Catheters and catheter shafts

Abstract
A medical device may include an elongated shaft. The elongated shaft may further include a reinforcement member having a first portion and a second portion. The first portion may include a polymer having a first degree of crystallinity. The second portion may include a second degree of crystallinity different than the polymer of the first portion.
Description
TECHNICAL FIELD

The present disclosure pertains generally, but not by way of limitation, to medical devices and methods for manufacturing medical devices. More particularly, the present disclosure pertains to elongated intracorporeal medical devices including a tubular member connected with other structures, and methods for manufacturing and using such devices.


BACKGROUND

A wide variety of intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.


BRIEF SUMMARY

The invention provides design, material, and manufacturing method alternatives for medical devices. In a first example, a medical device comprises an elongated shaft including a reinforcement member, the reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.


Alternatively or additionally to the above example, in another example, the elongated shaft includes an inner layer and an outer layer.


Alternatively or additionally to any of the examples above, in another example, the inner layer includes polytetrafluoroethylene.


Alternatively or additionally to any of the examples above, in another example, the inner layer includes fluorinated ethylene propylene.


Alternatively or additionally to any of the examples above, in another example, the outer layer includes polyether block amide.


Alternatively or additionally to any of the examples above, in another example, the outer layer includes a blend of polyether block amide and polyurethane.


Alternatively or additionally to any of the examples above, in another example, the reinforcement member is disposed between the inner layer and the outer layer.


Alternatively or additionally to any of the examples above, in another example, the reinforcement member includes a polymeric braid.


Alternatively or additionally to any of the examples above, in another example, the reinforcement member includes a polymeric coil.


Alternatively or additionally to any of the examples above, in another example, the reinforcement member includes ultra-high molecular weight polyethylene braid.


Alternatively or additionally to any of the examples above, in another example, the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity lower than the first degree of polymeric crystallinity.


Alternatively or additionally to any of the examples above, in another example, the reinforcement member comprising at least two materials.


Alternatively or additionally to any of the examples above, in another example, the reinforcement member is at least partially embedded within the outer layer of the elongated shaft.


Alternatively or additionally to any of the examples above, in another example, the elongated shaft including the reinforcement member and an axial reinforcement member.


Furthermore, another example includes a method for manufacturing a medical device, the method comprising: forming an elongated shaft, wherein forming the elongated shaft includes a reinforcement layer having a first portion and a second portion; heating the elongated shaft; and wherein heating the elongated shaft causes the first portion to have a first degree of polymeric crystallinity and the second portion to have a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.


Alternatively or additionally to any of the examples above, another example includes, forming the elongated shaft comprises disposing the reinforcement member between an inner layer and an outer layer.


Alternatively or additionally to any of the examples above, another example includes, forming the elongated shaft comprises the reinforcement member including a polymeric braid.


Alternatively or additionally to any of the examples above, another example includes forming the elongated shaft comprises the reinforcement member including ultra-high molecular weight polyethylene braid.


Alternatively or additionally to any of the examples above, another example includes heating the elongated shaft comprises the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity lower than the first degree of polymeric crystallinity.


Alternatively or additionally to any of the examples above, another example includes forming the elongated shaft comprises the reinforcement member comprising at least two materials.


Alternatively or additionally to any of the examples above, another example includes forming the elongated shaft comprises the elongated shaft including the reinforcement member and an axial reinforcement member.


Furthermore, another example includes a medical device, comprising: an elongated shaft including a reinforcement member; the reinforcement member comprising at least two materials and the reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.


Furthermore, another example includes a medical device, comprising: an elongated shaft including a reinforcement member and an axial reinforcement member, the reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.


Furthermore, another example includes a medical device, comprising: an elongated shaft including an axial reinforcement member, the axial reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.


Furthermore, another example includes a medical device, comprising: an elongated shaft including an inner polymeric layer and an outer polymeric layer, a reinforcement member disposed over the inner polymeric layer and at least partially embedded within the outer polymeric layer, the outer polymeric layer disposed over the inner polymeric layer and the reinforcement member, the reinforcement member including ultra-high molecular weight polyethylene braid having a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.


The above summary of some examples and embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Brief Description of the Drawings, and Detailed Description, which follow, more particularly exemplify these embodiments, but are also intended as exemplary and not limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a perspective view of an exemplary medical device;



FIG. 2 is a cross-sectional view of an exemplary elongated shaft of the medical device of FIG. 1;



FIGS. 3-5 are cross-sectional views of the method for manufacturing the medical device of FIG. 1;



FIG. 6 is a cross-sectional view of another exemplary elongated shaft of the medical device of FIG. 1;



FIG. 7 is a schematic perspective view of another exemplary elongated shaft of the catheter medical device of FIG. 1;



FIG. 8 is a schematic perspective view of another exemplary elongated shaft of the catheter medical device of FIG. 1; and



FIG. 9 is a schematic perspective view of another exemplary elongated shaft of the catheter medical device of FIG. 1.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention.


Definitions of certain terms are provided below and shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same or substantially the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include or otherwise refer to singular as well as plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed to include “and/or,” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or able to be arranged with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.


The following detailed description should be read with reference to the drawings, in which similar elements in different drawings are identified with the same reference numbers. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.


The present disclosure pertains to medical devices made with materials having variable crystallinity and methods of manufacturing medical devices with materials having variable crystallinity. Crystallinity refers to the degree of structural order in a solid material. In a crystalline material, such as a crystalline polymer, atoms and molecules are arranged in a regular periodic manner. The degree of crystallinity of a material affects its physical properties such as stiffness, density, transparency or the like. For example, the stiffness of a material may change with the degree of crystallinity of the material. If a first material has a degree of crystallinity more than the degree of crystallinity of a second material, then the first material may be stiffer than the second material. A medical device including the first material disposed at a first portion and the second material disposed at a second portion may have a variable stiffness, e.g., the first portion of the medical device may be stiffer than the second portion, which may be desirable in various applications.


For example, many medical procedures require tracking catheters into tortuous intracorporeal cavities, such as blood vessels. Catheters need variable stiffness along their length to exhibit desirable properties such as maneuverability through tortuous paths, kink resistance, atraumatic distal end, and the like. For example, a catheter can advantageously include a proximal portion having sufficient stiffness to allow an operator to push and torque the catheter, from a proximal end, to maneuver the catheter in a patient's body without kinking. In addition, the catheter can include a distal portion with sufficient flexibility to be advanced into tortuous anatomy. Further, the distal tip of the catheter can be sufficiently flexible to prevent trauma to surrounding tissue upon contact.


In some embodiments, a method of manufacturing medical devices, such as catheters, with a material having variable stiffness may include changing the degree of crystallinity of the material disposed within the medical device on different portions of the medical device. Depending on the initial crystallinity and method of cooling of a material, the degree of crystallinity of the material can be changed by a number of methods, for example, heating certain crystalline polymeric materials such as polyethelene, nylon, PEEK, or the like in their respective crystalline melt range reduces the degree of crystallinity of the polymeric materials. Thus, heating a portion of the medical device to a suitable temperature range may make the material disposed within that portion less stiff compared to other unaltered portions of the medical device.


The present disclosure describes various example embodiments of a catheter having at least one reinforcement member made of a material that may be configured with a variable range of crystallinity. For example, in some embodiments, a catheter may have two portions, a first portion and a second portion. The second portion of the catheter may be heated to reduce the degree of crystallinity of the reinforcement member in the second portion to make the reinforcement member less stiff in the second portion as compared to the first portion. Consequently, the second portion of the catheter may become less stiff than the first portion of the catheter. Embodiments also include catheters, or other medical devices, having more than two portions. However, such a reinforcement member with variable stiffness can be included in many other medical devices such as balloon catheters, stent delivery catheters, guidewires, implants, or the like to vary their stiffness at a desired location.



FIG. 1 is a perspective view of an exemplary medical device. In FIG. 1, a perspective view of a catheter 100 is shown. The catheter 100 may include an elongated shaft 102 and a hub assembly 104 attached to the proximal end of the elongated shaft 102. The elongated shaft 102 may have one or more lumens (not shown) extending through the length of the elongated shaft 102, for example, a central lumen 206 (shown in FIG. 2). The lumen(s) may be in communication with one or more ports on the hub assembly 104 to insert or remove additional medical devices, fluids, or the like (not shown) into the lumen(s) of the elongated shaft 102 for transporting to target locations within the patient's body. Some examples of additional medical devices include, but are not limited to, balloon catheters, stent delivery catheters, snares, baskets or the like. Further, the catheter 100 may be configured with a suitable handle, actuators, or the like to allow an operator to manipulate the catheter 100 from the proximal end of the elongated shaft 102. The operator may push or torque the catheter 100 from the proximal end of the elongated shaft 102 to maneuver the elongated shaft 102 in the patient's body.



FIG. 2 is a cross-sectional view of an exemplary elongated shaft of the medical device of FIG. 1. FIG. 2 shows a cross-sectional view of the elongated shaft 102 of catheter 100 of FIG. 1. As discussed, the elongated shaft 102 may include a central lumen 206 for inserting additional medical devices through the elongated shaft 102. The elongated shaft 102 may include one or more layers of material. The elongated shaft 102 may include three layers of material including an inner layer 208, an outer layer 210, and a reinforcement member 212 disposed between the inner layer 208 and the outer layer 210.


The inner layer 208 may provide a smooth frictionless surface along the lumen 206 to dispose the additional medical devices in the elongated shaft 102. The outer layer 210 may provide a frictionless biocompatible outer surface to the elongated shaft 102 to maneuver the elongated shaft in a patient's body without damaging surrounding tissue. In some embodiments, the inner layer 208 and the outer layer 210 may be made of the same or different material. For example, the inner layer 208 may include materials, such as polytetrafluroethylene (PTFE), fluorinated ethylene propylene (FEP) or the like or a blend of such materials. The outer layer 210 may include materials such as polyether block amide (PBA), polyurethane or the like or a blend of such materials.


The reinforcement member 212 may include wires, fibers, ribbons, or the like arranged in various ways to provide sufficient stiffness to the catheter 100. For example, as shown, the reinforcement member 212 may have a mono-filament or multi-filament braided structure. The reinforcement member 212 may be an axial or a biaxial braid with a suitable reinforcing braid pitch and angle. Other embodiments of the reinforcement member 212 may include a coil, sheath, foam, or the like.


The reinforcement member 212 may have a variable crystallinity along the length of the elongated shaft 102 and may provide variable stiffness to the elongated shaft 102. In some embodiments, the reinforcement member 212 may have multiple portions, each having a different crystallinity, along the length of the elongated shaft 102. For example, as shown, the reinforcement member 212 may include a first portion 214 (a proximal end portion) and a second portion 216 (a distal end portion) along the length of the catheter 100. The first portion 214 may include a material of a first degree of crystallinity and the second portion 216 may include a material of a second degree of crystallinity different than the material of the first portion 214. In some embodiments, the first portion 214 and the second portion 216 may be made of polymers with different crystallinity. In some other embodiments, the reinforcement member 212 may be made up of a single polymeric material, and the crystallinity of the material in the first portion 214 or the second portion 216 may be modified by heating or other suitable methods.


In at least some embodiments, the reinforcement member 212 may be made of one or more crystalline polymer or polymeric materials such as an ultra-high molecular weight polyethelene (UHMWPE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester, ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers), polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene, polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), liquid crystal polymers (LSP), polyaramid polymetaphenylene isopthalamide, polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide, polysulfone, nylon, nylon-12, perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene), polycarbonate copolymers, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like.


Referring to FIGS. 1 and 2, in an exemplary method of use, an operator may insert the distal end of the catheter 100 in a patient's body through an incision or a natural anatomical opening. The operator may then push the elongated shaft 102 through paths in the patient's body to a target location. While traversing the elongated shaft 102 in the patient's body, the flexible distal end portion of the elongated shaft 102 (less stiff than the proximal portion) having the second portion 216 of the reinforcement member 212 may assist the operator to move the elongated shaft 102 through various twists and turns in the patient's body. In addition, the flexible second portion 216 (distal end portion) of the elongated shaft 102 may form an atraumatic tip which may prevent any trauma to the patient's tissue while traversing the elongated shaft 102 to the target location. Further, the stiff first portion 214 (proximal portion) of the elongated shaft 102 (more stiff than the distal portion) having the first portion 214 of the reinforcement member 212 may assist the operator to push the elongated shaft 102 from the proximal end of the elongated shaft 102. In addition, the stiff proximal portion prevents kinking of the elongated shaft 102 in the patient's body. After traversing the elongated shaft 102 to the target location, the operator may insert suitable therapeutic or diagnostic tools in the central lumen 206, through the hub assembly 104, to conduct the required medical procedure on the target tissue. Then, the operator may retract the elongated shaft 102 out of the patient's body.



FIGS. 3-5 are cross-sectional views of the method for manufacturing the medical device of FIG. 1, for example the catheter 100. FIG. 3 is a cross-sectional view of the elongated shaft 102 disposed along a mandrel 300. The mandrel may vary in size, depending on the intervention. For example, the mandrel may be a silver coated copper core, acetal, stainless steel, nickel-titanium alloy or other suitable mandrel with an outer diameter in the range of about 0.01 to 0.05 inches (0.03 to 0.13 centimeters), or about 0.02 to 0.04 inches (0.05 to 0.10 centimeters), or about 0.022 to 0.027 inches (0.056 to 0.069 centimeters). As shown, the reinforcement member 212 is placed between the inner layer 208 and the outer layer 210. In some embodiments, the inner layer 208 may be extruded on the mandrel 300. A resin of suitable polymeric materials such as, but not limited to polytetrafluroethylene (PTFE), or fluorinated ethylene propylene (FEP) may be extruded over the mandrel 300 to form the inner layer 208. The mandrel 300 may have a shape suitable to give a desired shape to the inner layer 208. In other embodiments, outer layer 210 may be disposed along the outer surface of inner layer 208 and reinforcement member 212 may be disposed along the outer surface of outer layer 210. The process for disposing layers 208/210/212 onto the mandrel may include an extrusion process. When using an extrusion process, the assembly may be subjected to extrusion temperatures in the range of about 100 to 200° C., or about 120 to 190° C., or about 140 to 170° C. Under such conditions, reinforcement member 212 may become embedded and/or at least partially embedded within outer layer 210. For example, at least a portion of outer layer 210 may be disposed radially outward of the outer surface of reinforcement layer 212. In some instances, reinforcement member 212 may become disposed at or near the inner surface of outer layer 210 so that reinforcement member 212 is essentially positioned between the inner layer 208 and outer layer 210. In some of these and in other embodiments, portions of outer layer 210 may be interlocked with or otherwise disposed within the interstices of reinforcement member 212. This may form or define a “composite layer” that includes both the material of reinforcement member 212 and the material of outer layer 210. In other embodiments, reinforcement member 212 may become embedded and/or at least partially embedded within inner layer 208. In some instances, reinforcement member 212 may become disposed at or near the inner surface of outer layer 210 so that reinforcement member 212 is essentially positioned between the inner layer 208 and outer layer 210 and embedded within the inner layer 208 of the elongated shaft 102.


The process for manufacturing elongated shaft 102 (e.g., the extrusion process) may allow for relatively thin elongated shafts 102 to be manufactured. For example, elongated shaft 102 may have a wall thickness as low as about 0.0005 to 0.0010 inches (0.003 to 0.0025 centimeters), or about 0.001 to 0.002 inches (0.003 to 0.005 centimeters), or about 0.0015 inches (0.0038 centimeters). In general, the process may allow for elongated shafts 102 to be manufactured having relatively larger inner diameters while still maintaining relatively small outer diameters. The process may also result in relatively strong elongated shafts 102. For example, elongated shaft 102 may have a tensile strength capable of withstanding forces up to about 10-20 foot-pounds (14 to 27 joules), or up to about 12-18 foot-pounds (16 to 24 joules), or up to about 16 foot-pounds (22 joules). For example, elongated shaft 102 may be capable of withstanding pressures exceeding 800 psi (5516 kilopascal, or exceeding 1000 psi (6895 kilopascal), or exceeding 1200 psi (8274 kilopascal). The presence of reinforcement member 212 may also provide elongated shaft 102 with enhanced cut resistance, tear resistance, kink resistance, etc. These features may be further enhanced when reinforcement member 212 is positioned at or near the outer surface of elongated shaft 102.


The reinforcement member 212 may be placed over the inner layer 208 forming a reinforcing layer to provide stiffness to the elongated shaft 102. The reinforcement member 212 may be formed by disposing a braid of a crystalline polymeric material over the inner layer 208. The reinforcement member 212 may be formed as an axial or a biaxial braid of a suitable crystalline material with a suitable pitch angle to impart strength to the reinforcement member 212.


Then, a resin of suitable polymeric material, such as, but not limited to, polyether block amide (PBA), polyurethane or a blend of the two materials may be extruded over the reinforcement member 212 and the inner layer 208 to form the outer layer 210. The outer layer 210 may fill the voids or gaps in the braid such that the reinforcement member 212 may at least partially embed within the outer layer 210 forming a sandwich like structure. In some embodiments, the outer layer 210 may fully cover the reinforcement member 212 so as to provide a smooth surface for contact with surrounding tissue. In some other embodiments, the outer layer 210 may partially cover the reinforcement member 212 such that a portion of the reinforcement member 212 is exposed to the surrounding tissue.



FIG. 4 illustrates that the crystallinity of the second portion 216 of the elongated shaft 102 may be altered by heating. Once the elongated shaft 102 is formed or extruded, the second portion 216 may be heated by a heater 400, which can be a heating oven, hot air convection jets, lasers, or the like. The heater 400 may be adapted to heat the second portion 216 to a temperature in the crystalline melt range of the material of the reinforcement member 212. For example, the reinforcement member 212 may include a crystalline polymer braid such as an ultra-high molecular weight polyethylene (UHMWPE) braid. The heater 400 may heat the second portion 216 in crystalline melt range of ultra-high molecular weight polyethylene (UHMWPE), from 300° F. to 350° F. (149° C. to 177° C.). The degree of crystallinity of the second portion 216 may reduce in comparison to the degree of crystallinity of the first portion 214. The reduced degree of crystallinity of the second portion 216 may make the reinforcement member 212 less stiff in the second portion 216 in comparison to the first portion 214.


In some embodiments, the heater 400 may heat the second portion 216 with a gradual temperature gradient or ramp in the crystalline melt range of the material of the reinforcement member 212. For example, if the reinforcement member 212 is an ultra-high molecular weight polyethylene (UHMWPE) braid, the heater 400 may heat the second portion 216 in a gradually increasing temperature ramp ranging from 300° F. (149° C.) at the proximal end of the second portion 216 to 350° F. (177° C.) at the distal end of the second portion 216. As a consequence, the graded heating of the second portion 216 may create a gradually decreasing degree of crystallinity and stiffness in the second portion 216 from the proximal end to the distal end of the second portion 216. FIG. 5 illustrates the elongated shaft 102 after removal of the mandrel 300 and the heater 400. As a consequence of heating of the second portion 216, the elongated shaft 102 may have a variable stiffness along the length of elongated shaft 102.



FIG. 6 is a cross-sectional view of another exemplary elongated shaft of the medical device of FIG. 1. FIG. 6 illustrates the elongated shaft 102 having a reinforcement member 612 structured as a mono or multi filament coil disposed between the inner layer 208 and the outer layer 210. Similar to the reinforcement member 212 shown in FIG. 2, the reinforcement member 612 may include a first portion 614 and a second portion 616. The material of the reinforcement member 612 may be a polymeric coil with some degree of crystallinity. The reinforcement member 612 may be manufactured using a method similar to the method described with respect to FIGS. 3-5. For example, the second portion 616 may be heated using a suitable heating mechanism to reduce the degree of crystallinity of the second portion 616 and consequently make the second portion 616 more flexible.



FIG. 7 is a schematic perspective view of another exemplary elongated shaft of the catheter medical device of FIG. 1. As shown in FIG. 7, the reinforcement member may be made from composite materials. For example, a metal-polymer composite material may be used as a reinforcement member 712 in the elongated shaft 102. The reinforcement member 712 may include a composite material made of polymer fibers 713 and metal wires 715, which may be braided or in the form of a coil. The polymer fibers 713 may be made of a suitable crystalline polymer, such as ultra-high molecular weight polyethylene (UHMWPE) or the like. The metal wires 715 may be made of suitable metallic or alloy materials such as stainless steel, titanium, Nitinol™, or the like. The reinforcement member 712 may include a first portion 714 and a second portion 716. The reinforcement member 712 may be manufactured using a method similar to the method described with respect to FIGS. 3-5. The second portion 716 may be heated to reduce the crystallinity and stiffness of the polymer fibers 713, while the metal wires 715 may impart additional radial strength and kink resistance to the elongated shaft 102 stiffness of the polymer fibers 713 in the second portion 716.



FIG. 8 is a schematic perspective view of another exemplary elongated shaft of the catheter medical device of FIG. 1. As shown in FIG. 8, in some embodiments, the elongated shaft 102 may include one or more axial reinforcement members which may impart additional axial strength and kink resistance to the elongated shaft 102. For example, FIG. 8 illustrates the elongated shaft 102 with a composite reinforcement member 812 having a braid structure 813 and a plurality of axial reinforcement members 815, for example, mono or multifilament polymeric fibers extending axially along the length of the elongated shaft 102 disposed between the inner layer 208 and the outer layer 210 (e.g., shown in FIG. 2). As discussed, the axial reinforcement members 815 may impart additional stiffness and kink resistance to the elongated shaft 102. The reinforcement member 812 may include crystalline polymeric materials similar to the reinforcement member 212 (shown in FIG. 2). The reinforcement member 812 may include a first portion 814 and a second portion 816. The reinforcement member 812 having braid 813 and the axial reinforcement members 815 may be manufactured using a method similar to the method illustrated in FIGS. 3-5. The second portion 816 may be heated to reduce the crystallinity and stiffness of the polymer material of the reinforcement member 812.



FIG. 9 is a schematic perspective view of another exemplary elongated shaft of the catheter medical device of FIG. 1. As shown, in some embodiments, the elongated shaft 102 may include a reinforcement member with two or more materials having different degrees of crystallinity. For example, FIG. 9 depicts the elongated shaft 102 with a reinforcement member 912 having a first portion 914 made of a first material having a first degree of crystallinity and a second portion 916 made of a second material having a second degree of crystallinity. The material of the second portion 916 may have a degree of crystallinity lower than the degree of crystallinity of the first portion 914 to make the second portion 916 more flexible than the first portion 914. The reinforcement member 912 may be manufactured using a method similar to the method described in relation to FIGS. 3-5. After extrusion of the inner layer 208 on the mandrel 300, the first portion 914, which may be a braid of a suitable polymeric material such as ultra-high molecular weight polyethylene (UHMWPE), can be disposed over inner layer 208 at a proximal end portion of the elongated shaft 102. Then, the second portion 916, for example a braid of a suitable polymeric material having a degree of crystallinity less than the ultra-high molecular weight polyethylene (UHMWPE) braid, may be disposed over the inner layer 208 at a distal end portion of the elongated shaft 102. The first portion 914 and the second portion 916 may be made of one or more crystalline polymer or polymeric materials such as an ultra-high molecular weight polyethelene (UHMWPE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester, ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers), polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene, polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), liquid crystal polymers (LSP), polyaramid polymetaphenylene isopthalamide, polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide, polysulfone, nylon, nylon-12, perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene), polycarbonates copolymers, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. The first portion 914 and the second portion 916 may be attached together through mechanical or chemical means, such as adhesives, filaments, or the like. Further, the outer layer 210 may be extruded over the reinforcement member 912 to form the elongated shaft 102.


The materials that can be used for the various components of catheter 100 (and/or other medical devices and/or catheter shafts disclosed herein) may include those commonly associated with medical devices. For simplicity purposes, the following discussion makes reference to elongated shaft 102 and other components of catheter 100. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other similar tubular members and/or components of tubular members or devices disclosed herein.


Elongated shaft 102 and/or other components of catheter 100 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluorethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, utylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene, polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide, polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®), other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®), and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.


In at least some embodiments, portions or all of elongated shaft 102 may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of catheter 100 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of catheter 100 to achieve the same result. In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility may be imparted into the catheter 100. For example, portions of device may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. In some of these and in other embodiments, portions of the catheter 100 may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.


It is to be understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A medical device, comprising: an elongated shaft including at least one reinforcement member, the reinforcement member selected from the group consisting of a braid, coil, wire, ribbon, or fiber;an inner layer and an outer layer, the reinforcement member disposed therebetween;the reinforcement member including a first portion and a second portion; andthe first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
  • 2. The medical device of claim 1, wherein the inner layer includes polytetrafluoroethylene.
  • 3. The medical device of claim 1, wherein the inner layer includes fluorinated ethylene propylene.
  • 4. The medical device of claim 1, wherein the outer layer includes polyether block amide.
  • 5. The medical device of claim 1, wherein the outer layer includes a blend of polyether block amide and polyurethane.
  • 6. The medical device of claim 1, wherein the reinforcement member is a polymeric braid.
  • 7. The medical device of claim 1, wherein the reinforcement member is a polymeric coil.
  • 8. The medical device of claim 1, wherein the reinforcement member includes an ultra-high molecular weight polyethylene braid.
  • 9. The medical device of claim 1, wherein the second degree of polymeric crystallinity of the second portion is lower than the first degree of polymeric crystallinity of the first portion.
  • 10. The medical device of claim 1, wherein the reinforcement member comprises at least two materials.
  • 11. The medical device of claim 1, wherein the reinforcement member is at least partially embedded within the outer layer of the elongated shaft.
  • 12. The medical device of claim 1, wherein the elongated shaft includes the reinforcement member and an axial reinforcement member.
  • 13. The medical device of claim 1, wherein the reinforcement member is made of ultra-high molecular weight polyethylene.
  • 14. A method for manufacturing a medical device, the method comprising: forming an elongated shaft,wherein forming the elongated shaft includes forming a reinforcement member made of ultra-high molecular weight polyethylene, the reinforcement member having a first portion and a second portion;heating the elongated shaft;wherein forming the elongated shaft comprises forming the reinforcement member as a polymeric braid; andwherein heating the elongated shaft causes the first portion to have a first degree of polymeric crystallinity and the second portion to have a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
  • 15. The method of claim 14, wherein forming the elongated shaft comprises disposing the reinforcement member between an inner layer and an outer layer.
  • 16. The method of claim 14, wherein heating the elongated shaft causes the second degree of polymeric crystallinity to be lower than the first degree of polymeric crystallinity.
  • 17. The method of claim 14, wherein forming the elongated shaft comprises forming the reinforcement member from at least two materials.
  • 18. A method for manufacturing a medical device, the method comprising: forming an elongated shaft,wherein forming the elongated shaft includes forming a reinforcement member made of ultra-high molecular weight polyethylene, the reinforcement member having a first portion and a second portion;heating the elongated shaft;wherein heating the elongated shaft causes the first portion to have a first degree of polymeric crystallinity and the second portion to have a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity;wherein forming the elongated shaft comprises disposing the reinforcement member between an inner layer and an outer layer; andwherein the reinforcement member is selected from the group consisting of a braid, coil, wire, ribbon, or fiber.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application Ser. No. 61/978,551, filed Apr. 11, 2014, the entirety of which is incorporated herein by reference.

US Referenced Citations (343)
Number Name Date Kind
1553227 Feyk et al. Sep 1925 A
1866888 Hawley Jul 1932 A
2275827 Plensler Mar 1942 A
2413805 Vickers Jan 1947 A
2441166 Raspet May 1948 A
2561890 Stoddard Jul 1951 A
2722614 Fryklund Nov 1955 A
2857536 Light Oct 1958 A
2864017 Waltscheff Dec 1958 A
2871793 Michie et al. Feb 1959 A
3249776 Anderson et al. May 1966 A
3322984 Anderson May 1967 A
3334523 Rieser Aug 1967 A
3363470 Yavne Jan 1968 A
3452227 Welch Jun 1969 A
3452742 Muller Jul 1969 A
3463953 Maxwell Aug 1969 A
3512019 Durand May 1970 A
3544868 Bates Dec 1970 A
3625200 Muller Dec 1971 A
3686990 Margolien Aug 1972 A
3841308 Tate Oct 1974 A
3890977 Wilson Jun 1975 A
3906938 Fleischhacker Sep 1975 A
4000672 Sitterer et al. Jan 1977 A
4003369 Heilman et al. Jan 1977 A
4020829 Willson et al. May 1977 A
4142119 Madey Feb 1979 A
4215703 Willson Aug 1980 A
4318402 Vaillancourt Mar 1982 A
4330725 Hintz May 1982 A
4425919 Alston, Jr. et al. Jan 1984 A
4476754 Ducret Oct 1984 A
4482828 Vergues et al. Nov 1984 A
4545390 Leary Oct 1985 A
4547192 Brodsky et al. Oct 1985 A
4563181 Wijayarathna et al. Jan 1986 A
4574670 Johnson Mar 1986 A
4580551 Siegmund et al. Apr 1986 A
4583404 Bernard et al. Apr 1986 A
4635270 Gurs Jan 1987 A
4665906 Jervis May 1987 A
4721117 Mar et al. Jan 1988 A
4737153 Shimamura et al. Apr 1988 A
4763647 Gambale Aug 1988 A
4774949 Fogarty Oct 1988 A
4781092 Gaiser Nov 1988 A
4781186 Simpson et al. Nov 1988 A
4786220 Fildes et al. Nov 1988 A
4790331 Okada et al. Dec 1988 A
4800890 Cramer Jan 1989 A
4811743 Stevens Mar 1989 A
4827941 Taylor et al. May 1989 A
4831858 Yoshizawa et al. May 1989 A
4832047 Sepetka et al. May 1989 A
4846186 Box et al. Jul 1989 A
4846193 Tremulis et al. Jul 1989 A
4867173 Leoni Sep 1989 A
4875489 Messner et al. Oct 1989 A
4884579 Engelson Dec 1989 A
4911148 Sosnowski et al. Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922164 Jacobsen et al. May 1990 A
4922777 Kawabata May 1990 A
4932959 Horezewski et al. Jun 1990 A
4934380 De Toledo Jun 1990 A
4953553 Tremulis Sep 1990 A
4954022 Underwood et al. Sep 1990 A
4955384 Taylor et al. Sep 1990 A
4955862 Sepetka Sep 1990 A
4960410 Pinchuk Oct 1990 A
4964409 Tremulis Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4968306 Huss et al. Nov 1990 A
4985022 Fearnot et al. Jan 1991 A
4989608 Ratner Feb 1991 A
4990143 Sheridan Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4998923 Samson et al. Mar 1991 A
5007434 Doyle et al. Apr 1991 A
5009137 Dannatt Apr 1991 A
5040543 Badera et al. Aug 1991 A
5050606 Tremulis Sep 1991 A
5052404 Hodgson Oct 1991 A
5059177 Towne et al. Oct 1991 A
5063935 Gambale Nov 1991 A
5095915 Engelson Mar 1992 A
5106455 Jacobsen et al. Apr 1992 A
5109830 Cho May 1992 A
5125395 Adair Jun 1992 A
5135531 Shiber Aug 1992 A
5144959 Gambale et al. Sep 1992 A
5147317 Shank et al. Sep 1992 A
5181668 Tsuji et al. Jan 1993 A
5195984 Schatz Mar 1993 A
5205830 Dassa et al. Apr 1993 A
5211183 Wilson May 1993 A
5228441 Lundquist Jul 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242759 Hall Sep 1993 A
5243996 Hall Sep 1993 A
5250069 Nobuyoshi et al. Oct 1993 A
5254106 Feaster Oct 1993 A
5254107 Soltesz Oct 1993 A
5256144 Kraus et al. Oct 1993 A
5257974 Cox Nov 1993 A
5259393 Corso, Jr. et al. Nov 1993 A
5267979 Appling et al. Dec 1993 A
5267982 Sylvanowicz Dec 1993 A
5279562 Sirhan et al. Jan 1994 A
5284128 Hart Feb 1994 A
5300032 Hibbs et al. Apr 1994 A
5304131 Paskar Apr 1994 A
5306252 Yutori et al. Apr 1994 A
5308435 Ruggles et al. May 1994 A
5315906 Ferenczi et al. May 1994 A
5315996 Lundquist May 1994 A
5316706 Muni May 1994 A
5322064 Lundquist Jun 1994 A
5329923 Lundquist Jul 1994 A
5333620 Moutafis et al. Aug 1994 A
5334145 Lundquist et al. Aug 1994 A
5336205 Zenzen et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5345937 Middleman et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5358493 Schweich et al. Oct 1994 A
5365942 Shank Nov 1994 A
5365943 Jansen Nov 1994 A
5368564 Savage Nov 1994 A
5376084 Bacich et al. Dec 1994 A
5381782 Delarama et al. Jan 1995 A
5406960 Corso, Jr. Apr 1995 A
5411476 Abrams et al. May 1995 A
5437288 Schwartz et al. Aug 1995 A
5438993 Lynch et al. Aug 1995 A
5439000 Gunderson et al. Aug 1995 A
5441483 Avitall Aug 1995 A
5441489 Utsumi et al. Aug 1995 A
5447812 Fukuda et al. Sep 1995 A
5454787 Lundquist Oct 1995 A
5460187 Daigle et al. Oct 1995 A
5470330 Goldenberg et al. Nov 1995 A
5476701 Berger Dec 1995 A
5477856 Lundquist Dec 1995 A
5480382 Hammerslag et al. Jan 1996 A
5496294 Hergenrother et al. Mar 1996 A
5497785 Viera Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507729 Lindenberg et al. Apr 1996 A
5507751 Goode et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5520194 Miyata et al. May 1996 A
5520645 Imran et al. May 1996 A
5531719 Takahashi Jul 1996 A
5533985 Wang Jul 1996 A
5546958 Thorud et al. Aug 1996 A
5551444 Finlayson Sep 1996 A
5554139 Okajima Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5569197 Helmus et al. Oct 1996 A
5569200 Umeno et al. Oct 1996 A
5569218 Berg Oct 1996 A
5571073 Castillo Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5584821 Hobbs et al. Dec 1996 A
5599326 Carter Feb 1997 A
5599492 Engelson Feb 1997 A
5601539 Corso, Jr. Feb 1997 A
5605162 Mirzaee et al. Feb 1997 A
5622184 Ashby et al. Apr 1997 A
5630806 Inagaki et al. May 1997 A
5637089 Abrams et al. Jun 1997 A
5656011 Uihlein et al. Aug 1997 A
5658264 Samson et al. Aug 1997 A
5666968 Imran et al. Sep 1997 A
5666969 Urick et al. Sep 1997 A
5669926 Aust et al. Sep 1997 A
5676659 McGurk et al. Oct 1997 A
5676697 McDonald Oct 1997 A
5682894 Orr et al. Nov 1997 A
5690120 Jacobsen et al. Nov 1997 A
5702373 Samson Dec 1997 A
5720300 Fagan et al. Feb 1998 A
5722609 Murakami Mar 1998 A
5728063 Preissman et al. Mar 1998 A
5741429 Donadio, III et al. Apr 1998 A
5746701 Noone May 1998 A
5769830 Parker Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5782809 Umeno et al. Jul 1998 A
5788653 Lorenzo Aug 1998 A
5788654 Schwager Aug 1998 A
5788707 Del Toro et al. Aug 1998 A
5792124 Horrigan et al. Aug 1998 A
5797856 Frisbie et al. Aug 1998 A
5800454 Jacobsen et al. Sep 1998 A
5807075 Jacobsen et al. Sep 1998 A
5807249 Quin et al. Sep 1998 A
5810885 Zinger Sep 1998 A
5813996 St. Germain et al. Sep 1998 A
5827225 Ma Schwab Oct 1998 A
5827242 Follmer et al. Oct 1998 A
5833632 Jacobsen et al. Nov 1998 A
5836923 Mayer Nov 1998 A
5836926 Peterson et al. Nov 1998 A
5843050 Jones et al. Dec 1998 A
5843244 Pelton et al. Dec 1998 A
5851203 Van Minden Dec 1998 A
5895378 Nita Apr 1999 A
5897537 Berg et al. Apr 1999 A
5902254 Magram May 1999 A
5902290 Peacock et al. May 1999 A
5904657 Unsworth et al. May 1999 A
5906618 Larson, III et al. May 1999 A
5911715 Berg et al. Jun 1999 A
5911717 Jacobsen et al. Jun 1999 A
5916177 Schwager Jun 1999 A
5916178 Noone et al. Jun 1999 A
5916194 Jacobsen et al. Jun 1999 A
5931830 Jacobsen et al. Aug 1999 A
5935108 Katoh et al. Aug 1999 A
5947940 Beisel Sep 1999 A
5951539 Nita et al. Sep 1999 A
5971975 Mills et al. Oct 1999 A
6001068 Uchino et al. Dec 1999 A
6004279 Crowley et al. Dec 1999 A
6014919 Jacobsen et al. Jan 2000 A
6017319 Jacobsen et al. Jan 2000 A
6022343 Johnson et al. Feb 2000 A
6022369 Jacobsen et al. Feb 2000 A
6024730 Pagan Feb 2000 A
6027461 Walker et al. Feb 2000 A
6042553 Solar et al. Mar 2000 A
6045547 Ren et al. Apr 2000 A
6048339 Zirps et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6063101 Jacobsen et al. May 2000 A
6063200 Jacobsen et al. May 2000 A
6066361 Jacobsen et al. May 2000 A
6106485 McMahon Aug 2000 A
6106488 Fleming et al. Aug 2000 A
6139510 Palermo Oct 2000 A
6165292 Abrams et al. Dec 2000 A
6171296 Chow Jan 2001 B1
6183410 Jacobsen et al. Feb 2001 B1
6193686 Estrada et al. Feb 2001 B1
6197014 Samson et al. Mar 2001 B1
6203485 Urick Mar 2001 B1
6214042 Jacobsen et al. Apr 2001 B1
6228073 Noone et al. May 2001 B1
6248082 Jafari Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6254549 Ramzipoor Jul 2001 B1
6260458 Jacobsen et al. Jul 2001 B1
6273404 Holman et al. Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6290656 Boyle et al. Sep 2001 B1
6296616 McMahon Oct 2001 B1
6296631 Chow Oct 2001 B2
6302870 Jacobsen et al. Oct 2001 B1
6325790 Trotta Dec 2001 B1
6338725 Hermann et al. Jan 2002 B1
6346091 Jacobsen et al. Feb 2002 B1
6352515 Anderson et al. Mar 2002 B1
6355005 Powell et al. Mar 2002 B1
6355027 Le et al. Mar 2002 B1
6368315 Gillis et al. Apr 2002 B1
6368316 Jansen Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6375774 Lunn et al. Apr 2002 B1
6379369 Abrams et al. Apr 2002 B1
6390993 Cornish et al. May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6428489 Jacobsen et al. Aug 2002 B1
6428512 Anderson et al. Aug 2002 B1
6431039 Jacobsen et al. Aug 2002 B1
6440088 Jacobsen et al. Aug 2002 B1
6478778 Jacobsen et al. Nov 2002 B1
6488637 Eder et al. Dec 2002 B1
6491648 Cornish et al. Dec 2002 B1
6491671 Larson, III et al. Dec 2002 B1
6503244 Hayman Jan 2003 B2
6508803 Horikawa et al. Jan 2003 B1
6524301 Wilson et al. Feb 2003 B1
6530934 Jacobsen et al. Mar 2003 B1
6547779 Levine et al. Apr 2003 B2
6553880 Jacobsen et al. Apr 2003 B2
6556873 Smits Apr 2003 B1
6579246 Jacobsen et al. Jun 2003 B2
6602280 Chobotov Aug 2003 B2
6610046 Usami et al. Aug 2003 B1
6623448 Slater Sep 2003 B2
6636758 Sanchez et al. Oct 2003 B2
6638266 Wilson et al. Oct 2003 B2
6652508 Griffin et al. Nov 2003 B2
6682493 Mirigian Jan 2004 B2
6712826 Lui Mar 2004 B2
6730095 Olson, Jr. et al. May 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6766720 Jacobsen et al. Jul 2004 B1
6777644 Peacock, III et al. Aug 2004 B2
6811544 Schaer Nov 2004 B2
6837898 Boyle et al. Jan 2005 B2
6866642 Kellerman et al. Mar 2005 B2
6887235 O'Connor et al. May 2005 B2
6918882 Skujins et al. Jul 2005 B2
6997937 Jacobsen et al. Feb 2006 B2
7001369 Griffin et al. Feb 2006 B2
7074197 Reynolds et al. Jul 2006 B2
7540865 Griffin et al. Jun 2009 B2
7914466 Davis et al. Mar 2011 B2
7955272 Rooney et al. Jun 2011 B2
8048004 Davis et al. Nov 2011 B2
8048060 Griffin et al. Nov 2011 B2
8182465 Griffin et al. May 2012 B2
20020013540 Jacobsen et al. Jan 2002 A1
20020019599 Rooney et al. Feb 2002 A1
20030009208 Snyder et al. Jan 2003 A1
20030060732 Jacobsen et al. Mar 2003 A1
20030069520 Skujins et al. Apr 2003 A1
20030069521 Reynolds et al. Apr 2003 A1
20030069522 Jacobsen et al. Apr 2003 A1
20040167437 Sharrow et al. Aug 2004 A1
20040181174 Davis et al. Sep 2004 A2
20040181176 Jafari et al. Sep 2004 A1
20060004168 Greer Jan 2006 A1
20060189896 Davis et al. Aug 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20070270779 Jacobs Nov 2007 A1
20080021347 Jacobsen et al. Jan 2008 A1
20080021348 Jacobsen et al. Jan 2008 A1
20080021400 Jacobsen et al. Jan 2008 A1
20080021401 Jacobsen et al. Jan 2008 A1
20080021402 Jacobsen et al. Jan 2008 A1
20080021403 Jacobsen et al. Jan 2008 A1
20080021405 Jacobsen et al. Jan 2008 A1
20080021406 Jacobsen et al. Jan 2008 A1
20080021407 Jacobsen et al. Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080077119 Snyder et al. Mar 2008 A1
20120041094 Oral Feb 2012 A1
Foreign Referenced Citations (129)
Number Date Country
723040 Dec 1997 AU
733966 Apr 1998 AU
9712829 Jan 2000 BR
2266685 May 2006 CA
1230914 Oct 1999 CN
2539191 Mar 1976 DE
3621967 Jan 1988 DE
0045931 Feb 1982 EP
0069522 Jan 1983 EP
0087933 Sep 1983 EP
0111044 Jun 1984 EP
0181174 May 1986 EP
0377453 Jul 1990 EP
0521595 Jan 1993 EP
0565065 Oct 1993 EP
0608853 Aug 1994 EP
0778038 Jun 1997 EP
0778039 Jun 1997 EP
0778040 Jun 1997 EP
0790066 Aug 1997 EP
0807446 Nov 1997 EP
0812599 Dec 1997 EP
0865772 Sep 1998 EP
0865773 Sep 1998 EP
0917885 May 1999 EP
0937481 Aug 1999 EP
0935947 Dec 2004 EP
0934141 Nov 2005 EP
2214354 Aug 1989 GB
2257269 Jan 1993 GB
588522 Jan 1983 JP
60091858 May 1985 JP
61022752 Jan 1986 JP
62023361 Jan 1987 JP
62089470 Apr 1987 JP
62299277 Dec 1987 JP
63093516 Apr 1988 JP
63181774 Jul 1988 JP
63217966 Sep 1988 JP
1089956 Apr 1989 JP
1135363 May 1989 JP
1158936 Jun 1989 JP
2107268 Apr 1990 JP
3081831 Apr 1991 JP
3122850 Dec 1991 JP
4061840 Feb 1992 JP
4099963 Mar 1992 JP
4213069 Aug 1992 JP
4213070 Aug 1992 JP
4236965 Aug 1992 JP
5149969 Jun 1993 JP
5506806 Oct 1993 JP
5309519 Nov 1993 JP
5507857 Nov 1993 JP
6501179 Feb 1994 JP
631749 Apr 1994 JP
6169996 Jun 1994 JP
663224 Sep 1994 JP
6312313 Nov 1994 JP
728562 May 1995 JP
7124164 May 1995 JP
7124263 May 1995 JP
7136280 May 1995 JP
7148264 Jun 1995 JP
7505561 Jun 1995 JP
7037199 Jul 1995 JP
7185009 Jul 1995 JP
7255855 Oct 1995 JP
7275366 Oct 1995 JP
751067 Nov 1995 JP
8229888 Jul 1996 JP
8509141 Oct 1996 JP
8317988 Dec 1996 JP
9000164 Apr 1997 JP
9276413 Oct 1997 JP
9294813 Nov 1997 JP
10118193 May 1998 JP
10305039 Nov 1998 JP
10328191 Dec 1998 JP
11226131 Aug 1999 JP
11267224 Oct 1999 JP
2000197704 Jul 2000 JP
2000510722 Aug 2000 JP
2000511083 Aug 2000 JP
2001500808 Jan 2001 JP
2002529137 Sep 2002 JP
2002542901 Dec 2002 JP
2002543896 Dec 2002 JP
2003517893 Jun 2003 JP
3649604 Feb 2005 JP
2005534407 Nov 2005 JP
712908 Aug 1980 SU
758421 Aug 1980 SU
1529365 Dec 1989 SU
9002520 Mar 1990 WO
9113364 Sep 1991 WO
9204072 Mar 1992 WO
9304722 Mar 1992 WO
9207619 May 1992 WO
9311313 Jun 1993 WO
9524263 Sep 1995 WO
9619255 Jun 1996 WO
9710022 Mar 1997 WO
9725914 Jul 1997 WO
9743949 Nov 1997 WO
9744083 Nov 1997 WO
9744086 Nov 1997 WO
9810694 Jul 1998 WO
9904847 Feb 1999 WO
9911313 Mar 1999 WO
0027303 May 2000 WO
0030710 Jun 2000 WO
0048645 Aug 2000 WO
0057943 Oct 2000 WO
0066199 Nov 2000 WO
0072907 Dec 2000 WO
0128620 Apr 2001 WO
0136034 May 2001 WO
0145773 Jun 2001 WO
0145912 Jun 2001 WO
0067845 Nov 2001 WO
0193920 Dec 2001 WO
0213682 Feb 2002 WO
02062540 Aug 2002 WO
03004086 Jan 2003 WO
03008148 Jan 2003 WO
2004012804 Feb 2004 WO
2004047899 Jun 2004 WO
2012116337 Aug 2012 WO
Related Publications (1)
Number Date Country
20150290423 A1 Oct 2015 US
Provisional Applications (1)
Number Date Country
61978551 Apr 2014 US