This application is a U.S. national phase of International Application No. PCT/US2017/060195, filed Nov. 6, 2017, which claims the benefit of priority to U.S. patent application Ser. No. 15/360,834, filed Nov. 23, 2016, which is incorporated by reference in its entirety herein.
This application generally relates to catheters with retractable sheaths. In some embodiments, for example, the catheters are for modification of one or more intravascular lesions associated with atherosclerosis.
Atherosclerosis is characterized by one or more intravascular lesions formed in part of plaque including blood-borne substances such as fat, cholesterol, and calcium. An intravascular lesion such as an arterial lesion can form on a wall of an arterial lumen and build out across the lumen to an opposite wall thereof. A last point of patency often occurs at a boundary between the arterial lesion and the opposite wall of the arterial lumen.
Surgical procedures for atherosclerosis such as angioplasty or atherectomy can be used to restore patency and blood flow lost to the one or more intravascular lesions. To effect such surgical procedures, one or more endoluminal devices are advanced to an intravascular lesion to modify the intravascular lesion. For example, atherectomy can involve placing a guidewire through an intravascular lesion with a first, lesion-crossing device and subsequently advancing a second, atherectomy device to the intravascular lesion for ablation thereof. However, advancing an endoluminal device to an intravascular lesion can lead to device complications, surgical complications, or a combination thereof especially when a lesion-modifying tip of the endoluminal device is exposed before needed for a surgical procedure. Accordingly, there is a need to conceal lesion-modifying tips of endoluminal devices until needed for surgical procedures. Provided herein in some embodiments are systems and methods that address the foregoing.
Provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath, and a core wire disposed within a sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire. The core wire can include a sonic connector at a proximal end of the core wire configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length of the core wire.
These and other features of the concepts provided herein may be better understood with reference to the drawings, description, and appended claims.
Before some particular embodiments are provided in greater detail, it should be understood that the particular embodiments provided herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment provided herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments provided herein.
Regarding terminology used herein, it should also be understood the terminology is for the purpose of describing some particular embodiments, and the terminology does not limit the scope of the concepts provided herein. Unless indicated otherwise, ordinal numbers (e.g., first, second, third, etc. are used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. It should also be understood that, unless indicated otherwise, any labels such as “left,” “right,” “front,” “back,” “top,” “bottom,” “forward,” “reverse,” “clockwise,” “counter clockwise,” “up,” “down,” or other similar terms such as “upper,” “lower,” “aft,” “fore,” “vertical,” “horizontal,” “proximal,” “distal,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. It should also be understood that the singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” of, for example, a sheath or a core wire respectively includes a portion of the sheath or the core wire proximate to a system operator when the system is used as intended. Likewise, a “proximal length” of, for example, the sheath or the core wire respectively includes a length of the sheath or the core wire proximate to the system operator when the system is used as intended. A “proximal end” of, for example, the sheath or the core wire respectively includes an end of the sheath or the core wire proximate to the system operator when the system is used as intended. The proximal portion or the proximal length of the sheath or the core wire can respectively include the proximal end of the sheath or the core wire; however, the proximal portion or the proximal length of the sheath or the core wire need not respectively include the proximal end of the sheath or the core wire. That is, unless context suggests otherwise, the proximal portion or the proximal length of the sheath or the core wire is respectively not a terminal portion or a terminal length of the sheath of the core wire.
With respect to “distal,” a “distal portion” of, for example, a sheath or a core wire respectively includes a portion of the sheath or the core wire proximate to a patient when the system is used as intended. Likewise, a “distal length” of, for example, the sheath or the core wire respectively includes a length of the sheath or the core wire proximate to the patient when the system is used as intended. A “distal end” of, for example, the sheath or the core wire respectively includes an end of the sheath or the core wire proximate to the patient when the system is used as intended. The distal portion or the distal length of the sheath or the core wire can respectively include the distal end of the sheath or the core wire; however, the distal portion or the distal length of the sheath or the core wire need not respectively include the distal end of the sheath or the core wire. That is, unless context suggests otherwise, the distal portion or the distal length of the sheath or the core wire is respectively not a terminal portion or a terminal length of the sheath of the core wire.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood those of ordinary skill in the art.
Surgical procedures for atherosclerosis such as angioplasty or atherectomy can be used to restore patency and blood flow lost to the one or more intravascular lesions. To effect such surgical procedures, one or more endoluminal devices are advanced to an intravascular lesion to modify the intravascular lesion. For example, atherectomy can involve placing a guidewire through an intravascular lesion with a first, lesion-crossing device and subsequently advancing a second, atherectomy device to the intravascular lesion for ablation thereof. However, advancing an endoluminal device to an intravascular lesion can lead to device complications, surgical complications, or a combination thereof especially when a lesion-modifying tip of the endoluminal device is exposed before needed for a surgical procedure. Accordingly, there is a need to conceal lesion-modifying tips of endoluminal devices until needed for surgical procedures. Provided herein in some embodiments are systems and methods that address the foregoing.
For example, provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath, and a core wire disposed within a sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire. The core wire can include a sonic connector at a proximal end of the core wire configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length of the core wire.
As shown in
In some embodiments, the console 110 can further include a foot switch 140 configured to activate and deactivate the system 100 such as activate and deactivate a core wire 192 of a catheter assembly 160. For example, when the system 100 is powered on but not activated, the foot switch 140 can be used to activate the system 100, thereby activating the core wire 192 of the catheter assembly 160. When the system 100 is powered on and activated, the foot switch 140 can be used to deactivate the system 100, thereby deactivating the core wire 192 of the catheter assembly 160. In some embodiments, the console 110 can further include an injector 150 configured to inject an irrigant into an optional irrigation lumen 172 of the catheter assembly 160. The irrigant can be, for example, sterile saline for irrigating an anatomical area undergoing an intravascular lesion-modification procedure (e.g., crossing an intravascular lesion, ablating an intravascular lesion, etc.), for cooling the core wire 192 of the catheter assembly 160, or a combination thereof. In some embodiments, the console 110 can further include the foot switch 140 and the injector 150. In such embodiments, the foot switch 140 can be further configured to activate and deactivate the injector 150 when the system 100 is respectively activated and deactivated with the foot switch 140.
As shown in
As shown in
The retraction-extension mechanism 174 can be a hand-actuated retraction-extension mechanism, or the retraction-extension mechanism 174 can be a motor-actuated retraction-extension mechanism. Whether hand-actuated or motor-actuated, the retraction-extension mechanism 174 can be configured to i) retract the sheath 182 from the first, fully extended position of the sheath 182, ii) extend the sheath 182 from the second, fully retracted position of the sheath 182, iii) retract or extend the sheath 182 into intermediate positions between the first position and the second position, or iv) any combination thereof. Retraction and extension of the sheath 182 into the foregoing intermediate positions provides customizability as needed for different anatomy and intravascular lesions.
The core wire 192 can include a sonic connector (not shown) a proximal end of the core wire 192 configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length lw of the core wire 192. The sonic connector can be configured to connect to the ultrasound-producing mechanism by the ultrasound transducer 130 or an intervening ultrasonic horn (not shown). A distal end of the core wire 192 can include the lesion-modifying tip 194 of the core wire 192, or the distal end of the core wire 192 can be coupled to the lesion-modifying tip member 194.
The working length lw of the distal portion of the core wire 192 beyond the sheath 182 or the sheath lumen 183 thereof can be configured for displacement to effect intravascular lesion modification. The displacement can be longitudinal, transverse, or longitudinal and transverse in accordance with a profile of the core wire 192 and the vibrational energy (e.g., >20 kHz such as 20.5 kHz±500 Hz). Longitudinal displacement of the working length lw of the core wire 192 can result in micromotion such as cavitation, and transverse displacement of the working length lw of the core wire 192 can result in macromotion. The micromotion can be used to cross intravascular lesions. The macromotion coupled with the micromotion can be used to ablate intravascular lesions, thereby breaking the lesions into minute fragments and restoring patency and blood flow.
In an alternative to the foregoing telescopic system 480, the two or more nested telescopic members can be located in a proximal portion of the catheter assembly 160 proximate to the retraction-extension mechanism 174.
The descriptions set forth above with respect to the features of HG 1 in common with the features of
As shown in
As shown in
The extension-retraction mechanism 574 can be a hand-actuated extension-retraction mechanism, or the extension-retraction mechanism 574 can be a motor-actuated extension-retraction mechanism. Whether hand-actuated or motor-actuated, the extension-retraction mechanism 574 can be configured to i) extend the core wire 592 from the first, fully retracted position of the core wire 592, ii) retract the core wire 592 from the second, fully extended position of the core wire 592, iii) extend or retract the core wire 592 into intermediate positions between the first position and the second position, or iv) any combination thereof. Extension and retraction of the core wire 592 into the foregoing intermediate positions provides customizability as needed for different anatomy and intravascular lesions.
The core wire 592 can include a sonic connector (not shown) at a proximal end of the core wire 592 configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length 6 of the core wire 592. The sonic connector can be configured to connect to the ultrasound-producing mechanism by the ultrasound transducer 130 or an intervening ultrasonic horn (not shown). A distal end of the core wire 592 can include the lesion-modifying tip 594 of the core wire 592, or the distal end of the core wire 592 can be coupled to the lesion-modifying tip member 594.
The working length lw of the distal portion of the core wire 592 beyond the sheath 582 or the sheath lumen 583 thereof can be configured for displacement to effect intravascular lesion modification. The displacement can be longitudinal, transverse, or longitudinal and transverse in accordance with a profile of the core wire 592 and the vibrational energy (e.g., >20 kHz such as 20.5 kHz±500 Hz). Longitudinal displacement of the working length & of the core wire 592 can result in micromotion such as cavitation, and transverse displacement of the working length lw of the core wire 592 can result in macromotion. The micromotion can be used to cross intravascular lesions. The macromotion coupled with the micromotion can be used to ablate intravascular lesions, thereby breaking the lesions into minute fragments and restoring patency and blood flow.
As such, provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath including a sheath lumen, and a core wire disposed within the sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath and extend the sheath from a second, fully retracted position of the sheath. The retraction-extension mechanism can be further configured to retract a proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions.
In such embodiments, the distal portion of the core wire can be wholly disposed within the sheath lumen while the sheath is in the first position.
In such embodiments, a maximum working length of the core wire can be defined by a retraction distance over which a point on the sheath retracts from the first position to the second position. The retraction distance can be defined by a slot length in the housing configured to accommodate the proximal length of the sheath in the second position.
In such embodiments, a distal portion of the sheath can be tapered proximate to the working length of the core wire.
In such embodiments, the retraction-extension mechanism can be a hand-actuated or motor actuated retraction-extension mechanism.
In such embodiments, the catheter assembly can further include a telescopic system including two or more nested telescopic members. At least one telescopic member of the two or more telescopic members can be the sheath.
In such embodiments, the system can further include a console. The console can include an ultrasound-producing mechanism configured to convert an electric current into a vibrational energy. A sonic connector at a proximal end of the core wire can be configured to connect to the ultrasound-producing mechanism for the ultrasound-based modification of one or more intravascular lesions.
In such embodiments, the ultrasound-producing mechanism can include an ultrasonic generator, an ultrasonic transducer, and an ultrasonic horn. The ultrasonic generator can be configured to convert an alternating electric current into a high-frequency current. The ultrasonic transducer can be configured to convert the high-frequency current into the vibrational energy. The ultrasonic horn can be configured to augment an amplitude of the vibrational energy. The sonic connector of the core wire can be configured to connect to the ultrasonic horn for the ultrasound-based modification of one or more intravascular lesions.
Also provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath including a sheath lumen, and a core wire disposed within the sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The retraction-extension mechanism can be further configured to extend the sheath from a second, fully retracted position of the sheath. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire. The working length can be defined by a slot length in the housing configured to accommodate the proximal length of the sheath in the second position. The core wire can include a sonic connector at a proximal end of the core wire configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions.
In such embodiments, a distal portion of the sheath can be tapered proximate to the working length of the core wire.
In such embodiments, the retraction-extension mechanism can be a hand-actuated or motor-actuated retraction-extension mechanism.
In such embodiments, the system can further include a console. The console can include an ultrasonic generator, an ultrasonic transducer, and an ultrasonic horn. The ultrasonic generator can be configured to convert an alternating electric current into a high-frequency current. The ultrasonic transducer can be configured to convert the high-frequency current into the vibrational energy. The ultrasonic horn can be configured to augment an amplitude of the vibrational energy. The sonic connector of the core wire can be configured to connect to the ultrasonic horn for the ultrasound-based modification of one or more intravascular lesions.
Also provided herein in some embodiments is a system including a catheter assembly and a console. The catheter assembly can include a housing, a sheath including a sheath lumen, and a core wire disposed within the sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The retraction-extension mechanism can be further configured to extend the sheath from a second, fully retracted position of the sheath. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions. The console can include an ultrasound-producing mechanism configured to convert an electric current into a vibrational energy. A sonic connector at a proximal end of the core wire can be configured to connect to the ultrasound-producing mechanism for the ultrasound-based modification of one or more intravascular lesions.
In such embodiments, a maximum working length of the core wire can be defined by a retraction distance over which a point on the sheath retracts from the first position to the second position.
In such embodiments, a maximum working length of the core wire can be defined by a slot length in the housing configured to accommodate the proximal length of the sheath in the second position.
In such embodiments, a distal portion of the sheath can be tapered proximate to the working length of the core wire.
In such embodiments, the catheter assembly can further include a telescopic system including two or more nested telescopic members. At least one telescopic member of the two or more telescopic members can be the sheath.
While some particular embodiments have been provided herein, and while the particular embodiments have been provided in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts presented herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments provided herein without departing from the scope of the concepts provided herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/060195 | 11/6/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/097953 | 5/31/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3296620 | Rodda | Jan 1967 | A |
3433226 | Boyd | Mar 1969 | A |
3443226 | Knight | May 1969 | A |
3565062 | Kurls | Feb 1971 | A |
3585082 | Siller | Jun 1971 | A |
3612038 | Halligan | Oct 1971 | A |
3631848 | Muller | Jan 1972 | A |
3679378 | Van Impe et al. | Jul 1972 | A |
3719737 | Vaillancourt et al. | Mar 1973 | A |
3739460 | Addis et al. | Jun 1973 | A |
3754746 | Thiele | Aug 1973 | A |
3823717 | Pohlman et al. | Jul 1974 | A |
3835690 | Leonhardt et al. | Sep 1974 | A |
3839841 | Amplatz | Oct 1974 | A |
3896811 | Storz | Jul 1975 | A |
4016882 | Broadwin et al. | Apr 1977 | A |
4033331 | Guss et al. | Jul 1977 | A |
4136700 | Broadwin et al. | Jan 1979 | A |
4337090 | Harrison | Jun 1982 | A |
4368410 | Hance et al. | Jan 1983 | A |
4417578 | Banko | Nov 1983 | A |
4425115 | Wuchinich | Jan 1984 | A |
4449523 | Szachowicz et al. | May 1984 | A |
4453935 | Newton | Jun 1984 | A |
4486680 | Bonnet et al. | Dec 1984 | A |
4505767 | Quin | Mar 1985 | A |
4535759 | Polk et al. | Aug 1985 | A |
4545767 | Suzuki et al. | Oct 1985 | A |
4565589 | Harrison | Jan 1986 | A |
4565787 | Bossle et al. | Jan 1986 | A |
4572184 | Stohl et al. | Feb 1986 | A |
4664112 | Kensey et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4700705 | Kensey et al. | Oct 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4808153 | Parisi | Feb 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4854325 | Stevens | Aug 1989 | A |
4870953 | DonMicheal et al. | Oct 1989 | A |
4886060 | Wiksell | Dec 1989 | A |
4920954 | Alliger et al. | May 1990 | A |
4923462 | Stevens | May 1990 | A |
4924863 | Sterzer | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
5000185 | Yock | Mar 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026384 | Farr et al. | Jun 1991 | A |
5030201 | Palestrant | Jul 1991 | A |
5030357 | Lowe | Jul 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5076276 | Sakurai et al. | Dec 1991 | A |
5091205 | Fan | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5131393 | Ishiguro et al. | Jul 1992 | A |
5156143 | Bocquet et al. | Oct 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5171216 | Dasse et al. | Dec 1992 | A |
5180363 | Idemoto et al. | Jan 1993 | A |
5183470 | Wettermann | Feb 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5215614 | Wijkamp et al. | Jun 1993 | A |
5217565 | Kou et al. | Jun 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5236414 | Takasu | Aug 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5255669 | Kubota et al. | Oct 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269291 | Carter | Dec 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5269793 | Simpson | Dec 1993 | A |
5279546 | Mische et al. | Jan 1994 | A |
5287858 | Hammerslag et al. | Feb 1994 | A |
5290229 | Paskar | Mar 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324260 | O'Neill et al. | Jun 1994 | A |
5325860 | Seward et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5328004 | Fannin et al. | Jul 1994 | A |
5329927 | Gardineer et al. | Jul 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5362309 | Carter | Nov 1994 | A |
5368557 | Nita | Nov 1994 | A |
5368558 | Nita et al. | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380274 | Nita | Jan 1995 | A |
5380316 | Aita et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383460 | Jang et al. | Jan 1995 | A |
5389096 | Aita et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5397293 | Alliger et al. | Mar 1995 | A |
5397301 | Pflueger et al. | Mar 1995 | A |
5403324 | Ciervo et al. | Apr 1995 | A |
5405318 | Nita | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5421923 | Clarke et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431663 | Carter | Jul 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449369 | Imran | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451209 | Ainsworth et al. | Sep 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5465733 | Hinohara et al. | Nov 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5474531 | Carter | Dec 1995 | A |
5480379 | La Rosa | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5498236 | Dubrul et al. | Mar 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5527273 | Manna et al. | Jun 1996 | A |
5538512 | Zenzon et al. | Jul 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5597497 | Dean et al. | Jan 1997 | A |
5597882 | Schiller et al. | Jan 1997 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5618266 | Liprie | Apr 1997 | A |
5626593 | Imran | May 1997 | A |
5627365 | Chiba et al. | May 1997 | A |
5649935 | Kremer et al. | Jul 1997 | A |
5658282 | Daw et al. | Aug 1997 | A |
5665062 | Houser | Sep 1997 | A |
5685841 | Mackool | Nov 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5720724 | Ressemann et al. | Feb 1998 | A |
5725494 | Brisken | Mar 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5738100 | Yagami et al. | Apr 1998 | A |
5797876 | Spears et al. | Aug 1998 | A |
5816923 | Milo et al. | Oct 1998 | A |
5827203 | Nita | Oct 1998 | A |
5827971 | Hale et al. | Oct 1998 | A |
5830127 | DeCastro | Nov 1998 | A |
5830222 | Makower | Nov 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5876385 | Ikari et al. | Mar 1999 | A |
5893838 | Daoud et al. | Apr 1999 | A |
5895397 | Jang et al. | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5904667 | Falwell | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916912 | Ames et al. | Jun 1999 | A |
5935142 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5937301 | Gardner et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957899 | Spears et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5976119 | Spears et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004280 | Buck et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030357 | Daoud et al. | Feb 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6066135 | Honda | May 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6123698 | Spears et al. | Sep 2000 | A |
6142971 | Daoud et al. | Nov 2000 | A |
6149596 | Bancroft | Nov 2000 | A |
6159176 | Broadwin et al. | Dec 2000 | A |
6159187 | Park et al. | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6180059 | Divino, Jr. et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6206842 | Tu et al. | Mar 2001 | B1 |
6210356 | Anderson et al. | Apr 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6217565 | Cohen | Apr 2001 | B1 |
6217588 | Jerger et al. | Apr 2001 | B1 |
6221015 | Yock | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235007 | Divino, Jr. et al. | May 2001 | B1 |
6241692 | Tu et al. | Jun 2001 | B1 |
6241703 | Levin et al. | Jun 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6248087 | Spears et al. | Jun 2001 | B1 |
6277084 | Abele et al. | Aug 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6287271 | Dubrul et al. | Sep 2001 | B1 |
6287285 | Michal et al. | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6296620 | Gesswein et al. | Oct 2001 | B1 |
6298620 | Hatzinikolas | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6309358 | Okubo | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6315754 | Daoud et al. | Nov 2001 | B1 |
6331171 | Cohen | Dec 2001 | B1 |
6346192 | Buhr et al. | Feb 2002 | B2 |
6379378 | Werneth et al. | Apr 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6387324 | Patterson et al. | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398736 | Seward | Jun 2002 | B1 |
6409673 | Yock | Jun 2002 | B2 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6423026 | Gesswein et al. | Jul 2002 | B1 |
6427118 | Suzuki | Jul 2002 | B1 |
6433464 | Jones | Aug 2002 | B2 |
6434418 | Neal et al. | Aug 2002 | B1 |
6450975 | Brennan et al. | Sep 2002 | B1 |
6454737 | Nita et al. | Sep 2002 | B1 |
6454757 | Nita et al. | Sep 2002 | B1 |
6454997 | Divino, Jr. et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6491707 | Makower et al. | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6494894 | Mirarchi | Dec 2002 | B2 |
6500141 | Irion et al. | Dec 2002 | B1 |
6508781 | Brennan et al. | Jan 2003 | B1 |
6508784 | Shu | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6533766 | Patterson et al. | Mar 2003 | B1 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547754 | Evans et al. | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6551337 | Rabiner et al. | Apr 2003 | B1 |
6554846 | Hamilton et al. | Apr 2003 | B2 |
6555059 | Myrick et al. | Apr 2003 | B1 |
6558502 | Divino, Jr. et al. | May 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6573470 | Brown et al. | Jun 2003 | B1 |
6576807 | Brunelot et al. | Jun 2003 | B1 |
6582387 | Derek et al. | Jun 2003 | B2 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6595989 | Schaer | Jul 2003 | B1 |
6596235 | Divino, Jr. et al. | Jul 2003 | B2 |
6602467 | Divino, Jr. et al. | Aug 2003 | B1 |
6602468 | Patterson et al. | Aug 2003 | B2 |
6605217 | Buhr et al. | Aug 2003 | B2 |
6607698 | Spears et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6613280 | Myrick et al. | Sep 2003 | B2 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6616617 | Ferrera et al. | Sep 2003 | B1 |
6622542 | Derek et al. | Sep 2003 | B2 |
6623448 | Slater | Sep 2003 | B2 |
6635017 | Moehring et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6660013 | Rabiner et al. | Dec 2003 | B2 |
6676900 | Divino, Jr. et al. | Jan 2004 | B1 |
6682502 | Bond et al. | Jan 2004 | B2 |
6685657 | Jones | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695810 | Peacock, III et al. | Feb 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702750 | Yock | Mar 2004 | B2 |
6719715 | Newman et al. | Apr 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6729334 | Baran | May 2004 | B1 |
6733451 | Rabiner et al. | May 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6768433 | Toth et al. | Jul 2004 | B1 |
6814727 | Mansouri-Ruiz | Nov 2004 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6936025 | Evans et al. | Aug 2005 | B1 |
6936056 | Nash et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6955680 | Satou et al. | Oct 2005 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7150853 | Lee et al. | Dec 2006 | B2 |
7166098 | Steward et al. | Jan 2007 | B1 |
7220233 | Nita et al. | May 2007 | B2 |
7267650 | Chow et al. | Sep 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7341569 | Soltani et al. | Mar 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7421900 | Karasawa et al. | Sep 2008 | B2 |
7425198 | Moehring et al. | Sep 2008 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7621902 | Nita et al. | Nov 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7628763 | Noriega et al. | Dec 2009 | B2 |
7648478 | Soltani et al. | Jan 2010 | B2 |
7758510 | Nita et al. | Jul 2010 | B2 |
7771358 | Moehring et al. | Aug 2010 | B2 |
7771452 | Pal et al. | Aug 2010 | B2 |
7775994 | Lockhart | Aug 2010 | B2 |
7776025 | Bobo, Jr. | Aug 2010 | B2 |
7819013 | Chan et al. | Oct 2010 | B2 |
7850623 | Griffin et al. | Dec 2010 | B2 |
7918819 | Karmarkar et al. | Apr 2011 | B2 |
7935108 | Baxter et al. | May 2011 | B2 |
7938819 | Kugler et al. | May 2011 | B2 |
7942809 | Leban | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
7993308 | Rule et al. | Aug 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8043251 | Nita et al. | Oct 2011 | B2 |
8052607 | Byrd | Nov 2011 | B2 |
8083727 | Kugler et al. | Dec 2011 | B2 |
8133236 | Nita | Mar 2012 | B2 |
8152753 | Nita et al. | Apr 2012 | B2 |
8172758 | Harhen | May 2012 | B2 |
8221343 | Nita et al. | Jul 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
8246643 | Nita | Aug 2012 | B2 |
8257378 | O'Connor | Sep 2012 | B1 |
8308677 | Nita et al. | Nov 2012 | B2 |
8343134 | Kost et al. | Jan 2013 | B2 |
8414543 | McGuckin, Jr. | Apr 2013 | B2 |
8496669 | Nita et al. | Jul 2013 | B2 |
8506519 | Nita | Aug 2013 | B2 |
8613700 | Ueno et al. | Dec 2013 | B2 |
8613751 | Nita et al. | Dec 2013 | B2 |
8617096 | Nita et al. | Dec 2013 | B2 |
8632560 | Pal et al. | Jan 2014 | B2 |
8641630 | Nita et al. | Feb 2014 | B2 |
8647293 | Nita | Feb 2014 | B2 |
8647296 | Moberg et al. | Feb 2014 | B2 |
8663259 | Levine et al. | Mar 2014 | B2 |
8668709 | Nita et al. | Mar 2014 | B2 |
8690818 | Bennett et al. | Apr 2014 | B2 |
8690819 | Nita et al. | Apr 2014 | B2 |
8702595 | Ueki | Apr 2014 | B2 |
8708892 | Sugiyama et al. | Apr 2014 | B2 |
8708994 | Pettis et al. | Apr 2014 | B2 |
8725228 | Koblish et al. | May 2014 | B2 |
8764700 | Zhang et al. | Jul 2014 | B2 |
8790291 | Nita et al. | Jul 2014 | B2 |
8974446 | Nguyen et al. | Mar 2015 | B2 |
8978478 | Ishioka | Mar 2015 | B2 |
9101387 | Plowe et al. | Aug 2015 | B2 |
9107590 | Hansmann et al. | Aug 2015 | B2 |
9237837 | Omoto et al. | Jan 2016 | B2 |
9265520 | Nita | Feb 2016 | B2 |
9282984 | Nita | Mar 2016 | B2 |
9314258 | Nita et al. | Apr 2016 | B2 |
9381027 | Nita et al. | Jul 2016 | B2 |
9421024 | Nita et al. | Aug 2016 | B2 |
9433433 | Nita et al. | Sep 2016 | B2 |
9603615 | Sarge | Mar 2017 | B2 |
9770250 | Nita et al. | Sep 2017 | B2 |
9955994 | Nita | May 2018 | B2 |
10004520 | Nita et al. | Jun 2018 | B2 |
10130380 | Nita et al. | Nov 2018 | B2 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020049409 | Noda et al. | Apr 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020188276 | Evans et al. | Dec 2002 | A1 |
20020189357 | Lai et al. | Dec 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030040762 | Dorros et al. | Feb 2003 | A1 |
20030199817 | Thompson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20040019349 | Fuimaono et al. | Jan 2004 | A1 |
20040024393 | Nita et al. | Feb 2004 | A1 |
20040054367 | Teodoro, Jr. et al. | Mar 2004 | A1 |
20040164030 | Lowe et al. | Aug 2004 | A1 |
20040167511 | Buehlmann et al. | Aug 2004 | A1 |
20040171981 | Rabiner | Sep 2004 | A1 |
20040193033 | Badehi et al. | Sep 2004 | A1 |
20050033311 | Guldfeldt et al. | Feb 2005 | A1 |
20050149110 | Wholey et al. | Jul 2005 | A1 |
20050165388 | Bhola | Jul 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20060074441 | Mcguckin, Jr. et al. | Apr 2006 | A1 |
20060149169 | Nunomura et al. | Jul 2006 | A1 |
20060206039 | Wilson et al. | Sep 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070032749 | Overall et al. | Feb 2007 | A1 |
20070161945 | Nita et al. | Jul 2007 | A1 |
20070178768 | Harshman et al. | Aug 2007 | A1 |
20080033284 | Hauck | Feb 2008 | A1 |
20080071343 | Mayberry et al. | Mar 2008 | A1 |
20080208084 | Horzewski et al. | Aug 2008 | A1 |
20080221506 | Rodriguez et al. | Sep 2008 | A1 |
20080294037 | Richter | Nov 2008 | A1 |
20090017293 | Arai et al. | Jan 2009 | A1 |
20090143795 | Robertson | Jun 2009 | A1 |
20100004558 | Frankhouser et al. | Jan 2010 | A1 |
20100023037 | Nita et al. | Jan 2010 | A1 |
20100069854 | Okoh et al. | Mar 2010 | A1 |
20100076454 | Bos | Mar 2010 | A1 |
20100121144 | Farhadi | May 2010 | A1 |
20100217306 | Raabe et al. | Aug 2010 | A1 |
20100268206 | Manwaring et al. | Oct 2010 | A1 |
20110046522 | Chan et al. | Feb 2011 | A1 |
20110105960 | Wallace | May 2011 | A1 |
20110130834 | Wilson et al. | Jun 2011 | A1 |
20110196399 | Robertson et al. | Aug 2011 | A1 |
20110196403 | Robertson et al. | Aug 2011 | A1 |
20110237982 | Wallace | Sep 2011 | A1 |
20110313328 | Nita | Dec 2011 | A1 |
20120010506 | Ullrich | Jan 2012 | A1 |
20120109021 | Hastings et al. | May 2012 | A1 |
20120130475 | Shaw | May 2012 | A1 |
20120217306 | Morrill Webb et al. | Aug 2012 | A1 |
20120238916 | Nita et al. | Sep 2012 | A1 |
20120238946 | Nita et al. | Sep 2012 | A1 |
20120311844 | Nita et al. | Dec 2012 | A1 |
20120330196 | Nita | Dec 2012 | A1 |
20130046297 | Lingeman et al. | Feb 2013 | A1 |
20130060169 | Yamada | Mar 2013 | A1 |
20130331652 | Okamoto | Dec 2013 | A1 |
20130338580 | Kamatani et al. | Dec 2013 | A1 |
20140005706 | Gelfand et al. | Jan 2014 | A1 |
20140012087 | Omoto | Jan 2014 | A1 |
20140039491 | Bakos et al. | Feb 2014 | A1 |
20140171804 | Van Hoven | Jun 2014 | A1 |
20140236118 | Unser et al. | Aug 2014 | A1 |
20140243712 | Humayun et al. | Aug 2014 | A1 |
20140350401 | Sinelnikov | Nov 2014 | A1 |
20140358028 | Vetter et al. | Dec 2014 | A1 |
20140358029 | Vetter et al. | Dec 2014 | A1 |
20150025544 | Nita et al. | Jan 2015 | A1 |
20150073357 | Bagwell et al. | Mar 2015 | A1 |
20150105621 | Farhadi | Apr 2015 | A1 |
20150105715 | Pikus et al. | Apr 2015 | A1 |
20150133918 | Sachar | May 2015 | A1 |
20150148795 | Amos et al. | May 2015 | A1 |
20150157443 | Hauser et al. | Jun 2015 | A1 |
20150190660 | Sarge et al. | Jul 2015 | A1 |
20150297258 | Escudero et al. | Oct 2015 | A1 |
20150359651 | Wübbeling | Dec 2015 | A1 |
20160128717 | Nita | May 2016 | A1 |
20160128767 | Azamian et al. | May 2016 | A1 |
20160135835 | Onuma | May 2016 | A1 |
20160183956 | Nita | Jun 2016 | A1 |
20160271362 | Van Liere | Sep 2016 | A1 |
20160328998 | Nita et al. | Nov 2016 | A1 |
20160338722 | Nita et al. | Nov 2016 | A1 |
20160367284 | Nita et al. | Dec 2016 | A1 |
20170065288 | Imai et al. | Mar 2017 | A1 |
20170128090 | Sarge | May 2017 | A1 |
20170224375 | Robertson et al. | Aug 2017 | A1 |
20170265879 | Washburn, II et al. | Sep 2017 | A1 |
20170265886 | Nita et al. | Sep 2017 | A1 |
20170354428 | Nita et al. | Dec 2017 | A1 |
20180042636 | Nita | Feb 2018 | A1 |
20180140321 | Deepa | May 2018 | A1 |
20180168668 | Zheng | Jun 2018 | A1 |
20180177515 | Boyle et al. | Jun 2018 | A1 |
20180197856 | Chou et al. | Jul 2018 | A1 |
20180221040 | Roll Hoye | Aug 2018 | A1 |
20180280005 | Parmentier | Oct 2018 | A1 |
20180280044 | Nita et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2007240154 | Jan 2008 | AU |
2256127 | May 1974 | DE |
2438648 | Feb 1976 | DE |
8910040 | Dec 1989 | DE |
3821836 | Jan 1990 | DE |
1042435 | Feb 1994 | DE |
10146011 | Apr 2003 | DE |
0005719 | Dec 1979 | EP |
0316789 | May 1989 | EP |
0316796 | May 1989 | EP |
0376562 | Jul 1990 | EP |
0379156 | Jul 1990 | EP |
0394583 | Oct 1990 | EP |
0443256 | Aug 1991 | EP |
0472368 | Feb 1992 | EP |
0541249 | May 1993 | EP |
0820728 | Jan 1998 | EP |
1323481 | Jul 2003 | EP |
1106957 | Mar 1968 | GB |
H2-7150 | Oct 1988 | JP |
01-099547 | Apr 1989 | JP |
6086822 | Mar 1994 | JP |
H07500752 | Jan 1995 | JP |
7116260 | May 1995 | JP |
9-503137 | Mar 1997 | JP |
10-216140 | Aug 1998 | JP |
2000-291543 | Oct 2000 | JP |
2001-104356 | Apr 2001 | JP |
2001-321388 | Nov 2001 | JP |
2002-186627 | Jul 2002 | JP |
2005-253874 | Sep 2005 | JP |
2006-522644 | Oct 2006 | JP |
2007512087 | May 2007 | JP |
2007520255 | Jul 2007 | JP |
8705739 | Sep 1987 | WO |
8705793 | Oct 1987 | WO |
8906515 | Jul 1989 | WO |
9001300 | Feb 1990 | WO |
9004362 | May 1990 | WO |
9107917 | Jun 1991 | WO |
9211815 | Jul 1992 | WO |
9308750 | May 1993 | WO |
9316646 | Sep 1993 | WO |
9412140 | Jun 1994 | WO |
9414382 | Jul 1994 | WO |
9508954 | Apr 1995 | WO |
9509571 | Apr 1995 | WO |
9515192 | Jun 1995 | WO |
9635469 | Nov 1996 | WO |
9705739 | Feb 1997 | WO |
9721462 | Jun 1997 | WO |
9745078 | Dec 1997 | WO |
9827874 | Jul 1998 | WO |
9835721 | Aug 1998 | WO |
9851224 | Nov 1998 | WO |
9852637 | Nov 1998 | WO |
9925412 | May 1999 | WO |
9053341 | Sep 2000 | WO |
9067830 | Nov 2000 | WO |
02094103 | Nov 2002 | WO |
93039381 | May 2003 | WO |
2004012609 | Feb 2004 | WO |
2004093736 | Nov 2004 | WO |
2004112888 | Dec 2004 | WO |
2005053769 | Jun 2005 | WO |
2005112770 | Dec 2005 | WO |
2006049593 | May 2006 | WO |
2013109269 | Jul 2013 | WO |
2014022716 | Feb 2014 | WO |
2014105754 | Jul 2014 | WO |
2014106847 | Jul 2014 | WO |
2018097856 | May 2018 | WO |
20180187159 | Oct 2018 | WO |
Entry |
---|
Calhoun et al., “Electron-Beam Systems for Medical Device Sterilization”, downloaded from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archive/97/07/002.html> 7 pages total. |
Definition of the term “coupled”, retrieved on May 18, 2013. <http://www.merriam-webster.com/dictionary/couple> 1 page total. |
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beamrdi/EbeamTheory.htm> 2 pages total. |
Office Action dated May 20, 2010 from Japanese Application No. 2006-541200 filed on Oct. 25, 2004. |
Office Action dated Oct. 11, 2012 from Japanese Application No. 2010-181956. |
Noone, D.: Experimental and Numerical Investigation of Wire Waveguides for Therapeutic Ultrasound Angioplasty. M.Eng. Dublin City University. 2008. |
Definition of the term “connected”, retrieved on Sep. 21, 2013. <www.thefreedictionary.com/connected> 1 page total. |
Supplemental European Search Report dated Nov. 5, 2009 for European Application No. EP03766931. |
International Search Report dated Oct. 28, 2003 for PCT Application No. PCT/US2003/023468. |
Extended European Search Report dated Mar. 22, 2012 for European Application No. EP11188799. |
International Search Report dated Dec. 23, 2005 for PCT Application No. PCT/US2004/019378. |
Extended European Search Report for Patent Application No. 06718204.8, dated May 30, 2012. |
International Search Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306. |
International Preliminary Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306. |
Written Opinion dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306. |
Supplemental European Search Report dated Apr. 29, 2009 for European Application No. EP04711207.3. |
Office Action dated Aug. 3, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004. |
Office Action dated Jan. 26, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004. |
International Preliminary Report and Written Opinion dated Aug. 1, 2017 for PCT Application No. PCT/US2017/030675. |
International Preliminary Report and Written Opinion dated Feb. 6, 2018 for PCT Application No. PCT/US2018/017022. |
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4-1269. |
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by therapeutic' ultrasound in the rate ankle joint, Br. J. exp Path., 1984, vol. 65, pp. 671-676. |
“Irradiation, Biological, and Other Technologies: E-beam, Biological, and Sharps Treatment Systems”, Non-Incineration Medical Waste Treatment Technologies, Aug. 2001, Chapter 9, pp. 69-74, Health Care Without Harm, Washington, DC. |
Paul Yock et al., Catheter-Based Ultrasound Thrombolysis Shake, Rattle, and Reperfuse, https://doi.org/10 1161/01.CIR.95.6 1360 Circulation. 1997;95:1360-1362 Originally published Mar. 18, 1997. |
Japanese Office Action for Japanese Application No. 2010-134566, dated Mar. 2, 2012. |
Sehgal, et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943. |
Siegel, et al., “In Vivo Ultrasound Arterial Recanalization of Atherosclerotic Total Occlusions”, Journal of the American College of Cardiology, Feb. 1990, vol. 15, No. 2, pp. 345-351. |
“What is Electron Beam Curing?” downloaded from web on Nov. 14, 2002, 4 pages total. <http://www.ms.oml.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha>. |
EP Extended Search Report dated Aug. 13, 2009; Application 04710537.5-1269, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190365408 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15360834 | Nov 2016 | US |
Child | 16462260 | US |