The present disclosure pertains generally, but not by way of limitation, to medical devices and methods for manufacturing medical devices. More particularly, the present disclosure pertains to elongated intracorporeal medical devices including a tubular member connected with other structures, and methods for manufacturing and using such devices.
A wide variety of intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.
The invention provides design, material, and manufacturing method alternatives for medical devices. In a first example, a medical device comprises an elongated shaft including a reinforcement member, the reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
Alternatively or additionally to the above example, in another example, the elongated shaft includes an inner layer and an outer layer.
Alternatively or additionally to any of the examples above, in another example, the inner layer includes polytetrafluoroethylene.
Alternatively or additionally to any of the examples above, in another example, the inner layer includes fluorinated ethylene propylene.
Alternatively or additionally to any of the examples above, in another example, the outer layer includes polyether block amide.
Alternatively or additionally to any of the examples above, in another example, the outer layer includes a blend of polyether block amide and polyurethane.
Alternatively or additionally to any of the examples above, in another example, the reinforcement member is disposed between the inner layer and the outer layer.
Alternatively or additionally to any of the examples above, in another example, the reinforcement member includes a polymeric braid.
Alternatively or additionally to any of the examples above, in another example, the reinforcement member includes a polymeric coil.
Alternatively or additionally to any of the examples above, in another example, the reinforcement member includes ultra-high molecular weight polyethylene braid.
Alternatively or additionally to any of the examples above, in another example, the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity lower than the first degree of polymeric crystallinity.
Alternatively or additionally to any of the examples above, in another example, the reinforcement member comprising at least two materials.
Alternatively or additionally to any of the examples above, in another example, the reinforcement member is at least partially embedded within the outer layer of the elongated shaft.
Alternatively or additionally to any of the examples above, in another example, the elongated shaft including the reinforcement member and an axial reinforcement member.
Furthermore, another example includes a method for manufacturing a medical device, the method comprising: forming an elongated shaft, wherein forming the elongated shaft includes a reinforcement layer having a first portion and a second portion; heating the elongated shaft; and wherein heating the elongated shaft causes the first portion to have a first degree of polymeric crystallinity and the second portion to have a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
Alternatively or additionally to any of the examples above, another example includes, forming the elongated shaft comprises disposing the reinforcement member between an inner layer and an outer layer.
Alternatively or additionally to any of the examples above, another example includes, forming the elongated shaft comprises the reinforcement member including a polymeric braid.
Alternatively or additionally to any of the examples above, another example includes forming the elongated shaft comprises the reinforcement member including ultra-high molecular weight polyethylene braid.
Alternatively or additionally to any of the examples above, another example includes heating the elongated shaft comprises the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity lower than the first degree of polymeric crystallinity.
Alternatively or additionally to any of the examples above, another example includes forming the elongated shaft comprises the reinforcement member comprising at least two materials.
Alternatively or additionally to any of the examples above, another example includes forming the elongated shaft comprises the elongated shaft including the reinforcement member and an axial reinforcement member.
Furthermore, another example includes a medical device, comprising: an elongated shaft including a reinforcement member; the reinforcement member comprising at least two materials and the reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
Furthermore, another example includes a medical device, comprising: an elongated shaft including a reinforcement member and an axial reinforcement member, the reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
Furthermore, another example includes a medical device, comprising: an elongated shaft including an axial reinforcement member, the axial reinforcement member including a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
Furthermore, another example includes a medical device, comprising: an elongated shaft including an inner polymeric layer and an outer polymeric layer, a reinforcement member disposed over the inner polymeric layer and at least partially embedded within the outer polymeric layer, the outer polymeric layer disposed over the inner polymeric layer and the reinforcement member, the reinforcement member including ultra-high molecular weight polyethylene braid having a first portion and a second portion; and the first portion having a first degree of polymeric crystallinity and the second portion having a second degree of polymeric crystallinity different than the first degree of polymeric crystallinity.
The above summary of some examples and embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Brief Description of the Drawings, and Detailed Description, which follow, more particularly exemplify these embodiments, but are also intended as exemplary and not limiting.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention.
Definitions of certain terms are provided below and shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same or substantially the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include or otherwise refer to singular as well as plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed to include “and/or,” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or able to be arranged with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.
The following detailed description should be read with reference to the drawings, in which similar elements in different drawings are identified with the same reference numbers. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
The present disclosure pertains to medical devices made with materials having variable crystallinity and methods of manufacturing medical devices with materials having variable crystallinity. Crystallinity refers to the degree of structural order in a solid material. In a crystalline material, such as a crystalline polymer, atoms and molecules are arranged in a regular periodic manner. The degree of crystallinity of a material affects its physical properties such as stiffness, density, transparency or the like. For example, the stiffness of a material may change with the degree of crystallinity of the material. If a first material has a degree of crystallinity more than the degree of crystallinity of a second material, then the first material may be stiffer than the second material. A medical device including the first material disposed at a first portion and the second material disposed at a second portion may have a variable stiffness, e.g., the first portion of the medical device may be stiffer than the second portion, which may be desirable in various applications.
For example, many medical procedures require tracking catheters into tortuous intracorporeal cavities, such as blood vessels. Catheters need variable stiffness along their length to exhibit desirable properties such as maneuverability through tortuous paths, kink resistance, atraumatic distal end, and the like. For example, a catheter can advantageously include a proximal portion having sufficient stiffness to allow an operator to push and torque the catheter, from a proximal end, to maneuver the catheter in a patient's body without kinking. In addition, the catheter can include a distal portion with sufficient flexibility to be advanced into tortuous anatomy. Further, the distal tip of the catheter can be sufficiently flexible to prevent trauma to surrounding tissue upon contact.
In some embodiments, a method of manufacturing medical devices, such as catheters, with a material having variable stiffness may include changing the degree of crystallinity of the material disposed within the medical device on different portions of the medical device. Depending on the initial crystallinity and method of cooling of a material, the degree of crystallinity of the material can be changed by a number of methods, for example, heating certain crystalline polymeric materials such as polyethelene, nylon, PEEK, or the like in their respective crystalline melt range reduces the degree of crystallinity of the polymeric materials. Thus, heating a portion of the medical device to a suitable temperature range may make the material disposed within that portion less stiff compared to other unaltered portions of the medical device.
The present disclosure describes various example embodiments of a catheter having at least one reinforcement member made of a material that may be configured with a variable range of crystallinity. For example, in some embodiments, a catheter may have two portions, a first portion and a second portion. The second portion of the catheter may be heated to reduce the degree of crystallinity of the reinforcement member in the second portion to make the reinforcement member less stiff in the second portion as compared to the first portion. Consequently, the second portion of the catheter may become less stiff than the first portion of the catheter. Embodiments also include catheters, or other medical devices, having more than two portions. However, such a reinforcement member with variable stiffness can be included in many other medical devices such as balloon catheters, stent delivery catheters, guidewires, implants, or the like to vary their stiffness at a desired location.
The inner layer 208 may provide a smooth frictionless surface along the lumen 206 to dispose the additional medical devices in the elongated shaft 102. The outer layer 210 may provide a frictionless biocompatible outer surface to the elongated shaft 102 to maneuver the elongated shaft in a patient's body without damaging surrounding tissue. In some embodiments, the inner layer 208 and the outer layer 210 may be made of the same or different material. For example, the inner layer 208 may include materials, such as polytetrafluroethylene (PTFE), fluorinated ethylene propylene (FEP) or the like or a blend of such materials. The outer layer 210 may include materials such as polyether block amide (PBA), polyurethane or the like or a blend of such materials.
The reinforcement member 212 may include wires, fibers, ribbons, or the like arranged in various ways to provide sufficient stiffness to the catheter 100. For example, as shown, the reinforcement member 212 may have a mono-filament or multi-filament braided structure. The reinforcement member 212 may be an axial or a biaxial braid with a suitable reinforcing braid pitch and angle. Other embodiments of the reinforcement member 212 may include a coil, sheath, foam, or the like.
The reinforcement member 212 may have a variable crystallinity along the length of the elongated shaft 102 and may provide variable stiffness to the elongated shaft 102. In some embodiments, the reinforcement member 212 may have multiple portions, each having a different crystallinity, along the length of the elongated shaft 102. For example, as shown, the reinforcement member 212 may include a first portion 214 (a proximal end portion) and a second portion 216 (a distal end portion) along the length of the catheter 100. The first portion 214 may include a material of a first degree of crystallinity and the second portion 216 may include a material of a second degree of crystallinity different than the material of the first portion 214. In some embodiments, the first portion 214 and the second portion 216 may be made of polymers with different crystallinity. In some other embodiments, the reinforcement member 212 may be made up of a single polymeric material, and the crystallinity of the material in the first portion 214 or the second portion 216 may be modified by heating or other suitable methods.
In at least some embodiments, the reinforcement member 212 may be made of one or more crystalline polymer or polymeric materials such as an ultra-high molecular weight polyethelene (UHMWPE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester, ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers), polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene, polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), liquid crystal polymers (LSP), polyaramid polymetaphenylene isopthalamide, polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide, polysulfone, nylon, nylon-12, perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene), polycarbonate copolymers, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like.
Referring to
The process for manufacturing elongated shaft 102 (e.g., the extrusion process) may allow for relatively thin elongated shafts 102 to be manufactured. For example, elongated shaft 102 may have a wall thickness as low as about 0.0005 to 0.0010 inches (0.003 to 0.0025 centimeters), or about 0.001 to 0.002 inches (0.003 to 0.005 centimeters), or about 0.0015 inches (0.0038 centimeters). In general, the process may allow for elongated shafts 102 to be manufactured having relatively larger inner diameters while still maintaining relatively small outer diameters. The process may also result in relatively strong elongated shafts 102. For example, elongated shaft 102 may have a tensile strength capable of withstanding forces up to about 10-20 foot-pounds (14 to 27 joules), or up to about 12-18 foot-pounds (16 to 24 joules), or up to about 16 foot-pounds (22 joules). For example, elongated shaft 102 may be capable of withstanding pressures exceeding 800 psi (5516 kilopascal, or exceeding 1000 psi (6895 kilopascal), or exceeding 1200 psi (8274 kilopascal). The presence of reinforcement member 212 may also provide elongated shaft 102 with enhanced cut resistance, tear resistance, kink resistance, etc. These features may be further enhanced when reinforcement member 212 is positioned at or near the outer surface of elongated shaft 102.
The reinforcement member 212 may be placed over the inner layer 208 forming a reinforcing layer to provide stiffness to the elongated shaft 102. The reinforcement member 212 may be formed by disposing a braid of a crystalline polymeric material over the inner layer 208. The reinforcement member 212 may be formed as an axial or a biaxial braid of a suitable crystalline material with a suitable pitch angle to impart strength to the reinforcement member 212.
Then, a resin of suitable polymeric material, such as, but not limited to, polyether block amide (PBA), polyurethane or a blend of the two materials may be extruded over the reinforcement member 212 and the inner layer 208 to form the outer layer 210. The outer layer 210 may fill the voids or gaps in the braid such that the reinforcement member 212 may at least partially embed within the outer layer 210 forming a sandwich like structure. In some embodiments, the outer layer 210 may fully cover the reinforcement member 212 so as to provide a smooth surface for contact with surrounding tissue. In some other embodiments, the outer layer 210 may partially cover the reinforcement member 212 such that a portion of the reinforcement member 212 is exposed to the surrounding tissue.
In some embodiments, the heater 400 may heat the second portion 216 with a gradual temperature gradient or ramp in the crystalline melt range of the material of the reinforcement member 212. For example, if the reinforcement member 212 is an ultra-high molecular weight polyethylene (UHMWPE) braid, the heater 400 may heat the second portion 216 in a gradually increasing temperature ramp ranging from 300° F. (149° C.) at the proximal end of the second portion 216 to 350° F. (177° C.) at the distal end of the second portion 216. As a consequence, the graded heating of the second portion 216 may create a gradually decreasing degree of crystallinity and stiffness in the second portion 216 from the proximal end to the distal end of the second portion 216.
The materials that can be used for the various components of catheter 100 (and/or other medical devices and/or catheter shafts disclosed herein) may include those commonly associated with medical devices. For simplicity purposes, the following discussion makes reference to elongated shaft 102 and other components of catheter 100. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other similar tubular members and/or components of tubular members or devices disclosed herein.
Elongated shaft 102 and/or other components of catheter 100 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluorethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, utylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene, polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide, polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.
Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®), other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®), and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.
In at least some embodiments, portions or all of elongated shaft 102 may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of catheter 100 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of catheter 100 to achieve the same result. In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility may be imparted into the catheter 100. For example, portions of device may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. In some of these and in other embodiments, portions of the catheter 100 may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
It is to be understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application Ser. No. 61/978,551, filed Apr. 11, 2014, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1553227 | Feyk et al. | Sep 1925 | A |
1866888 | Hawley | Jul 1932 | A |
2275827 | Plensler | Mar 1942 | A |
2413805 | Vickers | Jan 1947 | A |
2441166 | Raspet | May 1948 | A |
2561890 | Stoddard | Jul 1951 | A |
2722614 | Fryklund | Nov 1955 | A |
2857536 | Light | Oct 1958 | A |
2864017 | Waltscheff | Dec 1958 | A |
2871793 | Michie et al. | Feb 1959 | A |
3249776 | Anderson et al. | May 1966 | A |
3322984 | Anderson | May 1967 | A |
3334523 | Rieser | Aug 1967 | A |
3363470 | Yavne | Jan 1968 | A |
3452227 | Welch | Jun 1969 | A |
3452742 | Muller | Jul 1969 | A |
3463953 | Maxwell | Aug 1969 | A |
3512019 | Durand | May 1970 | A |
3544868 | Bates | Dec 1970 | A |
3625200 | Muller | Dec 1971 | A |
3686990 | Margolien | Aug 1972 | A |
3841308 | Tate | Oct 1974 | A |
3890977 | Wilson | Jun 1975 | A |
3906938 | Fleischhacker | Sep 1975 | A |
4000672 | Sitterer et al. | Jan 1977 | A |
4003369 | Heilman et al. | Jan 1977 | A |
4020829 | Willson et al. | May 1977 | A |
4142119 | Madey | Feb 1979 | A |
4215703 | Willson | Aug 1980 | A |
4318402 | Vaillancourt | Mar 1982 | A |
4330725 | Hintz | May 1982 | A |
4425919 | Alston, Jr. et al. | Jan 1984 | A |
4476754 | Ducret | Oct 1984 | A |
4482828 | Vergues et al. | Nov 1984 | A |
4545390 | Leary | Oct 1985 | A |
4547192 | Brodsky et al. | Oct 1985 | A |
4563181 | Wijayarathna et al. | Jan 1986 | A |
4574670 | Johnson | Mar 1986 | A |
4580551 | Siegmund et al. | Apr 1986 | A |
4583404 | Bernard et al. | Apr 1986 | A |
4635270 | Gurs | Jan 1987 | A |
4665906 | Jervis | May 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4737153 | Shimamura et al. | Apr 1988 | A |
4763647 | Gambale | Aug 1988 | A |
4774949 | Fogarty | Oct 1988 | A |
4781092 | Gaiser | Nov 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4786220 | Fildes et al. | Nov 1988 | A |
4790331 | Okada et al. | Dec 1988 | A |
4800890 | Cramer | Jan 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827941 | Taylor et al. | May 1989 | A |
4831858 | Yoshizawa et al. | May 1989 | A |
4832047 | Sepetka et al. | May 1989 | A |
4846186 | Box et al. | Jul 1989 | A |
4846193 | Tremulis et al. | Jul 1989 | A |
4867173 | Leoni | Sep 1989 | A |
4875489 | Messner et al. | Oct 1989 | A |
4884579 | Engelson | Dec 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4917102 | Miller et al. | Apr 1990 | A |
4922164 | Jacobsen et al. | May 1990 | A |
4922777 | Kawabata | May 1990 | A |
4932959 | Horezewski et al. | Jun 1990 | A |
4934380 | De Toledo | Jun 1990 | A |
4953553 | Tremulis | Sep 1990 | A |
4954022 | Underwood et al. | Sep 1990 | A |
4955384 | Taylor et al. | Sep 1990 | A |
4955862 | Sepetka | Sep 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4964409 | Tremulis | Oct 1990 | A |
4966163 | Kraus et al. | Oct 1990 | A |
4968306 | Huss et al. | Nov 1990 | A |
4985022 | Fearnot et al. | Jan 1991 | A |
4989608 | Ratner | Feb 1991 | A |
4990143 | Sheridan | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4998923 | Samson et al. | Mar 1991 | A |
5007434 | Doyle et al. | Apr 1991 | A |
5009137 | Dannatt | Apr 1991 | A |
5040543 | Badera et al. | Aug 1991 | A |
5050606 | Tremulis | Sep 1991 | A |
5052404 | Hodgson | Oct 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5063935 | Gambale | Nov 1991 | A |
5095915 | Engelson | Mar 1992 | A |
5106455 | Jacobsen et al. | Apr 1992 | A |
5109830 | Cho | May 1992 | A |
5125395 | Adair | Jun 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5144959 | Gambale et al. | Sep 1992 | A |
5147317 | Shank et al. | Sep 1992 | A |
5181668 | Tsuji et al. | Jan 1993 | A |
5195984 | Schatz | Mar 1993 | A |
5205830 | Dassa et al. | Apr 1993 | A |
5211183 | Wilson | May 1993 | A |
5228441 | Lundquist | Jul 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242759 | Hall | Sep 1993 | A |
5243996 | Hall | Sep 1993 | A |
5250069 | Nobuyoshi et al. | Oct 1993 | A |
5254106 | Feaster | Oct 1993 | A |
5254107 | Soltesz | Oct 1993 | A |
5256144 | Kraus et al. | Oct 1993 | A |
5257974 | Cox | Nov 1993 | A |
5259393 | Corso, Jr. et al. | Nov 1993 | A |
5267979 | Appling et al. | Dec 1993 | A |
5267982 | Sylvanowicz | Dec 1993 | A |
5279562 | Sirhan et al. | Jan 1994 | A |
5284128 | Hart | Feb 1994 | A |
5300032 | Hibbs et al. | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306252 | Yutori et al. | Apr 1994 | A |
5308435 | Ruggles et al. | May 1994 | A |
5315906 | Ferenczi et al. | May 1994 | A |
5315996 | Lundquist | May 1994 | A |
5316706 | Muni | May 1994 | A |
5322064 | Lundquist | Jun 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5333620 | Moutafis et al. | Aug 1994 | A |
5334145 | Lundquist et al. | Aug 1994 | A |
5336205 | Zenzen et al. | Aug 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5345945 | Hodgson et al. | Sep 1994 | A |
5358493 | Schweich et al. | Oct 1994 | A |
5365942 | Shank | Nov 1994 | A |
5365943 | Jansen | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5381782 | Delarama et al. | Jan 1995 | A |
5406960 | Corso, Jr. | Apr 1995 | A |
5411476 | Abrams et al. | May 1995 | A |
5437288 | Schwartz et al. | Aug 1995 | A |
5438993 | Lynch et al. | Aug 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441489 | Utsumi et al. | Aug 1995 | A |
5447812 | Fukuda et al. | Sep 1995 | A |
5454787 | Lundquist | Oct 1995 | A |
5460187 | Daigle et al. | Oct 1995 | A |
5470330 | Goldenberg et al. | Nov 1995 | A |
5476701 | Berger | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5480382 | Hammerslag et al. | Jan 1996 | A |
5496294 | Hergenrother et al. | Mar 1996 | A |
5497785 | Viera | Mar 1996 | A |
5507301 | Wasicek et al. | Apr 1996 | A |
5507729 | Lindenberg et al. | Apr 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5507766 | Kugo et al. | Apr 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5520194 | Miyata et al. | May 1996 | A |
5520645 | Imran et al. | May 1996 | A |
5531719 | Takahashi | Jul 1996 | A |
5533985 | Wang | Jul 1996 | A |
5546958 | Thorud et al. | Aug 1996 | A |
5551444 | Finlayson | Sep 1996 | A |
5554139 | Okajima | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5569197 | Helmus et al. | Oct 1996 | A |
5569200 | Umeno et al. | Oct 1996 | A |
5569218 | Berg | Oct 1996 | A |
5571073 | Castillo | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5584821 | Hobbs et al. | Dec 1996 | A |
5599326 | Carter | Feb 1997 | A |
5599492 | Engelson | Feb 1997 | A |
5601539 | Corso, Jr. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5622184 | Ashby et al. | Apr 1997 | A |
5630806 | Inagaki et al. | May 1997 | A |
5637089 | Abrams et al. | Jun 1997 | A |
5656011 | Uihlein et al. | Aug 1997 | A |
5658264 | Samson et al. | Aug 1997 | A |
5666968 | Imran et al. | Sep 1997 | A |
5666969 | Urick et al. | Sep 1997 | A |
5669926 | Aust et al. | Sep 1997 | A |
5676659 | McGurk et al. | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5682894 | Orr et al. | Nov 1997 | A |
5690120 | Jacobsen et al. | Nov 1997 | A |
5702373 | Samson | Dec 1997 | A |
5720300 | Fagan et al. | Feb 1998 | A |
5722609 | Murakami | Mar 1998 | A |
5728063 | Preissman et al. | Mar 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5746701 | Noone | May 1998 | A |
5769830 | Parker | Jun 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5788653 | Lorenzo | Aug 1998 | A |
5788654 | Schwager | Aug 1998 | A |
5788707 | Del Toro et al. | Aug 1998 | A |
5792124 | Horrigan et al. | Aug 1998 | A |
5797856 | Frisbie et al. | Aug 1998 | A |
5800454 | Jacobsen et al. | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5807249 | Quin et al. | Sep 1998 | A |
5810885 | Zinger | Sep 1998 | A |
5813996 | St. Germain et al. | Sep 1998 | A |
5827225 | Ma Schwab | Oct 1998 | A |
5827242 | Follmer et al. | Oct 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5836923 | Mayer | Nov 1998 | A |
5836926 | Peterson et al. | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5843244 | Pelton et al. | Dec 1998 | A |
5851203 | Van Minden | Dec 1998 | A |
5895378 | Nita | Apr 1999 | A |
5897537 | Berg et al. | Apr 1999 | A |
5902254 | Magram | May 1999 | A |
5902290 | Peacock et al. | May 1999 | A |
5904657 | Unsworth et al. | May 1999 | A |
5906618 | Larson, III et al. | May 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5916177 | Schwager | Jun 1999 | A |
5916178 | Noone et al. | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5931830 | Jacobsen et al. | Aug 1999 | A |
5935108 | Katoh et al. | Aug 1999 | A |
5947940 | Beisel | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
6001068 | Uchino et al. | Dec 1999 | A |
6004279 | Crowley et al. | Dec 1999 | A |
6014919 | Jacobsen et al. | Jan 2000 | A |
6017319 | Jacobsen et al. | Jan 2000 | A |
6022343 | Johnson et al. | Feb 2000 | A |
6022369 | Jacobsen et al. | Feb 2000 | A |
6024730 | Pagan | Feb 2000 | A |
6027461 | Walker et al. | Feb 2000 | A |
6042553 | Solar et al. | Mar 2000 | A |
6045547 | Ren et al. | Apr 2000 | A |
6048339 | Zirps et al. | Apr 2000 | A |
6056702 | Lorenzo | May 2000 | A |
6063101 | Jacobsen et al. | May 2000 | A |
6063200 | Jacobsen et al. | May 2000 | A |
6066361 | Jacobsen et al. | May 2000 | A |
6106485 | McMahon | Aug 2000 | A |
6106488 | Fleming et al. | Aug 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6165292 | Abrams et al. | Dec 2000 | A |
6171296 | Chow | Jan 2001 | B1 |
6183410 | Jacobsen et al. | Feb 2001 | B1 |
6193686 | Estrada et al. | Feb 2001 | B1 |
6197014 | Samson et al. | Mar 2001 | B1 |
6203485 | Urick | Mar 2001 | B1 |
6214042 | Jacobsen et al. | Apr 2001 | B1 |
6228073 | Noone et al. | May 2001 | B1 |
6248082 | Jafari | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6254549 | Ramzipoor | Jul 2001 | B1 |
6260458 | Jacobsen et al. | Jul 2001 | B1 |
6273404 | Holman et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6290656 | Boyle et al. | Sep 2001 | B1 |
6296616 | McMahon | Oct 2001 | B1 |
6296631 | Chow | Oct 2001 | B2 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6325790 | Trotta | Dec 2001 | B1 |
6338725 | Hermann et al. | Jan 2002 | B1 |
6346091 | Jacobsen et al. | Feb 2002 | B1 |
6352515 | Anderson et al. | Mar 2002 | B1 |
6355005 | Powell et al. | Mar 2002 | B1 |
6355027 | Le et al. | Mar 2002 | B1 |
6368315 | Gillis et al. | Apr 2002 | B1 |
6368316 | Jansen | Apr 2002 | B1 |
6375628 | Zadno-Azizi et al. | Apr 2002 | B1 |
6375774 | Lunn et al. | Apr 2002 | B1 |
6379369 | Abrams et al. | Apr 2002 | B1 |
6390993 | Cornish et al. | May 2002 | B1 |
6398758 | Jacobsen et al. | Jun 2002 | B1 |
6428489 | Jacobsen et al. | Aug 2002 | B1 |
6428512 | Anderson et al. | Aug 2002 | B1 |
6431039 | Jacobsen et al. | Aug 2002 | B1 |
6440088 | Jacobsen et al. | Aug 2002 | B1 |
6478778 | Jacobsen et al. | Nov 2002 | B1 |
6488637 | Eder et al. | Dec 2002 | B1 |
6491648 | Cornish et al. | Dec 2002 | B1 |
6491671 | Larson, III et al. | Dec 2002 | B1 |
6503244 | Hayman | Jan 2003 | B2 |
6508803 | Horikawa et al. | Jan 2003 | B1 |
6524301 | Wilson et al. | Feb 2003 | B1 |
6530934 | Jacobsen et al. | Mar 2003 | B1 |
6547779 | Levine et al. | Apr 2003 | B2 |
6553880 | Jacobsen et al. | Apr 2003 | B2 |
6556873 | Smits | Apr 2003 | B1 |
6579246 | Jacobsen et al. | Jun 2003 | B2 |
6602280 | Chobotov | Aug 2003 | B2 |
6610046 | Usami et al. | Aug 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6636758 | Sanchez et al. | Oct 2003 | B2 |
6638266 | Wilson et al. | Oct 2003 | B2 |
6652508 | Griffin et al. | Nov 2003 | B2 |
6682493 | Mirigian | Jan 2004 | B2 |
6712826 | Lui | Mar 2004 | B2 |
6730095 | Olson, Jr. et al. | May 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6766720 | Jacobsen et al. | Jul 2004 | B1 |
6777644 | Peacock, III et al. | Aug 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6837898 | Boyle et al. | Jan 2005 | B2 |
6866642 | Kellerman et al. | Mar 2005 | B2 |
6887235 | O'Connor et al. | May 2005 | B2 |
6918882 | Skujins et al. | Jul 2005 | B2 |
6997937 | Jacobsen et al. | Feb 2006 | B2 |
7001369 | Griffin et al. | Feb 2006 | B2 |
7074197 | Reynolds et al. | Jul 2006 | B2 |
7540865 | Griffin et al. | Jun 2009 | B2 |
7914466 | Davis et al. | Mar 2011 | B2 |
7955272 | Rooney et al. | Jun 2011 | B2 |
8048004 | Davis et al. | Nov 2011 | B2 |
8048060 | Griffin et al. | Nov 2011 | B2 |
8182465 | Griffin et al. | May 2012 | B2 |
20020013540 | Jacobsen et al. | Jan 2002 | A1 |
20020019599 | Rooney et al. | Feb 2002 | A1 |
20030009208 | Snyder et al. | Jan 2003 | A1 |
20030060732 | Jacobsen et al. | Mar 2003 | A1 |
20030069520 | Skujins et al. | Apr 2003 | A1 |
20030069521 | Reynolds et al. | Apr 2003 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20040167437 | Sharrow et al. | Aug 2004 | A1 |
20040181174 | Davis et al. | Sep 2004 | A2 |
20040181176 | Jafari et al. | Sep 2004 | A1 |
20060004168 | Greer | Jan 2006 | A1 |
20060189896 | Davis et al. | Aug 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20070270779 | Jacobs | Nov 2007 | A1 |
20080021347 | Jacobsen et al. | Jan 2008 | A1 |
20080021348 | Jacobsen et al. | Jan 2008 | A1 |
20080021400 | Jacobsen et al. | Jan 2008 | A1 |
20080021401 | Jacobsen et al. | Jan 2008 | A1 |
20080021402 | Jacobsen et al. | Jan 2008 | A1 |
20080021403 | Jacobsen et al. | Jan 2008 | A1 |
20080021405 | Jacobsen et al. | Jan 2008 | A1 |
20080021406 | Jacobsen et al. | Jan 2008 | A1 |
20080021407 | Jacobsen et al. | Jan 2008 | A1 |
20080021408 | Jacobsen et al. | Jan 2008 | A1 |
20080077119 | Snyder et al. | Mar 2008 | A1 |
20120041094 | Oral | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
723040 | Dec 1997 | AU |
733966 | Apr 1998 | AU |
9712829 | Jan 2000 | BR |
2266685 | May 2006 | CA |
1230914 | Oct 1999 | CN |
2539191 | Mar 1976 | DE |
3621967 | Jan 1988 | DE |
0045931 | Feb 1982 | EP |
0069522 | Jan 1983 | EP |
0087933 | Sep 1983 | EP |
0111044 | Jun 1984 | EP |
0181174 | May 1986 | EP |
0377453 | Jul 1990 | EP |
0521595 | Jan 1993 | EP |
0565065 | Oct 1993 | EP |
0608853 | Aug 1994 | EP |
0778038 | Jun 1997 | EP |
0778039 | Jun 1997 | EP |
0778040 | Jun 1997 | EP |
0790066 | Aug 1997 | EP |
0807446 | Nov 1997 | EP |
0812599 | Dec 1997 | EP |
0865772 | Sep 1998 | EP |
0865773 | Sep 1998 | EP |
0917885 | May 1999 | EP |
0937481 | Aug 1999 | EP |
0935947 | Dec 2004 | EP |
0934141 | Nov 2005 | EP |
2214354 | Aug 1989 | GB |
2257269 | Jan 1993 | GB |
588522 | Jan 1983 | JP |
60091858 | May 1985 | JP |
61022752 | Jan 1986 | JP |
62023361 | Jan 1987 | JP |
62089470 | Apr 1987 | JP |
62299277 | Dec 1987 | JP |
63093516 | Apr 1988 | JP |
63181774 | Jul 1988 | JP |
63217966 | Sep 1988 | JP |
1089956 | Apr 1989 | JP |
1135363 | May 1989 | JP |
1158936 | Jun 1989 | JP |
2107268 | Apr 1990 | JP |
3081831 | Apr 1991 | JP |
3122850 | Dec 1991 | JP |
4061840 | Feb 1992 | JP |
4099963 | Mar 1992 | JP |
4213069 | Aug 1992 | JP |
4213070 | Aug 1992 | JP |
4236965 | Aug 1992 | JP |
5149969 | Jun 1993 | JP |
5506806 | Oct 1993 | JP |
5309519 | Nov 1993 | JP |
5507857 | Nov 1993 | JP |
6501179 | Feb 1994 | JP |
631749 | Apr 1994 | JP |
6169996 | Jun 1994 | JP |
663224 | Sep 1994 | JP |
6312313 | Nov 1994 | JP |
728562 | May 1995 | JP |
7124164 | May 1995 | JP |
7124263 | May 1995 | JP |
7136280 | May 1995 | JP |
7148264 | Jun 1995 | JP |
7505561 | Jun 1995 | JP |
7037199 | Jul 1995 | JP |
7185009 | Jul 1995 | JP |
7255855 | Oct 1995 | JP |
7275366 | Oct 1995 | JP |
751067 | Nov 1995 | JP |
8229888 | Jul 1996 | JP |
8509141 | Oct 1996 | JP |
8317988 | Dec 1996 | JP |
9000164 | Apr 1997 | JP |
9276413 | Oct 1997 | JP |
9294813 | Nov 1997 | JP |
10118193 | May 1998 | JP |
10305039 | Nov 1998 | JP |
10328191 | Dec 1998 | JP |
11226131 | Aug 1999 | JP |
11267224 | Oct 1999 | JP |
2000197704 | Jul 2000 | JP |
2000510722 | Aug 2000 | JP |
2000511083 | Aug 2000 | JP |
2001500808 | Jan 2001 | JP |
2002529137 | Sep 2002 | JP |
2002542901 | Dec 2002 | JP |
2002543896 | Dec 2002 | JP |
2003517893 | Jun 2003 | JP |
3649604 | Feb 2005 | JP |
2005534407 | Nov 2005 | JP |
712908 | Aug 1980 | SU |
758421 | Aug 1980 | SU |
1529365 | Dec 1989 | SU |
9002520 | Mar 1990 | WO |
9113364 | Sep 1991 | WO |
9204072 | Mar 1992 | WO |
9304722 | Mar 1992 | WO |
9207619 | May 1992 | WO |
9311313 | Jun 1993 | WO |
9524263 | Sep 1995 | WO |
9619255 | Jun 1996 | WO |
9710022 | Mar 1997 | WO |
9725914 | Jul 1997 | WO |
9743949 | Nov 1997 | WO |
9744083 | Nov 1997 | WO |
9744086 | Nov 1997 | WO |
9810694 | Jul 1998 | WO |
9904847 | Feb 1999 | WO |
9911313 | Mar 1999 | WO |
0027303 | May 2000 | WO |
0030710 | Jun 2000 | WO |
0048645 | Aug 2000 | WO |
0057943 | Oct 2000 | WO |
0066199 | Nov 2000 | WO |
0072907 | Dec 2000 | WO |
0128620 | Apr 2001 | WO |
0136034 | May 2001 | WO |
0145773 | Jun 2001 | WO |
0145912 | Jun 2001 | WO |
0067845 | Nov 2001 | WO |
0193920 | Dec 2001 | WO |
0213682 | Feb 2002 | WO |
02062540 | Aug 2002 | WO |
03004086 | Jan 2003 | WO |
03008148 | Jan 2003 | WO |
2004012804 | Feb 2004 | WO |
2004047899 | Jun 2004 | WO |
2012116337 | Aug 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20150290423 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61978551 | Apr 2014 | US |