The subject matter of this patent document relates to the field of medical devices. More particularly, but not by way of limitation, the subject matter relates to catheters and methods for supporting a guidewire or delivering a radiopaque, diagnostic or therapeutic agent.
A variety of catheters exist for percutaneous insertion into a subject's vascular system to accomplish diagnostic or therapeutic objectives using the Seldinger technique. As part of the Seldinger technique, a guidewire can be inserted through the lumen of a hollow needle and made to enter the vascular system. A catheter can fit over and slide along the guidewire as it passes through vasculature. The guidewire alone or with the help of the catheter can be incrementally maneuvered through the vasculature to a target site.
Catheters are typically introduced through a large artery, such as those found in the groin or neck, and then passed through ever-narrower regions of the vascular system until reaching the target site. Often, such pathways will wind back upon themselves in a multi-looped path. The quest to provide treatment options for narrowing and winding vessels and other lumens has given rise to the need to reduce catheter size, yet retain a catheter's favorable structural properties.
Various structural properties can be used to describe catheters. “Pushability,” for example, can be used to describe a catheter's axial strength to facilitate movement of its distal end through vascular passages or other body lumens by applying an axial pushing force near its proximal end. A related characteristic, “torqueability,” can be used to describe the ability to rotate the catheter's distal end by rotating its proximal end. “Flexibility,” particularly along a distal portion of the catheter, becomes increasingly important as the catheter enters winding or tortuous passages. Another characteristic that becomes more important with increased curvature of passages is the ability to resist kinking.
The present inventors recognize a difficulty in placing existing “push-to-advance” catheter designs, which include a relatively stiff, thick wall to navigate a vascular passage. The present inventors further recognize that as higher demands for length have been placed on catheters, a competing difficulty of smaller catheter distal end portions has developed.
The present catheters overcome drawbacks of existing catheter designs by providing a structure that, despite a reduction in distal diameter, maintains favorable structural properties and advanceability along its length. A catheter can comprise an elongate shaft body and a tip member disposed at a distal end of the shaft body. The shaft body can extend from a proximal end to the distal end and can define an inner lumen. The shaft body can include a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. The multi-layer coil can include first and second coil layers wound in opposing directions. An outer surface portion of the polymer cover can include one or more helical threads. In an example, the one or more helical threads are positioned around a distal end portion of the shaft body and have a radial height sufficient to provide a longitudinal pull on a vessel wall or a stenosis when rotated. The tip member can be made from a metal or a polymer and can also include one or more helical threads around its outer surface. Clinical bench testing has demonstrated that the present catheters exhibit pushability, flexibility, an ability to transfer torque in a controllable manner without kinking, and an ability to be propelled along a blood vessel, particularly when rotated.
The present methods can include advancing a distal end of a guidewire to a location proximate a stenosis or other narrowing in a blood vessel; guiding a catheter over the guidewire; using the guidewire as a rail, advancing a distal end of the catheter to the location proximate the stenosis or narrowing; rotating the catheter in a first direction and advancing it into the stenosis or narrowing; and advancing the guidewire through the stenosis or narrowing with the support of the catheter. The guidewire can be inserted into an inner lumen of the catheter, where the inner lumen is defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. Rotation of the catheter in the first direction can engage one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel, which can help advance the catheter into and eventually through the stenosis or narrowing.
These and other examples and features of the present catheters and methods will be set forth, at least in part, in the following Detailed Description. This Overview is intended to provide non-limiting examples of the present subject matter—it is not intended to provide an exclusive or exhaustive explanation. The Detailed Description below is included to provide further information about the present catheters and methods.
In the drawings, like numerals can be used to describe similar features and components throughout the several views. The drawings illustrate generally, by way of example but not by way of limitation, various embodiments discussed in the present patent document.
The drawing figures are not necessarily to scale. Certain features and components may be shown exaggerated in scale or in schematic form and some details may not be shown in the interest of clarity and conciseness.
The catheter 100 can include a shaft body 106 and a tip member 108 and can be delivered through a surgically created opening in a femoral or radial artery, for example. The shaft body 106 can extend from a proximal end 110 to a distal end 112 and can define an inner lumen. The tip member 108 can be connected to the distal end 112 of the shaft body 106 and can include a lumen coaxial with the shaft body's inner lumen to facilitate receipt or delivery of the guidewire or agent. A luer hub 114 can be connected to the proximal end 110 of the shaft body 106 to facilitate connection to other medical devices, such as valves, syringes or adaptors, and to provide access to the shaft body's inner lumen.
A proximal portion 116 of the shaft body 106 can be designed to be less flexible than its distal portion 118. The less flexible proximal portion 116 can provide enhanced axial and circumferential strength to the catheter 100 for greater pushability and torqueability. The distal portion 118 can provide the catheter 100 with enhanced flexibility for negotiating winding or tortuous vascular passages. An outer surface portion of the shaft body 106, such as the distal end portion 118, can include one or more helical threads 120 to enhance catheter delivery or withdrawal through rotation.
A side view of a catheter 300, including a shaft body 306 and a tip member 308, is illustrated in
In various examples, the one or more helical threads 420 include a polymer member wound around the polymer cover 440. The polymer member can be a strip of a synthetic fiber, such as nylon or polyester, having a fully-round cross-sectional shape of about 0.05 mm-0.2 mm in diameter prior to being bonded to the polymer cover 440. The polymer member can have a melting temperature higher than a melting temperature of the polymer cover 440 so that the helical threads 420 can be thermally bonded to, and inlaid in, the polymer cover 440. Alternatively, the helical threads 420 can be attached to the polymer cover 440 by sonic or adhesive bonding. The polymer member can, for example, extend 20-50 turns around the outer surface of the polymer cover 440 at a uniform pitch of 1.0 mm-2.0 mm, resulting in a threaded section 2-8 cm in length. Optionally, the polymer member can be reinforced with wire or fibers.
Hard, metallic tip members or soft, polymer tip members can be utilized by the present catheters and coupled to a distal end 112, 212, 312, 512, 612, 712 of a shaft body 106, 206, 306, 506, 606, 706.
Metallic tip members 108, 208, 508, 608 can facilitate crossing of a difficult stenosis or other narrowing and allow for imaging on a screen as a catheter advances through vasculature. In various examples, the metallic tip member 108, 208, 508, 608 includes a gold-plated, stainless steel member available with (
Polymer tip members 308, 708 can facilitate tracking through tortuous vasculature using their inherent flexibility and low profile, including a distal diameter 709 in a range of 0.3 mm to 0.6 mm. In the example of
The liner 832 can extend the length of the shaft body 806 and, optionally, into and through the catheter's tip member. The liner 832 can be formed of a material providing high lubricity, such as polytetrafluoroethylene (PTFE) or polyethylene, to reduce the forces required to advance a guidewire or other member through an associated catheter.
Surrounding the liner 832 can be a braid member 834 formed of multiple elongate strands 862 wound helically in opposite directions and interbraided with one another to form multiple crossings. The braid member 834, like the liner 832, can extend the length of the shaft body 806 and into the catheter's tip member. The strands 862 can be formed of stainless steel or another high tensile strength material and can be axially spaced apart to define multiple pics. The axial length of the pics, as determined by the strand spacing, can be selected to influence one or more of the catheter's pushability, torqueability, flexibility and kink resistance properties. The transverse profiles of the strands 862, both as to surface area and as to the ratio of width-to-thickness, can also be selected to influence these characteristics. For example, structural strength can be increased by increasing the strand width while maintaining the same thickness. Flexibility can be increased by increasing the pic axial length. Another factor influencing the desired characteristics is the braid angle of the filament strand windings, i.e., the angle of each helical strand 862 with respect to a longitudinal central axis. Increasing the braid angle tends to increase the torqueability while reducing the pushability. In short, strands 862 and arrangements of the strands 862 can be selected to customize the present catheter properties.
In the example of
The multiple coil layers, which surround the braid member 834, can include a first coil layer 836 composed of one or more wires 864 wound in a first direction and a second coil layer 838 composed of one or more wires 866 wound in a second direction, opposing the first direction. The second coil layer 838 can be positioned around and in contact with the first coil layer 836. In use, the wires 864, 866 of the first and second coil layers 836, 838 can interlock and provide the present catheter with bi-directional torqueability and pushability capabilities. For example, if one wire 864, 866 in a coil layer has a tendency to kink or bend in use, particularly under influence of a load, the other wires 864, 866 in the same layer or the adjacent layer can support it and inhibit kinking.
The wires 864, 866 can include a fully-rounded cross-section and can vary in size, number and pitch between the first coil layer 836 and the second coil layer 838 to alter structural properties of the catheter. Wire properties can be selected to balance structural properties, such as pushability, torqueability and flexibility. In an example, each coil layer includes 12 wires having a diameter of about 0.050 mm. Each of the 12 wires can have a uniform pitch that is equal to or greater than about 0.623 mm. Adjacent wires of the 12 wire grouping can be view as having a pitch that is equal to or greater than about 0.072 mm, with a small gap distributed throughout each 12 wire grouping. The size of the pitch can depend on the diameter of the wires, the diameter of the inner lumen 860 and the number of wires in the layer.
The polymer cover 840 can surround the coil layers 836, 838 and, in light of the liner 832, can form the second of two polymer layers included in the shaft body 806. The polymer cover 840 can include a low-friction polymer, to reduce the forces required to advance the catheter through vasculature, or a polymer with low viscosity at melting temperatures, to allow flow through and around the coil layers 836, 838 and the braid member 834, the latter of which is shown in
A hydrophilic coating can be provided on the outer surface 856 of the shaft body 806 for lubricious delivery and to aid in steerability. The hydrophilic coating can be thin and constitute only a minor part of the wall thickness of the shaft body 806.
At step 1274, the method can include advancing a distal end of a guidewire through vasculature to a location proximate a stenosis or other narrowing in a blood vessel. At step 1276, a catheter can be guided over the guidewire by inserting its proximal end into an inner lumen of the catheter from the catheter's distal end. The inner lumen can be defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. Using the guidewire as a rail, a distal end of the catheter can be advanced to the location proximate the stenosis or narrowing at step 1278.
The catheter can be rotated in a first direction at step 1280, thereby engaging one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel. This engagement between the helical threads and the stenosis or vessel wall can propel the catheter forward, in a distal direction. Incremental rotation of the catheter, particularly the catheter's proximal end, can allow incremental movement of the catheter relative to the stenosis or vessel wall.
At step 1282, the guidewire can be advanced distally with the support of the catheter. The method can be configured such that the distal end of the guidewire is at all times distal to the distal end of the catheter.
The catheter can be withdrawn from the blood vessel at step 1284 by rotating its proximal end in a second direction, opposite the first direction. Rotation of the catheter, whether in the first direction or the second direction, can cause wires of the first and second coil layers to engage.
Additional method steps are also possible. At step 1286, the method can optionally include viewing a tip member using an imaging means. At step 1288, the method can optionally include delivering a radiopaque, diagnostic or therapeutic agent through the inner lumen of the catheter. And at step 1290, the method can optionally include exchanging the guidewire advanced to the location proximate the stenosis or narrowing with a second guidewire.
Closing Notes:
The present catheters and methods include or use a multi-component shaft body, which can include one or more helical threads projecting from its outer surface. The multi-component shaft body can provide catheters with favorable structural characteristics including pushability, torqueability, flexibility and resistance to kinking. First and second helically-wound coil layers of the shaft body, for example, can provide torqueability and pushability to the catheter. A braid member can enable a small shaft body diameter for extending through a tortuous path and reaching small vessels and can further provide kink resistance. The one or more helical threads can provide the catheter with a rotationally-activated propulsion means. Accordingly, the present catheters and methods can overcome difficulties associated with placing existing “push-to-advance” catheter designs and can possess a small cross-section to navigate tortuous anatomy.
The above Detailed Description includes references to the accompanying drawings, which form a part of the Detailed Description. The Detailed Description should be read with reference to the drawings. The drawings show, by way of illustration, specific embodiments in which the present catheters and methods can be practiced. These embodiments are also referred to herein as “examples.”
The above Detailed Description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more features or components thereof) can be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above Detailed Description. Also, various features or components can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed embodiment. Thus, the following claim examples are hereby incorporated into the Detailed Description, with each example standing on its own as a separate embodiment:
In Example 1, a catheter can comprise an elongate shaft body and a tip member disposed at a distal end of the shaft body. The shaft body can extend from a proximal end to the distal end and can define an inner lumen. The shaft body can include a liner, a multi-layer coil surrounding the liner, and a polymer cover surrounding the multi-layer coil. An outer surface portion of the polymer cover can include one or more helical threads.
In Example 2, the catheter of Example 1 can optionally be configured such that the multi-layer coil includes a first coil layer wound in a first direction and a second coil layer, surrounding the first coil layer, wound in a second direction opposing the first direction.
In Example 3, the catheter of Example 2 can optionally be configured such that the first and second coil layers each include a plurality of wound wires having a fully round cross-section.
In Example 4, the catheter of any one or any combination of Examples 1-3 can optionally be configured such that the polymer cover extends inward through voids between successive windings of the multi-layer coil.
In Example 5, the catheter of any one or any combination of Examples 1-4 can optionally be configured such that the shaft body further comprises a braid member extending between the liner and the multi-layer coil.
In Example 6, the catheter of Example 5 can optionally be configured such that the polymer cover extends inward through voids between successive windings of the multi-layer coil and into voids of the braid member.
In Example 7, the catheter of any one or any combination of Examples 5 or 6 can optionally be configured such that a distal end of each of the liner, the braid member, and the multi-layer coil extend beyond the distal end of the shaft body.
In Example 8, the catheter of any one or any combination of Examples 1-7 can optionally be configured such that the one or more helical threads are positioned around a distal end portion of the shaft body.
In Example 9, the catheter of any one or any combination of Examples 1-8 can optionally be configured such that the one or more helical threads include a polymer member wound around the polymer cover.
In Example 10, the catheter of Example 9 can optionally be configured such that the polymer member forming the one or more helical threads has a melting point higher than a melting point of the polymer cover surrounding the multi-layer coil.
In Example 11, the catheter of any one or any combination of Examples 1-9 can optionally be configured such that the one or more helical threads include a depression of the outer surface of the polymer cover.
In Example 12, the catheter of any one or any combination of Examples 1-11 can optionally be configured such that the tip member includes a metallic tip member.
In Example 13, the catheter of Example 12 can optionally be configured such that an outer surface of the metallic tip member includes one or more helical threads.
In Example 14, the catheter of Example 13 can optionally be configured such that the one or more helical threads of the metallic tip member project radially outward from its outer surface.
In Example 15, the catheter of Example 13 can optionally be configured such that the one or more helical threads of the metallic tip member extend radially inward from its outer surface.
In Example 16, the catheter of any one or any combination of Examples 1-15 can optionally be configured such that the tip member includes a polymer tip member.
In Example 17, the catheter of Example 16 can optionally be configured such that the polymer tip member includes a non-tapered proximal portion and a tapered distal portion.
In Example 18, the catheter of Example 17 can optionally be configured such that a distal end of the multi-layer coil extends beyond the distal end of the shaft body and into the non-tapered proximal portion of the polymer tip member.
In Example 19, a method can comprise advancing a distal end of a guidewire to a location proximate a stenosis or other narrowing in a blood vessel; guiding a catheter over the guidewire; using the guidewire as a rail, advancing a distal end of the catheter to the location proximate the stenosis or narrowing; rotating the catheter in a first direction and advancing it into the stenosis or narrowing; and advancing the guidewire through the stenosis or narrowing with the support of the catheter. The guidewire can be inserted into an inner lumen of the catheter, where the inner lumen is defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. Rotation of the catheter in the first direction can engage one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel, which can help advance the catheter into and eventually through the stenosis or narrowing.
In Example 20, the method of Example 19 can optionally be configured such that rotating the catheter in the first direction further includes engaging one or more helical threads of a tip member, disposed at the distal end of the catheter, with the stenosis or wall of the blood vessel.
In Example 21, the method of any one or any combination of Examples 19 or 20 can optionally be configured such that rotating the catheter in the first direction includes rotating a proximal end portion of the catheter, thereby causing the distal end of the catheter to rotate a corresponding amount.
In Example 22, the method of any one or any combination of Examples 19-21 can optionally further comprise rotating the catheter in a second direction, opposite the first direction, and withdrawing the catheter from the blood vessel.
In Example 23, the method of Example 22 can optionally be configured such that rotating the catheter in the first or second direction includes engaging first and second coil layers of the multi-layer coil.
In Example 24, the method of any one or any combination of Examples 22 or 23 can optionally be configured such that rotating the catheter in the first or second direction includes inhibiting kinking between a distal end of a shaft body and a proximal end of a tip member by extending the braid member and the multi-layer coil beyond the distal end of the shaft body and into the proximal end of the tip member.
In Example 25, the method of any one or any combination of Examples 19-24 can optionally further comprise delivering a radiopaque, diagnostic or therapeutic agent through the inner lumen of the catheter.
In Example 26, the method of any one or any combination of Examples 19-25 can optionally further comprise viewing a tip member, disposed at the distal end of the catheter, using an imaging means.
In Example 27, the method of any one or any combination of Examples 19-26 can optionally further comprise exchanging the guidewire advanced to the location proximate the stenosis or narrowing with a second guidewire.
In Example 28, the catheter or method of any one or any combination of Examples 1-27 can optionally be configured such that all features, components, operations or other options are available to use or select from.
Certain terms are used throughout this patent document to refer to particular features or components. As one skilled in the art appreciates, different people may refer to the same feature or component by different names. This patent document does not intend to distinguish between components or features that differ in name but not in function.
For the following defined terms, certain definitions shall be applied unless a different definition is given elsewhere in this patent document. The terms “a,” “an,” and “the” are used to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” The term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B.” All numeric values are assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In many instances, the term “about” can include numbers that are rounded to the nearest significant figure. The recitation of numerical ranges by endpoints includes all numbers and sub-ranges within and bounding that range (e.g., 1 to 4 includes 1, 1.5, 1.75, 2, 2.3, 2.6, 2.9, etc. and 1 to 1.5, 1 to 2, 1 to 3, 2 to 3.5, 2 to 4, 3 to 4, etc.). The terms “patient” and “subject” are intended to include mammals, such as for human or veterinary applications. The terms “distal” and “proximal” are used to refer to a position or direction relative to the treating clinician. “Distal” and “distally” refer to a position that is distant from, or in a direction away from, the treating clinician. “Proximal” and “proximally” refer to a position that is near, or in a direction toward, the treating clinician.
The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended; that is, a device, kit or method that includes features or components in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
This non-provisional patent document is a divisional of U.S. patent application Ser. No. 14/673,966, filed on Mar. 31, 2015, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/061,781, entitled “CATHETER,” filed on Oct. 9, 2014, both of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3815608 | Hodgson et al. | Jun 1974 | A |
4898212 | Searfoss et al. | Feb 1990 | A |
4947864 | Shockey | Aug 1990 | A |
5037404 | Gold et al. | Aug 1991 | A |
5057092 | Webster | Oct 1991 | A |
5129910 | Phan et al. | Jul 1992 | A |
5183079 | Blin | Feb 1993 | A |
5263959 | Fischell | Nov 1993 | A |
5423846 | Fischell | Jun 1995 | A |
5454795 | Samson | Oct 1995 | A |
5462523 | Samson et al. | Oct 1995 | A |
5554139 | Okajima | Sep 1996 | A |
5569218 | Berg | Oct 1996 | A |
5569220 | Webster | Oct 1996 | A |
5591142 | Erp | Jan 1997 | A |
5601537 | Frassica | Feb 1997 | A |
5658264 | Samson | Aug 1997 | A |
5662622 | Gore et al. | Sep 1997 | A |
5681296 | Ishida | Oct 1997 | A |
5695483 | Samson | Dec 1997 | A |
5702373 | Samson | Dec 1997 | A |
5769830 | Parker | Jun 1998 | A |
5792124 | Harrigan et al. | Aug 1998 | A |
5853400 | Samson | Dec 1998 | A |
5871475 | Frassica | Feb 1999 | A |
5871537 | Holman et al. | Feb 1999 | A |
5876385 | Ikari et al. | Mar 1999 | A |
5876386 | Samson | Mar 1999 | A |
5885508 | Ishida | Mar 1999 | A |
5891114 | Chien et al. | Apr 1999 | A |
5897537 | Berg et al. | Apr 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5927345 | Samson | Jul 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
6003561 | Brindza et al. | Dec 1999 | A |
6053903 | Samson | Apr 2000 | A |
6059823 | Holman et al. | May 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6165163 | Chien et al. | Dec 2000 | A |
6171297 | Pedersen et al. | Jan 2001 | B1 |
6217565 | Cohen | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6235000 | Milo et al. | May 2001 | B1 |
6245098 | Feeser et al. | Jun 2001 | B1 |
6319276 | Holman et al. | Nov 2001 | B1 |
6368316 | Jansen et al. | Apr 2002 | B1 |
6485457 | Hisamatsu et al. | Nov 2002 | B1 |
6508804 | Sarge et al. | Jan 2003 | B2 |
6508806 | Hoste | Jan 2003 | B1 |
6508825 | Selmon et al. | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6511462 | Itou et al. | Jan 2003 | B1 |
6533754 | Hisamatsu et al. | Mar 2003 | B1 |
6589227 | Henrik | Jul 2003 | B2 |
6638247 | Selmon et al. | Oct 2003 | B1 |
6652692 | Pedersen et al. | Nov 2003 | B2 |
6689120 | Gerdts | Feb 2004 | B1 |
6692523 | Holman et al. | Feb 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6726712 | Raeder-Devens et al. | Apr 2004 | B1 |
6824553 | Samson et al. | Nov 2004 | B1 |
6858024 | Berg et al. | Feb 2005 | B1 |
6926721 | Basta | Aug 2005 | B2 |
6966891 | Ookubo et al. | Nov 2005 | B2 |
7025758 | Klint | Apr 2006 | B2 |
7037288 | Rosenberg et al. | May 2006 | B2 |
7104966 | Shiber | Sep 2006 | B2 |
7104979 | Jansen et al. | Sep 2006 | B2 |
7117703 | Kato et al. | Oct 2006 | B2 |
7155272 | Yamaguchi et al. | Dec 2006 | B2 |
7166100 | Jordan et al. | Jan 2007 | B2 |
7291127 | Eidenschink | Nov 2007 | B2 |
7297302 | Berg et al. | Nov 2007 | B2 |
7300534 | Wang et al. | Nov 2007 | B2 |
7322988 | Sterud et al. | Jan 2008 | B2 |
7354430 | Pepin | Apr 2008 | B2 |
7434437 | Kato et al. | Oct 2008 | B2 |
7488338 | Eidenschink | Feb 2009 | B2 |
7491230 | Holman et al. | Feb 2009 | B2 |
7494478 | Itou et al. | Feb 2009 | B2 |
7579550 | Dayton et al. | Aug 2009 | B2 |
7597830 | Zhou | Oct 2009 | B2 |
7615043 | Zhou | Nov 2009 | B2 |
7621904 | McFerran et al. | Nov 2009 | B2 |
7674411 | Berg et al. | Mar 2010 | B2 |
7699790 | Simpson | Apr 2010 | B2 |
7704245 | Dittman et al. | Apr 2010 | B2 |
7740652 | Gerdts et al. | Jun 2010 | B2 |
7758624 | Dorn | Jul 2010 | B2 |
7763012 | Petrick et al. | Jul 2010 | B2 |
7766896 | Volk et al. | Aug 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7785365 | Holman et al. | Aug 2010 | B2 |
7799068 | Holman et al. | Sep 2010 | B2 |
7803169 | Shamay | Sep 2010 | B2 |
7815599 | Griffin et al. | Oct 2010 | B2 |
7824392 | Zhou | Nov 2010 | B2 |
7828790 | Griffin | Nov 2010 | B2 |
7841994 | Skujins et al. | Nov 2010 | B2 |
7854755 | Lafontaine et al. | Dec 2010 | B2 |
7871430 | Pavcnik et al. | Jan 2011 | B2 |
7887529 | Eder | Feb 2011 | B2 |
7896861 | McFerran et al. | Mar 2011 | B2 |
7909779 | Shimogami et al. | Mar 2011 | B2 |
7909812 | Jansen et al. | Mar 2011 | B2 |
7914515 | Heideman et al. | Mar 2011 | B2 |
7914520 | Kennedy, II | Mar 2011 | B2 |
7927784 | Simpson | Apr 2011 | B2 |
7955313 | Boismier | Jun 2011 | B2 |
7968038 | Dittman et al. | Jun 2011 | B2 |
7981091 | Root | Jul 2011 | B2 |
7985213 | Parker | Jul 2011 | B2 |
7985214 | Garabedian et al. | Jul 2011 | B2 |
7998132 | Gregorigh et al. | Aug 2011 | B2 |
8021352 | Slazas et al. | Sep 2011 | B2 |
8092509 | Dorn | Jan 2012 | B2 |
8109872 | Kennedy, II et al. | Feb 2012 | B2 |
8109985 | Meyer et al. | Feb 2012 | B2 |
8118804 | Takagi et al. | Feb 2012 | B2 |
8124876 | Dayton et al. | Feb 2012 | B2 |
8172863 | Robinson et al. | May 2012 | B2 |
8202246 | Kugler et al. | Jun 2012 | B2 |
8206373 | Zhou | Jun 2012 | B2 |
8221387 | Shelso et al. | Jul 2012 | B2 |
8226702 | Raeder-Devens et al. | Jul 2012 | B2 |
8231647 | Eidenschink | Jul 2012 | B2 |
8235942 | Frassica et al. | Aug 2012 | B2 |
8251976 | Zhou | Aug 2012 | B2 |
8257314 | Agnew | Sep 2012 | B2 |
8303570 | Gregorich et al. | Nov 2012 | B2 |
8317772 | Jansen et al. | Nov 2012 | B2 |
8328791 | Griffin | Dec 2012 | B2 |
8337425 | Olson et al. | Dec 2012 | B2 |
8366674 | Frassica et al. | Feb 2013 | B2 |
8372056 | Eder | Feb 2013 | B2 |
8377035 | Zhou et al. | Feb 2013 | B2 |
8382739 | Walak | Feb 2013 | B2 |
8387347 | Imai et al. | Mar 2013 | B2 |
8403912 | McFerran et al. | Mar 2013 | B2 |
8414477 | Tallarida et al. | Apr 2013 | B2 |
8419658 | Eskuri | Apr 2013 | B2 |
8454578 | Leeflang et al. | Jun 2013 | B2 |
8486010 | Nomura | Jul 2013 | B2 |
8496679 | Robinson et al. | Jul 2013 | B2 |
8500785 | Gunderson | Aug 2013 | B2 |
8523841 | Itou et al. | Sep 2013 | B2 |
8535369 | Raeder-Devens et al. | Sep 2013 | B2 |
8540695 | Shimogami et al. | Sep 2013 | B2 |
D690806 | Nakayama et al. | Oct 2013 | S |
8551073 | Katoh et al. | Oct 2013 | B2 |
8556914 | Vrba | Oct 2013 | B2 |
8574219 | Adams et al. | Nov 2013 | B2 |
8603066 | Heidman et al. | Dec 2013 | B2 |
8764631 | Frassica | Jul 2014 | B2 |
8870755 | Frassica et al. | Oct 2014 | B2 |
8955552 | Nanney et al. | Feb 2015 | B2 |
9636477 | Root et al. | May 2017 | B2 |
9782561 | Kugler et al. | Oct 2017 | B2 |
10238834 | Bridgeman et al. | Mar 2019 | B2 |
20020032408 | Parker | Mar 2002 | A1 |
20020107506 | McGuckin et al. | Aug 2002 | A1 |
20020156460 | Ye | Oct 2002 | A1 |
20030097138 | Reydel | May 2003 | A1 |
20030191451 | Gilmartin | Oct 2003 | A1 |
20040002677 | Gentsler | Jan 2004 | A1 |
20040087885 | Kawano et al. | May 2004 | A1 |
20040102719 | Keith | May 2004 | A1 |
20050021002 | Deckman et al. | Jan 2005 | A1 |
20050171478 | Selmon et al. | Aug 2005 | A1 |
20050222585 | Miyata et al. | Oct 2005 | A1 |
20060100602 | Klint | May 2006 | A1 |
20060151043 | Nanney et al. | Jul 2006 | A1 |
20060258987 | Lentz et al. | Nov 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20070010863 | Stenzel | Jan 2007 | A1 |
20070060996 | Goodin et al. | Mar 2007 | A1 |
20070208221 | Kennedy et al. | Sep 2007 | A1 |
20070260224 | Oepen et al. | Nov 2007 | A1 |
20080039823 | Shimogami et al. | Feb 2008 | A1 |
20080108974 | Roth | May 2008 | A1 |
20080185063 | Bieszczad et al. | Aug 2008 | A1 |
20090048657 | Duran et al. | Feb 2009 | A1 |
20090112063 | Bakos et al. | Apr 2009 | A1 |
20090124899 | Jacobs et al. | May 2009 | A1 |
20090312831 | Dorn | Dec 2009 | A1 |
20100069718 | Frassica | Mar 2010 | A1 |
20100076264 | Tallarida et al. | Mar 2010 | A1 |
20100094258 | Shimogami | Apr 2010 | A1 |
20100256727 | Gerdts et al. | Oct 2010 | A1 |
20100268243 | Parker | Oct 2010 | A1 |
20100297334 | Weber | Nov 2010 | A1 |
20110009889 | Shamay | Jan 2011 | A1 |
20110035927 | Griffin et al. | Feb 2011 | A1 |
20110257042 | Simpson | Oct 2011 | A1 |
20110297307 | Slazas et al. | Dec 2011 | A1 |
20120016344 | Kusakabe | Jan 2012 | A1 |
20120116491 | Meyer et al. | May 2012 | A1 |
20120136340 | Tanioka | May 2012 | A1 |
20120149985 | Frassica et al. | Jun 2012 | A1 |
20120209302 | Carley | Aug 2012 | A1 |
20120271174 | Iwahashi | Oct 2012 | A1 |
20120323251 | Kugler et al. | Dec 2012 | A1 |
20130018318 | Ravichandran | Jan 2013 | A1 |
20130023858 | Dayton et al. | Jan 2013 | A1 |
20130053766 | Hollett | Feb 2013 | A1 |
20130072905 | Jansen et al. | Mar 2013 | A1 |
20130096535 | Gregorigh et al. | Apr 2013 | A1 |
20130110144 | Olson et al. | May 2013 | A1 |
20130116721 | Takagi et al. | May 2013 | A1 |
20130137977 | Eder | May 2013 | A1 |
20130150808 | Ogle et al. | Jun 2013 | A1 |
20130296907 | Robinson et al. | Nov 2013 | A1 |
20130331820 | Itou et al. | Dec 2013 | A1 |
20150051541 | Kanemasa et al. | Feb 2015 | A1 |
20160101261 | Kugler et al. | Apr 2016 | A1 |
20160101262 | Root et al. | Apr 2016 | A1 |
20160346508 | Williams et al. | Dec 2016 | A1 |
20190167943 | Bridgeman et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
69424027 | Sep 2000 | DE |
0517075 | Dec 1992 | EP |
0661072 | Jul 1995 | EP |
1096965 | Dec 2007 | EP |
07323090 | Dec 1995 | JP |
2000014764 | Jan 2000 | JP |
2001501846 | Feb 2001 | JP |
3659664 | Jun 2005 | JP |
2007029120 | Feb 2007 | JP |
2007061311 | Mar 2007 | JP |
2014097090 | May 2014 | JP |
2015033501 | Feb 2015 | JP |
101314714 | Oct 2013 | KR |
1998015311 | Apr 1998 | WO |
2005105192 | Nov 2005 | WO |
Entry |
---|
Notice of Allowance dated Mar. 23, 2017, in U.S. Appl. No. 14/673,966, filed Mar. 31, 2015. |
PCT Application No. PCT/IB2018/054054 partial search report dated Sep. 28, 2018. |
European appln. No. 19163614.1 European Search Report dated Jun. 17, 2019. |
Japanese Office Action dated Feb. 3, 2020, in Japanese application No. JP 2019-042568. |
Number | Date | Country | |
---|---|---|---|
20170156750 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62061781 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14673966 | Mar 2015 | US |
Child | 15441352 | US |