1. Field of the Invention
The present invention relates to endotracheal tubes and, more particularly, to a catheter having an illuminator and a camera at its distal end coupled with electrical conductors and an electrical plug mating with a transmitter to transmit an image from the camera to a receiver for display on a video monitor, which catheter may be used for suction or for administering therapeutic fluid or liquid food.
2. Description of the Prior Art
The basic tenets attendant endotracheal tubes having an illuminator at the distal end are illustrated and described in U.S. Pat. No. 5,285,778 and relating to an invention by the present inventor; which patent is incorporated herein by reference. The endotracheal tube described therein includes an optical fiber extending through the endotracheal tube to a viewing lens at the distal end of the tube. An eye piece is attached to the proximal end of the optical fiber to permit viewing through the lens. Illumination of the area under inspection is provided by a high intensity light source extending via the endotracheal tube to an illumination port at the distal end.
A catheter for insertion in the trachea or the gastrointestinal tract includes a light emitting diode at the distal end for providing illumination of the proximate tissue. A camera also disposed at the distal end captures an image of the illuminated tissue. Two sets of electrical conductors interconnect the diode and the camera with a plug(s) mating with a transmitter module that provides power to the diode and the camera and receives a signal from the camera reflective of the image captured. The transmitter module transmits the signal to a receiver for displaying the image on a video monitor for viewing. The catheter may be used for suction or for administering a fluid.
It is therefore a primary object of the present invention to provide a method for viewing tissue at the distal end of a catheter on a real time monitor with a wireless transmitter and receiver.
Another object of the present invention is to provide an inexpensive camera for recording an image at the distal end of a catheter.
A yet further object of the present invention is to provide a camera and a light emitting diode at the distal end of a catheter coupled with a low power transmitter to transmit an image recorded by the camera for viewing the image on a video monitor.
Still another object of the present invention is to provide a catheter coupled with a low power transmitter and receiver for transmitting an image at the distal end of the catheter to a video monitor for real time viewing.
A further object of the present invention is to provide a catheter with a light emitting diode and a small sized inexpensive camera at the distal end coupled through a detachably attached connector with a transmitter to transmit to a receiver an image captured by the camera for display on a video monitor.
A yet further object of the present invention is to provide a wireless transmission to a video monitor coupled with a light emitting diode and a camera recording an image at the distal end of a catheter using a low power radio frequency transmitter and receiver.
A still further object of the present invention is to provide a method for displaying an image real time on a video monitor by capturing the image to be displayed with a light emitting diode and a camera at the distal end of a catheter and transmitting the image by a radio frequency transmitter to a corresponding receiver to produce a signal for the video monitor.
A still further object of the present invention is to provide a method for viewing on a video monitor in real time an image at the distal end of a catheter using essentially an off the shelf low cost camera and a light emitting diode located at the distal end of the catheter and connected by electrical conductors with a wireless transmitter transmitting the captured image to a receiver connected to the video monitor.
These and other objects of the present invention will become apparent to those skilled in the art as the description thereof proceeds.
The present invention will be described with greater specificity and clarity with reference to the following drawings, in which:
Referring to
Prior endotracheal tubes do not permit any visualization of a patient's tracheal and bronchial passages. If such visualization is needed, connector 12 is disconnected from the ventilator and a conventional bronchoscope is inserted down through hollow passage 21 of the endotracheal tube to allow a physician to determine if a lot of mucus is present in either lung or in either of the left or right stem main bronchi. If it is necessary to suction mucus out of either of the patient's lungs, a suctioning tube is inserted through hollow passage 21. The endotracheal tube may have to be disconnected from the ventilator to allow visualization in the trachea or the lungs or to allow suctioning of the mucus, blood, etc., if the endotracheal tube does not have a sealable side port through which the suctioning tube can be inserted.
When a skilled physician, often a pulmonologist, inserts an endotracheal tube into a patient, it would be desirable for a nurse to be able to easily monitor the position of the endotracheal tube in a patient's trachea to determine if its location has been shifted. If so, the nurse would know whether to call a physician to reposition the endotracheal tube. It would also be desirable to determine accurately the position of the endotracheal tube without requiring an x-ray of the patient.
Still referring to
One major advantage of endotracheal tube 10 is that the carina (a cartilaginous structure) 42 (see
Referring to
A removable module 70 includes a female connector 72 for receiving prongs 28, 30 of connector 26. Upon mating of connectors 26, 72, fiber optic bundle 32 within prong 28 is placed in communication with fiber optic bundle 74, the latter being in communication with and receiving light from light emitting diodes 76. Electrical power for the light emitting diodes is provided by circuit 80 connected to batteries 78. Prong 30 of male connector 26 mates with female connector 72 to transmit light, that is, the image visible through lens 24 (see endotracheal tube 10) to convey the received light through a further fiber optic bundle 82 to a lens system 83. The lens system is interconnected with a small sized and relatively inexpensive electronic camera 84. Cameras suitable for this purpose cost less than $100.00 and can be found for less than $50.00 from commercial outlets. The camera is interconnected with a low power radio frequency transmitter 86 to transmit the images recorded by the camera. Transmitters of this type are readily available for less than $100.00 and may be found for less than $50.00 from commercial outlets.
As shown in
In summary, the image conveyed from the lens at the distal end of the endotracheal tube is digitized and recorded by a camera. The image recorded by the camera is displayed real time on a video monitor through a wireless interconnection. The ease of a wireless transmission system in the confines of an operatory avoids the likelihood of a patient and attending health care providers from becoming entangled with cords and wires.
Moreover, presently used wires and cables extending to a video monitor creates a hazard of an attending health care provider inadvertently interfering with such wires and/or cables and causing repositioning or pulling out of the endotracheal tube. This hazard is completely avoided by the present invention due to the absence of such wires and/or cables.
Referring to
Referring jointly to
Electrical power for camera 120 along with electrical transmission of a signal reflective of the image captured by the camera are conveyed through electrical conductors 130, as particularly shown in
Referring to
A transmitter module 148 includes radio frequency transmitter 150, which could also be an infrared transmitter and an electrical connector 144 for electrically connecting with plug 140. The transmitter module provides electrical power, such as by batteries 151, to electrical conductors 130 and 132 to electrically energize camera 120 and light emitting diode 122. Additionally, it includes circuitry for receiving a signal from the camera reflective of the image captured by the camera. This signal is transmitted through antenna 152 to an antenna 154 in communication with a receiver 156.
This receiver may be adapted to respond to a radio frequency transmission or an infrared transmission from the transmitter. The transmission between antennas 152 and 154 includes the signal emitted by camera 120, which signal is manipulated to provide an image on video monitor 158. Accordingly, the image captured by the camera will be displayed on the video monitor on a real time basis.
With this invention, medical personnel can view in real time an image of the tissue attendant distal end 114 of suction catheter 110 during insertion, flushing and retraction, whether it be in the trachea or the gastrointestinal tract.
Although the use of a light emitting diode to provide illumination may be preferred, lighting the area of interest could also be provided by one or more fiber optic cables, as described above with respect to
This application is a continuation-in-part of a patent application entitled “Detachable Endotracheal Camera” filed Oct. 1, 2007 and assigned Ser. No. 11/865,256, now U.S. Pat. No. 7,942,813, which is a divisional of a patent application entitled “Endotracheal Camera”, filed Feb. 10, 2004 and assigned Ser. No. 10/775,904, now U.S. Pat. No. 7,297,105, and describing an invention by the present inventor.
Number | Date | Country | |
---|---|---|---|
Parent | 10775904 | Feb 2004 | US |
Child | 11865256 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11865256 | Oct 2007 | US |
Child | 13107119 | US |