Catheter with retractable sheath and methods thereof

Information

  • Patent Grant
  • 11633206
  • Patent Number
    11,633,206
  • Date Filed
    Monday, November 6, 2017
    7 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
A method for using an endoluminal device to modify an intravascular lesion includes providing an ultrasound-producing mechanism that converts an electric current into vibrational energy at an ultrasonic frequency; providing a sheath including a sheath lumen, wherein the sheath is configured to retract from a first, fully extended position of the sheath and extend from a second, fully retracted position of the sheath; providing a core wire disposed within the sheath lumen of the sheath, the core wire being coupled to the ultrasound-producing mechanism via a sonic connector, the core wire being excited by the vibrational energy at the ultrasonic frequency when the ultrasound-producing mechanism is activated; and retracting the sheath relative to the core wire to expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions.
Description
PRIORITY

This application is a U.S. national phase of International Application No. PCT/US2017/060195, filed Nov. 6, 2017, which claims the benefit of priority to U.S. patent application Ser. No. 15/360,834, filed Nov. 23, 2016, which is incorporated by reference in its entirety herein.


FIELD

This application generally relates to catheters with retractable sheaths. In some embodiments, for example, the catheters are for modification of one or more intravascular lesions associated with atherosclerosis.


BACKGROUND

Atherosclerosis is characterized by one or more intravascular lesions formed in part of plaque including blood-borne substances such as fat, cholesterol, and calcium. An intravascular lesion such as an arterial lesion can form on a wall of an arterial lumen and build out across the lumen to an opposite wall thereof. A last point of patency often occurs at a boundary between the arterial lesion and the opposite wall of the arterial lumen.


Surgical procedures for atherosclerosis such as angioplasty or atherectomy can be used to restore patency and blood flow lost to the one or more intravascular lesions. To effect such surgical procedures, one or more endoluminal devices are advanced to an intravascular lesion to modify the intravascular lesion. For example, atherectomy can involve placing a guidewire through an intravascular lesion with a first, lesion-crossing device and subsequently advancing a second, atherectomy device to the intravascular lesion for ablation thereof. However, advancing an endoluminal device to an intravascular lesion can lead to device complications, surgical complications, or a combination thereof especially when a lesion-modifying tip of the endoluminal device is exposed before needed for a surgical procedure. Accordingly, there is a need to conceal lesion-modifying tips of endoluminal devices until needed for surgical procedures. Provided herein in some embodiments are systems and methods that address the foregoing.


SUMMARY

Provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath, and a core wire disposed within a sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire. The core wire can include a sonic connector at a proximal end of the core wire configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length of the core wire.


These and other features of the concepts provided herein may be better understood with reference to the drawings, description, and appended claims.





DRAWINGS


FIG. 1 provides a schematic illustrating a system in accordance with some embodiments.



FIG. 2A provides a schematic illustrating a catheter assembly with a retraction-extension mechanism configured to retract a sheath from a first, fully extended position of the sheath in accordance with some embodiments.



FIG. 2B provides a schematic illustrating a catheter assembly with a retraction-extension mechanism configured to extend a sheath from a second, fully retracted position of the sheath in accordance with some embodiments.



FIG. 3A provides a schematic illustrating a catheter assembly with a retraction-extension mechanism configured to retract a tapered sheath from a first, fully extended position of the sheath in accordance with some embodiments.



FIG. 3B provides a schematic illustrating a catheter assembly with a retraction-extension mechanism configured to extend a tapered sheath from a second, fully retracted position of the sheath in accordance with some embodiments.



FIG. 4A provides a schematic illustrating a catheter assembly with a retraction-extension mechanism configured to retract a sheath of a telescopic system from a first, fully extended position of the sheath in accordance with some embodiments.



FIG. 4B provides a schematic illustrating a catheter assembly with a retraction-extension mechanism configured to extend a sheath of a telescopic system from a second, fully retracted position of the sheath in accordance with some embodiments.



FIG. 5 provides a schematic illustrating an alternative system in accordance with some embodiments.



FIG. 6A provides a schematic illustrating a catheter assembly with an extension-retraction mechanism configured to extend a core wire from a first, fully retracted position of the core wire in accordance with some embodiments.



FIG. 6B provides a schematic illustrating a catheter assembly with an extension-retraction mechanism configured to retract a core wire from a second, fully extended position of the core wire in accordance with some embodiments.





DESCRIPTION

Before some particular embodiments are provided in greater detail, it should be understood that the particular embodiments provided herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment provided herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments provided herein.


Regarding terminology used herein, it should also be understood the terminology is for the purpose of describing some particular embodiments, and the terminology does not limit the scope of the concepts provided herein. Unless indicated otherwise, ordinal numbers (e.g., first, second, third, etc. are used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. It should also be understood that, unless indicated otherwise, any labels such as “left,” “right,” “front,” “back,” “top,” “bottom,” “forward,” “reverse,” “clockwise,” “counter clockwise,” “up,” “down,” or other similar terms such as “upper,” “lower,” “aft,” “fore,” “vertical,” “horizontal,” “proximal,” “distal,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. It should also be understood that the singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” of, for example, a sheath or a core wire respectively includes a portion of the sheath or the core wire proximate to a system operator when the system is used as intended. Likewise, a “proximal length” of, for example, the sheath or the core wire respectively includes a length of the sheath or the core wire proximate to the system operator when the system is used as intended. A “proximal end” of, for example, the sheath or the core wire respectively includes an end of the sheath or the core wire proximate to the system operator when the system is used as intended. The proximal portion or the proximal length of the sheath or the core wire can respectively include the proximal end of the sheath or the core wire; however, the proximal portion or the proximal length of the sheath or the core wire need not respectively include the proximal end of the sheath or the core wire. That is, unless context suggests otherwise, the proximal portion or the proximal length of the sheath or the core wire is respectively not a terminal portion or a terminal length of the sheath of the core wire.


With respect to “distal,” a “distal portion” of, for example, a sheath or a core wire respectively includes a portion of the sheath or the core wire proximate to a patient when the system is used as intended. Likewise, a “distal length” of, for example, the sheath or the core wire respectively includes a length of the sheath or the core wire proximate to the patient when the system is used as intended. A “distal end” of, for example, the sheath or the core wire respectively includes an end of the sheath or the core wire proximate to the patient when the system is used as intended. The distal portion or the distal length of the sheath or the core wire can respectively include the distal end of the sheath or the core wire; however, the distal portion or the distal length of the sheath or the core wire need not respectively include the distal end of the sheath or the core wire. That is, unless context suggests otherwise, the distal portion or the distal length of the sheath or the core wire is respectively not a terminal portion or a terminal length of the sheath of the core wire.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood those of ordinary skill in the art.


Surgical procedures for atherosclerosis such as angioplasty or atherectomy can be used to restore patency and blood flow lost to the one or more intravascular lesions. To effect such surgical procedures, one or more endoluminal devices are advanced to an intravascular lesion to modify the intravascular lesion. For example, atherectomy can involve placing a guidewire through an intravascular lesion with a first, lesion-crossing device and subsequently advancing a second, atherectomy device to the intravascular lesion for ablation thereof. However, advancing an endoluminal device to an intravascular lesion can lead to device complications, surgical complications, or a combination thereof especially when a lesion-modifying tip of the endoluminal device is exposed before needed for a surgical procedure. Accordingly, there is a need to conceal lesion-modifying tips of endoluminal devices until needed for surgical procedures. Provided herein in some embodiments are systems and methods that address the foregoing.


For example, provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath, and a core wire disposed within a sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire. The core wire can include a sonic connector at a proximal end of the core wire configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length of the core wire.



FIG. 1 provides a schematic illustrating a system 100 in accordance with some embodiments. The system 100 can be configured for crossing one or more intravascular lesions, ablating one or more intravascular lesions, or a combination thereof.


As shown in FIG. 1, the system 100 can include a console 110. The console 110 provides a system operator an instrument for monitoring and controlling the system 100 and various sub-systems and functions thereof. The console 110 can include an ultrasound-producing mechanism including an ultrasound generator 120 and an ultrasound transducer 130. The ultrasound-producing mechanism can be configured to convert an electric current into a vibrational energy. For example, the ultrasound generator 120 can be configured to convert an alternating electric current (e.g., a current associated with mains electricity) into a high-frequency current (e.g., a current with a frequency commensurate with the operating frequency of the ultrasound transducer 130), and the ultrasound transducer 130, in turn, can be configured to convert the high-frequency current into the vibrational energy (e.g., >20 kHz such as 20.5 kHz±500 Hz).


In some embodiments, the console 110 can further include a foot switch 140 configured to activate and deactivate the system 100 such as activate and deactivate a core wire 192 of a catheter assembly 160. For example, when the system 100 is powered on but not activated, the foot switch 140 can be used to activate the system 100, thereby activating the core wire 192 of the catheter assembly 160. When the system 100 is powered on and activated, the foot switch 140 can be used to deactivate the system 100, thereby deactivating the core wire 192 of the catheter assembly 160. In some embodiments, the console 110 can further include an injector 150 configured to inject an irrigant into an optional irrigation lumen 172 of the catheter assembly 160. The irrigant can be, for example, sterile saline for irrigating an anatomical area undergoing an intravascular lesion-modification procedure (e.g., crossing an intravascular lesion, ablating an intravascular lesion, etc.), for cooling the core wire 192 of the catheter assembly 160, or a combination thereof. In some embodiments, the console 110 can further include the foot switch 140 and the injector 150. In such embodiments, the foot switch 140 can be further configured to activate and deactivate the injector 150 when the system 100 is respectively activated and deactivated with the foot switch 140.


As shown in FIG. 1, the system 100 can also include the aforementioned catheter assembly 160. The catheter assembly 160 can include a housing 170, a sheath 182, and the aforementioned core wire 192 disposed within a sheath lumen 183. The housing 170 can include a retraction-extension mechanism 174 configured to retract the sheath 182 from a first, fully extended position of the sheath 182. In the fully extended position of the sheath, a distal portion of the core wire 192 including i) a lesion-modifying tip 194 of the core wire 192, or ii) a lesion-modifying tip member 194 coupled to the core wire 192, can be wholly disposed within the sheath lumen 183. (See FIG. 2A for more detail.) The retraction-extension mechanism 174 can be further configured to extend the sheath 182 from a second, fully retracted position of the sheath 182. In the fully retracted position, a maximum working length lw(max) (see FIG. 2B for lw) of the core wire 192 including i) the lesion-modifying tip 194 of the core wire 192 or ii) the lesion-modifying tip member 194 coupled to the core wire 192 can be exposed outside the sheath lumen 183. (See FIG. 2B for more detail.)



FIG. 2A provides a schematic illustrating the catheter assembly 160 with the retraction-extension mechanism 174 configured to retract the sheath 182 from the first, fully extended position of the sheath 182 in accordance with some embodiments. As shown in FIG. 2A, the housing 170 of the catheter assembly 160 can include the retraction-extension mechanism 174 configured to retract the sheath 182 from the first, fully extended position of the sheath 182. The distal portion of the core wire 192 exemplified at least in part by the blown-up portion of the sheath 182 and the core wire 192 in FIG. 2A can be wholly disposed with the lesion-modifying tip or tip member 194 within the sheath lumen 183 in the fully extended position of the sheath 182,



FIG. 2B provides a schematic illustrating the catheter assembly 160 with the retraction-extension mechanism 174 configured to extend the sheath 182 from the second, fully retracted position of the sheath 182 in accordance with some embodiments. As shown in FIG. 2B, the housing 170 of the catheter assembly 160 can include the retraction-extension mechanism 174 also configured to extend the sheath 182 from the second, fully retracted position of the sheath 182. The maximum working length lw(max) of the core wire 192 can be exposed with the lesion-modifying tip or tip member 194 outside the sheath lumen 183 in the fully retracted position of the sheath 182.


As shown in FIGS. 2A and 2B, the housing 170 can accommodate a proximal length of the sheath 182, and the retraction-extension mechanism 174 can be configured to retract the proximal length of the sheath 182 into the housing 170 and expose the working length lw of the distal portion of the core wire 192 for ultrasound-based modification of one or more intravascular lesions with the working length lw of the core wire 192. A maximum working length lw(max) of the core wire 192 can be defined by a retraction distance over which a point on the sheath retracts from the first position to the second position. The maximum working length lw(max) of the core wire 192 can also be defined by a slot length ls in the housing 170 configured to accommodate the proximal length of the sheath 182 in the second position. The working length lw of the core wire 192 can range between about 5 and 200 mm, including between about 5 and 100 mm or between about 100 and 200 mm; however the working length lw of the core wire 192 is not limited thereto.


The retraction-extension mechanism 174 can be a hand-actuated retraction-extension mechanism, or the retraction-extension mechanism 174 can be a motor-actuated retraction-extension mechanism. Whether hand-actuated or motor-actuated, the retraction-extension mechanism 174 can be configured to i) retract the sheath 182 from the first, fully extended position of the sheath 182, ii) extend the sheath 182 from the second, fully retracted position of the sheath 182, iii) retract or extend the sheath 182 into intermediate positions between the first position and the second position, or iv) any combination thereof. Retraction and extension of the sheath 182 into the foregoing intermediate positions provides customizability as needed for different anatomy and intravascular lesions.


The core wire 192 can include a sonic connector (not shown) a proximal end of the core wire 192 configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length lw of the core wire 192. The sonic connector can be configured to connect to the ultrasound-producing mechanism by the ultrasound transducer 130 or an intervening ultrasonic horn (not shown). A distal end of the core wire 192 can include the lesion-modifying tip 194 of the core wire 192, or the distal end of the core wire 192 can be coupled to the lesion-modifying tip member 194.


The working length lw of the distal portion of the core wire 192 beyond the sheath 182 or the sheath lumen 183 thereof can be configured for displacement to effect intravascular lesion modification. The displacement can be longitudinal, transverse, or longitudinal and transverse in accordance with a profile of the core wire 192 and the vibrational energy (e.g., >20 kHz such as 20.5 kHz±500 Hz). Longitudinal displacement of the working length lw of the core wire 192 can result in micromotion such as cavitation, and transverse displacement of the working length lw of the core wire 192 can result in macromotion. The micromotion can be used to cross intravascular lesions. The macromotion coupled with the micromotion can be used to ablate intravascular lesions, thereby breaking the lesions into minute fragments and restoring patency and blood flow.



FIGS. 3A, 3B, 4A and 4B provide schematics illustrating catheter assemblies with sheath alternatives to the sheath of FIGS. 2A and 2B in accordance with some embodiments.



FIG. 3A provides a schematic illustrating a catheter assembly 160 with a tapered sheath 382 and a retraction-extension mechanism 174 configured to retract the tapered sheath 382 from a first, fully extended position of the sheath 382 in accordance with some embodiments. FIG. 3B provides a schematic illustrating the catheter assembly 160 with the retraction-extension mechanism 174 configured to extend the tapered sheath 382 from a second, fully retracted position of the sheath 382 in accordance with some embodiments. The descriptions set forth above with respect to the features of FIGS. 2A and 2B are incorporated herein by reference to describe the features of FIGS. 3A and 3B, which use the same reference numerals as FIGS. 2A and 2B; however, as shown in FIGS. 3A and 3B, a distal portion of the sheath 382 can be tapered proximate to the working length lw of the core wire 192. A sheath lumen 383 of the tapered sheath 382 can have a constant diameter to accommodate the core wire 192 and the profile thereof.



FIG. 4A provides a schematic illustrating a catheter assembly 160 with a sheath 482 of a telescopic system 480 and a retraction-extension mechanism 174 configured to retract the sheath 482 of the telescopic system 480 from a first, fully extended position of the sheath 482 in accordance with some embodiments. FIG. 4B provides a schematic illustrating the catheter assembly 160 with the retraction-extension mechanism 174 configured to extend the sheath 482 of the telescopic system 480 from a second, fully retracted position of the sheath 482 in accordance with some embodiments. The descriptions set forth above with respect to the features of FIGS. 2A and 2B are incorporated herein by reference to describe the features of FIGS. 4A and 4B, which use the same reference numerals as FIGS. 2A and 2B; however, the catheter assembly 160 can further include a telescopic system 480 including two or more nested telescopic members such as a first telescopic member 481 and a second telescopic member 482. At least one telescopic member of the two or more telescopic members can be the sheath 482. As shown, the second telescopic member 482 can be the sheath 482. Alternatively, the two or more nested telescopic members such as the first telescopic member 481 and the second telescopic member 482, together, form the sheath 482. A sheath lumen 483 of the sheath 482 such as the foregoing sheath 482 formed of the first telescopic member 481 and the second telescopic member 482 can have a constant diameter to accommodate the core wire 192 and the profile thereof.


In an alternative to the foregoing telescopic system 480, the two or more nested telescopic members can be located in a proximal portion of the catheter assembly 160 proximate to the retraction-extension mechanism 174.



FIG. 5 provides a schematic illustrating an alternative system 500 in accordance with some embodiments. The system 500 can be configured for crossing one or more intravascular lesions, ablating one or more intravascular lesions, or a combination thereof.


The descriptions set forth above with respect to the features of HG 1 in common with the features of FIG. 5 are incorporated herein by reference, which features are readily identified by common reference numerals; however, as shown in FIG. 5, the system 500 is configured to extend and retract a core wire 592 of a catheter assembly 56 instead of retract and extend a sheath 582.


As shown in FIG. 5, the system 500 can include the aforementioned catheter assembly 560. The catheter assembly 560 can include a housing 570, the aforementioned sheath 582, the aforementioned core wire 592 disposed within a sheath lumen 583, and an optional irrigation lumen 572 for use with the injector 150. The housing 570 can include an extension-retraction mechanism 574 configured to extend the core wire 592 from a first, fully retracted position of the core wire 592. In the fully retracted position of the core wire 592, a distal portion of the core wire 592 including i) a lesion-modifying tip 594 of the core wire 592, or ii) a lesion-modifying tip member 594 coupled to the core wire 592, can be wholly disposed within the sheath lumen 583. (See FIG. 6A for more detail.) The extension-retraction mechanism 574 can be further configured to retract the core wire 592 from a second, fully extended position of the core wire 592. In the fully extended position, a maximum working length lw(max) (see FIG. 6B for lw) of the core wire 592 including i) the lesion-modifying tip 594 of the core wire 592 or ii) the lesion-modifying tip member 594 coupled to the core wire 592 can be exposed outside the sheath lumen 583. (See FIG. 6B for more detail.)



FIG. 6A provides a schematic illustrating the catheter assembly 560 with the extension-retraction mechanism 574 configured to extend the core wire 592 from the first, fully retracted position of the core wire 592 in accordance with some embodiments. As shown in FIG. 6A, the housing 570 of the catheter assembly 560 can include the extension-retraction mechanism 574 configured to extend the core wire 592 from the first, fully retracted position of the core wire 592. The distal portion of the core wire 592—exemplified at least in part by the blown-up portion of the sheath 582 and the core wire 592 in FIG. 6A—can be wholly disposed with the lesion-modifying tip or tip member 594 within the sheath lumen 583 in the fully retracted position of the core wire 592.



FIG. 6B provides a schematic illustrating the catheter assembly 560 with the extension-retraction mechanism 574 configured to retract the core wire 592 from the second, fully extended position of the core wire 592 in accordance with some embodiments. As shown in FIG. 6B, the housing 570 of the catheter assembly 560 can include the extension-retraction mechanism 574 also configured to retract the core wire 592 from the second, fully extended position of the core wire 592. The maximum working length lw(max) of the core wire 592 can be exposed with the lesion-modifying tip or tip member 594 outside the sheath lumen 583 in the fully extended position of the core wire 592.


As shown in FIGS. 6A and 6B, the housing 570 can accommodate a proximal length of the core wire 592, and the extension-retraction mechanism 574 can be configured to extend the proximal length of the core wire 592 from the housing 570 and expose the working length lw of the distal portion of the core wire 592 for ultrasound-based modification of one or more intravascular lesions with the working length lw of the core wire 592. A maximum working length lw(max) of the core wire 592 can be defined by an extension distance over which a point on the core wire 592 extends from the first position to the second position. The maximum working length lw(max) of the core wire 592 can also be defined by a slot length lw in the housing 570 configured to accommodate the proximal length of the core wire 592 in the first position. The working length lw of the core wire 592 can range between about 5 and 200 mm, including between about 5 and 100 mm or between about 100 and 200 mm; however the working length lw of the core wire 592 is not limited thereto.


The extension-retraction mechanism 574 can be a hand-actuated extension-retraction mechanism, or the extension-retraction mechanism 574 can be a motor-actuated extension-retraction mechanism. Whether hand-actuated or motor-actuated, the extension-retraction mechanism 574 can be configured to i) extend the core wire 592 from the first, fully retracted position of the core wire 592, ii) retract the core wire 592 from the second, fully extended position of the core wire 592, iii) extend or retract the core wire 592 into intermediate positions between the first position and the second position, or iv) any combination thereof. Extension and retraction of the core wire 592 into the foregoing intermediate positions provides customizability as needed for different anatomy and intravascular lesions.


The core wire 592 can include a sonic connector (not shown) at a proximal end of the core wire 592 configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions with the working length 6 of the core wire 592. The sonic connector can be configured to connect to the ultrasound-producing mechanism by the ultrasound transducer 130 or an intervening ultrasonic horn (not shown). A distal end of the core wire 592 can include the lesion-modifying tip 594 of the core wire 592, or the distal end of the core wire 592 can be coupled to the lesion-modifying tip member 594.


The working length lw of the distal portion of the core wire 592 beyond the sheath 582 or the sheath lumen 583 thereof can be configured for displacement to effect intravascular lesion modification. The displacement can be longitudinal, transverse, or longitudinal and transverse in accordance with a profile of the core wire 592 and the vibrational energy (e.g., >20 kHz such as 20.5 kHz±500 Hz). Longitudinal displacement of the working length & of the core wire 592 can result in micromotion such as cavitation, and transverse displacement of the working length lw of the core wire 592 can result in macromotion. The micromotion can be used to cross intravascular lesions. The macromotion coupled with the micromotion can be used to ablate intravascular lesions, thereby breaking the lesions into minute fragments and restoring patency and blood flow.


As such, provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath including a sheath lumen, and a core wire disposed within the sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath and extend the sheath from a second, fully retracted position of the sheath. The retraction-extension mechanism can be further configured to retract a proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions.


In such embodiments, the distal portion of the core wire can be wholly disposed within the sheath lumen while the sheath is in the first position.


In such embodiments, a maximum working length of the core wire can be defined by a retraction distance over which a point on the sheath retracts from the first position to the second position. The retraction distance can be defined by a slot length in the housing configured to accommodate the proximal length of the sheath in the second position.


In such embodiments, a distal portion of the sheath can be tapered proximate to the working length of the core wire.


In such embodiments, the retraction-extension mechanism can be a hand-actuated or motor actuated retraction-extension mechanism.


In such embodiments, the catheter assembly can further include a telescopic system including two or more nested telescopic members. At least one telescopic member of the two or more telescopic members can be the sheath.


In such embodiments, the system can further include a console. The console can include an ultrasound-producing mechanism configured to convert an electric current into a vibrational energy. A sonic connector at a proximal end of the core wire can be configured to connect to the ultrasound-producing mechanism for the ultrasound-based modification of one or more intravascular lesions.


In such embodiments, the ultrasound-producing mechanism can include an ultrasonic generator, an ultrasonic transducer, and an ultrasonic horn. The ultrasonic generator can be configured to convert an alternating electric current into a high-frequency current. The ultrasonic transducer can be configured to convert the high-frequency current into the vibrational energy. The ultrasonic horn can be configured to augment an amplitude of the vibrational energy. The sonic connector of the core wire can be configured to connect to the ultrasonic horn for the ultrasound-based modification of one or more intravascular lesions.


Also provided herein in some embodiments is a system including a catheter assembly. The catheter assembly can include a housing, a sheath including a sheath lumen, and a core wire disposed within the sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The retraction-extension mechanism can be further configured to extend the sheath from a second, fully retracted position of the sheath. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire. The working length can be defined by a slot length in the housing configured to accommodate the proximal length of the sheath in the second position. The core wire can include a sonic connector at a proximal end of the core wire configured to connect to an ultrasound-producing mechanism for ultrasound-based modification of one or more intravascular lesions.


In such embodiments, a distal portion of the sheath can be tapered proximate to the working length of the core wire.


In such embodiments, the retraction-extension mechanism can be a hand-actuated or motor-actuated retraction-extension mechanism.


In such embodiments, the system can further include a console. The console can include an ultrasonic generator, an ultrasonic transducer, and an ultrasonic horn. The ultrasonic generator can be configured to convert an alternating electric current into a high-frequency current. The ultrasonic transducer can be configured to convert the high-frequency current into the vibrational energy. The ultrasonic horn can be configured to augment an amplitude of the vibrational energy. The sonic connector of the core wire can be configured to connect to the ultrasonic horn for the ultrasound-based modification of one or more intravascular lesions.


Also provided herein in some embodiments is a system including a catheter assembly and a console. The catheter assembly can include a housing, a sheath including a sheath lumen, and a core wire disposed within the sheath lumen. The housing can include a retraction-extension mechanism configured to retract the sheath from a first, fully extended position of the sheath, in which position a distal portion of the core wire can be wholly disposed within the sheath lumen. The retraction-extension mechanism can be further configured to extend the sheath from a second, fully retracted position of the sheath. The housing can accommodate a proximal length of the sheath, and the retraction-extension mechanism can be configured to retract the proximal length of the sheath into the housing and expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions. The console can include an ultrasound-producing mechanism configured to convert an electric current into a vibrational energy. A sonic connector at a proximal end of the core wire can be configured to connect to the ultrasound-producing mechanism for the ultrasound-based modification of one or more intravascular lesions.


In such embodiments, a maximum working length of the core wire can be defined by a retraction distance over which a point on the sheath retracts from the first position to the second position.


In such embodiments, a maximum working length of the core wire can be defined by a slot length in the housing configured to accommodate the proximal length of the sheath in the second position.


In such embodiments, a distal portion of the sheath can be tapered proximate to the working length of the core wire.


In such embodiments, the catheter assembly can further include a telescopic system including two or more nested telescopic members. At least one telescopic member of the two or more telescopic members can be the sheath.


While some particular embodiments have been provided herein, and while the particular embodiments have been provided in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts presented herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments provided herein without departing from the scope of the concepts provided herein.

Claims
  • 1. A method for using an endoluminal device to modify an intravascular lesion, comprising: providing an ultrasound-producing mechanism that converts an electric current into vibrational energy at an ultrasonic frequency;providing a sheath comprising a first telescoping member and a second telescoping member, the first telescoping member and the second telescoping member defining a sheath lumen, wherein the first telescoping member and the second telescoping member are configured to retract from a first, fully extended position of the sheath, wherein a distal end of the second telescoping member is fully positioned within the first telescoping member and extend from a second, fully retracted position of the sheath, wherein the distal end of the second telescoping member extends distally from the first telescoping member;providing a core wire disposed within the sheath lumen of the sheath, the core wire being coupled to the ultrasound-producing mechanism via a sonic connector, the core wire being excited by the vibrational energy at the ultrasonic frequency when the ultrasound-producing mechanism is activated; andretracting the first telescoping member and the second telescoping member relative to the core wire to expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions.
  • 2. The method of claim 1, wherein the act of ultrasound-based modification of one or more intravascular lesions includes at least one of crossing an intravascular lesion and ablating the intravascular lesion.
  • 3. The method of claim 1, wherein the distal portion of the core wire having the working length is wholly disposed within the sheath lumen while the sheath is in the first position.
  • 4. The method of claim 1, wherein a maximum working length of the working length of the distal portion of the core wire is defined by a retraction distance over which a point on the sheath retracts from the first position to the second position.
  • 5. The method of claim 4, wherein the retraction distance is defined by a slot length in a housing that accommodates a proximal length of the sheath when the sheath is in the second position.
  • 6. The method of claim 1, wherein a distal portion of the sheath is tapered.
  • 7. The method of claim 1, comprising vibrating the core wire at a frequency in the range of 20.5 kHz±500 Hz.
  • 8. A method for using an endoluminal device to modify an intravascular lesion, comprising: providing a console that includes an ultrasonic generator to convert an alternating electric current into a high-frequency current, an ultrasonic transducer to convert the high-frequency current into a vibrational energy, and an ultrasonic horn to augment an amplitude of the vibrational energy;providing a sheath comprising a first telescoping member and a second telescoping member, the first telescoping member and the second telescoping member defining a sheath lumen, wherein the first telescoping member and the second telescoping member are configured to retract from a first, fully extended position of the sheath, wherein a distal end of the second telescoping member is fully positioned within the first telescoping member, and extend from a second, fully retracted position of the sheath, wherein the distal end of the second telescoping member extends distally from the first telescoping member;providing a core wire disposed within the sheath lumen of the sheath, the core wire being coupled to the ultrasonic horn via a sonic connector, the core wire being excited by the vibrational energy at the ultrasonic frequency when the ultrasonic generator is activated; andretracting the first telescoping member and the second telescoping member relative to the core wire to expose a working length of a distal portion of the core wire for ultrasound-based modification of one or more intravascular lesions.
  • 9. The method of claim 8, wherein the act of ultrasound-based modification of one or more intravascular lesions includes at least one of crossing an intravascular lesion and ablating the intravascular lesion.
  • 10. The method of claim 8, wherein the distal portion of the core wire having the working length is wholly disposed within the sheath lumen while the sheath is in the first position.
  • 11. The method of claim 8, wherein a maximum working length of the working length of the distal portion of the core wire is defined by a retraction distance over which a point on the sheath retracts from the first position to the second position.
  • 12. The method of claim 11, wherein the retraction distance is defined by a slot length in a housing that accommodates a proximal length of the sheath when the sheath is in the second position.
  • 13. The method of claim 8, wherein a distal portion of the sheath is tapered.
  • 14. The method of claim 8, comprising vibrating the core wire at a frequency in the range of 20.5 kHz±500 Hz.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/060195 11/6/2017 WO
Publishing Document Publishing Date Country Kind
WO2018/097953 5/31/2018 WO A
US Referenced Citations (512)
Number Name Date Kind
3296620 Rodda Jan 1967 A
3433226 Boyd Mar 1969 A
3443226 Knight May 1969 A
3565062 Kurls Feb 1971 A
3585082 Siller Jun 1971 A
3612038 Halligan Oct 1971 A
3631848 Muller Jan 1972 A
3679378 Van Impe et al. Jul 1972 A
3719737 Vaillancourt et al. Mar 1973 A
3739460 Addis et al. Jun 1973 A
3754746 Thiele Aug 1973 A
3823717 Pohlman et al. Jul 1974 A
3835690 Leonhardt et al. Sep 1974 A
3839841 Amplatz Oct 1974 A
3896811 Storz Jul 1975 A
4016882 Broadwin et al. Apr 1977 A
4033331 Guss et al. Jul 1977 A
4136700 Broadwin et al. Jan 1979 A
4337090 Harrison Jun 1982 A
4368410 Hance et al. Jan 1983 A
4417578 Banko Nov 1983 A
4425115 Wuchinich Jan 1984 A
4449523 Szachowicz et al. May 1984 A
4453935 Newton Jun 1984 A
4486680 Bonnet et al. Dec 1984 A
4505767 Quin Mar 1985 A
4535759 Polk et al. Aug 1985 A
4545767 Suzuki et al. Oct 1985 A
4565589 Harrison Jan 1986 A
4565787 Bossle et al. Jan 1986 A
4572184 Stohl et al. Feb 1986 A
4664112 Kensey et al. May 1987 A
4665906 Jervis May 1987 A
4679558 Kensey et al. Jul 1987 A
4700705 Kensey et al. Oct 1987 A
4721117 Mar et al. Jan 1988 A
4750902 Wuchinich et al. Jun 1988 A
4781186 Simpson et al. Nov 1988 A
4808153 Parisi Feb 1989 A
4811743 Stevens Mar 1989 A
4827911 Broadwin et al. May 1989 A
4838853 Parisi Jun 1989 A
4854325 Stevens Aug 1989 A
4870953 DonMicheal et al. Oct 1989 A
4886060 Wiksell Dec 1989 A
4920954 Alliger et al. May 1990 A
4923462 Stevens May 1990 A
4924863 Sterzer May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936845 Stevens Jun 1990 A
4979952 Kubota et al. Dec 1990 A
5000185 Yock Mar 1991 A
5015227 Broadwin et al. May 1991 A
5026384 Farr et al. Jun 1991 A
5030201 Palestrant Jul 1991 A
5030357 Lowe Jul 1991 A
5046503 Schneiderman Sep 1991 A
5053008 Bajaj Oct 1991 A
5058570 Idemoto et al. Oct 1991 A
5076276 Sakurai et al. Dec 1991 A
5091205 Fan Feb 1992 A
5100423 Fearnot Mar 1992 A
5109859 Jenkins May 1992 A
5114414 Buchbinder May 1992 A
5116350 Stevens May 1992 A
5127917 Niederhauser et al. Jul 1992 A
5131393 Ishiguro et al. Jul 1992 A
5156143 Bocquet et al. Oct 1992 A
5163421 Bernstein et al. Nov 1992 A
5171216 Dasse et al. Dec 1992 A
5180363 Idemoto et al. Jan 1993 A
5183470 Wettermann Feb 1993 A
5195955 Don Michael Mar 1993 A
5215614 Wijkamp et al. Jun 1993 A
5217565 Kou et al. Jun 1993 A
5221255 Mahurkar et al. Jun 1993 A
5226421 Frisbie et al. Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5236414 Takasu Aug 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242385 Strukel Sep 1993 A
5243997 Uflacker et al. Sep 1993 A
5248296 Alliger Sep 1993 A
5255669 Kubota et al. Oct 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5269297 Weng et al. Dec 1993 A
5269793 Simpson Dec 1993 A
5279546 Mische et al. Jan 1994 A
5287858 Hammerslag et al. Feb 1994 A
5290229 Paskar Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5304131 Paskar Apr 1994 A
5312328 Nita et al. May 1994 A
5318014 Carter Jun 1994 A
5318570 Hood et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5328004 Fannin et al. Jul 1994 A
5329927 Gardineer et al. Jul 1994 A
5341818 Abrams et al. Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5362309 Carter Nov 1994 A
5368557 Nita Nov 1994 A
5368558 Nita et al. Nov 1994 A
5376084 Bacich et al. Dec 1994 A
5378234 Hammerslag et al. Jan 1995 A
5380274 Nita Jan 1995 A
5380316 Aita et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5389096 Aita et al. Feb 1995 A
5391144 Sakurai et al. Feb 1995 A
5397293 Alliger et al. Mar 1995 A
5397301 Pflueger et al. Mar 1995 A
5403324 Ciervo et al. Apr 1995 A
5405318 Nita Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5417672 Nita et al. May 1995 A
5417703 Brown et al. May 1995 A
5421923 Clarke et al. Jun 1995 A
5427118 Nita et al. Jun 1995 A
5431168 Webster, Jr. Jul 1995 A
5431663 Carter Jul 1995 A
5443078 Uflacker Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449369 Imran Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451209 Ainsworth et al. Sep 1995 A
5462529 Simpson et al. Oct 1995 A
5465733 Hinohara et al. Nov 1995 A
5474530 Passafaro et al. Dec 1995 A
5474531 Carter Dec 1995 A
5480379 La Rosa Jan 1996 A
5484398 Stoddard Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5498236 Dubrul et al. Mar 1996 A
5507738 Ciervo Apr 1996 A
5516043 Manna et al. May 1996 A
5527273 Manna et al. Jun 1996 A
5538512 Zenzon et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5597497 Dean et al. Jan 1997 A
5597882 Schiller et al. Jan 1997 A
5607421 Jeevanandam et al. Mar 1997 A
5611807 O'Boyle Mar 1997 A
5618266 Liprie Apr 1997 A
5626593 Imran May 1997 A
5627365 Chiba et al. May 1997 A
5649935 Kremer et al. Jul 1997 A
5658282 Daw et al. Aug 1997 A
5665062 Houser Sep 1997 A
5685841 Mackool Nov 1997 A
5695460 Siegel et al. Dec 1997 A
5695507 Auth et al. Dec 1997 A
5715825 Crowley Feb 1998 A
5720724 Ressemann et al. Feb 1998 A
5725494 Brisken Mar 1998 A
5728062 Brisken Mar 1998 A
5738100 Yagami et al. Apr 1998 A
5797876 Spears et al. Aug 1998 A
5816923 Milo et al. Oct 1998 A
5827203 Nita Oct 1998 A
5827971 Hale et al. Oct 1998 A
5830127 DeCastro Nov 1998 A
5830222 Makower Nov 1998 A
5846218 Brisken et al. Dec 1998 A
5873835 Hastings et al. Feb 1999 A
5876385 Ikari et al. Mar 1999 A
5893838 Daoud et al. Apr 1999 A
5895397 Jang et al. Apr 1999 A
5902287 Martin May 1999 A
5904667 Falwell May 1999 A
5916192 Nita et al. Jun 1999 A
5916912 Ames et al. Jun 1999 A
5935142 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5937301 Gardner et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5957882 Nita et al. Sep 1999 A
5957899 Spears et al. Sep 1999 A
5964223 Baran Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971949 Levin et al. Oct 1999 A
5976119 Spears et al. Nov 1999 A
5989208 Nita Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004280 Buck et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6007514 Nita Dec 1999 A
6022309 Celliers et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6030357 Daoud et al. Feb 2000 A
6036689 Tu et al. Mar 2000 A
6051010 DiMatteo et al. Apr 2000 A
6066135 Honda May 2000 A
6113558 Rosenschein et al. Sep 2000 A
6120515 Rogers et al. Sep 2000 A
6123698 Spears et al. Sep 2000 A
6142971 Daoud et al. Nov 2000 A
6149596 Bancroft Nov 2000 A
6159176 Broadwin et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6165127 Crowley Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6179809 Khairkhahan et al. Jan 2001 B1
6180059 Divino, Jr. et al. Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6206842 Tu et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6217543 Anis et al. Apr 2001 B1
6217565 Cohen Apr 2001 B1
6217588 Jerger et al. Apr 2001 B1
6221015 Yock Apr 2001 B1
6231546 Milo et al. May 2001 B1
6231587 Makower May 2001 B1
6235007 Divino, Jr. et al. May 2001 B1
6241692 Tu et al. Jun 2001 B1
6241703 Levin et al. Jun 2001 B1
6241744 Imran et al. Jun 2001 B1
6248087 Spears et al. Jun 2001 B1
6277084 Abele et al. Aug 2001 B1
6283983 Makower et al. Sep 2001 B1
6287271 Dubrul et al. Sep 2001 B1
6287285 Michal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6296620 Gesswein et al. Oct 2001 B1
6298620 Hatzinikolas Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6309358 Okubo Oct 2001 B1
6315741 Martin et al. Nov 2001 B1
6315754 Daoud et al. Nov 2001 B1
6331171 Cohen Dec 2001 B1
6346192 Buhr et al. Feb 2002 B2
6379378 Werneth et al. Apr 2002 B1
6387109 Davison et al. May 2002 B1
6387324 Patterson et al. May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398736 Seward Jun 2002 B1
6409673 Yock Jun 2002 B2
6416533 Gobin et al. Jul 2002 B1
6423026 Gesswein et al. Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6433464 Jones Aug 2002 B2
6434418 Neal et al. Aug 2002 B1
6450975 Brennan et al. Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454997 Divino, Jr. et al. Sep 2002 B1
6484052 Visuri et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500141 Irion et al. Dec 2002 B1
6508781 Brennan et al. Jan 2003 B1
6508784 Shu Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6533766 Patterson et al. Mar 2003 B1
6544215 Bencini et al. Apr 2003 B1
6547754 Evans et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6551337 Rabiner et al. Apr 2003 B1
6554846 Hamilton et al. Apr 2003 B2
6555059 Myrick et al. Apr 2003 B1
6558502 Divino, Jr. et al. May 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6573470 Brown et al. Jun 2003 B1
6576807 Brunelot et al. Jun 2003 B1
6582387 Derek et al. Jun 2003 B2
6589253 Cornish et al. Jul 2003 B1
6595989 Schaer Jul 2003 B1
6596235 Divino, Jr. et al. Jul 2003 B2
6602467 Divino, Jr. et al. Aug 2003 B1
6602468 Patterson et al. Aug 2003 B2
6605217 Buhr et al. Aug 2003 B2
6607698 Spears et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6613280 Myrick et al. Sep 2003 B2
6615062 Ryan et al. Sep 2003 B2
6616617 Ferrera et al. Sep 2003 B1
6622542 Derek et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6635017 Moehring et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6652547 Rabiner et al. Nov 2003 B2
6660013 Rabiner et al. Dec 2003 B2
6676900 Divino, Jr. et al. Jan 2004 B1
6682502 Bond et al. Jan 2004 B2
6685657 Jones Feb 2004 B2
6689086 Nita et al. Feb 2004 B1
6695781 Rabiner et al. Feb 2004 B2
6695782 Ranucci et al. Feb 2004 B2
6695810 Peacock, III et al. Feb 2004 B2
6702748 Nita et al. Mar 2004 B1
6702750 Yock Mar 2004 B2
6719715 Newman et al. Apr 2004 B2
6719725 Milo et al. Apr 2004 B2
6729334 Baran May 2004 B1
6733451 Rabiner et al. May 2004 B2
6758846 Goble et al. Jul 2004 B2
6761698 Shibata et al. Jul 2004 B2
6768433 Toth et al. Jul 2004 B1
6814727 Mansouri-Ruiz Nov 2004 B2
6855123 Nita Feb 2005 B2
6866670 Rabiner et al. Mar 2005 B2
6936025 Evans et al. Aug 2005 B1
6936056 Nash et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6955680 Satou et al. Oct 2005 B2
7004173 Sparks et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7131983 Murakami Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7149587 Wardle et al. Dec 2006 B2
7150853 Lee et al. Dec 2006 B2
7166098 Steward et al. Jan 2007 B1
7220233 Nita et al. May 2007 B2
7267650 Chow et al. Sep 2007 B2
7297131 Nita Nov 2007 B2
7335180 Nita et al. Feb 2008 B2
7341569 Soltani et al. Mar 2008 B2
7384407 Rodriguez et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7421900 Karasawa et al. Sep 2008 B2
7425198 Moehring et al. Sep 2008 B2
7494468 Rabiner et al. Feb 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7540852 Nita et al. Jun 2009 B2
7604608 Nita et al. Oct 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7628763 Noriega et al. Dec 2009 B2
7648478 Soltani et al. Jan 2010 B2
7758510 Nita et al. Jul 2010 B2
7771358 Moehring et al. Aug 2010 B2
7771452 Pal et al. Aug 2010 B2
7775994 Lockhart Aug 2010 B2
7776025 Bobo, Jr. Aug 2010 B2
7819013 Chan et al. Oct 2010 B2
7850623 Griffin et al. Dec 2010 B2
7918819 Karmarkar et al. Apr 2011 B2
7935108 Baxter et al. May 2011 B2
7938819 Kugler et al. May 2011 B2
7942809 Leban May 2011 B2
7955293 Nita et al. Jun 2011 B2
7993308 Rule et al. Aug 2011 B2
8038693 Allen Oct 2011 B2
8043251 Nita et al. Oct 2011 B2
8052607 Byrd Nov 2011 B2
8083727 Kugler et al. Dec 2011 B2
8133236 Nita Mar 2012 B2
8152753 Nita et al. Apr 2012 B2
8172758 Harhen May 2012 B2
8221343 Nita et al. Jul 2012 B2
8226566 Nita Jul 2012 B2
8246643 Nita Aug 2012 B2
8257378 O'Connor Sep 2012 B1
8308677 Nita et al. Nov 2012 B2
8343134 Kost et al. Jan 2013 B2
8414543 McGuckin, Jr. Apr 2013 B2
8496669 Nita et al. Jul 2013 B2
8506519 Nita Aug 2013 B2
8613700 Ueno et al. Dec 2013 B2
8613751 Nita et al. Dec 2013 B2
8617096 Nita et al. Dec 2013 B2
8632560 Pal et al. Jan 2014 B2
8641630 Nita et al. Feb 2014 B2
8647293 Nita Feb 2014 B2
8647296 Moberg et al. Feb 2014 B2
8663259 Levine et al. Mar 2014 B2
8668709 Nita et al. Mar 2014 B2
8690818 Bennett et al. Apr 2014 B2
8690819 Nita et al. Apr 2014 B2
8702595 Ueki Apr 2014 B2
8708892 Sugiyama et al. Apr 2014 B2
8708994 Pettis et al. Apr 2014 B2
8725228 Koblish et al. May 2014 B2
8764700 Zhang et al. Jul 2014 B2
8790291 Nita et al. Jul 2014 B2
8974446 Nguyen et al. Mar 2015 B2
8978478 Ishioka Mar 2015 B2
9101387 Plowe et al. Aug 2015 B2
9107590 Hansmann et al. Aug 2015 B2
9237837 Omoto et al. Jan 2016 B2
9265520 Nita Feb 2016 B2
9282984 Nita Mar 2016 B2
9314258 Nita et al. Apr 2016 B2
9381027 Nita et al. Jul 2016 B2
9421024 Nita et al. Aug 2016 B2
9433433 Nita et al. Sep 2016 B2
9603615 Sarge Mar 2017 B2
9770250 Nita et al. Sep 2017 B2
9955994 Nita May 2018 B2
10004520 Nita et al. Jun 2018 B2
10130380 Nita et al. Nov 2018 B2
20020022858 Demond et al. Feb 2002 A1
20020049409 Noda et al. Apr 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020188276 Evans et al. Dec 2002 A1
20020189357 Lai et al. Dec 2002 A1
20030009153 Brisken et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040762 Dorros et al. Feb 2003 A1
20030199817 Thompson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20040019349 Fuimaono et al. Jan 2004 A1
20040024393 Nita et al. Feb 2004 A1
20040054367 Teodoro, Jr. et al. Mar 2004 A1
20040164030 Lowe et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040171981 Rabiner Sep 2004 A1
20040193033 Badehi et al. Sep 2004 A1
20050033311 Guldfeldt et al. Feb 2005 A1
20050149110 Wholey et al. Jul 2005 A1
20050165388 Bhola Jul 2005 A1
20050171527 Bhola Aug 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20060074441 Mcguckin, Jr. et al. Apr 2006 A1
20060149169 Nunomura et al. Jul 2006 A1
20060206039 Wilson et al. Sep 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20070032749 Overall et al. Feb 2007 A1
20070161945 Nita et al. Jul 2007 A1
20070178768 Harshman et al. Aug 2007 A1
20080033284 Hauck Feb 2008 A1
20080071343 Mayberry et al. Mar 2008 A1
20080208084 Horzewski et al. Aug 2008 A1
20080221506 Rodriguez et al. Sep 2008 A1
20080294037 Richter Nov 2008 A1
20090017293 Arai et al. Jan 2009 A1
20090143795 Robertson Jun 2009 A1
20100004558 Frankhouser et al. Jan 2010 A1
20100023037 Nita et al. Jan 2010 A1
20100069854 Okoh et al. Mar 2010 A1
20100076454 Bos Mar 2010 A1
20100121144 Farhadi May 2010 A1
20100217306 Raabe et al. Aug 2010 A1
20100268206 Manwaring et al. Oct 2010 A1
20110046522 Chan et al. Feb 2011 A1
20110105960 Wallace May 2011 A1
20110130834 Wilson et al. Jun 2011 A1
20110196399 Robertson et al. Aug 2011 A1
20110196403 Robertson et al. Aug 2011 A1
20110237982 Wallace Sep 2011 A1
20110313328 Nita Dec 2011 A1
20120010506 Ullrich Jan 2012 A1
20120109021 Hastings et al. May 2012 A1
20120130475 Shaw May 2012 A1
20120217306 Morrill Webb et al. Aug 2012 A1
20120238916 Nita et al. Sep 2012 A1
20120238946 Nita et al. Sep 2012 A1
20120311844 Nita et al. Dec 2012 A1
20120330196 Nita Dec 2012 A1
20130046297 Lingeman et al. Feb 2013 A1
20130060169 Yamada Mar 2013 A1
20130331652 Okamoto Dec 2013 A1
20130338580 Kamatani et al. Dec 2013 A1
20140005706 Gelfand et al. Jan 2014 A1
20140012087 Omoto Jan 2014 A1
20140039491 Bakos et al. Feb 2014 A1
20140171804 Van Hoven Jun 2014 A1
20140236118 Unser et al. Aug 2014 A1
20140243712 Humayun et al. Aug 2014 A1
20140350401 Sinelnikov Nov 2014 A1
20140358028 Vetter et al. Dec 2014 A1
20140358029 Vetter et al. Dec 2014 A1
20150025544 Nita et al. Jan 2015 A1
20150073357 Bagwell et al. Mar 2015 A1
20150105621 Farhadi Apr 2015 A1
20150105715 Pikus et al. Apr 2015 A1
20150133918 Sachar May 2015 A1
20150148795 Amos et al. May 2015 A1
20150157443 Hauser et al. Jun 2015 A1
20150190660 Sarge et al. Jul 2015 A1
20150297258 Escudero et al. Oct 2015 A1
20150359651 Wübbeling Dec 2015 A1
20160128717 Nita May 2016 A1
20160128767 Azamian et al. May 2016 A1
20160135835 Onuma May 2016 A1
20160183956 Nita Jun 2016 A1
20160271362 Van Liere Sep 2016 A1
20160328998 Nita et al. Nov 2016 A1
20160338722 Nita et al. Nov 2016 A1
20160367284 Nita et al. Dec 2016 A1
20170065288 Imai et al. Mar 2017 A1
20170128090 Sarge May 2017 A1
20170224375 Robertson et al. Aug 2017 A1
20170265879 Washburn, II et al. Sep 2017 A1
20170265886 Nita et al. Sep 2017 A1
20170354428 Nita et al. Dec 2017 A1
20180042636 Nita Feb 2018 A1
20180140321 Deepa May 2018 A1
20180168668 Zheng Jun 2018 A1
20180177515 Boyle et al. Jun 2018 A1
20180197856 Chou et al. Jul 2018 A1
20180221040 Roll Hoye Aug 2018 A1
20180280005 Parmentier Oct 2018 A1
20180280044 Nita et al. Oct 2018 A1
Foreign Referenced Citations (73)
Number Date Country
2007240154 Jan 2008 AU
2256127 May 1974 DE
2438648 Feb 1976 DE
8910040 Dec 1989 DE
3821836 Jan 1990 DE
1042435 Feb 1994 DE
10146011 Apr 2003 DE
0005719 Dec 1979 EP
0316789 May 1989 EP
0316796 May 1989 EP
0376562 Jul 1990 EP
0379156 Jul 1990 EP
0394583 Oct 1990 EP
0443256 Aug 1991 EP
0472368 Feb 1992 EP
0541249 May 1993 EP
0820728 Jan 1998 EP
1323481 Jul 2003 EP
1106957 Mar 1968 GB
H2-7150 Oct 1988 JP
01-099547 Apr 1989 JP
6086822 Mar 1994 JP
H07500752 Jan 1995 JP
7116260 May 1995 JP
9-503137 Mar 1997 JP
10-216140 Aug 1998 JP
2000-291543 Oct 2000 JP
2001-104356 Apr 2001 JP
2001-321388 Nov 2001 JP
2002-186627 Jul 2002 JP
2005-253874 Sep 2005 JP
2006-522644 Oct 2006 JP
2007512087 May 2007 JP
2007520255 Jul 2007 JP
8705739 Sep 1987 WO
8705793 Oct 1987 WO
8906515 Jul 1989 WO
9001300 Feb 1990 WO
9004362 May 1990 WO
9107917 Jun 1991 WO
9211815 Jul 1992 WO
9308750 May 1993 WO
9316646 Sep 1993 WO
9412140 Jun 1994 WO
9414382 Jul 1994 WO
9508954 Apr 1995 WO
9509571 Apr 1995 WO
9515192 Jun 1995 WO
9635469 Nov 1996 WO
9705739 Feb 1997 WO
9721462 Jun 1997 WO
9745078 Dec 1997 WO
9827874 Jul 1998 WO
9835721 Aug 1998 WO
9851224 Nov 1998 WO
9852637 Nov 1998 WO
9925412 May 1999 WO
9053341 Sep 2000 WO
9067830 Nov 2000 WO
02094103 Nov 2002 WO
93039381 May 2003 WO
2004012609 Feb 2004 WO
2004093736 Nov 2004 WO
2004112888 Dec 2004 WO
2005053769 Jun 2005 WO
2005112770 Dec 2005 WO
2006049593 May 2006 WO
2013109269 Jul 2013 WO
2014022716 Feb 2014 WO
2014105754 Jul 2014 WO
2014106847 Jul 2014 WO
2018097856 May 2018 WO
20180187159 Oct 2018 WO
Non-Patent Literature Citations (29)
Entry
Calhoun et al., “Electron-Beam Systems for Medical Device Sterilization”, downloaded from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archive/97/07/002.html> 7 pages total.
Definition of the term “coupled”, retrieved on May 18, 2013. <http://www.merriam-webster.com/dictionary/couple> 1 page total.
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beamrdi/EbeamTheory.htm> 2 pages total.
Office Action dated May 20, 2010 from Japanese Application No. 2006-541200 filed on Oct. 25, 2004.
Office Action dated Oct. 11, 2012 from Japanese Application No. 2010-181956.
Noone, D.: Experimental and Numerical Investigation of Wire Waveguides for Therapeutic Ultrasound Angioplasty. M.Eng. Dublin City University. 2008.
Definition of the term “connected”, retrieved on Sep. 21, 2013. <www.thefreedictionary.com/connected> 1 page total.
Supplemental European Search Report dated Nov. 5, 2009 for European Application No. EP03766931.
International Search Report dated Oct. 28, 2003 for PCT Application No. PCT/US2003/023468.
Extended European Search Report dated Mar. 22, 2012 for European Application No. EP11188799.
International Search Report dated Dec. 23, 2005 for PCT Application No. PCT/US2004/019378.
Extended European Search Report for Patent Application No. 06718204.8, dated May 30, 2012.
International Search Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
International Preliminary Report dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
Written Opinion dated Aug. 1, 2013 for PCT Application No. PCT/US2013/053306.
Supplemental European Search Report dated Apr. 29, 2009 for European Application No. EP04711207.3.
Office Action dated Aug. 3, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004.
Office Action dated Jan. 26, 2010 from Japanese Application No. 2006-517355 filed on Jun. 16, 2004.
International Preliminary Report and Written Opinion dated Aug. 1, 2017 for PCT Application No. PCT/US2017/030675.
International Preliminary Report and Written Opinion dated Feb. 6, 2018 for PCT Application No. PCT/US2018/017022.
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4-1269.
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by therapeutic' ultrasound in the rate ankle joint, Br. J. exp Path., 1984, vol. 65, pp. 671-676.
“Irradiation, Biological, and Other Technologies: E-beam, Biological, and Sharps Treatment Systems”, Non-Incineration Medical Waste Treatment Technologies, Aug. 2001, Chapter 9, pp. 69-74, Health Care Without Harm, Washington, DC.
Paul Yock et al., Catheter-Based Ultrasound Thrombolysis Shake, Rattle, and Reperfuse, https://doi.org/10 1161/01.CIR.95.6 1360 Circulation. 1997;95:1360-1362 Originally published Mar. 18, 1997.
Japanese Office Action for Japanese Application No. 2010-134566, dated Mar. 2, 2012.
Sehgal, et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943.
Siegel, et al., “In Vivo Ultrasound Arterial Recanalization of Atherosclerotic Total Occlusions”, Journal of the American College of Cardiology, Feb. 1990, vol. 15, No. 2, pp. 345-351.
“What is Electron Beam Curing?” downloaded from web on Nov. 14, 2002, 4 pages total. <http://www.ms.oml.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha>.
EP Extended Search Report dated Aug. 13, 2009; Application 04710537.5-1269, 5 pages.
Related Publications (1)
Number Date Country
20190365408 A1 Dec 2019 US
Continuations (1)
Number Date Country
Parent 15360834 Nov 2016 US
Child 16462260 US