The present disclosure generally relates to devices and methods for removing acute blockages from blood vessels during intravascular medical treatments. More specifically, the present disclosure relates to a clot retrieval catheter with an electrically actuated expandable mouth.
Clot retrieval catheters and devices are used in mechanical thrombectomy for endovascular intervention, often in cases where patients are suffering from conditions such as acute ischemic stroke (AIS), myocardial infarction (MI), and pulmonary embolism (PE). Accessing remote areas such as the neurovascular bed is challenging with conventional technology, as the target vessels are small in diameter, distant relative to the site of insertion, and are highly tortuous.
The clot itself can complicate procedures by taking on a number of complex morphologies and consistencies, ranging from simple tube-shaped structures which assume the shape of the vessel to long, strand-like arrangements that can span multiple vessels at one time. The age of a clot can also affect its compliance, with older clots tending to be less compressible than fresh clots. Fibrin rich clots also present a challenge in having a sticky nature that can cause a clot to roll along the outer surface of a mechanical thrombectomy device rather than being gripped effectively. Combinations of soft and firm clot regions can also separate during aspiration, with fragmentation leading to distal embolization which can occur in vessels that cannot be reached with currently available devices. Additionally, breaking the bonds adhering the clot to the vessel wall without damaging fragile vessels is a significant challenge.
Conventional clot retrieval catheters, especially those for operating in the neurovascular blood vessels, can suffer from a number of drawbacks. First, the diameters of the catheters themselves must be small enough to be advanced into the vasculature, which is very small in the context of the neurovascular system. The catheter must also be sufficiently flexible to navigate the vasculature and endure high strains, while also having the axial stiffness to offer smooth advancement along the route. Once at the target site, typical objects to be retrieved from the body can be substantially larger in size than the catheter tip, making it more difficult to retrieve objects into the tip. For example, fibrin-rich clots can often be difficult to extract as they can become lodged in the tip of traditional fixed-mouth catheters. This lodging can cause softer portions of the clot to shear away from the firmer regions, leading to distal embolization.
Small diameters and fixed tip sizes can also be less efficient at directing the aspiration necessary to remove blood and thrombus material during the procedure. The aspiration suction must be strong enough such that any fragmentation occurring through the use of a mechanical thrombectomy device or other methods can, at the very least, be held stationary so that fragments cannot migrate and occlude distal vessels. When aspirating with a traditional fixed-mouth catheter, however, a significant portion of the aspiration flow ends up coming from vessel fluid proximal to the tip of the catheter where there is no clot. This significantly reduces aspiration efficiency, lowering the success rate of clot removal.
The disclosed design is aimed at providing an improved aspirating retrieval catheter which addresses the above-stated deficiencies.
Examples presented herein include devices and methods for removing acute blockages from blood vessels during intravascular medical treatments. More specifically, the present disclosure relates to an electrically actuated clot retrieval catheter system. An example system for retrieving an obstruction in a blood vessel can include a catheter, a metallic region, and two conductive wires. The catheter can have a wall that defines an inner lumen of the catheter. The inner lumen can extend between a proximal hub with an electrical current controller and a distal tip of the catheter. The metallic region can include at least two abutting metals in a coiled configuration, forming a bimetallic coil. The metallic region can be located at or near the distal end of the catheter. At least a first portion of a first metal of the metallic region can make up an outer perimeter of the bimetallic coil and at least a portion of a second metal of the metallic region can make up an inner perimeter of the bimetallic coil. The two conductive wires can extend along a longitudinal axis of the catheter and can be in electrical communication with the electrical current controller and in electrical communication with at least a portion of the metallic region.
At least a portion of the metallic region can be configured to reversibly expand from a tight configuration to an expanded configuration upon electrical current stimulation. The tight configuration can include a first diameter that is smaller than a second diameter of the expanded configuration.
At least a portion of the bimetallic coil can be affixed to the catheter at the distal tip and can be engaged with the two conductive wires. A current applied to at least a portion of the bimetallic coil from the two conductive wires can move the bimetallic coil along a deflection between a first end and a second end of the bimetallic coil to the expanded configuration.
The first metal of the at least two abutting metals of the bimetallic coil can include a first thermal expansion coefficient. The second metal of the at least two abutting metals of the bimetallic coil can include a second thermal expansion coefficient. The first thermal expansion coefficient can be different from the second thermal expansion coefficient.
The first metal can include a thermal expansion coefficient lower than the thermal expansion coefficient of the second metal.
At least part of the metallic region can include a radiopaque region.
At least a portion of the distal tip of the catheter can include an elastic jacket disposed around the bimetallic coil. The elastic jacket can form an elastic region of the catheter and can extend proximally from the distal tip of the catheter beyond the metallic region.
The elastic region can be configured to reversibly expand as the bimetallic coil expands from the tight configuration to the expanded configuration.
The system can further include a current path from the electrical current controller, through the two conductive wires, to at least one of a first end and/or a second end of the bimetallic coil affixed to the catheter, through a majority of a length of the bimetallic coil, and through a return path to the electrical current controller.
At least one of the two conductive wires can be electrically affixed to the first end of the bimetallic coil. A return path can include at least the other of the two conductive wires electrically affixed to the second of the bimetallic coil and extending along the longitudinal axis.
Another example system for retrieving an obstruction in a blood vessel can include a catheter and a bimetallic coil. The catheter can include a distal tip having an elastic region. The bimetallic coil can be positioned within the elastic region at the distal tip of the catheter. At least a portion of a first metal makes up an outer perimeter of the bimetallic coil and at least a portion of a second metal makes up an inner perimeter of the bimetallic coil.
At least a portion of the bimetallic coil can be configured to reversibly expand from a tight configuration to an expanded configuration. The tight configuration can include a first diameter that is smaller than a second diameter of the expanded configuration.
At least a portion of the bimetallic coil can be affixed to the catheter and can be encapsulated by an elastic jacket within the elastic region. The expanded configuration can include a deflection between a first end and a second end of the bimetallic coil.
The first metal of the bimetallic coil can include a first thermal expansion coefficient. The second metal of the bimetallic coil can include a second thermal expansion coefficient. The first thermal expansion coefficient can be distinct from the second thermal expansion coefficient. The first metal of the bimetallic coil can include a thermal expansion coefficient lower than the thermal expansion coefficient of the second metal of the bimetallic coil.
They system for retrieving an obstruction in a blood vessel can further include two conductive wires and a metallic region. The two conductive wires can extend along a longitudinal axis of the catheter. An electrical current controller can be configured to provide a first current to at least one of the two conductive wires. The metallic region of the catheter can be in electrical communication with the two conductive wires. The metallic region can include the bimetallic coil. At least a portion of the metallic region can include a radiopaque region. At least a portion of the metallic region can be configured to reversibly expand from a tight configuration to an expanded configuration upon electrical current stimulation.
An example method of retrieving an occlusive thrombus from a blood vessel of a patient can include attaching, at least a portion, of a bimetallic coil within a distal tip of a catheter, connecting a first end of a conductive wire to a metallic region including the bimetallic coil, and connecting a second end of the conductive wire to an electrical current controller. The bimetallic coil within the metallic region can include a first metal having a first thermal expansion coefficient and a second metal having a second thermal expansion coefficient distinct from the first thermal expansion coefficient. At least a portion of the bimetallic coil can be affixed to the catheter.
The method of retrieving an occlusive thrombus from a blood vessel of a patient can further include applying an electrical current, through the conductive wire, from an electric current controller to a first end of the bimetallic coil. The method can further include expanding, by the electrical current, the bimetallic coil from a tight configuration to an expanded configuration. The method can further include attaching an elastic jacket around the metallic region.
The above and further aspects of this disclosure are further discussed with the following description of the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the disclosure. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation. It is expected that those of skill in the art can conceive of and combining elements from multiple figures to better suit the needs of the user.
The herein disclosed solution is directed to a clot retrieval catheter capable of expanding to form a funnel to reduce the risk of clot shear and restrict/arrest blood flow via a modular distal tip. Flow restriction and large tipped designs offer substantially greater aspiration efficiency and reduce the risk of emboli migration. Such advantages can also be especially beneficial in the case of stroke intervention procedures, where vessels in the neurovascular bed are particularly small and circuitous, and as a result a clot retrieval catheter with a tip that can expand and decrease can readily move through tortuous vessels while increasing the aspiration efficiency at the clot location. The catheter can also be compatible with relatively low-profile access sheaths and outer catheters, so that a puncture wound in the patient's groin (in the case of femoral access) can be easily and reliably closed. The catheter can also feature internal and/or external low-friction liners, and an outer polymer jacket, elastic sheath, or membrane disposed around the support structure. The membrane can be an elastomeric material that encapsulates the actuated catheter tip having a bimetallic coil at the mouth of the catheter or is fitted over the bimetallic coil so that the mouth of the catheter can move independently of the membrane. The elastomeric membrane can be tight or loose fitting. A loose-fitting elastomeric membrane will be easier to open than a tight-fitting membrane. The membrane can be baggy and made of a non-elastomeric material such that the force to open the membrane is low compared to that of a tight-fitting elastomeric membrane. The membrane can be inverted to extend distally from a proximal location radially inwardly of the mouth of the catheter before reverting back to extend proximally radially outwardly of the mouth of the catheter and wherein the inner and outer layers of the membrane are bonded or reflowed together at a proximal location or for the full length of the membrane. The membrane can comprise an inner and an outer tube, the proximal and distal ends of the inner and outer tube being bonded together or reflowed such that the two tubes form a sock around the catheter tip and bimetallic coil, the bimetallic coil being free to move and expand within the sock.
These improvements can lead to safe and more rapid access of a catheter and other devices to complex areas in order to remove occlusions and shorten procedure times. While the description is in many cases in the context of mechanical thrombectomy treatments, the systems and methods can be adapted for other procedures and in other body passageways as well.
Accessing the various vessels within the vascular system, whether they are coronary, pulmonary, or cerebral, involves well-known procedural steps and the use of a number of conventional, commercially-available accessory products. These products, such as angiographic materials, rotating hemostasis valves, and guidewires are widely used in laboratory and medical procedures. When these products are employed in conjunction with the system and methods in the description below, their function and exact constitution are not known in the related art.
The present systems and methods employ the characteristics of bimetallic materials to customize the distal dimensions of a clot-retrieval device. Bimetallic materials consist of two different metals which can bend or expand at different rates when heated or electrically stimulated. Different thermal expansions allow the bimetallic materials to bend in one direction when heated and in the opposite direction when cooled. Once the heat is removed from the bimetallic material, the material can return to its original position. Alternatively, or in addition thereto, when the heat is removed from the bimetallic material, the clot-retrieval device may be retracted into a guide catheter to assist with returning the bimetallic material to its original position. The bimetallic material can be set to bend or expand to a certain displaced position at a predetermined temperature. Note that while the description discusses bimetallic materials, the invention is not so limited. The inventors contemplate using any alloy that can produce the results described below. This ranges from impurities in a bimetallic alloy to an alloy of three or more elements, metallic or otherwise.
Various examples described herein can include bimetallic materials at the mouth of the catheter such that the mouth of a catheter can resemble a funnel shape once expanded that can exert a radial force on the vasculature. Fluid can be aspirated into the expanded funnel-shaped mouth and then into the catheter to capture a thrombus within the funnel. The bimetallic material can include an elastic jacket covering or membrane that directs the aspirate into the catheter. The bimetallic material can be disposed within an inner lumen of the catheter. As the bimetallic material expands and collapses, the inner diameter of the catheter can be increased and decreased to adjust the flow rate into the catheter.
The present disclosure provides a system for heating a metallic region to cause the bimetallic material to bend into an expanded configuration. One or more conductive wires can provide a current to the metallic region and/or the bimetallic material. The natural electrical conductivity of the bimetallic material can then cause the bimetallic material to bend into an expanded configuration. A thermocouple can also be provided to monitor the temperature of the metallic region and/or the bimetallic material such that the metallic region nor the bimetallic material overheat and cause trauma to the surrounding vasculature. In some examples, a thermoelectric cooling circuit, such as a Peltier chip, can be provided to transition the bimetallic material back into its original position or to bend the opposite direction to cause a tighter configuration of the catheter tip. The present disclosure provides various example designs for bimetallic materials.
Various devices and methods are disclosed for providing an electrically actuated clot retrieval catheter, and examples of the devices and methods will now be described with reference to the accompanying figures.
The bimetallic coil 302 can be encapsulated within an inverted membrane, dual layer sealed membrane or an overmoulded or dipped membrane, forming an elastic jacket, to be discussed further below. Where the bimetallic coil 302 is housed within an inner and outer membrane layer, the bimetallic coil 302 can have unhindered movement. Where an overmoulded membrane is supplied, there may be more resistance as the bimetallic coil 302 may be required to stretch more discrete areas of membrane material. It is appreciated that, as an electrical current will be passed through the metallic region 300 and/or the bimetallic coil 302, the metallic region 300 and bimetallic coil 302 can be insulated in order to contain the electrical current. The membrane material can serve to insulate the metallic region 300 and the bimetallic coil 302.
The bimetallic coil 302 can have an expanded configuration and a tight configuration.
The bimetallic coil 302 can include at least two abutting metals. As shown in
The first metal 304 can have a first thermal expansion coefficient. The second metal 306 can have a second thermal expansion coefficient. The first thermal expansion coefficient can be different than the second thermal expansion coefficient, such that the two abutting metals forming the bimetallic coil 302 can transition from a collapsed configuration to an expanded configuration, or vice versa, upon being heated and return to its previous configuration upon cooling. The metal material of the bimetallic coil 302 can include any suitable metal-based materials including, but not limited to steel, copper, and brass. In some examples, the bimetallic coil 302 can include two or more materials that have different coefficients of thermal expansion and can also include radiopaque and/or biocompatible metal-based materials. In one example, the bimetallic coil does not include shape memory material such as Ni—Ti (Nitinol). Alternately, Nitinol, in whole or in part, can be used for the bimetallic coil 302, but its shape memory features are set to temperature generated by the electrical current controller 500 and not body temperature.
Metal-based materials with two or more different coefficients enable devices to be manufactured such that, once heated, the metal material having the lower thermal expansion coefficient can cause the bimetallic coil 302 of the device to bend or expand into an expanded shape. In general, the higher a coefficient of thermal expansion that a material has, the more the material will expand in response to being heated. Considering the example bimetallic coil 302 of
Referring again to
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose. More specifically, “about” or “approximately” may refer to the range of values±10% of the recited value, e.g. “about 50° C.” may refer to the range of values from 45.001° C. to 54.999° C.
The bimetallic coil 302 can be heated by providing a current to the bimetallic coil 302. The high electrical conductance of the bimetallic materials, for example steel and copper, can cause the bimetallic coil 302 to heat in response to the electrical current and the heat in turn cause the transition from the tight configuration to the expanded configuration. The system 100 can include a proximal hub with an electronic current controller 500 to provide the required current to the bimetallic coil 302. The electronic current controller 500 can be activated with a switch, such as an on-off switch with electrical contacts that can be connected to an electrical current source. The electronic current controller 500 can include a colored LED bulb, or other suitable indicator. The colored LED bulb can flash when the bimetallic coil 302 is configured to expand in an “on” mode. The electronic current controller 500 can feed from approximately 300 mA to approximately 1500 mA (e.g., approximately 500 mA to approximately 1000 mA) to the bimetallic coil 302 using a power supply ranging, for example, from approximately 3 to 12 V, more preferably from approximately 5 to 9 V. The current can be pulsed from 1 to 1000 msec, more preferable from 100 to 500 msec with a break in current of between 1 and 1000 msec, more preferably from 1 to 100 msec. Pulsing allows the temperature of the bimetallic coil 302 to be maintained between a set temperature range, the on segment of the pulses heating and the off segment of the pulse allowing the bimetallic coil 302 to cool such that the temperature is kept between a range. The temperature can be monitored by a thermocouple such that the pulses can be altered if the temperature goes out of range; for example, a continuous feed of current can be used to ramp up the temperature quickly and the pulses can be lowered to keep the temperature of the bimetallic coil 302 under the upper range. The electronic current controller 500 can also have an opening 502 on the proximal end of the electronic current controller 500 to provide access to the inner lumen 202 of the catheter 200. The opening 502 can be configured to fit a luer connector fitting with luer threads or other suitable connectors. The luer connector can provide access to the inner lumen 202 of the catheter 200. As shown in
One or more conductive wires 400, 400b (e.g., a positive lead and a negative lead) can extend between the electronic current controller 500 and the bimetallic coil 302 to provide the electrical current to heat the bimetallic coil 302. The electrical current controller 500 can include an on-off switch with electrical contacts that can be connected to an electrical current source. The conductive wires 400, 400b can be embedded within layers of the catheter 200 so that the wire is not exposed on the outer or inner surface of the catheter 200. This can enable the system 100 to be advanced into an outer catheter without the wire restricting the movement of the system 100 through the outer catheter. The conductive wires 400, 400b can comprise copper or any other material suitable to provide a current to the bimetallic coil 302. Embedded conductive wires 400, 400b throughout the length of the shaft of the catheter 200 can increase the tensile strength and resistance to stretching of the catheter 200 between the electronic current controller 500 and the bimetallic coil 302. Increasing the strength of the shaft of the catheter 200 is desirable during aspiration and can offer greater aspiration efficiency and extraction of clots.
The system 100 can further include a thermocouple connected to the bimetallic coil 302 to monitor the temperature of the bimetallic coil 302. If the bimetallic coil 302 is heated above a certain temperature, the bimetallic coil 302 can burn the surrounding vasculature. To prevent this, the thermocouple can monitor the temperature of the bimetallic coil 302 as it is heated by the current. If the bimetallic coil 302 exceeds a certain temperature, for example 50° C., the thermocouple can communicate this information to the electronic current controller 500 to deactivate the current being supplied to the bimetallic coil 302. The thermocouple can comprise a platinum, stainless-steel, or other suitable conductive wire that can be welded between the bimetallic coil 302 (e.g., at an anchor strut) and one of the two conductive wires 400, 400b, where electronic current controller 500 measures the difference in resistivity between the bimetallic coil 302 and the thermocouple wire to determine the temperature of the bimetallic coil 302. This can be calibrated and can have a linear temperature relationship.
The system 100 can include a thermoelectric cooling circuit in electrical communication with the bimetallic coil 302. The thermoelectric cooling circuit can include, for example, a Peltier chip, disposed proximate the bimetallic coil 302. As described above, when the bimetallic coil 302 is cooled, the metal material of the bimetallic coil having a lower thermal expansion coefficient can bend or transition back into the tight configuration. This can be completed to capture the clot in the bimetallic coil 302. Instead of allowing the bimetallic material to cool naturally, the thermoelectric cooling circuit can pump heat from the bimetallic coil 302 to cool the bimetallic coil 302 more rapidly.
Although not shown, the system 100 can be used in combination with an aspiration source. In many cases the expanded bimetallic coil 302 can seal with the walls of the vessel at the target sit to direct aspiration to the distal end of the catheter 200. In other words, the expanded bimetallic coil 302 can also arrest flow and prevent the unwanted aspiration of blood, or emboli migration proximal to the bimetallic coil 302.
The metallic region 300 or the bimetallic coil 302 can be formed primarily of a non-radiopaque material such as steel and can include a radiopaque region 314 made of a radiopaque material such as platinum and/or tungsten. The radiopaque material and the non-radiopaque material of the bimetallic coil 302 can be concentrically welded. The radiopaque region 314 can be positioned within the bimetallic coil 302 or within the metallic region 300 near the bimetallic coil 302. The radiopaque region 314 can be positioned a predetermined distance from a distal tip of the catheter 200 so that a physician can readily visualize the placement of the distal tip, the metallic region 300, or the bimetallic coil 302 of the catheter 200 during a treatment procedure.
The surface of the bimetallic coil 302 can be coated with a film of material with high dielectric strength such as Parylene to insulate the metal material from blood, which is a conductor, for example if the bimetallic coil 302 is not fully encapsulated or sealed by the elastic jacket 204.
The bimetallic coil 302 can be held in place within the metallic region 300 at the distal tip of the catheter 200 by the elastic jacket 204 described above and by affixing the two conductive wires 400, 400b. The two conductive wires 400, 400b can be affixed by welding, riveting, brazing, or other suitable methods. In some examples, the two conductive wires 400, 400b can be affixed to certain portions of the bimetallic coil 302 such that the first end 308 and the second end 312 of the bimetallic coil 302 can move or bend independently. Alternatively, the first end 308 of the bimetallic coil 302 can be affixed to the catheter 200 such that the first end 308 is fixed and the second end 312 is free to move or bend as the bimetallic coil 302 expands and contracts.
In some examples, instead of extending from the catheter 200, the bimetallic coil 302 can be positioned within an inner lumen 202 of the catheter 200. In a similar manner, as the bimetallic coil 302 expands inside the inner lumen 202, the bore size of the catheter 200 can increase to adjust the flow.
In step 620, method 600 can include connecting a first end of a conductive wire to a metallic region of the catheter. The metallic region can include the bimetallic coil such that the conductive wire is affixed to the metallic region or affixed directly to the bimetallic coil.
At step 630, method 600 can include connecting a second end of the conductive wire to an electrical current controller.
Step 640 includes applying an electrical current, through the conductive wire, from the electrical current controller to the metallic region. Applying the electrical current to the metallic region may also include applying the electrical current directly or indirectly to the bimetallic coil. The user can activate the electronic circuit outside of the patient.
In step 650, method 600 can include expanding, by the electrical current, the bimetallic coil from a tight configuration to an expanded configuration.
Although not shown, method 600 may further include attaching an elastic jacket around the metallic region such that the elastic jacket allows expansion of the metallic region, as described above.
Method 600 can end after step 650. In other embodiments, additional steps according to the examples described above can be performed. For example, method 600 can include advancing a catheter to a target site through an outer catheter or access sheath. Method 600 can also include deactivating the first current to cool at least a first end of the bimetallic coil. Cooling the bimetallic material can cause the at least a first end to tighten upon the occlusive thrombus to improve the capture the thrombus for removal. Method 600 may further include aspirating the occlusive thrombus into the bimetallic coil. The aspiration can be directed into the catheter by the bimetallic coil. Method 600 can also include withdrawing the catheter with the occlusive thrombus from the patient. With the thrombus captured within the bimetallic coil, the thrombus can be pulled from the vessel of the patient without worry of the thrombus dislodging from the catheter due to poor capture.
In some examples, method 600 can include delivering a second current to at least a second end of the bimetallic coil. The second end can have a different transformation characteristic than the first end, such as a different thermal expansion coefficient. For example, the second end can be configured to bend the opposite direction to cause the bimetallic coil to tighten, which means that, once heated, it can collapse upon the thrombus. Accordingly, method 600 can include heating, via the second current, the second end of the bimetallic coil to cause the second portion of the bimetallic coil to change from an expanded configuration to a collapsed configuration and upon the occlusive thrombus.
Method 600 can also include cooling the at least a first end of the bimetallic coil with a thermoelectric cooling circuit to cause the at least a first end of the bimetallic coil to collapse or tighten upon the occlusive thrombus. A thermoelectric cooling circuit, such as a Peltier chip, can pump heat from a system. Using this effect, the thermoelectric cooling circuit can cause the at least a first end of the bimetallic coil to cool and collapse more rapidly around the occlusive thrombus.
Method 600 can include delivering the current in a series of pulses so as to maintain a steady bimetallic coil temperature, and the electronic circuit can monitor the temperature and adjust the pulse duration and/or length accordingly.
Method 600 can also include monitoring a temperature of the bimetallic coil with a thermocouple. In some examples, the thermocouple can monitor to determine if the bimetallic coil exceeds a certain temperature, for example 50° C., and deactivate the first current if the bimetallic coil exceeds the temperature.
The descriptions contained herein are examples of embodiments of the disclosure and are not intended in any way to limit the scope of the disclosure. As described herein, the disclosure contemplates many variations and modifications of the aspiration device including using alternative geometries of structural elements, combining shapes and structural elements from various example embodiments, using alternative materials, etc. These modifications would be apparent to those having ordinary skill in the art to which this disclosure relates and are intended to be within the scope of the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
4243040 | Beecher | Jan 1981 | A |
4324262 | Hall | Apr 1982 | A |
4351342 | Wiita et al. | Sep 1982 | A |
4575371 | Nordqvist et al. | Mar 1986 | A |
4592356 | Gutierrez | Jun 1986 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4738666 | Fuqua | Apr 1988 | A |
4767404 | Renton | Aug 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4873978 | Ginsburg | Oct 1989 | A |
5011488 | Ginsburg | Apr 1991 | A |
5092839 | Kipperman | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5123840 | Nates | Jun 1992 | A |
5171233 | Amplatz | Dec 1992 | A |
5234437 | Sepetka | Aug 1993 | A |
5256144 | Kraus et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5385562 | Adams | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5387226 | Miraki | Feb 1995 | A |
5396902 | Brennen et al. | Mar 1995 | A |
5449372 | Schmaltz | Sep 1995 | A |
5520651 | Sutcu | May 1996 | A |
5538512 | Zenzon et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5558652 | Henke | Sep 1996 | A |
5601600 | Ton | Feb 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5624461 | Mariant | Apr 1997 | A |
5639277 | Mariant | Jun 1997 | A |
5645558 | Horton | Jul 1997 | A |
5658296 | Bates | Aug 1997 | A |
5662671 | Barbut | Sep 1997 | A |
5695519 | Summer et al. | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5713853 | Clark | Feb 1998 | A |
5728078 | Powers, Jr. | Mar 1998 | A |
5769871 | Mers Kelly | Jun 1998 | A |
5779716 | Cano | Jul 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Danniel et al. | Sep 1998 | A |
5827304 | Hart | Oct 1998 | A |
5846251 | Hart | Dec 1998 | A |
5855598 | Pinchuk | Jan 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895398 | Wensel | Apr 1999 | A |
5897567 | Ressemann | Apr 1999 | A |
5904698 | Thomas et al. | May 1999 | A |
5911725 | Boury | Jun 1999 | A |
5935139 | Bates | Aug 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5968057 | Taheri | Oct 1999 | A |
5971938 | Hart et al. | Oct 1999 | A |
5997939 | Moechnig et al. | Dec 1999 | A |
6022343 | Johnson et al. | Feb 2000 | A |
6063113 | Kavteladze | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson | May 2000 | A |
6093196 | Okada | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6099534 | Bates | Aug 2000 | A |
6102932 | Kurz | Aug 2000 | A |
6106548 | Roubin et al. | Aug 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6142957 | Diamond et al. | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6146404 | Kim | Nov 2000 | A |
6165194 | Denardo | Dec 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6168604 | Cano | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi | Jan 2001 | B1 |
6203561 | Ramee | Mar 2001 | B1 |
6214026 | Lepak | Apr 2001 | B1 |
6221006 | Dubrul | Apr 2001 | B1 |
6238412 | Dubrul | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6254571 | Hart | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6309379 | Willard | Oct 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6312444 | Barbut | Nov 2001 | B1 |
6315778 | Gambale et al. | Nov 2001 | B1 |
6325819 | Pavcnik et al. | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6348056 | Bates | Feb 2002 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6361545 | Macoviak | Mar 2002 | B1 |
6371963 | Nishtala et al. | Apr 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6383206 | Gillick | May 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6402771 | Palmer | Jun 2002 | B1 |
6409683 | Fonseca et al. | Jun 2002 | B1 |
6416541 | Denardo | Jul 2002 | B2 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436112 | Wensel | Aug 2002 | B2 |
6458139 | Palmer | Oct 2002 | B1 |
6346116 | Brooks et al. | Nov 2002 | B1 |
6485497 | Wensel | Nov 2002 | B2 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Don Michael | Nov 2002 | B2 |
6511492 | Rosenbluth | Jan 2003 | B1 |
6517551 | Driskill | Feb 2003 | B1 |
6520934 | Lee et al. | Feb 2003 | B1 |
6520951 | Carrillo, Jr. | Feb 2003 | B1 |
6530935 | Wensel | Mar 2003 | B2 |
6530939 | Hopkins | Mar 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6544279 | Hopkins | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551342 | Shen et al. | Apr 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6582448 | Boyle | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6592607 | Palmer et al. | Jul 2003 | B1 |
6592616 | Stack | Jul 2003 | B1 |
6602271 | Adams | Aug 2003 | B2 |
6602272 | Boylan et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616679 | Khosravi | Sep 2003 | B1 |
6632241 | Hanoock et al. | Oct 2003 | B1 |
6638245 | Miller | Oct 2003 | B2 |
6638293 | Makower et al. | Oct 2003 | B1 |
6641590 | Palmer et al. | Nov 2003 | B1 |
6652555 | VanTassel et al. | Nov 2003 | B1 |
6656218 | Denardo et al. | Dec 2003 | B1 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663650 | Sepetka | Dec 2003 | B2 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6685722 | Rosenbluth | Feb 2004 | B1 |
6692504 | Kurz et al. | Feb 2004 | B2 |
6692508 | Wensel | Feb 2004 | B2 |
6692509 | Wensel | Feb 2004 | B2 |
6702782 | Miller | Mar 2004 | B2 |
6712834 | Yassour et al. | Mar 2004 | B2 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6730104 | Sepetka | May 2004 | B1 |
6726703 | Broome et al. | Aug 2004 | B2 |
6824545 | Sepetka | Nov 2004 | B2 |
6855155 | Denardo et al. | Feb 2005 | B2 |
6878163 | Denardo et al. | Apr 2005 | B2 |
6890340 | Duane | May 2005 | B2 |
6913612 | Palmer | Jul 2005 | B2 |
6913618 | Denardo et al. | Jul 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6989019 | Mazzocchi | Jan 2006 | B2 |
6989021 | Bosma et al. | Jan 2006 | B2 |
6994718 | Groothuis et al. | Feb 2006 | B2 |
6997939 | Inder | Feb 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7004955 | Shen | Feb 2006 | B2 |
7004956 | Palmer | Feb 2006 | B2 |
7008434 | Kurz et al. | Mar 2006 | B2 |
7033376 | Tsukernik | Apr 2006 | B2 |
7041116 | Goto | May 2006 | B2 |
7048758 | Boyle | May 2006 | B2 |
7058456 | Pierce | Jun 2006 | B2 |
7063707 | Bose | Jun 2006 | B2 |
7153320 | Euteneuer et al. | Dec 2006 | B2 |
7175655 | Malaei | Feb 2007 | B1 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7220269 | Ansel | May 2007 | B1 |
7220271 | Clubb | May 2007 | B2 |
7226464 | Garner et al. | Jun 2007 | B2 |
7229472 | DePalma et al. | Jun 2007 | B2 |
7232462 | Schaeffer | Jun 2007 | B2 |
7288112 | Denardo et al. | Oct 2007 | B2 |
7306618 | Demond | Dec 2007 | B2 |
7316692 | Huffmaster | Jan 2008 | B2 |
7323001 | Cubb | Jan 2008 | B2 |
7331976 | McGuckin, Jr. et al. | Feb 2008 | B2 |
7344550 | Carrison et al. | Mar 2008 | B2 |
7399308 | Borillo et al. | Jul 2008 | B2 |
7410491 | Hopkins | Aug 2008 | B2 |
7452496 | Brady et al. | Nov 2008 | B2 |
7491215 | Vale et al. | Feb 2009 | B2 |
7491216 | Brady | Feb 2009 | B2 |
7510565 | Gilson et al. | Mar 2009 | B2 |
7534252 | Sepetka | May 2009 | B2 |
7556636 | Mazzocchi | Jul 2009 | B2 |
7582111 | Krolik et al. | Sep 2009 | B2 |
7594926 | Linder | Sep 2009 | B2 |
7604649 | McGuckin et al. | Oct 2009 | B2 |
7618434 | Santra et al. | Nov 2009 | B2 |
7662165 | Gilson et al. | Feb 2010 | B2 |
7670356 | Mazzocchi | Mar 2010 | B2 |
7691121 | Rosenbluth | Apr 2010 | B2 |
7691124 | Balgobin | Apr 2010 | B2 |
7708770 | Linder | May 2010 | B2 |
7736385 | Agnew | Jun 2010 | B2 |
7766934 | Pal | Aug 2010 | B2 |
7771452 | Pal | Aug 2010 | B2 |
7780694 | Palmer | Aug 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7819893 | Brady et al. | Oct 2010 | B2 |
7828815 | Mazzocchi | Nov 2010 | B2 |
7846176 | Mazzocchi | Nov 2010 | B2 |
7846175 | Bonnette et al. | Dec 2010 | B2 |
7850708 | Pal | Dec 2010 | B2 |
7887560 | Kusleika | Feb 2011 | B2 |
7901426 | Gilson et al. | Mar 2011 | B2 |
7914549 | Morsi | Mar 2011 | B2 |
7922732 | Mazzocchi | Apr 2011 | B2 |
7927349 | Brady et al. | Apr 2011 | B2 |
7927784 | Simpson | Apr 2011 | B2 |
7931659 | Bose et al. | Apr 2011 | B2 |
7998165 | Huffmaster | Aug 2011 | B2 |
8002822 | Glocker et al. | Aug 2011 | B2 |
8021379 | Thompson et al. | Sep 2011 | B2 |
8021380 | Thompson et al. | Sep 2011 | B2 |
8043326 | Hancock et al. | Oct 2011 | B2 |
8048151 | O'Brien et al. | Nov 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8057497 | Raju et al. | Nov 2011 | B1 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8070791 | Ferrera et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8100935 | Rosenbluth et al. | Jan 2012 | B2 |
8109941 | Richardson | Feb 2012 | B2 |
8118829 | Carrison et al. | Feb 2012 | B2 |
8123769 | Osborne | Feb 2012 | B2 |
8137377 | Palmer | Mar 2012 | B2 |
8142422 | Makower et al. | Mar 2012 | B2 |
8142442 | Palmer et al. | Mar 2012 | B2 |
8182508 | Magnuson et al. | May 2012 | B2 |
8187298 | Pal | May 2012 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8246672 | Osborne | Aug 2012 | B2 |
8252017 | Paul, Jr. et al. | Aug 2012 | B2 |
8252018 | Valaie | Aug 2012 | B2 |
8357178 | Grandfield et al. | Jan 2013 | B2 |
8357179 | Grandfield et al. | Jan 2013 | B2 |
8357893 | Xu et al. | Jan 2013 | B2 |
8361095 | Osborne | Jan 2013 | B2 |
8366663 | Fiorella | Feb 2013 | B2 |
8372133 | Douk et al. | Feb 2013 | B2 |
8382742 | Hermann et al. | Feb 2013 | B2 |
8409215 | Sepetka et al. | Apr 2013 | B2 |
8419748 | Valaie | Apr 2013 | B2 |
8460312 | Bose et al. | Jun 2013 | B2 |
8460313 | Huffmaster | Jun 2013 | B2 |
8486104 | Samson et al. | Jul 2013 | B2 |
8529596 | Grandfield et al. | Sep 2013 | B2 |
8574262 | Ferrera et al. | Nov 2013 | B2 |
8579915 | French et al. | Nov 2013 | B2 |
8585643 | Vo et al. | Nov 2013 | B2 |
8585713 | Ferrera et al. | Nov 2013 | B2 |
8608761 | Osbourne et al. | Dec 2013 | B2 |
8679142 | Slee et al. | Mar 2014 | B2 |
8696622 | Fiorella et al. | Apr 2014 | B2 |
8702652 | Fiorella et al. | Apr 2014 | B2 |
8702724 | Olsen et al. | Apr 2014 | B2 |
8784434 | Rosenbluth et al. | Jul 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8795305 | Grandfield et al. | Aug 2014 | B2 |
8795317 | Grandfield et al. | Aug 2014 | B2 |
8795345 | Grandfield et al. | Aug 2014 | B2 |
8814892 | Galdonik et al. | Aug 2014 | B2 |
8814925 | Hilaire et al. | Aug 2014 | B2 |
8900265 | Ulm, III | Dec 2014 | B1 |
8939991 | Krolick et al. | Jan 2015 | B2 |
8945143 | Ferrera et al. | Feb 2015 | B2 |
8945172 | Ferrera et al. | Feb 2015 | B2 |
8968330 | Rosenbluth et al. | Mar 2015 | B2 |
9039749 | Shrivastava et al. | May 2015 | B2 |
9072537 | Grandfield et al. | Jul 2015 | B2 |
9113936 | Palmer et al. | Aug 2015 | B2 |
9119656 | Bose et al. | Sep 2015 | B2 |
9138307 | Valaie | Sep 2015 | B2 |
9149609 | Ansel et al. | Oct 2015 | B2 |
9155552 | Ulm, III | Oct 2015 | B2 |
9161766 | Slee et al. | Oct 2015 | B2 |
9173668 | Ulm, III | Nov 2015 | B2 |
9186487 | Dubrul et al. | Nov 2015 | B2 |
9198687 | Fulkerson et al. | Dec 2015 | B2 |
9204887 | Cully et al. | Dec 2015 | B2 |
9221132 | Bowman | Dec 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642635 | Vale et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Peterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
10028759 | Wallace et al. | Jul 2018 | B2 |
10149692 | Turjman et al. | Dec 2018 | B2 |
10172634 | Horowitz | Jan 2019 | B1 |
10265086 | Vale | Apr 2019 | B2 |
10610668 | Burkholz et al. | Apr 2020 | B2 |
10716915 | Ogle et al. | Jul 2020 | B2 |
10835271 | Ma | Nov 2020 | B2 |
11076879 | Vale | Aug 2021 | B2 |
20010001315 | Bates | May 2001 | A1 |
20010011182 | Dubrul et al. | Aug 2001 | A1 |
20010016755 | Addis | Aug 2001 | A1 |
20010041899 | Foster | Nov 2001 | A1 |
20010044598 | Parodi | Nov 2001 | A1 |
20010044634 | Don Michael et al. | Nov 2001 | A1 |
20010051810 | Dubrul | Dec 2001 | A1 |
20020002383 | Sepetka et al. | Jan 2002 | A1 |
20020016609 | Wensel | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi | Feb 2002 | A1 |
20020049468 | Streeter | Apr 2002 | A1 |
20020052620 | Barvut | May 2002 | A1 |
20020068954 | Foster | Jun 2002 | A1 |
20020072764 | Sepetka | Jun 2002 | A1 |
20020082558 | Samson | Jun 2002 | A1 |
20020091407 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020123765 | Sepetka | Sep 2002 | A1 |
20020143362 | Macoviak et al. | Oct 2002 | A1 |
20020156455 | Barbut | Oct 2002 | A1 |
20020161393 | Demond | Oct 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020177800 | Bagaoisan et al. | Nov 2002 | A1 |
20020188276 | Evans | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030004538 | Secrest | Jan 2003 | A1 |
20030004542 | Wensel | Jan 2003 | A1 |
20030009146 | Muni | Jan 2003 | A1 |
20030009191 | Wensel | Jan 2003 | A1 |
20030023204 | Vo et al. | Jan 2003 | A1 |
20030040769 | Kelley et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030050663 | Khachin | Mar 2003 | A1 |
20030100847 | D'Aquanni et al. | May 2003 | A1 |
20030105484 | Boyle et al. | Jun 2003 | A1 |
20030125798 | Matrin | Jul 2003 | A1 |
20030130682 | Broome et al. | Jul 2003 | A1 |
20030144687 | Brady et al. | Jul 2003 | A1 |
20030144689 | Brady et al. | Jul 2003 | A1 |
20030153940 | Nohilly et al. | Aug 2003 | A1 |
20030153943 | Michael et al. | Aug 2003 | A1 |
20030153944 | Phung | Aug 2003 | A1 |
20030163064 | Vrba | Aug 2003 | A1 |
20030163158 | Wlite | Aug 2003 | A1 |
20030171769 | Barbu | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030195537 | Dubrul | Oct 2003 | A1 |
20030195554 | Shen | Oct 2003 | A1 |
20030199917 | Knudson | Oct 2003 | A1 |
20030204202 | Palmer | Oct 2003 | A1 |
20030212430 | Bose | Nov 2003 | A1 |
20030216611 | Vu | Nov 2003 | A1 |
20030236533 | Wilson | Dec 2003 | A1 |
20040010280 | Adams et al. | Jan 2004 | A1 |
20040010282 | Kusleika | Jan 2004 | A1 |
20040014002 | Lundgren | Jan 2004 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040073243 | Sepetka | Apr 2004 | A1 |
20040079429 | Miller | Apr 2004 | A1 |
20040082962 | Demarais et al. | Apr 2004 | A1 |
20040093065 | Yachia et al. | May 2004 | A1 |
20040133231 | Maitland | Jul 2004 | A1 |
20040138692 | Phung | Jul 2004 | A1 |
20040153049 | Hewitt et al. | Aug 2004 | A1 |
20040153118 | Clubb | Aug 2004 | A1 |
20040193107 | Pierpont et al. | Sep 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040260333 | Dubrul et al. | Dec 2004 | A1 |
20050015047 | Shah | Jan 2005 | A1 |
20050020974 | Noriega et al. | Jan 2005 | A1 |
20050033348 | Sepetka | Feb 2005 | A1 |
20050038447 | Huffmaster | Feb 2005 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20050049619 | Sepetka | Mar 2005 | A1 |
20050049669 | Jones | Mar 2005 | A1 |
20050049670 | Jones et al. | Mar 2005 | A1 |
20050055033 | Leslie et al. | Mar 2005 | A1 |
20050055047 | Greenhalgh | Mar 2005 | A1 |
20050059993 | Ramzipoor et al. | Mar 2005 | A1 |
20050059995 | Sepetka | Mar 2005 | A1 |
20050085849 | Sepetka | Apr 2005 | A1 |
20050090857 | Kusleika et al. | Apr 2005 | A1 |
20050119524 | Sekine et al. | Jun 2005 | A1 |
20050119668 | Teague et al. | Jun 2005 | A1 |
20050125024 | Sepetka | Jun 2005 | A1 |
20050131449 | Salahieh et al. | Jun 2005 | A1 |
20050149111 | Kanazawa et al. | Jul 2005 | A1 |
20050171566 | Kanamaru | Aug 2005 | A1 |
20050187570 | Nguyen et al. | Aug 2005 | A1 |
20050267491 | Kellett et al. | Aug 2005 | A1 |
20050216030 | Sepetka | Sep 2005 | A1 |
20050216050 | Sepetka | Sep 2005 | A1 |
20050288686 | Sepetka | Sep 2005 | A1 |
20050228417 | Teitelbaum et al. | Oct 2005 | A1 |
20060009785 | Maitland et al. | Jan 2006 | A1 |
20060009799 | Kleshinski et al. | Jan 2006 | A1 |
20060010636 | Vacher | Jan 2006 | A1 |
20060030933 | DeLeggge et al. | Feb 2006 | A1 |
20060036271 | Schomer et al. | Feb 2006 | A1 |
20060058836 | Bose | Mar 2006 | A1 |
20060058837 | Bose | Mar 2006 | A1 |
20060058838 | Bose | Mar 2006 | A1 |
20060064151 | Guterman et al. | Mar 2006 | A1 |
20060149313 | Arguello et al. | Jul 2006 | A1 |
20060155305 | Freudenthal | Jul 2006 | A1 |
20060155322 | Sater et al. | Jul 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060195137 | Sepetka | Aug 2006 | A1 |
20060224177 | Finitsis | Oct 2006 | A1 |
20060224179 | Kucharczyk | Oct 2006 | A1 |
20060229638 | Abrams et al. | Oct 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20060287701 | Pal | Dec 2006 | A1 |
20070088383 | Pal et al. | Apr 2007 | A1 |
20070142858 | Bates | Jun 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070156170 | Hancock | Jul 2007 | A1 |
20070165170 | Fukuda | Jul 2007 | A1 |
20070179513 | Deutsch | Aug 2007 | A1 |
20070191866 | Palmer et al. | Aug 2007 | A1 |
20070198028 | Miloslavski | Aug 2007 | A1 |
20070198051 | Clubb et al. | Aug 2007 | A1 |
20070198075 | Levy | Aug 2007 | A1 |
20070208367 | Fiorella | Sep 2007 | A1 |
20070208371 | French | Sep 2007 | A1 |
20070213765 | Adams et al. | Sep 2007 | A1 |
20070225749 | Martin | Sep 2007 | A1 |
20070239182 | Glines et al. | Oct 2007 | A1 |
20070239254 | Chia et al. | Oct 2007 | A1 |
20070244505 | Gilson et al. | Oct 2007 | A1 |
20070270902 | Slazas et al. | Nov 2007 | A1 |
20070288038 | Bimbo | Dec 2007 | A1 |
20070293887 | Okushi et al. | Dec 2007 | A1 |
20080045881 | Teitelbaum et al. | Feb 2008 | A1 |
20080082107 | Miller et al. | Apr 2008 | A1 |
20080086190 | Ta | Apr 2008 | A1 |
20080091223 | Pokorney | Apr 2008 | A1 |
20080097398 | Mitelberg et al. | Apr 2008 | A1 |
20080109031 | Sepetka | May 2008 | A1 |
20080109032 | Sepetka | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080177296 | Sepetka | Jul 2008 | A1 |
20080183197 | Sepetka | Jul 2008 | A1 |
20080183198 | Sepetka | Jul 2008 | A1 |
20080183205 | Sepetka | Jul 2008 | A1 |
20080188876 | Sepetka | Aug 2008 | A1 |
20080188885 | Sepetka | Aug 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080200946 | Braun | Aug 2008 | A1 |
20080215077 | Sepetka | Sep 2008 | A1 |
20080221600 | Dieck et al. | Sep 2008 | A1 |
20080228209 | DeMello et al. | Sep 2008 | A1 |
20080234706 | Sepetka | Sep 2008 | A1 |
20080243170 | Jenson | Oct 2008 | A1 |
20080255596 | Jenson | Oct 2008 | A1 |
20080262528 | Martin | Oct 2008 | A1 |
20080262532 | Martin | Oct 2008 | A1 |
20080269774 | Garcia et al. | Oct 2008 | A1 |
20080275488 | Fleming | Nov 2008 | A1 |
20080275493 | Farmiga | Nov 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20080312681 | Ansel | Dec 2008 | A1 |
20090024157 | Anukhin | Jan 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090069828 | Martin | Mar 2009 | A1 |
20090076539 | Valaie | Mar 2009 | A1 |
20090105722 | Fulkerson | Apr 2009 | A1 |
20090105737 | Fulkerson | Apr 2009 | A1 |
20090131908 | McKay | May 2009 | A1 |
20090163846 | Aklog et al. | May 2009 | A1 |
20090177206 | Lozier et al. | Jul 2009 | A1 |
20090182336 | Brenzel et al. | Jul 2009 | A1 |
20090221967 | Thommen et al. | Sep 2009 | A1 |
20090270815 | Stamp et al. | Oct 2009 | A1 |
20090281610 | Parker | Nov 2009 | A1 |
20090292297 | Ferrere | Nov 2009 | A1 |
20090292307 | Razack | Nov 2009 | A1 |
20090299374 | Tilson et al. | Dec 2009 | A1 |
20090299393 | Martin | Dec 2009 | A1 |
20090306702 | Miloslavski | Dec 2009 | A1 |
20100004607 | Wilson et al. | Jan 2010 | A1 |
20100016957 | Jager et al. | Jan 2010 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100036312 | Krolik et al. | Feb 2010 | A1 |
20100087908 | Hilaire | Apr 2010 | A1 |
20100114017 | Lenker | May 2010 | A1 |
20100125326 | Kalstad | May 2010 | A1 |
20100125327 | Agnew | May 2010 | A1 |
20100137846 | Desai et al. | Jun 2010 | A1 |
20100191272 | Keating | Jul 2010 | A1 |
20100211094 | Sargent, Jr. | Aug 2010 | A1 |
20100249815 | Jantzen et al. | Sep 2010 | A1 |
20100268264 | Bonnett et al. | Oct 2010 | A1 |
20100268265 | Krolik et al. | Oct 2010 | A1 |
20100292726 | Olsen et al. | Nov 2010 | A1 |
20100305566 | Rosenblatt et al. | Dec 2010 | A1 |
20100305604 | Pah | Dec 2010 | A1 |
20100318178 | Rapaport et al. | Dec 2010 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20100331949 | Habib | Dec 2010 | A1 |
20110009875 | Grandfield et al. | Jan 2011 | A1 |
20110009940 | Grandfield et al. | Jan 2011 | A1 |
20110009942 | Gregorich et al. | Jan 2011 | A1 |
20110022149 | Cox et al. | Jan 2011 | A1 |
20110054514 | Arcand | Mar 2011 | A1 |
20110054516 | Keegan | Mar 2011 | A1 |
20110060359 | Hannes | Mar 2011 | A1 |
20110071432 | Carrillo, Jr. et al. | Mar 2011 | A1 |
20110077620 | deBeer | Mar 2011 | A1 |
20110098683 | Wiita et al. | Apr 2011 | A1 |
20110054504 | Wolf et al. | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110130756 | Everson, Jr. et al. | Jun 2011 | A1 |
20110152920 | Eckhouse et al. | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110166586 | Sepetka et al. | Jul 2011 | A1 |
20110196414 | Porter et al. | Aug 2011 | A1 |
20110202088 | Eckhouse et al. | Aug 2011 | A1 |
20110213290 | Chin et al. | Sep 2011 | A1 |
20110213297 | Aklog | Sep 2011 | A1 |
20110213393 | Aklog et al. | Sep 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110218564 | Drasler et al. | Sep 2011 | A1 |
20110224707 | Miloslavaski et al. | Sep 2011 | A1 |
20110264132 | Strauss et al. | Oct 2011 | A1 |
20110276120 | Gilson et al. | Nov 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120041449 | Eckhouse et al. | Feb 2012 | A1 |
20120041474 | Eckhouse et al. | Feb 2012 | A1 |
20120059356 | diPama et al. | Mar 2012 | A1 |
20120089216 | Rapaport et al. | Apr 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120116351 | Chomas et al. | May 2012 | A1 |
20120116440 | Leynov et al. | May 2012 | A1 |
20120143237 | Cam et al. | Jun 2012 | A1 |
20120143239 | Aklog et al. | Jun 2012 | A1 |
20120150147 | Leynov et al. | Jun 2012 | A1 |
20120165858 | Eckhouse et al. | Jun 2012 | A1 |
20120165859 | Eckhouse et al. | Jun 2012 | A1 |
20120215250 | Grandfield et al. | Aug 2012 | A1 |
20120277788 | Cattaneo | Nov 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120296362 | Cam et al. | Nov 2012 | A1 |
20120316600 | Ferrera et al. | Dec 2012 | A1 |
20130006284 | Aggerholm et al. | Jan 2013 | A1 |
20130025934 | Aimi et al. | Jan 2013 | A1 |
20130030461 | Marks et al. | Jan 2013 | A1 |
20130046330 | McIntosh et al. | Feb 2013 | A1 |
20130046333 | Jones et al. | Feb 2013 | A1 |
20130046334 | Jones et al. | Feb 2013 | A1 |
20130116774 | Strauss et al. | May 2013 | A1 |
20130131614 | Hassan et al. | May 2013 | A1 |
20130144326 | Brady et al. | Jun 2013 | A1 |
20130144328 | Weber et al. | Jun 2013 | A1 |
20130158592 | Porter | Jun 2013 | A1 |
20130184703 | Shireman et al. | Jul 2013 | A1 |
20130184739 | Brady et al. | Jul 2013 | A1 |
20130197567 | Brady et al. | Aug 2013 | A1 |
20130226146 | Tekulve | Aug 2013 | A1 |
20130268050 | Wilson et al. | Oct 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130289697 | Baker et al. | Oct 2013 | A1 |
20130325055 | Eckhouse et al. | Dec 2013 | A1 |
20130325056 | Eckhouse et al. | Dec 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140012281 | Wang et al. | Jan 2014 | A1 |
20140046359 | Bowman et al. | Feb 2014 | A1 |
20140052097 | Petersen et al. | Feb 2014 | A1 |
20140081243 | Zhou et al. | Mar 2014 | A1 |
20140121672 | Folk | May 2014 | A1 |
20140128905 | Molaei | May 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140180377 | Bose et al. | Jun 2014 | A1 |
20140188127 | Dubrul et al. | Jul 2014 | A1 |
20140194919 | Losardo et al. | Jul 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140200608 | Brady et al. | Jul 2014 | A1 |
20140236220 | Inoue | Aug 2014 | A1 |
20140257018 | Farnan | Sep 2014 | A1 |
20140257362 | Eldenschink | Sep 2014 | A1 |
20140276922 | McLain et al. | Sep 2014 | A1 |
20140277003 | Hendrick | Sep 2014 | A1 |
20140277053 | Wang et al. | Sep 2014 | A1 |
20140277079 | Vale et al. | Sep 2014 | A1 |
20140309657 | Ben-Ami | Oct 2014 | A1 |
20140309673 | Dacuycuy et al. | Oct 2014 | A1 |
20140330302 | Tekulve et al. | Nov 2014 | A1 |
20140343585 | Ferrera et al. | Nov 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20140371769 | Vale et al. | Dec 2014 | A1 |
20140371777 | Rudakov | Dec 2014 | A1 |
20140371779 | Vale et al. | Dec 2014 | A1 |
20140371780 | Vale et al. | Dec 2014 | A1 |
20140379023 | Brady et al. | Dec 2014 | A1 |
20150018859 | Quick et al. | Jan 2015 | A1 |
20150018860 | Quick et al. | Jan 2015 | A1 |
20150080937 | Davidson | Mar 2015 | A1 |
20150081003 | Wainwright et al. | Mar 2015 | A1 |
20150112376 | Molaei et al. | Apr 2015 | A1 |
20150133990 | Davidson | May 2015 | A1 |
20150142043 | Furey | May 2015 | A1 |
20150164523 | Brady et al. | Jun 2015 | A1 |
20150173782 | Garrison | Jun 2015 | A1 |
20150173783 | Tah et al. | Jun 2015 | A1 |
20150238314 | Börtlein et al. | Aug 2015 | A1 |
20150250497 | Marks et al. | Sep 2015 | A1 |
20150257775 | Gilvarry et al. | Sep 2015 | A1 |
20150258270 | Kunis | Sep 2015 | A1 |
20150290437 | Rudakov et al. | Oct 2015 | A1 |
20150297252 | Miloslavski et al. | Oct 2015 | A1 |
20150306311 | Pinchuk et al. | Oct 2015 | A1 |
20150313617 | Grandfield et al. | Nov 2015 | A1 |
20150320431 | Ulm, III | Nov 2015 | A1 |
20150351770 | Fulton, III | Dec 2015 | A1 |
20150352325 | Quick | Dec 2015 | A1 |
20150359547 | Vale et al. | Dec 2015 | A1 |
20150374391 | Quick et al. | Dec 2015 | A1 |
20150374393 | Brady et al. | Dec 2015 | A1 |
20150374479 | Vale | Dec 2015 | A1 |
20160015402 | Brady et al. | Jan 2016 | A1 |
20160022296 | Brady et al. | Jan 2016 | A1 |
20160066921 | Brady et al. | Mar 2016 | A1 |
20160074067 | Furnish et al. | Mar 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113664 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160120558 | Brady et al. | May 2016 | A1 |
20160121080 | Cottone | May 2016 | A1 |
20160135829 | Holochwost et al. | May 2016 | A1 |
20160143653 | Vale et al. | May 2016 | A1 |
20160151079 | Aklog et al. | Jun 2016 | A1 |
20160192953 | Brady et al. | Jul 2016 | A1 |
20160192954 | Brady et al. | Jul 2016 | A1 |
20160192955 | Brady et al. | Jul 2016 | A1 |
20160192956 | Brady et al. | Jul 2016 | A1 |
20160228134 | Martin et al. | Aug 2016 | A1 |
20160256180 | Vale et al. | Sep 2016 | A1 |
20160262880 | Li et al. | Sep 2016 | A1 |
20160317168 | Brady et al. | Nov 2016 | A1 |
20160346002 | Avneri et al. | Dec 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170065401 | Fearnot et al. | Mar 2017 | A1 |
20170071614 | Vale et al. | Mar 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086862 | Vale et al. | Mar 2017 | A1 |
20170086863 | Brady et al. | Mar 2017 | A1 |
20170086864 | Greenhalgh | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095138 | Nakade et al. | Apr 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100142 | Look et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170112515 | Brady et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172554 | Bortlein et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170238953 | Yang et al. | Aug 2017 | A1 |
20170239447 | Yang | Aug 2017 | A1 |
20170252043 | Fuller et al. | Sep 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170259042 | Nguyen et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Sethna | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180008407 | Maimon et al. | Jan 2018 | A1 |
20180042623 | Batiste | Feb 2018 | A1 |
20180193050 | Hawkins et al. | Jul 2018 | A1 |
20180193591 | Jaroch et al. | Jul 2018 | A1 |
20180235743 | Farago et al. | Aug 2018 | A1 |
20180256177 | Cooper | Sep 2018 | A1 |
20180303610 | Anderson | Oct 2018 | A1 |
20190021755 | Johnson et al. | Jan 2019 | A1 |
20190021759 | Krolik et al. | Jan 2019 | A1 |
20190029820 | Zhou et al. | Jan 2019 | A1 |
20190029825 | Fitterer et al. | Jan 2019 | A1 |
20190046219 | Marchand et al. | Feb 2019 | A1 |
20190192175 | Chida et al. | Jun 2019 | A1 |
20190209206 | Patel et al. | Jul 2019 | A1 |
20190216476 | Barry et al. | Jul 2019 | A1 |
20190239907 | Brady et al. | Aug 2019 | A1 |
20190247627 | Korkuch | Aug 2019 | A1 |
20190255290 | Snyder et al. | Aug 2019 | A1 |
20190269491 | Jalgaonkar et al. | Sep 2019 | A1 |
20190274810 | Phouasalit et al. | Sep 2019 | A1 |
20190298396 | Gamba et al. | Oct 2019 | A1 |
20190365411 | Avneri et al. | Dec 2019 | A1 |
20190366049 | Hannon et al. | Dec 2019 | A1 |
20200038628 | Chou et al. | Feb 2020 | A1 |
20200214859 | Sherburne | Jul 2020 | A1 |
20200281611 | Kelly et al. | Sep 2020 | A1 |
20200353208 | Merhi et al. | Nov 2020 | A1 |
20200383698 | Miao | Dec 2020 | A1 |
20210085935 | Fahey et al. | Mar 2021 | A1 |
20210153883 | Casey et al. | May 2021 | A1 |
20210153884 | Casey et al. | May 2021 | A1 |
20210154433 | Casey et al. | May 2021 | A1 |
20210219821 | Appling et al. | Jul 2021 | A1 |
20220117614 | Salmon et al. | Apr 2022 | A1 |
20220125450 | Sirhan et al. | Apr 2022 | A1 |
20220313426 | Gifford, III et al. | Oct 2022 | A1 |
20230054898 | Gurovich et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
2015271876 | Sep 2017 | AU |
1658920 | Aug 2005 | CN |
1972728 | May 2007 | CN |
103071195 | May 2013 | CN |
104507380 | Apr 2015 | CN |
104905873 | Sep 2015 | CN |
105007973 | Oct 2015 | CN |
105307582 | Feb 2016 | CN |
105726163 | Jul 2016 | CN |
106232059 | Dec 2016 | CN |
113040865 | Jun 2021 | CN |
202009001951 | Apr 2010 | DE |
102009056450 | Jun 2011 | DE |
102010010849 | Sep 2011 | DE |
102010014778 | Oct 2011 | DE |
102010024085 | Dec 2011 | DE |
102011014586 | Sep 2012 | DE |
20 2020 107013 | Jan 2021 | DE |
2301450 | Mar 2011 | EP |
2628455 | Aug 2013 | EP |
3302312 | Apr 2018 | EP |
3335647 | Jun 2018 | EP |
3 420 978 | Jan 2019 | EP |
4049704 | Aug 2022 | EP |
2498349 | Jul 2013 | GB |
9-19438 | Jan 1997 | JP |
WO 9304722 | Mar 1993 | WO |
WO 9424926 | Nov 1994 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9738631 | Oct 1997 | WO |
WO 9920335 | Apr 1999 | WO |
WO 9956801 | Nov 1999 | WO |
WO 9960933 | Dec 1999 | WO |
WO 0121077 | Mar 2001 | WO |
WO 0202162 | Jan 2002 | WO |
WO 0211627 | Feb 2002 | WO |
WO 0243616 | Jun 2002 | WO |
WO 02070061 | Sep 2002 | WO |
WO 02094111 | Nov 2002 | WO |
WO 03002006 | Jan 2003 | WO |
WO 03018085 | Mar 2003 | WO |
WO 03030751 | Apr 2003 | WO |
WO 03051448 | Jun 2003 | WO |
WO 2004028571 | Apr 2004 | WO |
WO 2004056275 | Jul 2004 | WO |
WO 2005000130 | Jan 2005 | WO |
WO 2005027751 | Mar 2005 | WO |
WO 2005027779 | Mar 2005 | WO |
WO 2006021407 | Mar 2006 | WO |
WO 2006031410 | Mar 2006 | WO |
WO 2006107641 | Oct 2006 | WO |
WO 2006135823 | Dec 2006 | WO |
WO 2007054307 | May 2007 | WO |
WO 2007068424 | Jun 2007 | WO |
WO 2008034615 | Mar 2008 | WO |
WO 2008051431 | May 2008 | WO |
WO 2008131116 | Oct 2008 | WO |
WO 2009019664 | Feb 2009 | WO |
WO 2009031338 | Mar 2009 | WO |
WO 2009076482 | Jun 2009 | WO |
WO 2009086482 | Jul 2009 | WO |
WO 2009103125 | Aug 2009 | WO |
WO 2009105710 | Aug 2009 | WO |
WO 2010010545 | Jan 2010 | WO |
WO 2010046897 | Apr 2010 | WO |
WO 2010075565 | Jul 2010 | WO |
WO 2010102307 | Sep 2010 | WO |
WO 2010146581 | Dec 2010 | WO |
WO 2011013556 | Feb 2011 | WO |
WO 2011066961 | Jun 2011 | WO |
WO 2011082319 | Jul 2011 | WO |
WO 2011095352 | Aug 2011 | WO |
WO 2011106426 | Sep 2011 | WO |
WO 2011110316 | Sep 2011 | WO |
WO 2012052982 | Apr 2012 | WO |
WO 2012064726 | May 2012 | WO |
WO 2012081020 | Jun 2012 | WO |
WO 2012110619 | Aug 2012 | WO |
WO 2012120490 | Sep 2012 | WO |
WO 2012156924 | Nov 2012 | WO |
WO 2013016435 | Jan 2013 | WO |
WO 2013072777 | May 2013 | WO |
WO 2013105099 | Jul 2013 | WO |
WO 2013109756 | Jul 2013 | WO |
WO 2014081892 | May 2014 | WO |
WO 2014139845 | Sep 2014 | WO |
WO 2014169266 | Oct 2014 | WO |
WO 2014178198 | Nov 2014 | WO |
WO 2014188300 | Nov 2014 | WO |
WO 2015061365 | Apr 2015 | WO |
WO 2015134625 | Sep 2015 | WO |
WO 2015179324 | Nov 2015 | WO |
WO 2015179377 | Nov 2015 | WO |
WO 2015189354 | Dec 2015 | WO |
WO 2016010995 | Jan 2016 | WO |
WO 2017004234 | Jan 2017 | WO |
WO 2017097616 | Jun 2017 | WO |
WO 2018178979 | Oct 2018 | WO |
WO 2018193603 | Oct 2018 | WO |
WO 2019064306 | Apr 2019 | WO |
WO 2019079296 | Apr 2019 | WO |
WO 2020139979 | Jul 2020 | WO |
WO 2021016213 | Jan 2021 | WO |
WO 2021162678 | Aug 2021 | WO |
WO 2021167653 | Aug 2021 | WO |
WO 2022020366 | Jan 2022 | WO |
Entry |
---|
US 6,348,062 B1, 02/2002, Hopkins (withdrawn) |
Struffert, T., et al. “Intravenous flat detector CT angiography for non-invasive visualisation of intracranial flow diverter: technical feasibility” Eur Radiol 21:1797-1801 (2011). |
Number | Date | Country | |
---|---|---|---|
20230116901 A1 | Apr 2023 | US |