Catheter with Pressure Sensor and Guidance System

Information

  • Patent Application
  • 20070282211
  • Publication Number
    20070282211
  • Date Filed
    June 04, 2007
    17 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
A catheter terminates at a tip that includes an array of pressure sensors. The sensors are responsive to detect and alert the user to variations of pressure that indicate the tip is either encountering an obstruction or constriction of smaller diameter than the catheter, as well as to guide the catheter through the conduit into which it is being inserted.
Description

BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A is a schematic illustration of a catheter device according to an embodiment of the invention.



FIG. 1B is a partial view of the tip of the catheter in FIG. 1A.



FIG. 2A is a longitudinal sectional elevation through the tip of the catheter of FIG. 1



FIG. 2B is a transverse sectional elevation through the tip of the catheter of FIG. 1 at reference line B-B in FIG. 2A.



FIG. 3A is a longitudinal sectional elevation through the tip of a catheter according to another embodiment of the invention.



FIG. 3B is a transverse sectional elevation through the tip of the catheter of at reference line B-B in FIG. 3A.



FIG. 4A is a longitudinal sectional elevation through the tip of the catheter of another embodiment of the invention.



FIG. 4B is a transverse sectional elevation through the tip of the catheter of at reference line B-B in FIG. 4A.



FIG. 4C is a transverse sectional elevation through the tip of the catheter of at reference line C-C in FIG. 4A.





DETAILED DESCRIPTION

Referring to FIGS. 1 through 4 wherein like reference numerals refer to like components in the various views, there is illustrated therein a new and improved catheter with pressure sensor and guidance system, generally denominated 100 herein.



FIG. 1A illustrates such a catheter device 100 that comprises an elongated tube 105 that is at least partially flexible, and in particular most flexible wherein it terminates at a tip 110. A plurality of pressure sensors 120′ are distributed about the tip 110, one 120 being preferably at the apex of tip 110 as shown in the enlarged partial view in FIG. 1B. Additional sensors, preferably pressure sensors such as 120b, may be disturbed elsewhere along the elongated tube 105 distal from the tip 110 and closer to the conventional control means 101. The elongated tube 105 is at least partially flexible and preferably hollow, having an inner tubular cavity 103 (shown in FIG. 2A) The inner tubular cavity 103 may be used to deliver special probes, fluids or guide wire 107 (shown in FIG. 3A), as well as discrete medical devices or other test instrumentation as is generally known in the art or may be developed at some future time.



FIGS. 2A and 2B show the structure of the sensors in tip 110 in more detail. As seen in the longitudinal sectional elevations in FIG. 2A, a first pressure sensor 120 is deployed at the apex of tip 110. A plurality of additional pressure sensors 120′ are distributed about the hemispherical portion of the catheter tip 110. For example, sensors 120′, as shown in the transverse sectional elevation of FIG. 2B (taken at section reference line B-B in FIG. 2A) are preferably arrayed at equal angular spacing at the periphery of the tip region 110. It should be appreciated that other embodiments include arraying the pressure sensors 120 similarly but on other portions of the catheter distal from tip 110.


Each of the sensors 120 and 120′ is connected by wire 122 to a transmitting means. In FIG. 2A the transmitting means is a multi-strand cable 108 or signal cable sending multiplexed or digital signal of the output from all sensors 120 to control unit 101 or via link 135 to monitor or data logger 130, which may include means for signal analysis and processing as will be further described below. The communication link 135 between control means 101 and monitor or data logging means 130 is indicated in FIG. 1A.



FIG. 3A and 3B show an alternative embodiment of the invention. As shown in the longitudinal cross sectional elevation of FIG. 3A, the tip 110 with attached or integrated pressure sensors 120 and 120′ may extends from tube 105 via guide wire 107 that is disposed in hollow cavity 103. Guide wire 107 may include means for signal wire transmission, or as intended to be illustrated in this non-limiting embodiment an alternative embodiment shown in FIG. 3A the transmitting means is a wireless transmitter 125, such as an RF transmitter. Such an embodiment eliminates the need to deploy a signal cable in cavity 103. Each pressure sensor 120 or 120′ is connected to wireless transmitter 125 by signal wire 122. Alternative, the pressure sensor may include an integrated wireless transmitter on the same chip or circuit board, eliminating the need for discrete wire connections.



FIGS. 4A and 4B show an alternative embodiment of the invention in which a plurality of sensor arrays are disposed about tip region 110. A first array of pressure sensors 120′ is deployed at section C-C located most adjacent to the apex of the tip, which preferably also terminates with a pressure sensor 120. As in the other embodiments, these sensors 120′ are preferably arrayed at equal angular spacing at the periphery of the tip region 110. A second array of pressure sensors 120″ is deployed a section B-B located from the apex of the tip. As in the other embodiments, these sensors 120 are preferably arrayed at equal angular spacing at the periphery of the tip region 110.


The method of using the catheters of FIG. 1-4 includes determining the difference in force or pressure among the sensors 120 distributed about the tip 110. It is expected that when the tip 110 is centered within an artery or other body tissue conduit, the difference between the pressures measured at each sensor will be at a minimum. However, as the apex of tip 110 steers toward or into an arterial wall or other dense tissue a difference of pressure is expected. As it is preferable that the tip material be compliant to transmit force, displacement or vibrations to the adjacent and attached pressure sensors 120,120′ or 120″, it is expected that the pressure sensor reading will increase when the tip 110 actually touches the arterial wall. Thus, it is expected that the continuous monitoring of the pressure differences between sensors may be used to steer or guide the catheter down the center of an artery or other tubular tissue structure.


It is a further embodiment of the invention that the monitor or data logging means 130 preferably includes provisions for setting a pressure threshold that signals an alarm or alert to the physician indicating the tip 110 of catheter 100 is either misguided from the center of the conduit or is close to a breaching or tearing tissue that it touches. This will permit the physician to withdraw or redirect the catheter tip 110 before such damage occurs.


Preferably, sensors 120 are nano-sized or MEMS transducers, such as those disclosed in currently pending patent applications, which are listed in Appendixes 1-4 of the US Provisional Patent Application from which this application depends, being incorporated herein by reference. It should be understood that depending on the compliance and damping characteristics of the preferably compliant material that forms tip 110 and supports or surrounds sensors 120, 120′ and 120″, the term pressure sensor means a mechanical transducer that detects at least one of variations in force, displacement or vibration.


While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be within the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A catheter comprising: a) a smooth elongated tube having a tip,b) a plurality of pressure sensors distributed about the tip for measuring at least one of pressure fluctuations and variations of pressure associated with the orientation of the catheter within a narrow channel comparable to the width of said smooth elongated tube.
  • 2. A catheter according to claim 1 wherein at least one pressure sensor is disposed at the tip of the catheter.
  • 3. A catheter according to claim 1 wherein the tip of the catheter is more compliant than the smooth elongated tube so as to transmit energy to the pressure sensors.
  • 4. A catheter according to claim 1 wherein two or more pressure sensors are disposed at substantially equal radial spacing around the circumference of the tip of the catheter.
  • 5. A catheter according to claim 4 wherein two or more pressure sensors are disposed at substantially equal radial spacing around the circumference of the tip of the catheter.
  • 6. A catheter according to claim 1 and further comprising a plurality of additional sensors disposed distal from the tip of the catheter.
  • 7. A catheter according to claim 6 wherein the additional sensors are pressure sensors.
  • 8. A catheter according to claim 1 wherein at least one pressure sensor is a MEMS sensor.
  • 9. A catheter according to claim 1 wherein at least one pressure sensor is a nano sensor comprising: a) non-rigid substrate,b) a non-conductive columnar spacer disposed on said non-rigid substrate,c) an array of particles bonded to said substrate via said spacer wherein at least one column is connected to each particle,d) whereby deformation of said non-rigid substrates results in a perturbation to the distribution of the particles in said array to produce a measure change in the aggregate physical property of said array.
  • 10. A catheter according to claim 1 wherein at least one pressure sensor is a nano sensor comprising: a) a substrate,b) a polymeric spacer layer disposed on said substrate,c) an array of particles bonded to the surface of said polymeric spacer,d) whereby deformation of at least one of said substrate and said polymeric spacer layer results in a perturbation to the distribution of the nano-particles in said array to produce a measurable change in the aggregate physical property of said array.
  • 11. A catheter according to claim 10 wherein the particles are conductive nanoparticles and the property is electrical resistance.
  • 12. A catheter according to claim 1 wherein the pressure sensor is a nano sensor comprising: a) a substrate,b) a supporting plate extending upward from said substrate,c) a beam coupled on at least one end to said supporting plate and extending over said substrate,d) a strain sensitive conductive coating disposed on at least one surface of said beam that extends over said substrate,e) a pair of electrodes disposed in electrical contact to said strain sensitive coating to measure a change in resistance there between in response to the deformation of the portion of said beam that extends over said substrate.f) wherein said strain sensitive coating comprises a 2-dimensional array of substantially mono-disperse conductive nanoparticles mechanically coupled to said beam wherein the nanoparticles in said array separate from each other in response to the deformation of said beam.
  • 13. A catheter according to claim 1 wherein at least one pressure sensor is a nano sensor comprising: a) a plurality of repeating thin film layers having in a repeating sequence the ordered structure of: i) a dielectric material,ii) a first conductive layer,iii) a dielectric material,iv) a second conductive layer, wherein when the first and second layers are metals, the work function of the first metal differs from the work function of the second metal, and when the first and second layers are semi-conductors the Fermi level of the first semi-conductor differs from the Fermi level of the second semi-conductor, andb) a first terminal connecting all the first conductive layers,c) a second terminal connecting all the second conductive layers, wherein the first and second conductive layers are electrically insolated by the dielectric materials.
  • 14. A catheter according to claim 13 wherein at least one of the first and second conductive layers is a metal and at least one of the dielectric materials is polymeric.
  • 15. A process for inserting a catheter within a narrow channel, the process comprising the steps of: a) providing a catheter comprising i) a smooth elongated tube having a tip,ii) a plurality of pressure sensors distributed about the tip for measuring at least one of pressure fluctuations and variations of pressure associated with the orientation of the catheter within a narrow channel comparable to the width of said smooth elongated tube.b) introducing the catheter into a bodily conduit of living creature,c) monitoring at least one of the absolute and differential pressure between the plurality of sensors.
  • 16. A process for inserting a catheter according to claim 15 further comprising the step of selecting a pressure threshold at which one or more the pressure sensors is responsive to transmit an alarm signal to the user that the catheter should not be advanced further within the living creature.
  • 17. A process for inserting a catheter according to claim 15 further comprising the step of transmitting to the user instructions to steer the catheter based on the differential pressure between the plurality of sensors.
  • 18. A process according to claim 15 wherein at least one pressure sensor is disposed at the tip of the catheter.
  • 19. A process according to claim 15 wherein the tip of the catheter is more compliant than the smooth elongated tube so as to transmit energy to the pressure sensors.
  • 20. A process according to claim 15 wherein two or more pressure sensors are disposed at substantially equal radial spacing around the circumference of the tip of the catheter.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to the U.S. Provisional Patent Application filed on Jun. 5, 2006, titled “Catheter with Pressure Sensor and Guidance System” and having Ser. No. 60/803,909, which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60803909 Jun 2006 US