generally targeted atrial segmentation with ablation catheter devices and methods adapted to form linear or curvilinear lesions in the wall tissue which defines the atrial chambers, such as those disclosed in U.S. Pat. No. 5,617,854 to Munsif, U.S. Pat. No. 4,898,591 to Jang, et al., U.S. Pat. No. 5,487,385 to Avitall, and U.S. Pat. No. 5,582,609 to Swanson, the disclosures of which are incorporated herein by reference. In addition, various energy delivery modalities have been disclosed for forming such atrial wall lesions, and include use of microwave, laser and more commonly, radiofrequency energies to create conduction blocks along the cardiac tissue wall, as disclosed in WO 93/20767 to Stem, et al., U.S. Pat. No. 5,104,393 to Isner, et al. and U.S. Pat. No. 5,575,766 to Swartz, et al., respectively, the entire disclosures of which are incorporated herein by reference.
In this two-step procedure—mapping followed by ablation—electrical activity at points in the heart is typically sensed and measured by advancing a catheter containing one or more electrical sensors into the heart, and acquiring data at a multiplicity of points. These data are then utilized to select the target areas at which ablation is to be performed.
Mapping and ablation in regions of or near the pulmonary veins poses special challenges due to the configuration of the ostia and surrounding tubular tissue. Catheters have been developed that are particularly useful for mapping and ablating the pulmonary veins and other tubular regions of or near the heart, including the ostium. Catheters with lasso, basket and balloon assemblies are also known. Such catheters are disclosed in, for example, U.S. Pat. Nos. 6,866,662 6,973,339, 7,003,342, 7,142,903, 7,412,273, 8,712,550 the entire disclosures of which are hereby incorporated by reference.
“Lasso” catheters are particularly useful during circumferential ablations around the ostium of the pulmonary veins. However, during a procedure, catheters may dislodge from the ostium with movement of the heart. Accordingly, it is desired that a catheter for use on an ostium or in a tubular region provide an anchoring mechanism to stabilize the catheter in the region of treatment.
The present invention is directed to a catheter have an electrode assembly adapted for use on or near an ostium with a stabilizing assembly that can be lodged in the tubular region of the ostium to secure the electrode assembly. The stabilizing assembly may include a balloon member that can be collapsed when stowed or inflated when deployed.
In some embodiments, the catheter comprises an elongated catheter body, a distal section with at least a first lumen and a second lumen, an electrode assembly distal of the distal section having a proximal end received in the first lumen, and a stabilizing assembly longitudinally movable between a stowed position and a deploy positioned, where the stabilizing assembly has a balloon member that is housed in the second lumen of the distal section when the stabilizing assembly is in the stowed position and extends distally of the electrode assembly when the stabilizing assembly is in the deployed position.
In more detailed embodiments, the stabilizing assembly includes an extender having a distal portion on which the balloon member is mounted, and the extender is longitudinally movable relative to at least the distal section of the catheter.
In more detailed embodiments, the extender extends longitudinally through the catheter body and the distal section, and the extender has a distal portion extending through an interior of the balloon member.
In more detailed embodiments, the extender has a lumen therethrough along its length, and the distal portion of the extender has ports configured to allow fluid to pass from the lumen of the extender to the interior of the balloon member to inflate the balloon member.
In more detailed embodiments, the catheter also includes a guide wire tubing for guiding a guide wire. The guide wire tubing may be coaxial with the extender, extending through the lumen of the extender. In other more detailed embodiments, the guide wire tubing extends through the catheter separately from the extender.
In other embodiments, a catheter adapted for use in or near a tubular region of the heart, comprises an elongated catheter body, a distal section having at least a first lumen and a second lumen, a distal electrode assembly having a generally circular main portion configured to contact an ostium of the tubular region, and a balloon assembly longitudinally movable between a stowed position and a deployed position, wherein the balloon is housed in the second lumen in the stowed position, and the balloon is advanced into the tubular region distally of the electrode assembly in the deployed position to stabilize the electrode assembly on the ostium.
In more detailed embodiments, the balloon assembly includes an elongated extender and a balloon member mounted on a distal portion of the extender.
In more detailed embodiments, the extender extends along the length of the catheter and has a proximal portion adapted for manipulation by a user to move the balloon member between the stowed position and the deployed position.
In more detailed embodiment, the extender has a lumen therethough to pass fluid to inflate the balloon member.
In more detailed embodiments, the extender has a sidewall with at least one port through which fluid passes into the balloon member.
In more detailed embodiments, the balloon assembly includes a fluid tubing surrounding the extender, the fluid tubing having a lumen to pass fluid to flush the second lumen before the balloon member is deployed from and/or stowed in the second lumen.
In more detailed embodiments, the catheter also includes a guide wire tubing extending through the catheter, and the guide wire tubing may extend through the balloon assembly, including a lumen of the extender, being coaxial with the extender.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
With reference to
With reference to
The outer diameter of the catheter body 12 is not critical. Likewise the thickness of the outer wall 27 is not critical, but is thin enough so that the central lumen 26 can accommodate lead wires, and any other desired wires, cables or tubings. If desired, the inner surface of the outer wall 27 is lined with a stiffening tube 28 to provide improved torsional stability.
Components extending through the central lumen 26 of the catheter body 12 include at least an irrigation tubing 36 to supply fluid to the ring electrodes 19 on the distal electrode assembly 18, thermocouple wires 46 and 48 for measuring temperature, for example, at the ring electrodes 19, lead wires 40 for the ring electrodes 19, puller wire 35 and its compression coil 37, the extender 60 for the anchoring assembly 22, and a cable 50 for an electromagnetic sensor 52 located at the distal end of the distal section 17.
With reference to
The tubing 29 of the distal section 17 is made of a suitable non-toxic material that is preferably more flexible than the catheter body 12. A suitable material for the tubing 29 is braided PEBAX or polyurethane, i.e., polyurethane with an embedded mesh of braided stainless steel or the like. The size of each lumen is not critical, but is sufficient to house the respective components extending therethrough.
The useful length of the catheter, i.e., that portion that can be inserted into the body excluding the assemblies 18 and 22, can vary as desired. In some embodiments, the useful length ranges from about 110 cm to about 120 cm. The length of the distal section 17 is a relatively small portion of the useful length, and preferably ranges from about 3.5 cm to about 10 cm, more preferably about 4 cm to about 8 cm, and still more preferably about 6.5 cm.
In some embodiments as illustrated in
At the distal end of the tubing 27 of the distal section 17 is the electrode assembly 18. In some embodiments, the assembly 18 is adapted to sit on the ostium 21 of the tubular region 25 and the anchoring assembly 22 is adapted to enter the tubular region, as shown in
The generally circular main segment 84 is generally traverse to the catheter body 12, for example, generally perpendicular to the catheter body 12. The generally circular main segment 84 need not form a flat circle, but can be very slightly helical. The generally circular main segment 84 has an exposed length ranging between about 40 mm and 100 mm, more preferably about 50 mm and 90 mm, and still more preferably about 60 mm, and an outer diameter preferably ranging to about 10 mm to about 35 mm, more preferably about 15 mm to about 30 mm, still more preferably about 25 mm. The generally circular main segment 84 can curve in a clockwise direction, as shown in
In some embodiments, as shown in
The lead wires 40 for the ring electrodes 19 extend through the lumen 92 of the tubing 90. In the generally circular main segment 84, each lead wire is connected to a respective ring electrode 19, for example, in the manner illustrated in
As shown in
The irrigation tubing 36 which delivers fluid for the ring electrodes 19 extends through the lumen 31 of the distal section 17, and the central lumen 26 of the catheter body 12. A proximal portion 36P may extend as a side arm 27 of the control handle 16, as shown in
As mentioned above, the lumen 33 provides a nesting site 20 (
In the stowed position inside the lumen 33, the balloon member 62 is deflated and collapsed, as shown in
The balloon member 62 includes a balloon membrane 70 constructed of any suitable material. The material may be of the highly compliant variety, such that the material is elastically flexible and stretches upon application of pressure. Suitable materials include elastomers, such as, for example, silicone, latex, and low durometer polyurethane (for example, a durometer of about 80 A). In the illustrated embodiment, the balloon membrane 70 has distal and proximal ends which are affixed to the extender 60 to form fluid tight seals. However it is understood that the balloon membrane may be configured otherwise as known in the art.
To inflate the balloon member 62, inflation fluid is passed through a lumen 61 of the extender 60 of the anchoring assembly 22, as shown in
To deliver fluid into the lumen 33, for example, to flush out the lumen 33 and/or lubricate the balloon member 62 in preparation for deployment or stowage, a fluid tubing 104 is provided to surround the extender 60 and extend coaxially therewith for most of its length, including part of the proximal portion 60P. In some embodiments, the tubing 104 has a distal end terminating within the lumen 33 of the tubing 29 of the distal section 17 and an outer diameter size to form a fluid tight seal with the lumen 33. Its own lumen 105 is sized to provide an annular gap around the outer surface of the extender 60 to allow fluid to pass alongside (
The hemostasis valve 112 is distal of the hemostasis valve 130 so that the extender 60 can pass through the lumen 105 of the fluid tubing 104 and extend coaxially therewith. As a Tuohy-Borst, for example, the hemostasis valve 112 has a gripping member 117 which upon rotation can releasably lock the extender 60 in a fixed position to prevent longitudinal movement of the extender 60 relative to the catheter.
A guide wire tubing or “inner body” 115 with lumen 116 is provided to allow a guide wire 45 (
However, in other embodiments, as illustrated in
It is understood that the guide wire inner body 115′ may have a distal end terminating in the valve 150 or anywhere distally in the lumen 61 of the extender 60. In some embodiments, as shown in
In any embodiment, the distal section 17 can be rendered deflectable by means of the puller wire 35 whose proximal end is anchored in the control handle 16 and whose distal end is anchored in a side wall of the tubing 29 near a distal end of the tubing 29. The puller wire 35 extends through the catheter body 12 as shown in
Each of the ring electrodes 19 is electrically connected to an appropriate mapping or monitoring system and/or source of ablation energy via the lead wires 40 whose proximal ends are connected to an electrical connector 120 at the proximal end of the control handle 16 (
The ring electrodes can be made of any suitable solid conductive material, such as platinum or gold, preferably a combination of platinum and iridium, and mounted onto the tubing with glue or the like. Alternatively, the ring electrodes can be formed by coating the tubing with an electrically conducting material, like platinum, gold and/or iridium. The coating can be applied using sputtering, ion beam deposition or an equivalent technique. While the electrode assembly 18 is illustrated with ring electrodes separated at equal distance from adjacent ring electrodes configured for uni-polarity sensing it is understood that the ring electrodes may be configured for bi-polarity sensing in paired configuration on the assembly 18.
The number of the ring electrodes 19 on the electrode assembly 18 can vary as desired. The number of ring electrodes ranges from about six to about twenty, preferably from about eight to about twelve. Where any of the ring electrodes 19 are adapted for ablation, a pair of thermocouple wires 46 and 48 can be provided to detect temperature of a respective ring electrode. The thermocouple wires 46 and 48 extend through the catheter body 12 (
The compression coil 37 is made of any suitable metal, preferably stainless steel, and is tightly wound on itself to provide flexibility, i.e., bending, but to resist compression. The inner diameter of the compression coil is preferably slightly larger than the diameter of the puller wire 35. A Teflon® coating on the puller wire 35 allows it to slide freely within the compression coil. Within the catheter body 12, the outer surface of the compression coil 37 is also covered by a flexible, non-conductive sheath (not shown), e.g., made of polyimide tubing. The compression coil is anchored at its proximal end to the catheter body 12 near a proximal end of the catheter body.
In use, a guiding sheath is inserted in the patient's body and advanced through the patient's vasculature to reach a target region of the heart, for example, the left atrium. The guide wire 45 is then inserted into the guide wire tubing 115 at its proximal end outside of the control handle 16, through the catheter, distally past the opening 30D of the distal section 17 (
Before or after the balloon member 62 is inflated and lodged, the operator inserts the distal end of the electrode assembly 18 into the guiding sheath to enter the patient's vasculature, by straightening the distal electrode assembly 18. The operator advances the electrode assembly 18, followed by the distal section 17 and the catheter body 12, through the guiding sheath, as guided by the guide wire 45, and also by the extender 60 over which the catheter body passes. When the electrode assembly 18 reaches the target region and passes the distal end of the guiding sheath, the operator positions the electrode assembly 18 to sit on the ostium 21. The operator may secure the position of the electrode assembly 18 relative to the balloon member 62 by locking the position of the extender 60 relative to the control handle 16. The electrode assembly 18 is then stabilized on the ostium by the extender 60 and the balloon member 62. As shown in
When the operator has arranged the balloon member 62 and the electrode assembly 18 in position for securing the assembly 18 on the ostium, the operator can actuate the gripping member 117 of the valve 112 to lock the extender 60 relative to the fluid tubing 104 which is fixed to the control handle 16 and the catheter. The gripping member 117 locks the extender 60 to the catheter which in turn locks the balloon member 62 and the electrode assembly 18 to each other so that the balloon member 62 anchors the electrode assembly 18. This locking action frees up the need for the operator or an assistant to hold and press the electrode assembly 18 on the ostium.
When the operator wants to relocate the distal electrode assembly 18, for example, to another pulmonary vein and ostium, the operator may stop the flow of inflation fluid to the balloon member 62 which then deflates via the ports 122 in the balloon membrane 70 sufficiently for the balloon member 62 to be dislodged from the tubular region 25. The operator releases the gripping member 117 and draws the proximal extender portion 60P to retract the balloon member 62 closer toward the electrode assembly 18 or to restow it back into the lumen 33. The operator repositions the balloon member 62 into a second tubular region by manipulating the extender portion 60 to advance the balloon member 62 into the second tubular region. The operator then inflates the balloon member 62 to lodge the balloon member 62, and locks the gripping member 117 so that the balloon member 62 anchors the electrode assembly 18 on the ostium of the second tubular region.
After diagnostic and/or therapeutic treatment of the pulmonary veins of the left atrium, the operator deflates the balloon member 62, draws the balloon member back into the lumen 33, draws the catheter back into the guiding sheath, and removes the catheter from the patient's body.
The preceding description has been presented with reference to certain exemplary embodiments of the invention. Workers skilled in the art and technology to which this invention pertains will appreciate that alterations and changes to the described structure may be practiced without meaningfully departing from the principal, spirit and scope of this invention, and that the drawings are not necessarily to scale. Moreover, it is understood that any one feature of an embodiment may be used in lieu of or in addition to feature(s) of other embodiments. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and illustrated in the accompanying drawings. Rather, it should be read as consistent with and as support for the following claims which are to have their fullest and fairest scope.