Catheter with high density electrode spine array

Information

  • Patent Grant
  • 12089940
  • Patent Number
    12,089,940
  • Date Filed
    Tuesday, August 3, 2021
    3 years ago
  • Date Issued
    Tuesday, September 17, 2024
    4 months ago
Abstract
A catheter adapted or high density mapping and/or ablation of tissue surface has a distal electrode matrix having a plurality of spines arranged in parallel configuration on which a multitude of electrodes are carried in a grid formation for providing uniformity and predictability in electrode placement on the tissue surface. The matrix can be dragged against the tissue surface upon deflection (and/or release of the deflection) of the catheter. The spines generally maintain their parallel configuration and the multitude of electrodes generally maintain their predetermined relative spacing in the grid formation as the matrix is dragged across the tissue surface in providing very high density mapping signals. The spines may have free distal ends, or distal ends that are joined to form loops for maintaining the spines in parallel configuration.
Description
FIELD OF INVENTION

This invention relates to catheters, in particular, intravascular catheters for tissue diagnostics and ablation.


BACKGROUND

Cardiac arrhythmia, such as atrial fibrillation, occurs when regions of cardiac tissue abnormally conduct electric signals to adjacent tissue, thereby disrupting the normal cardiac cycle and causing asynchronous rhythm. Important sources of undesired signals are located in the tissue region, for example, one of the atria or one of the ventricles. Regardless of the sources, unwanted signals are conducted elsewhere through heart tissue where they can initiate or continue arrhythmia.


Procedures for treating arrhythmia include surgically disrupting the origin of the signals causing the arrhythmia, as well as disrupting the conducting pathway for such signals. More recently, it has been found that by mapping the electrical properties of the endocardium and the heart volume, and selectively ablating cardiac tissue by application of energy, it is possible to cease or modify the propagation of unwanted electrical signals from one portion of the heart to another. The ablation process destroys the unwanted electrical pathways by formation of non-conducting lesions.


In this two-step procedure—mapping followed by ablation—electrical activity at points in the heart is typically sensed and measured by advancing a catheter containing one or more electrical sensors into the heart, and acquiring data at a multiplicity of points. These data are then utilized to select the target areas at which ablation is to be performed.


For greater mapping resolution, it is desirable for a mapping catheter to provide very high density signal maps through the use of a multitude of electrodes sensing electrical activity within a small area, for example, a square centimeter. For mapping within an atria or a ventricle (for example, an apex of a ventricle), it is desirable for a catheter to collect larger amounts of data signals within shorter time spans. It is also desirable for such a catheter to be adaptable to different tissue surfaces, for example, flat, curved, irregular or nonplanar surface tissue and be collapsible for atraumatic advancement and withdrawal through a patient's vasculature.


SUMMARY OF THE INVENTION

The catheter of the present invention is intended to allow high density mapping and/or ablation of tissue surface in the heart, including an atria or a ventricle, by means of a distal electrode matrix having a plurality of spines arranged in parallel configuration on which a multitude of electrodes are carried in a grid formation for providing uniformity and predictability in electrode placement on the tissue surface. The catheter is configured to allow the matrix to be dragged against the tissue surface upon deflection (and/or release of the deflection) of the catheter as actuated by a user manipulating a deflection control handle of the catheter. Advantageously, the spines generally maintain their parallel configuration and the multitude of electrodes generally maintain their predetermined relative spacing in the grid formation as the matrix is dragged across the tissue surface in providing very high density mapping signals.


In some embodiments, the catheter of the present invention comprises an elongated catheter body and a distal electrode matrix having a plurality of spines that carry a multitude of electrodes having a predetermined spatial relationship. The electrode-carrying spines extend generally in a single common plane and have distal portions that are generally parallel to each other in the single common plane so that the predetermined spatial relationship of the electrodes, including spacing between the electrodes on different spines, is generally maintained, especially during electrical sensing of the tissue surface while the spines are dragged along the tissue surface with purposeful deflection (and/or release of deflection) of the catheter as controlled by the user.


In a more detailed embodiment, each spine has a proximal portion, wherein the proximal portions converge at their proximal ends near the distal end of the intermediate deflection section, with each proximal portion spreading outwardly from a longitudinal axis of the catheter, wherein inner spines extend at a lesser angle and outer spines extend at a greater angle from the longitudinal axis, so that the distal portion of each spine is spaced apart from each other and generally parallel with the longitudinal axis.


In a more detailed embodiment, the catheter includes an intermediate deflection section extending between the catheter body and the distal electrode matrix, which is responsive to the control handle for selectively deflecting one side or the other side of the matrix toward the catheter. The deflection enables the selected side of the distal electrode matrix to lie against the tissue surface and maximizing electrode contact with the tissue surface for high density mapping signals with greater regularity, consistency and predictability. The distal electrode matrix includes a plurality of electrodes ranging between about 20 and 44, and preferably between about 28-36 electrodes, and preferably about 32 electrodes.


In a more detailed embodiment, each spine of the distal electrode matrix includes an elongated shape-memory member, a nonconductive covering and at least one ring electrode, wherein a proximal end of each spine is anchored in a connector member extending between the spines and the intermediate deflection section.


The present invention is also directed to a method of using the catheter of the present invention, including laying the distal electrode matrix generally flat against a tissue surface such that the spines of the matrix are in a parallel arrangement, and dragging the distal electrode matrix along the tissue surface in a direction generally parallel with the parallel arrangement of the matrix. The dragging the distal electrode matrix may include maintaining the parallel arrangement of the matrix and/or maintaining at least portion of the matrix flat on the tissue surface. The dragging the distal electrode matrix may also include maintaining a predetermined relative spacing of the electrodes on the matrix. Notably, “against,” “on,” “laying,” and “lying” are used herein without limiting the relative orientation of the distal electrode matrix and the tissue surface, including, for example, whether one or the other of the matrix and tissue surface is above, below or next to the other.


In a detailed embodiment, wherein the distal electrode matrix has a first side and a second side, the method of the present invention includes positioning the distal electrode matrix on the tissue surface with the first side lying against the tissue surface, with at least the intermediate section 14 in its neutral, undeflected state being generally perpendicular to the tissue surface, and deflecting the matrix first side toward the catheter so as to drag the first side of across the tissue surface. The deflecting so as to drag may include maintaining contact between the tissue surface and at least a portion of the electrodes carried on the distal electrode matrix.


In another detailed embodiment, wherein the distal electrode matrix has a first side and a second side, the method includes deflecting the first side of the distal electrode matrix toward the catheter, positioning at least a distal portion of the catheter body 12 generally parallel with the tissue surface, placing the second side of the distal electrode matrix against the tissue surface, and releasing deflection of the first side so as to drag the second surface of the distal electrode matrix across the tissue surface. The releasing deflection so as to drag may include maintaining contact between the tissue surface and at least a portion of the electrodes carried on the distal electrode matrix.


In yet another embodiment, the distal electrode matrix have spines with linear portions in a configuration wherein the linear portions are spaced apart at predetermined separation distances, and the spines are arranged in closed formations at their distal ends to help maintain the linear portions at such predetermined separation distances. In one detailed embodiment, the spines angle inwardly distal of the linear portions and the distal ends are joined with each other. In another detailed embodiment, pairs of spines are formed from single continuous members which are turned back toward their proximal ends to form loops with U-shaped or V-shaped distal ends which also help maintain the linear portions at their predetermined separation distances. The loops may be nonintersecting with a smaller loop inside a larger loop, or be generally the same size but intersecting at one or more locations.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:



FIG. 1 is a perspective view of a catheter of the present invention, in accordance with some embodiments.



FIG. 2A is a side cross-sectional view of the catheter of FIG. 1, including a junction between a catheter body and a deflection section, taken along a first diameter.



FIG. 2B is a side cross-sectional view of the catheter of FIG. 1, including the junction of FIG. 2A, taken along a second diameter generally perpendicular to the first diameter.



FIG. 2C is an end cross-sectional view of the deflection section of FIGS. 2A and 2B, taken along line C-C.



FIG. 3A is a side cross-sectional view of the catheter of FIG. 1, including a junction between the deflection section and a distal electrode assembly, taken along a first diameter.



FIG. 3B is a side cross-sectional view of the junction of FIG. 3A, taken along a second diameter generally perpendicular to the first diameter.



FIG. 3C is an end cross-sectional view of the deflection section of FIGS. 3A and 3B, taken along line C-C.



FIG. 3D is an end cross-sectional view of the junction of FIG. 3A, taken along line D-D.



FIG. 4 is a perspective view of a junction between the deflection section and the distal electrode assembly, with parts broken away.



FIG. 5A is a side view of a distal electrode assembly in a deployed configuration.



FIG. 5B is a side view of the distal electrode assembly of FIG. 5A in a collapsed configuration.



FIG. 6 is a schematic drawing illustrating a method of using the catheter of the present invention, according to some embodiments.



FIG. 7 is a schematic drawing illustrating a method of using the catheter of the present invention, according to another embodiment.



FIGS. 8A-8F illustrate distal electrode assemblies in accordance with additional embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

As shown in FIG. 1, the catheter 10 comprises an elongated catheter body 12, an intermediate deflection section 14, a distal electrode assembly or matrix 15, and a deflection control handle 16 attached to the proximal end of the catheter body 12. In accordance with a feature of the present invention, the distal electrode matrix 15 has a plurality of spines 17 that generally lie within a common plane akin to a broom having bristles that generally lie within a common plane.


With reference to FIGS. 2A and 2B, the catheter body 12 comprises an elongated tubular construction having a single, axial or central lumen 18. The catheter body 12 is flexible, i.e., bendable, but substantially non-compressible along its length. The catheter body 12 can be of any suitable construction and made of any suitable material. In some embodiments, the catheter body 12 comprises an outer wall 20 made of polyurethane or PEBAX. The outer wall 20 comprises an imbedded braided mesh of stainless steel or the like to increase torsional stiffness of the catheter body 12 so that, when the control handle 16 is rotated, the intermediate section 14 of the catheter 10 will rotate in a corresponding manner.


The outer diameter of the catheter body 12 is not critical, but is preferably no more than about 8 french, more preferably about 7 french. Likewise, the thickness of the outer wall 20 is not critical, but is thin enough so that the central lumen 18 can accommodate a puller wire, one or more lead wires, and any other desired wires, cables or tubes. If desired, the inner surface of the outer wall 20 is lined with a stiffening tube 22 to provide improved torsional stability. In some embodiments, the outer wall 20 has an outer diameter of from about 0.090 inch to about 0.94 inch and an inner diameter of from about 0.061 inch to about 0.065 inch.


As shown in FIGS. 2A, 2B and 2C, the intermediate section 14 comprises a shorter section of tubing 19 having multiple lumens, for example, four off-axis lumens 31, 32, 33 and 34. The first lumen 31 carries a plurality of lead wires 40S for ring electrodes 37 carried on the spines 17. The second lumen 32 carries a first puller wire 24. The third lumen 33 carries a cable 36 for an electromagnetic position sensor 42 and a plurality of lead wires 40D and 40P for distal and proximal ring electrodes 38D and 38P carried on the catheter proximally of the distal electrode matrix 15. The fourth lumen 34 (for example, diametrically opposite of the second lumen 32 in the illustrated embodiment) carries a second puller wire 26. The tubing 19 is made of a suitable non-toxic material that is preferably more flexible than the catheter body 12. One suitable material for the tubing 19 is braided polyurethane, i.e., polyurethane with an embedded mesh of braided stainless steel or the like. The size of each lumen is not critical, but is sufficient to house the lead wires, puller wires, the cable and any other components.


The useful length of the catheter, i.e., that portion that can be inserted into the body excluding the distal electrode matrix 15, can vary as desired. Preferably the useful length ranges from about 110 cm to about 120 cm. The length of the intermediate section 14 is a relatively smaller portion of the useful length, and preferably ranges from about 3.5 cm to about 10 cm, more preferably from about 5 cm to about 6.5 cm.


A means for attaching the catheter body 12 to the intermediate section 14 is illustrated in FIGS. 2A and 2B. The proximal end of the intermediate section 14 comprises an outer circumferential notch 27 that receives the inner surface of the catheter body 12. The intermediate section 14 and catheter body 12 are attached by glue or the like.


If desired, a spacer (not shown) can be located within the catheter body between the distal end of the stiffening tube (if provided) and the proximal end of the intermediate section. The spacer provides a transition in flexibility at the junction of the catheter body and intermediate section, which allows this junction to bend smoothly without folding or kinking. A catheter having such a spacer is described in U.S. Pat. No. 5,964,757, the disclosure of which is incorporated herein by reference.


As shown in FIGS. 3A and 3B, the distal electrode matrix 15 includes a connector tubing 26 mounted on a distal end of the tubing 19 of the intermediate section 14. The connector tubing 46 has a central lumen 48 to house various components. A means for attaching the connector tubing 46 and the intermediate section 14 comprises an outer circumferential notch 27 in the distal end of the tubing 19 that receives the inner surface of the proximal end of the connector tubing 46. The intermediate section 14 and connector tubing 46 are attached by glue or the like.


As also shown in FIG. 4, the connector tubing 46 houses various components, including the electromagnetic position sensor 42, and a distal anchor for the puller wires 24 and 26. In the disclosed embodiment, the distal anchor includes one or more washers, for example, a distal washer 50D and a proximal washer 50P, each of which has a plurality of matching axial through-holes that allow passage of components between the deflection section 14 and the connector tubing 46 while maintaining axial alignment of these components relative to the longitudinal axis 95 of the catheter 10. As also shown in FIG. 3D, the through-holes include holes 54 and 56 that are axially aligned with the second and fourth lumens 32 and 34 of the tubing 19, respectively, to receive a distal end of puller wires 24 and 26, respectively. It is understood that the puller wires 24 and 26 may actually form a single tensile member with a distal U-bend section that passes through the holes 54 and 56. With tension on the washers 50D and 50P exerted by the U-bend section of the puller wires 24 and 26, the washers firmly and fixedly abut against the distal end of the tubing 19 of the deflection section 14 to distally anchor the U-bend section.


As also shown in FIG. 3D, each washer also includes through-hole 58 which is axially aligned with the first lumen 31 and allows passage of the lead wires 40S from the deflection section 14 and into the lumen 48 of the connector tubing 46. Each washer further includes through-hole 57 which is axially aligned with the third lumen 33 and allows passage of the sensor cable 36 from the deflection section 14 into lumen 48 of the connector tubing 46 where the electromagnetic position sensor 42 is housed. The lead wire 40D also passes through the hole 57 to enter the lumen 48 for attachment to the distal ring electrode 38D carried on the outer surface of the connector tubing 46 via an opening (not shown) formed in the side wall of the connector tubing 46 through which a distal end of the lead wire 40D is welded or otherwise attached to the distal ring electrode 38D as known in the art. Carried on the outer surface of the tubing 19 near the distal end of the intermediate deflection section 14, a proximal ring electrode 38P is connected to lead wire 40P via an opening 87 (FIG. 3B) formed in the side wall of the tubing 19 that provides communication between the third lumen 33 and outside of the tubing 19. The distal end of the lead wire is welded or otherwise attached to the proximal ring electrode 38P as known in the art.


Extending from the distal end of the connector tubing 46 is the distal electrode matrix 15 with a plurality of spines 17 all extending generally in a common plane. Each spine 17 has a shorter proximal portion 17P and a longer distal portion 17D, wherein the distal portion of each spine is generally parallel with each other within the common plane. The plurality of spines may range between about 2 and 10, preferably between about 2 and 6, and more preferably about four. Each spine may have a length ranging between about 5 and 50 mm, preferably about 10 and 35 mm, and more preferably about 28 mm. The parallel distal portion 17D of each spine 17 may be spaced apart from each other by a distance ranging between about 1 mm and 20 mm, preferably about 2 and 10 mm, and more preferably about 4 mm.


As shown in FIG. 4, each spine has an elongated shape memory member 62 extending through the length of the spine. A proximal portion of each spine extends into a distal end portion of the connector tubing 46 and is anchored in the lumen 48. Each spine 17 also has a nonconductive covering 64 that covers the shape memory member 62 and each spine 17 carries a plurality of ring electrode 37 ranging between about 4 and 11, preferably about 6 and 9, and more preferably about 8. Accordingly, the distal electrode matrix 15 carries a plurality of electrodes ranging between about 20 and 44, preferably between about 28 and 36 electrodes, and more preferably about 32 electrodes. The surface area of the matrix 15 may range between about 1.5 cm2 to 3.0 cm2, preferably between about 1.9 cm2 and 2.5 cm2, and more preferably about 2.2 cm2. In some embodiments, the electrode density is about 15 electrodes per square centimeter and dimensions of about 12 mm×18 mm.


With shape memory in its spines 17, the distal electrode matrix 15 can assume at least two configurations: a deployed configuration with the spines 17 splayed out in a common plane where the proximal portions 17P are angled and the distal portions 17D are generally parallel, and a collapsed configuration where the spines can be bundled generally along the longitudinal axis 95.


The support member 62 is made of a material having shape-memory, i.e., that can be temporarily straightened or bent out of its original shape upon exertion of a force and is capable of substantially returning to its original shape in the absence or removal of the force. One suitable material for the support member is a nickel/titanium alloy. Such alloys typically comprise about 55% nickel and 45% titanium, but may comprise from about 54% to about 57% nickel with the balance being titanium. A nickel/titanium alloy is nitinol, which has excellent shape memory, together with ductility, strength, corrosion resistance, electrical resistivity and temperature stability. The non-conductive covering 64 can be made of any suitable material, and is preferably made of a biocompatible plastic such as polyurethane or PEBAX. If desired, the support member 62 can be eliminated and the distal end of the non-conductive covering 64 can be pre-formed to have the desired curvature or configuration.


Each shape-memory support member 62 extending through its respective nonconductive covering 64 has a proximal end that is received and anchored in the distal end of the connector tubing 46 by polyurethane 67 or the like. Lead wires 40S for the spine electrodes 37 extend through a protective distal polytube 68D distal of the washer 50D. They diverge at the distal end of the connector tubing 46, and extend alongside their respective shape memory member 62, into their respective nonconductive covering 64 of their respective spines 17. Each lead wire 40S is connected to its respective spine ring electrode 37 via a respective opening (not shown) formed in the side wall of the covering 64 through which a distal end of the lead wire reaches outside of the covering 64 and is welded or otherwise attached to its spine ring electrode 37, as known in the art.


At the junction of distal electrode matrix 15 and the connector tubing 46, the non-conductive covering 64 of each spine 17 is attached and sealed at its proximal end to the tubing 46 by the polyurethane 67 or the like. If desired, the proximal ends of the support members 62 can extend further proximally into the connector tubing 46. Polyurethane 71 or the like is also applied to the distal end of each spine to seal the distal end and provide an atraumatic dome.


As mentioned above, the matrix 15 can assume at least two configurations: a deployed, expanded configuration (FIG. 5A) and a collapsed configuration (FIG. 5B). With the matrix in the deployed, expanded configuration, the proximal portion 17P of each spine splays out and extends generally in a common plane, with the outer spines 17e and 17h spreading outwardly at a greater angle away from the longitudinal axis 95 of the catheter and the inner spines 17f and 17g spreading outwardly at a lesser angle away from the longitudinal axis 95, whereas the distal portion 17D of each spine extends generally parallel to each other and the longitudinal axis 95, within the common plane. With the matrix in the collapsed configuration (FIG. 5B), spines are bundled. The proximal portions 17P the spines 17e, 17f, 17g, and 17h are gathered and closer to each other along the longitudinal axis 95, and the distal portions 17D are also gathered and substantially closer to each other along the longitudinal axis 95. The collapsed configuration facilitates the spines 17 and hence the matrix 15 to be fed into a guiding sheath.


The proximal ends of the lead wires 40S and 40D and 40P are electrically connected to a suitable connector (not shown) in the distal end of the control handle 16, which is connected to a source of ablation energy, e.g., RF energy, as is known in the art. The lead wires 40S and 40R extend through the central lumen 18 of the catheter body 12. The lead wires 40S extend through the first lumen 31 of the tubing 19 of the intermediate section 14, and the lead wires 40R extend through the third lumen 33 of the tubing 19. Passing through the holes 58 in the washers 50D and 50P, the lead wires 40S extend through a protective proximal polytube 68 which protects them from being damaged by the hole 58 in the washers.


In the depicted embodiment, the lead wires 40S extending through the central lumen 18 of the catheter body 12 and the first lumen 31 in the deflection section 14 may be enclosed within a protective sheath 84 to prevent contact with other components in the catheter. The protective sheath can be made of any suitable material, preferably polyimide. As would be recognized by one skilled in the art, the protective sheath can be eliminated if desired.


The ring electrodes 37 and 38D and 38P can be made of any suitable solid conductive material, such as platinum or gold, preferably a combination of platinum and iridium, and mounted onto the non-conductive cover 64 and the connector tubing 46 with glue or the like. Alternatively, the ring electrodes can be formed by coating the non-conductive cover 64 and connector tubing 46 with an electrically conducting material, like platinum, gold and/or iridium. The coating can be applied using sputtering, ion beam deposition or an equivalent technique.


The ring electrodes 37 on the spines 17 can be approximately evenly spaced along each spine. They may form any desirable pattern, for example, a “rectangular grid” pattern (FIG. 5A)


In another embodiment, each spine may have “paired” electrodes comprising of pairs of closely-spaced ring electrodes. As used herein, the term “ring electrode pair” refers to a pair of ring electrodes that are arranged closer to each other than they are to the other adjacent ring electrodes. In some embodiments, the distance between two electrodes of an electrode pair is less than about 3 mm, more preferably less than about 2 mm, still more preferably from about 0.5 mm to about 1.5 mm. The number of electrode pairs can vary as desired, and preferably ranges from 3 to 7 pairs, more preferably 5 pairs.


The distal section 15 may carry, for example, 20 (4 pairs of electrodes×5 spines) with a space of approximately 1 mm between the two electrodes of each pair. Preferably each ring electrode is relatively short, having a length ranging from about 0.4 mm to about 0.75 mm. Regardless of the size and number of the ring electrodes, the electrode pairs are preferably approximately evenly spaced along the distal section 15. The closely-spaced electrode pairs allow for more accurate detection of near field pulmonary vein potential versus far field atrial signals, which is very important when trying to treat atrial fibrillation. Specifically, the near field pulmonary vein potentials are very small signals whereas the atria, located very close to the pulmonary vein, provides much larger signals. Accordingly, even when the mapping array is placed in the region of a pulmonary vein, it can be difficult for the physician to determine whether the signal is a small, close potential (from the pulmonary vein) or a larger, farther potential (from the atria). Closely-spaced bipoles permit the physician to more accurately determine whether he is looking at a close signal or a far signal. Accordingly, by having closely-spaced electrodes, one is able to target exactly the locations of myocardial tissue that have pulmonary vein potentials and therefore allows the clinician to deliver therapy to the specific tissue. Moreover, the closely-spaced electrodes allow the physician to determine the exact anatomical location of the ostium/ostia by the electrical signal.


An electromagnetic position sensor 42 is housed in the lumen of the nonconductive covering 46 (FIG. 4). The sensor cable 36 extends from a proximal end of the position sensor 42, and through the hole 57 of the washers 50, the third lumen 33 of the tubing 19 of the deflection section 14, and the central lumen 18 of the catheter body 12. The cable is attached to a PC board in the control handle 16, as known in the art.


The puller wires 24 and 26 (whether as two separate tensile members or parts of a single tensile member) are provided for bi-directional deflection of the intermediate section 14. The puller wires 24 and 26 are actuated by mechanisms in the control handle 16 that are responsive to a thumb control knob or a deflection control knob 11. Suitable control handles are disclosed in U.S. Pat. Nos. 6,123,699; 6,171,277; 6,183,435; 6,183,463; 6,198,974; 6,210,407 and 6,267,746, the entire disclosures of which are incorporated herein by reference.


As shown in FIG. 2A, the puller wires 24 and 26 extend through the central lumen 18 of the catheter body 12 and through the second and fourth lumens 32 and 34, respectively, of the tubing 19 of the deflection section 14. As shown in FIGS. 3A and 3C, they extend through holes 54 and 56, respectively of the washers 50. Where the puller wires are part of a single tensile member, the single tensile member has a U-bend 24/26U (FIG. 3A) at the distal face of the distal washer which anchors the distal ends of the puller wires. In that regard, the U-bend extends through a short protective tubing 70 to protect the puller wires from the holes 54 and 56. Alternatively, where the puller wires are separate tensile members, their distal ends may be anchored via T-bars, as known in the art and described in, for example, U.S. Pat. No. 8,603,069, the entire content of which is incorporated herein by reference. In any case, the puller wires 24 and 26 are made of any suitable metal, such as stainless steel or Nitinol, and each is preferably coated with TEFLON or the like. The coating imparts lubricity to the puller wires. The puller wires preferably have a diameter ranging from about 0.006 to about 0.010 inch.


A compression coil 66 is situated within the central lumen 18 of the catheter body 12 in surrounding relation to each puller wire 24, as shown in FIG. 2B. Each compression coil 66 extends from the proximal end of the catheter body 12 to the proximal end of the intermediate section 14. The compression coils 66 are made of any suitable metal, preferably stainless steel. Each compression coil 66 is tightly wound on itself to provide flexibility, i.e., bending, but to resist compression. The inner diameter of the compression coil 66 is preferably slightly larger than the diameter of its puller wire. The Teflon coating on each puller wire allows it to slide freely within its compression coil. The outer surface of each portion of the compression coil 66 through second and fourth lumens 32 and 34 of the deflection section 14 is covered by a flexible, non-conductive sheath 68, e.g., made of polyimide tubing.


The compression coil 66 is anchored at its proximal end to the outer wall 20 of the catheter body 12 by a proximal glue joint (not shown) and at its distal end to the intermediate section 14 by a distal glue joint 92. Both glue joints may comprise polyurethane glue or the like. The glue may be applied by means of a syringe or the like through a hole made between the outer surface of the catheter body 12 and the central lumen 18. Such a hole may be formed, for example, by a needle or the like that punctures the outer wall 20 of the catheter body 12 which is heated sufficiently to form a permanent hole. The glue is then introduced through the hole to the outer surface of the compression coil 66 and wicks around the outer circumference to form a glue joint about the entire circumference of the compression coil.


Within the second and fourth lumens 32 and 34 of the intermediate section 14, each puller wire 24 and 26 extends through a plastic, preferably Teflon, puller wire sheath 39, which prevents the puller wires from cutting into the wall of the tubing 19 of the deflection section 14 when the deflection section is deflected.


In use, a suitable guiding sheath (not shown) is inserted into the patient with its distal end positioned at or near a desired tissue location for diagnostics such as mapping and/or treatment such as ablation. An example of a suitable guiding sheath for use in connection with the present invention is the Preface Braided Guiding Sheath, commercially available from Biosense Webster, Inc. (Diamond Bar, Calif.). The catheter 10 is passed through the guiding sheath and advanced therethrough to the desired tissue location. In particular, the spines 17 of the distal electrode matrix 15 are collapsed and straightened, as shown in FIG. 5A, and fed into the proximal end of the guiding sheath. After the distal electrode matrix 15 has reached the desired tissue location, the guiding sheath is pulled proximally, exposing at least the spines 17, if not also the deflectable intermediate section 14, as needed. Outside of the guiding sheath 36, the spines 17 assume the deployed configuration where the proximal portion 17P of each spine splays out and extends generally in a common plane, with the outer spines 17e and 17h spreading outwardly at a greater angle away from the longitudinal axis 95 of the catheter and the inner spines 17f and 17g spreading outwardly at a lesser angle away from the longitudinal axis 95, and the distal portion 17D of each spine extending parallel to each other within the plane, as shown in FIG. 5A. The matrix has a first side and a second side. As shown in FIG. 6, the user places the first side against the tissue surface, with at least the intermediate section 14 (if not also a distal portion of the catheter body 12) generally perpendicular to the tissue surface, and actuates the control handle to deflect the intermediate deflection section 14 (arrow D) such that the first side deflects toward the catheter, which drags the first side of the distal spine portions 17D across the tissue surface as the section 14 is deflecting. The distal spine portions 17D drag across the tissue surface while remaining generally parallel to each other along tracks T which are generally linear and parallel, and in the same direction as the deflection direction D.


Alternatively, as shown in FIG. 7, the user actuates the control handle to deflect the section 14 along direction D with the electrode matrix first surface deflected toward the catheter. The user then positions at least the distal portion of the catheter body 12 generally parallel with the tissue surface and places the electrode matrix second surface against the tissue surface. The user then releases the deflection (along opposite direction R) which drags the second surface of the distal spine portions 17D across the tissue surface as the deflection section 14 straightens. The distal spine portions 17D drag across the tissue surface while remaining generally parallel to each other along tracks T which are generally linear and parallel, and in the direction R opposite to the deflection direction D.


In either manner, the spine electrodes 37 are in contact with the tissue surface generally maintaining a consistent separation spacing from each other within the distal electrode matrix as the spines are dragged across the tissue surface for high density electrode sensing and uniform and predictable mapping. In accordance with a feature of the invention, the matrix has an “n×m” electrode layout or arrangement, for example, four spines, with eight electrodes on each spine, for a total of 32 closely-spaced spine electrodes for mapping.


In some embodiments, the distal and proximal ring electrodes 38D and 38P serve as reference electrodes for visualization of the catheter on a 3-D mapping system, such as CARTO® 3 SYSTEM available from Biosense Webster, Inc., which automatically locates the EM sensor 42, processes reference location values from electrodes 38D and 38P, which are at a constant location from the EM sensor 42 and determines the location of the spine electrodes 37 and visualizes the remainder of the electrode matrix 15.


Additional embodiments of a catheter of the present invention are shown in FIGS. 8A-8F. In each of the distal electrode arrays, the spines form closed loops lying in a common plane, having no free distal ends, where the distal end of each spine is joined with or extends to the distal end of at least one other spine in a manner which maintains the spines in a generally parallel position or at least in a manner which generally maintains a predetermined spacing between the spines. By keeping the spines separated and equidistant from each other, the spines are less prone to overlap and the electrodes are less susceptible to “cross talk,” without compromising the flexibility of the spines. As shown in FIG. 8A, the spines of the array may have angled distal portions 17A that converge and allow distal ends 17D of all the spines of the array to meet and be joined together while keeping the proximal portion 17P of the spines generally parallel and equidistant. As shown in FIG. 8B, the spines are arranged similarly as the spines of FIG. 8A, although the distal ends of outer spines 17O are joined only with each other and the distal ends of inner spines 17I are joined only with each other, and joined distal ends of the outer spines 17O are joined at a location Y distal of a location X at which the distal ends of the inner spines 17I are joined along the longitudinal axis of the array. As shown in FIG. 8C-8F, the spines of the array are looped such that a pair of spaced-apart spines are formed from a single continuous spine turned back on itself with a U-section 17U its two ends anchored in the distal end of the connector tubing 46. In the arrays of FIGS. 8C and 8D, the length of each continuous spine is different with one greater length forming a larger loop L1 and one shorter length forming a smaller loop L2, wherein the smaller loop is inside and surrounded by the larger loop. In the array of FIG. 8C, the spacing between the inner and outer loops along the linear portions of the loops are generally uniform, whereas in the array of FIG. 8D, the spacing between the inner and outer loops along the linear portions of the loops varies, and the turned-back section is more angular, like a V-section 17V rather than a U-section. In the array of FIG. 8E, the lengths are the same such that the loops are generally the same size. In addition, the loops are offset from each other such that they intersect at a single location X. In the array of FIG. 8F, the spines are arranged similarly to the spines of FIG. 8E, although there are more than two intersecting loops, for example, three intersecting loops, with three intersecting locations X1, X2, and X3. As shown in FIG. 8F, each of the three (or more) loops are offset from each other such that they intersect each other at the intersecting locations X1, X2 and X3. The locations of the intersections may be fixed with glue or fastened by brackets or knots, or the nonconductive cover of the spines may be heat bonded or melted together.


The preceding description has been presented with reference to presently preferred embodiments of the invention. Workers skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the described structure may be practiced without meaningfully departing from the principal, spirit and scope of this invention. As understood by one of ordinary skill in the art, the drawings are not necessarily to scale. Also, different features of different embodiments may be combined as needed or appropriate. Moreover, the catheters described herein may be configured to apply various energy forms, including microwave, laser, RF and/or cryogens. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and illustrated in the accompanying drawings, but rather should be read consistent with and as support to the following claims which are to have their fullest and fair scope.

Claims
  • 1. A catheter comprising: an elongated catheter body defining a longitudinal axis; anda generally planar distal electrode assembly distal of the catheter body, the distal electrode assembly comprising a plurality of spines including a first spine and a second spine, the first spine including a first first-spine linear portion, a second first-spine linear portion, and a first V-shaped distal portion connecting the first first-spine linear portion, and the second first-spine linear portion, andthe second spine including a first second-spine linear portion, a second second-spine linear portion, and a second V-shaped distal portion connecting the first second-spine linear portion and the second second-spine linear portion, the second V-shaped distal portion being offset from the first V-shaped distal portion.
  • 2. The catheter of claim 1, in which the first spine comprises a first single continuous spine loop and the second spine comprises a second single continuous spine loop.
  • 3. The catheter of claim 2, in which the first first-spine linear portion, the second first-spine linear portion, the first second-spine linear portion, and the second second-spine linear portion each include at least four electrodes that are spaced apart at generally equal distances from each other such that the first spine and second spine together comprise at least sixteen electrodes disposed in a rectangular grid pattern.
  • 4. The catheter of claim 3, in which the first first-spine linear portion comprises four electrodes, the second first-spine linear portion comprises four electrodes, the first second-spine linear portion comprises four electrodes, and the second second-spine linear portion comprises four electrodes.
  • 5. The catheter of claim 3, in which a spacing between the first first-spine linear portion and the first second-spine linear portion varies along the first first-spine linear portion and the first second-spine linear portion.
  • 6. The catheter of claim 3, in which the first spine loop is larger than the second spine loop.
  • 7. The catheter of claim 6, in which the second spine loop is inside and surrounded by the first spine loop.
  • 8. The catheter of claim 7, in which the first V-shaped distal portion is disposed distal to the second V-shaped distal portion.
  • 9. The catheter of claim 3, in which the first V-shaped distal portion intersects the second V-shaped distal portion at a first intersecting location.
  • 10. The catheter of claim 9, in which the plurality of spines further comprises a third spine including a first third-spine linear portion, a second third-spine linear portion, and a third V-shaped distal portion connecting the first third-spine linear portion and the second third-spine linear portion, the third V-shaped distal portion being offset from the first V-shaped distal portion and the second V-shaped distal portion.
  • 11. The catheter of claim 10, in which the third spine comprises a third single continuous spine loop.
  • 12. The catheter of claim 11, in which the first third-spine linear portion and the second third-spine linear portion each include at least four electrodes that are spaced apart at generally equal distances from each other such that the first spine, the second spine, and the third spine together comprise at least twenty-four electrodes disposed in a rectangular grid pattern.
  • 13. The catheter of claim 12, in which the first first-spine linear portion comprises four electrodes, the second first-spine linear portion comprises four electrodes, the first second-spine linear portion comprises four electrodes, the second second-spine linear portion comprises four electrodes, the first third-spine linear portion comprises four electrodes, and the second third-spine linear portion comprises four electrodes.
  • 14. The catheter of claim 12, in which the third V-shaped distal portion intersects the first V-shaped distal portion at a second intersecting location, and the third V-shaped distal portion intersects the second V-shaped distal portion at a third intersecting location.
  • 15. The catheter of claim 14, in which the first V-shaped distal portion is attached to the second V-shaped distal portion at the first intersecting location, the third V-shaped distal portion is attached to the first V-shaped distal portion at the second intersecting location, and the third V-shaped distal portion is attached to the second V-shaped distal portion at the third intersecting location.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a Continuation Application under 35 U.S.C. § 120 of U.S. patent application Ser. No. 16/827,711, filed Mar. 24, 2020, which is a Continuation Application under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/818,550, filed Nov. 20, 2017, issued as U.S. Pat. No. 10,595,740, which is a Divisional Application under 35 U.S.C. § 121 of U.S. patent application Ser. No. 14/549,457, filed Nov. 20, 2014, now U.S. Pat. No. 9,820,664. The entire contents of these applications are incorporated by reference herein in their entirety.

US Referenced Citations (91)
Number Name Date Kind
4522212 Gelinas et al. Jun 1985 A
4529912 Northrup et al. Jul 1985 A
5702438 Avitall Dec 1997 A
5964757 Ponzi Oct 1999 A
6029091 De La Rama et al. Feb 2000 A
6071279 Whayne et al. Jun 2000 A
6071280 Edwards et al. Jun 2000 A
6071282 Fleischman Jun 2000 A
6123699 Webster, Jr. Sep 2000 A
6171277 Ponzi Jan 2001 B1
6183435 Bumbalough et al. Feb 2001 B1
6183463 Webster, Jr. Feb 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6210407 Webster Apr 2001 B1
6267746 Bumbalough Jul 2001 B1
6415187 Kuzma et al. Jul 2002 B1
6522932 Kuzma et al. Feb 2003 B1
6652515 Maguire et al. Nov 2003 B1
6658302 Kuzma et al. Dec 2003 B1
6961602 Fuimaono et al. Nov 2005 B2
7027851 Mejia Apr 2006 B2
7089045 Fuimaono et al. Aug 2006 B2
7099712 Fuimaono et al. Aug 2006 B2
7228164 Fuimaono et al. Jun 2007 B2
7257435 Plaza Aug 2007 B2
7412274 Mejia Aug 2008 B2
7429261 Kunis et al. Sep 2008 B2
7561907 Fuimaono et al. Jul 2009 B2
8187267 Pappone et al. May 2012 B2
8206404 De La Rama et al. Jun 2012 B2
8271099 Swanson Sep 2012 B1
8391947 Urman et al. Mar 2013 B2
8486063 Werneth et al. Jul 2013 B2
8565894 Vetter et al. Oct 2013 B2
8603069 Selkee Dec 2013 B2
8734440 Wu May 2014 B2
8744599 Tegg Jun 2014 B2
8974454 De La Rama et al. Mar 2015 B2
8979837 De La Rama et al. Mar 2015 B2
9044245 Condie et al. Jun 2015 B2
9392971 Asirvatham et al. Jul 2016 B2
9820664 Hoitink et al. Nov 2017 B2
9833608 Masson Dec 2017 B2
9907480 Basu et al. Mar 2018 B2
10220187 De La Rama et al. Mar 2019 B2
10576244 De La Rama et al. Mar 2020 B2
10595740 Hoitink et al. Mar 2020 B2
20020087058 Fuimaono et al. Jul 2002 A1
20030130572 Phan et al. Jul 2003 A1
20050159741 Paul et al. Jul 2005 A1
20060074412 Zerfas et al. Apr 2006 A1
20090198300 Zhang et al. Aug 2009 A1
20090240248 Deford et al. Sep 2009 A1
20100087848 Kim et al. Apr 2010 A1
20100286684 Hata et al. Nov 2010 A1
20110106075 Jimenez May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20120010490 Kauphusman et al. Jan 2012 A1
20120271302 Behl et al. Oct 2012 A1
20120296232 Ng Nov 2012 A1
20130006238 Ditter et al. Jan 2013 A1
20130053841 Grunewald Feb 2013 A1
20130172715 Just et al. Jul 2013 A1
20130253504 Fang Sep 2013 A1
20130274582 Afonso et al. Oct 2013 A1
20140200639 De La Rama Jul 2014 A1
20140249609 Zarsky et al. Sep 2014 A1
20140296902 Huszar et al. Oct 2014 A1
20140316496 Masson et al. Oct 2014 A1
20140350564 Huszar et al. Nov 2014 A1
20150105645 Subramaniam et al. Apr 2015 A1
20150112329 Ng Apr 2015 A1
20150141785 Hayam et al. May 2015 A1
20150351652 Marecki et al. Dec 2015 A1
20150374252 De La Rama et al. Dec 2015 A1
20160143588 Hoitink et al. May 2016 A1
20160213916 De La Rama Jul 2016 A1
20160317094 Byrd et al. Nov 2016 A1
20160331471 Deno et al. Nov 2016 A1
20160374582 Wu et al. Dec 2016 A1
20160374753 Wu et al. Dec 2016 A1
20170000365 Wu et al. Jan 2017 A1
20170042449 Deno et al. Feb 2017 A1
20170049348 Deno et al. Feb 2017 A1
20170112404 De La Rama et al. Apr 2017 A1
20170112405 Sterrett et al. Apr 2017 A1
20170319269 Oliverius et al. Nov 2017 A1
20170367756 Sliwa et al. Dec 2017 A1
20180050190 Masson Feb 2018 A1
20180070845 Hoitink et al. Mar 2018 A1
20180116539 Olson et al. May 2018 A1
Foreign Referenced Citations (77)
Number Date Country
2015202258 May 2015 AU
2016204351 Jan 2017 AU
2016204353 Jan 2017 AU
2016204355 Jan 2017 AU
2934209 Dec 2016 CA
2934211 Dec 2016 CA
2934214 Dec 2016 CA
1323180 Nov 2001 CN
101304778 Nov 2008 CN
101687093 Mar 2010 CN
101797181 Aug 2010 CN
101856271 Oct 2010 CN
102292044 Dec 2011 CN
102448358 May 2012 CN
102551704 Jul 2012 CN
102639077 Aug 2012 CN
102711645 Oct 2012 CN
102846374 Jan 2013 CN
102895028 Jan 2013 CN
102961183 Mar 2013 CN
103027677 Apr 2013 CN
103281978 Sep 2013 CN
103547213 Jan 2014 CN
103889348 Jun 2014 CN
103908336 Jul 2014 CN
203693745 Jul 2014 CN
104010585 Aug 2014 CN
101797181 Dec 2015 CN
102961183 Aug 2016 CN
105960201 Sep 2016 CN
106264715 Jan 2017 CN
106264716 Jan 2017 CN
106308790 Jan 2017 CN
103315806 Jun 2017 CN
103417290 Aug 2018 CN
0856291 Aug 1998 EP
0779059 Apr 2004 EP
2664295 Nov 2013 EP
2732843 May 2014 EP
2752153 Jul 2014 EP
2907462 Aug 2015 EP
3023052 May 2016 EP
3111871 Jan 2017 EP
3111872 Jan 2017 EP
3114987 Jan 2017 EP
201614021431 Dec 2016 IN
201614021432 Dec 2016 IN
201614021450 Dec 2016 IN
2003510160 Mar 2003 JP
2003290247 Oct 2003 JP
2011147802 Aug 2011 JP
2011172785 Sep 2011 JP
2012130392 Jul 2012 JP
2013192948 Sep 2013 JP
2014004368 Jan 2014 JP
2014506171 Mar 2014 JP
2015100706 Jun 2015 JP
2015112484 Jun 2015 JP
2016104129 Jun 2016 JP
2017012750 Jan 2017 JP
2017012755 Jan 2017 JP
2017038919 Feb 2017 JP
2017515436 Jun 2017 JP
2018519934 Jul 2018 JP
2018537151 Dec 2018 JP
2016125763 Jan 2018 RU
2004015761 Feb 2004 WO
2013028998 Feb 2013 WO
2014022436 Feb 2014 WO
2014113612 Jul 2014 WO
2014168987 Oct 2014 WO
2014172398 Oct 2014 WO
2015044086 Apr 2015 WO
2015057521 Apr 2015 WO
2015095577 Jun 2015 WO
2015130824 Sep 2015 WO
2016001015 Jan 2016 WO
Non-Patent Literature Citations (14)
Entry
Chuwei Z., et al., “Fixation of Internal Jugular Vein Catheter to ECG Electrode with Sutures for Hemodialysis,” Journal of Nursing Science, Sep. 2012, vol. 27 (17), 9 pages.
European Examination Report in corresponding European Application No. 15195293.4, dated Jan. 19, 2017, 6 pages.
European Search Report for European Application No. 15195293.4, dated Apr. 12, 2016, 5 pages.
Extended European Search Report for Application No. 19164969.8 dated Jul. 19, 2019, 11 pages.
Extended European Search Report for European Application No. 16176559.9, dated Nov. 7, 2016, 6 pages.
Extended European Search Report for European Application No. 16176598.7, dated Nov. 7, 2016, 4 pages.
Extended European Search Report for European Application No. 16176803.1, dated Dec. 12, 2016, 5 pages.
Extended European Search Report for European Application No. 18166678, dated Jun. 28, 2018, 8 pages.
Israeli Patent Application No. 246414, filed on Jun. 23, 2016, 2 pages (English Abstract attached—also corresponds to US20160374753).
Israeli Patent Application No. 246415, filed on Jun. 23, 2016, 2 pages (English Abstract attached—also corresponds to US20160374582).
Israeli Patent Application No. 246416, filed on Jun. 23, 2016, 2 pages (English Abstract attached—also corresponds to US20170000365).
Office Action for European Application No. 15195293.4, dated Jul. 20, 2017, 5 pages.
Speidel M.A., et al., “Three-dimensional Tracking of Cardiac Catheters using an Inverse Geometry x-ray Fluoroscopy System,” Medical Physics, Dec. 2010, vol. 37 (12), pp. 6377-6389.
Extended European Search Report for European Application No. EP22195201.3, dated Jan. 17, 2023, 09 pages.
Related Publications (1)
Number Date Country
20210361216 A1 Nov 2021 US
Divisions (1)
Number Date Country
Parent 14549457 Nov 2014 US
Child 15818550 US
Continuations (2)
Number Date Country
Parent 16827711 Mar 2020 US
Child 17392522 US
Parent 15818550 Nov 2017 US
Child 16827711 US