CATHODE MATERIAL AND PROCESS

Information

  • Patent Application
  • 20230120828
  • Publication Number
    20230120828
  • Date Filed
    March 25, 2021
    3 years ago
  • Date Published
    April 20, 2023
    a year ago
Abstract
The invention relates to improved particulate lithium nickel oxide materials which are useful as cathode materials in lithium secondary batteries. The invention also provides processes for preparing such lithium nickel oxide materials, and electrodes and cells comprising the materials.
Description
FIELD OF THE INVENTION

The present invention relates to improved particulate lithium nickel oxide materials which are useful as cathode materials in lithium secondary batteries. The present invention also provides processes for preparing such lithium nickel oxide materials, and electrodes and cells comprising the materials.


BACKGROUND OF THE INVENTION

Lithium transition metal oxide materials having the formula LiMO2, where M typically includes one or more transition metals, find utility as cathode materials in lithium ion batteries. Examples include LiNiO2 and LiCoO2.


U.S. Pat. No. 6,921,609 B2 describes a composition suitable for use as a cathode material of a lithium battery which includes a core composition having an empirical formula LixM′zNi1-yM″yO2 and a coating on the core which has a greater ratio of Co to Ni than the core.


WO 2013/025328 A1 describes a particle including a plurality of crystallites including a first composition having a layered α-NaFeO2-type structure. The particles include a grain boundary between adjacent crystallites, and the concentration of cobalt in the grain boundaries is greater than the concentration of cobalt in the crystallites. Cobalt enrichment is achieved by treatment of the particles with a solution of LiNO3 and Co(NO3)2, followed by spray drying and calcining.


With demand increasing for lithium-ion batteries in high-end applications such as electric vehicles (EVs), it is imperative to use cathode materials which provide not only acceptable specific capacity but also excellent retention of that capacity over a large number of charging cycles, so that the range of the vehicle after each charge over its lifetime is as consistent as possible. Capacity retention is also commonly referred to simply as the “cyclability” of the battery.


There therefore remains a need for improved lithium transition metal oxide materials and processes for their manufacture. In particular, there remains a need for improvements in the capacity retention of lithium transition metal oxide materials when used as cathode materials in lithium secondary batteries.


SUMMARY OF THE INVENTION

Lithium nickel oxide battery materials typically form some lithium carbonate on their surface. The formation of lithium carbonate is undesirable since the lithium carbonate is passivating, meaning that the presence of lithium carbonate inherently reduces specific capacity. Additionally, the presence of lithium carbonate can lead to undesirable side reactions in battery cells, and in particular materials containing larger amounts of surface lithium carbonate have a greater propensity to evolve CO2 gas during cycling (known as gassing).


Therefore, there is a need to provide materials with low levels of surface lithium carbonate impurities. The present inventors have found that including cobalt in a surface-enhanced layer reduces the formation of surface lithium carbonate. However, it is also desirable to reduce the amount of cobalt included in lithium nickel oxide battery materials, since cobalt can be a significant contribution to the cost of the materials (due to its high relative cost and historic price volatility), and because it may be preferable to reduce cobalt content for ethical reasons.


The present inventors have found that particularly low levels of surface lithium carbonate are achieved where the enhanced surface layer includes at least 0.9 wt % cobalt. However, the level of lithium carbonate impurities does not decrease significantly when the amount of cobalt in the surface enhanced layer increases about 1.5 wt %. Therefore, it is particularly advantageous to include 0.9-1.5 wt % cobalt in a surface enhanced layer, as this permits suppression of surface lithium carbonate formation while minimising the amount of cobalt added to the enhanced surface layer.


Accordingly, a first aspect of the invention is a surface-modified particulate lithium nickel oxide material comprising particles having a core and an enriched surface layer at the surface of the core, wherein the enriched surface layer includes 0.9 to 1.5 wt % cobalt and wherein the particulate lithium nickel oxide comprises 0.3 wt % or less of surface Li2CO3.


In a second aspect the present invention provides a process for preparing particulate lithium nickel oxide material having Formula I





LiaNixCoyMgzAlpMqO2+b   Formula I


in which:


0.8≤a≤1.2


0.8≤x≤1


0≤y≤0.5


0.005≤z≤0.1


0≤p≤0.01


0≤q≤0.2; and


0.2≤b≤0.2;


wherein M is selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu, Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn and combinations thereof; the process comprising the steps of:


(i) mixing lithium-containing compound with a nickel-containing compound, a cobalt-containing compound, a magnesium-containing compound and optionally an M-containing compound and/or an aluminium-containing compound, wherein a single compound may optionally contain two or more of Ni, Co, Mg, Al and M, to obtain a mixture;


(ii) calcining the mixture to obtain a calcined material; and


(iii) contacting the first calcined material with a cobalt containing compound and optionally one or more of an aluminium-containing compound, a lithium-containing compound and an M-containing compound in a surface-modification step to form an enriched surface layer on the first calcined material, such that the surface enriched layer includes 0.9 to 1.5 wt % cobalt and the particulate lithium nickel oxide comprises 0.3 wt % or less of surface Li2CO3.


In a third aspect, the present invention provides use of a cobalt-containing compound to reduce the formation of surface Li2CO3 in a particulate lithium nickel oxide material comprising particles, by forming on the surface of the particles an enriched surface layer comprising 0.5 to 1.5 wt % cobalt. It may be preferred that the use comprises contacting the cobalt-containing compound with a core material according to Formula II (defined below) in a process modification step according to step (iii) of the process of the second aspect. The use of the third aspect may include any other features of the process of the second aspect described herein. For example, the process modification step may be followed by a calcination step as described herein.


In a fourth aspect the present invention provides use of an enriched surface layer to reduce the formation of surface Li2CO3 in a particulate lithium nickel oxide material comprising particles, wherein the enriched surface layer comprises 0.5 to 1.5 wt % cobalt based on the total weight of the particle.


A fifth aspect of the invention provides particulate lithium nickel oxide obtained or obtainable by a process described herein.


A sixth aspect of the invention provides a cathode material for a lithium secondary battery comprising the particulate lithium nickel oxide material according to the first aspect.


A seventh aspect of the invention provides a cathode comprising the particulate lithium nickel oxide material according to the first aspect.


An eighth aspect of the invention provides a lithium secondary cell or battery (e.g. a secondary lithium ion battery) comprising the cathode according to the fifth aspect. The battery typically further comprises an anode and an electrolyte.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a plot of lithium carbonate content vs cobalt content in the enriched surface layer, as determined in the Examples.





DETAILED DESCRIPTION

Preferred and/or optional features of the invention will now be set out. Any aspect of the invention may be combined with any other aspect of the invention unless the context demands otherwise. Any of the preferred and/or optional features of any aspect may be combined, either singly or in combination, with any aspect of the invention unless the context demands otherwise. It is intended that upper and lower limits of ranges are independently combinable, and that the various ranges and values given for a, b, x, y, z, p and q are combinable with each other and with the other features recited herein.


The compositions recited herein may be determined by Inductively Coupled Plasma (ICP) analysis as described in the Examples section below. It may be preferred that the compositions recited herein are ICP compositions. Similarly, the wt % content of elements in the particulate lithium nickel oxide materials may be determined using ICP analysis. The wt % values recited herein are determined by ICP and are with respect to the total weight of the particle analysed (except wt % lithium carbonate which is defined separately below).


The particulate lithium nickel oxide material typically comprises lithium, nickel, cobalt and oxygen. It may comprise lithium, nickel, cobalt, oxygen, aluminium and magnesium. The particulate lithium nickel oxide material may have a composition according to Formula I:





LiaNixCoyMgzAlpMqO2+b   Formula I


in which:


0.8≤a≤1.2


0.8≤x≤1


0≤y≤0.5


0.005≤z≤0.1


0≤p≤0.01


0≤q≤0.2; and


−0.2≤b≤0.2;


wherein M is selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn and combinations thereof.


In Formula I, 0.8≤a≤1.2. In some embodiments a is greater than or equal to 0.9, 0.95, 0.99 or 1.0. In some embodiments, a is less than or equal to 1.1, or less than or equal to 1.05. In some embodiments, 0.90 a 1.10, for example 0.95 a 1.05. In some embodiments, 0.99 a 1.05 or 1.0 a 1.05. It may be particularly preferred that 0.95 a 1.05.


In Formula I, 0.8≤x≤1. In some embodiments, 0.85≤x<1 or 0.9≤x<1. In some embodiments, x is less than or equal to 0.99, 0.98, 0.97, 0.96 or 0.95. In some embodiments, x is great than or equal to 0.85, 0.9 or 0.95. In some embodiments, 0.8≤x≤0.99, for example 0.85≤x≤0.98, 0.85≤x≤0.98, 0.85≤x≤0.97, 0.85≤x≤0.96 or 0.90≤x≤0.95. It may be particularly preferred that 0.85≤x≤0.98.


In Formula I, 0<y≤0.5. In some embodiments y is greater than or equal to 0.01, 0.02, 0.03, 0.035, 0.04 or 0.045. In some embodiments, y is less than or equal to 0.4, 0.3, 0.2, 0.15, 0.12, 0.10, 0.098, 0.09, 0.08, 0.07, 0.065, 0.063, 0.060 or 0.055. For example, 0.035 y≤0.1 or 0.04≤y≤0.0.063.


In Formula I, 0.005≤z≤0.1. It may be preferred that z is great than or equal to 0.005, 0.008, 0.010 or 0.015. It may be preferred that z is less than or equal to 0.05, 0.04, 0.035, 0.03 or 0.025. For example, 0.015≤z≤0.03.


In Formula I, 0.004≤p≤0.01. In some embodiments, p is less than or equal to 0.0090, 0.0080, 0.0075 or 0.0070. In some embodiments p is greater than or equal to 0.005, 0.0055 or 0.0060. In some embodiments, 0.004≤p≤0.0090, 0.005≤p≤0.008, 0.0055≤p≤0.0075 or 0.006≤p≤0.007. It may be particularly preferred that 0.0055≤p≤0.0075 or 0.0055≤p≤0.0080.


In Formula I, −0.2≤b≤0.2. In some embodiments b is greater than or equal to −0.1. In some embodiments b is less than or equal to 0.1. In some embodiments, −0.1≤b≤0.1. In some embodiments, b is 0 or about 0. In some embodiments, b is 0.


In Formula I, M is one or more selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn. In some embodiments, M is one or more selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si and Zn. In some embodiments, M is Mn. In some embodiments, M represents a dopant which is present within the core of the particle but not within the enriched surface layer.


In Formula I, 0≤q≤0.2. In some embodiments, 0≤q≤0.15. In some embodiments, 0≤q≤0.10. In some embodiments, 0≤q≤0.05. In some embodiments, 0≤q≤0.04. In some embodiments, 0≤q≤0.03. In some embodiments, 0≤q≤0.02. In some embodiments, 0≤q≤0.01. In some embodiments, q is 0.


In some embodiments:


0.95≤a≤1.05


0.85≤x≤1


0.04≤y≤0.075


0.015≤z≤0.03


0.0055≤p≤0.0080


0≤q≤0.2, and


−0.2≤b≤0.2;


wherein M is selected from AI, Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn and combinations thereof.


In some embodiments:


0.95≤a≤1.05


0.85≤x≤1


0.04≤y≤0.075


0.015≤z≤0.03


0.0055≤p≤0.0080


q=0; and


b=0.


In some embodiments, the particulate lithium nickel oxide material is a crystalline (or substantially crystalline) material. It may have the α-NaFeO2-type structure. It may be a polycrystalline material, meaning that each particle of lithium nickel oxide material is made up of multiple crystallites (also known as crystal grains or primary particles) which are agglomerated together. The crystal grains are typically separated by grain boundaries. Where the particulate lithium nickel oxide is polycrystalline, it will be understood that the particles of lithium nickel oxide comprising multiple crystals are secondary particles.


The particulate lithium nickel oxide material of Formula I comprises an enriched surface, i.e. comprises a core material which has been surface modified (subjected to a surface modification process) to form an enriched surface layer. In some embodiments the surface modification results from contacting the core material with one or more further metal-containing compounds, and then optionally carrying out calcination of the material. The compounds may be in solution, and in such context herein the term “compound” refers to the corresponding dissolved species. For clarity, the discussions of the composition according to Formula I herein when in the context of surface-modified particles relate to the overall particle, i.e. the particle including the enriched surface layer.


Herein, the terms “surface modified”, “enriched surface” and “enriched surface layer” refer to a particulate material which comprises a core material which has undergone a surface modification or surface enrichment process to increase the concentration of cobalt at or near to the surface of the particles. The term “enriched surface layer” therefore refers to a layer of material at or near to the surface of the particles which contains a greater concentration of cobalt than the remaining material of the particle, i.e. the core of the particle.


In some embodiments, the particle comprises a greater concentration of Al in the enriched surface layer than in the core. In some embodiments, all or substantially all of the Al in the particle is in the enriched surface layer. In some embodiments, the core does not contain Al or contains substantially no Al, for example less than 0.01 wt % Al based on the total particle weight. As used herein, the content of a given element in the surface enriched layer is calculated by determining the wt % of that element in the particulate lithium nickel oxide material prior to surface enrichment (sometimes referred to herein as the first calcined material or the core material) by ICP to give value A, determining the wt % of that element in the final particulate lithium nickel oxide material after surface enrichment (and optional further calcination) by ICP to give value B, and subtracting value A from value B. Similarly, the content of a given element in the core may be determined by determining the wt % of that element in the particulate lithium nickel oxide material prior to surface enrichment (sometimes referred to herein as the first calcined material or the core material) by ICP.


As the skilled person will understand, elements may migrate between the core and the surface layer during preparation, storage or use of the material. Herein, where an element is stated to be present in (or absent from, or present in certain quantities in) the core, this is to be understood to refer to that element being intentionally added to, (or excluded from, or added in a particular quantity to) the core, and is not intended to exclude from the scope of protection materials where the distribution of elements is altered by migration during preparation, storage or use. Similarly, where an element is stated to be present in (or absent from, or present in certain quantities in) the surface enriched layer, this is to be understood to refer to that element being intentionally added to, (or excluded from, or added in a particular quantity to) the surface enriched layer, and is not intended to exclude from the scope of protection materials where the distribution of elements is altered by migration during preparation, storage or use. For example, where all or substantially all of the Al in the particle is in the enriched surface layer, this means that all or substantially all of the Al is added in the surface enrichment step, but does not preclude materials where some of the Al added in the surface enrichment step has migrated into the core.


In some embodiments, the enriched surface layer comprises Co and optionally comprises one or more of Li and Al.


The enriched surface layer includes 0.9 to 1.5 wt % cobalt. For example, the enriched surface layer may include 1.0 wt % or more cobalt, e.g. 1.1 wt % or more. The enriched surface layer may include 1.4wt % or less cobalt, e.g. 1.3wt % or less.


It may be preferred that at least 15, 25, 28, 30 or 35% of the cobalt is in the enriched surface layer. It may be preferred that 70% or less, e.g. 60%, 50% or 45% or less of the cobalt is in the surface enriched layer. The proportion of cobalt in the enriched surface layer may be determined by dividing the wt % cobalt in the surface enriched layer by the wt % cobalt in the core (which values may be determined as described above).


In some embodiments the surface modification comprises immersion in a solution comprising cobalt species (for example in the form of a cobalt-containing compound), followed by drying of the surface-modified material and optionally calcination. The solution may additionally contain aluminium species (for example in the form of an aluminium-containing compound) and/or lithium species (for example in the form of a lithium-containing compound). In some embodiments, the solution is heated, for example to a temperature of at least 50° C., for example at least 55° C. or at least 60° C. In some embodiments, the surface-modified material is spray-dried after being contacted with the solution. In some embodiments, the surface-modified material is calcined after spray drying.


The particulate lithium nickel oxide material typically has a D50 particle size of at least 4 μm, e.g. at least 5 μm, at least 5.5 μm, at least 6.0 μm or at least 6.5 μm. The particles of lithium nickel oxide (e.g. secondary particles) typically have a D50 particle size of 20 μm or less, e.g. 15 μm or less or 12 μm or less. In some embodiments, the D50 particle size is from about 5 μm to about 20 μm, for example about 5 μm to about 19 μm, for example about 5 μm to about 18 μm, for example about 5 μm to about 17 μm, for example about 5 μm to about 16 μm, for example about 5 μm to about 15 μm, for example about 5 μm to about 12 μm, for example about 5.5 μm to about 12 μm, for example about 6 μm to about 12 μm, for example about 6.5 μm to about 12 μm, for example about 7 μm to about 12 μm, for example about 7.5 μm to about 12 μm. Unless otherwise specified herein, the D50 particle size refers to Dv50 (volume median diameter) and may be determined by using the method set out in ASTM B822 of 2017 under the Mie scattering approximation, for example using a Malvern Mastersizer 3000.


In some embodiments, the D10 particle size of the material is from about 0.1 μm to about 10 μm, for example about 1 μm to about 10 μm, about 2 μm to about 8 μm, or from about 5 μm to about 7 μm. Unless otherwise specified herein, the D10 particle size refers to Dv10 (10% intercept in the cumulative volume distribution) and may be determined by using the method set out in ASTM B822 of 2017 under the Mie scattering approximation, for example using a Malvern Mastersizer 3000.


In some embodiments, the D90 particle size of the material is from about 10 μm to about 40 μm, for example from about 12 μm to about 35 μm, about 12 μm to about 30 μm, about 15 μm to about 25 μm or from about 16 μm to about 20 μm. Unless otherwise specified herein, the D90 particle size refers to Dv90 (90% intercept in the cumulative volume distribution) and may be determined by using the method set out in ASTM B822 of 2017 under the Mie scattering approximation, for example using a Malvern Mastersizer 3000.


In some embodiments, the tapped density of the particulate lithium nickel oxide is from about 1.9 g/cm3 to about 2.8 g/cm3, e.g. about 1.9 g/cm3 to about 2.4 g/cm3.


The tapped density of the material can suitably be measured by loading a graduated cylinder with 25 mL of powder. The mass of the powder is recorded. The loaded cylinder is transferred to a Copley Tapped Density Tester JV Series. The material is tapped 2000 times and the volume re-measured. The re-measured volume divided by the mass of material is the recorded tap density.


The particulate lithium nickel oxide comprises 0.3 wt % or less of surface Li2CO3. It may comprise 0.25 wt % or less of surface Li2CO3, e.g. 0.2 wt % or 0.15 wt % or less. It may have 0 wt % surface Li2CO3, but in some embodiments there may be at least 0.01 wt %, 0.02 wt % , 0.04 wt %, 0.5 wt % or 0.8 wt % of surface Li2CO3.


The amount of surface Li2CO3 may be determined by titration with HCI using bromophenol blue indicator. Typically, a first titration step with HCI and phenolphthalein indicator is carried out before titration with bromophenol blue indicator to remove any lithium hydroxide. The titration protocol may include the following steps:

    • Extract surface lithium carbonate from sample of particulate lithium nickel oxide material by agitating in deionised water for 5 minutes to provide an extractate solution, and separate extractate solution from residual solid;
    • Add phenolphthalein indictor to the extractate solution, and titrate using HCI solution until extractate solution becomes clear (indicating the removal of any LiOH);
    • Add bromophenol blue indictor to the extractate solution, and titrate using HCI solution until extractate solution turns yellow; (the amount of lithium carbonate in the extractate solution can be calculated from this titration step); and
    • Calculate wt % of surface lithium carbonate in the sample of particulate lithium nickel oxide material, assuming 100% extraction of surface lithium carbonate into the extractate solution.


The process for preparing the particulate lithium nickel oxide typically comprises the steps of:

    • mixing lithium-containing compound with a nickel-containing compound, a cobalt-containing compound, a magnesium-containing compound and optionally an M-containing compound and/or an aluminium containing compound, wherein a single compound may optionally contain two or more of Ni, Co, Mg, Al and M, to obtain a mixture;


calcining the mixture to obtain a first calcined material; and


contacting the first calcined material with a cobalt-containing compound and optionally one or more of an aluminium-containing compound, a lithium-containing compound and an M-containing compound in a surface-modification step to form an enriched surface layer on the first calcined material;


wherein M is selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn and combinations thereof.


In some embodiments, the first calcined material is a core material having Formula II:





Lia1Nix1Coy1Mgz1Alp1Mq1O2+b1   Formula II


in which:


0.8≤a1≤1.2


0.8≤x1<1


0<y1≤0.5


0.005≤z1≤0.1


0≤p1≤0.01


0≤q1≤0.2; and


−0.2≤b1≤0.2;


wherein M is selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn and combinations thereof.


In some embodiments, p1=0, such that the core material has the following formula:





Lia1Nix1Coy1Mgz1Mq1O2+b1


In some embodiments, the process includes a further calcination step after the surface modification step.


In some embodiments q1=0.


The lithium-containing compound may be selected from lithium hydroxide (e.g. LiOH or LiOH.H2O), lithium carbonate (Li2CO3), and hydrated forms thereof. Lithium hydroxide may be particularly preferred.


The nickel-containing compound may be selected from nickel hydroxide (Ni(OH)2), nickel oxide (NiO), nickel oxyhydroxide (NiOOH), nickel sulfate, nickel nitrate, nickel acetate and hydrated forms thereof. Nickel hydroxide may be particularly preferred.


The cobalt-containing compound may be selected from cobalt hydroxide (Co(OH)2), cobalt oxide (CoO, Co2O3, Co3O4), cobalt oxyhydroxide (CoOOH), cobalt sulfate, cobalt nitrate, cobalt acetate and hydrated forms thereof. Cobalt hydroxide may be particularly preferred.


The magnesium-containing compound may be selected from magnesium hydroxide (Mg(OH)2), magnesium oxide (MgO), magnesium sulfate, magnesium nitrate, magnesium acetate and hydrated forms thereof. Magnesium hydroxide may be particularly preferred.


The M-containing compound may be selected from M hydroxide, M oxide, M nitrate, M sulfate, M carbonate or M acetate and hydrated forms thereof. M hydroxide may be particularly preferred.


Alternatively, two or more of nickel, cobalt, magnesium and optionally M may be provided as a mixed metal hydroxide, e.g. a mixed nickel cobalt hydroxide or a mixed nickel cobalt M hydroxide. The mixed metal hydroxide may be a coprecipitated hydroxide. It may be polycrystalline.


The mixed metal hydroxide may have a composition according to Formula III:





NixCoyMgzMq(OH)2+b   Formula III


in which x, y, z, q and b are each independently as defined herein. If a cobalt enrichment step is carried out (as described below), it may be preferred that the value for y in Formula III is less than the value for y in Formula I.


Such mixed metal hydroxides may be prepared by co-precipitation methods well-known to the person skilled in the art. These methods may involve the co-precipitation of the mixed metal hydroxide from a solution of metal salts, such as metal sulfates, for example in the presence of ammonia and a base, such as NaOH. In some cases suitable mixed metal hydroxides may be obtainable from commercial suppliers known to the skilled person.


The calcination step may be carried out at a temperature of at least 400° C., at least 500° C., at least 600° C. or at least 650° C. The calcination step may be carried out at a temperature of 1000° C. or less, 900° C. or less, 800° C. or less or 750° C. or less. The material to be calcined may be at a temperature of 400° C., at least 500° C., at least 600° C. or at least 650 ° C. for a period of at least 2 hours, at least 5 hours, at least 7 hours or at least 10 hours. The period may be less than 24 hours.


The calcination step may be carried out under a CO2-free atmosphere. For example, CO2—free air may be flowed over the materials to be calcined during calcination and optionally during cooling. The CO2-free air may, for example, be a mix of oxygen and nitrogen. The CO2-free atmosphere may be oxygen (e.g. pure oxygen). Preferably, the atmosphere is an oxidising atmosphere. As used herein, the term “CO2-free” is intended to include atmospheres including less than 100 ppm CO2, e.g. less than 50 ppm CO2, less than 20 ppm CO2 or less than 10 ppm CO2. These CO2 levels may be achieved by using a CO2 scrubber to remove CO2.


In some embodiments, the CO2-free atmosphere comprises a mixture of O2 and N2. In some embodiments, the mixture comprises a greater amount of N2 than 02. In some embodiments, the mixture comprises N2 and 02 in a ratio of from 50:50 to 90:10, for example from 60:40 to 90:10, for example about 80:20.


In some embodiments, the particulate lithium nickel oxide material of Formula I comprises a surface-modified structure comprising a core and an enriched surface layer at the surface of the core, resulting from performing a surface-modification step on a core material having Formula II:





Lia1NixiCoy1Mgz1Alp1Mq1O2+b1   Formula II


in which:


0.8≤a1≤1.2


0.8≤x1<1


0<y1≤0.5


0.005≤z1≤0.1


0≤p1≤0.01


0≤q1≤0.2; and


−0.2≤b1≤0.2:


wherein M is selected from Mn, V, Ti, B, Zr, Sr, Ca, Cu , Sn, Cr, Fe, Ga, Si, W, Mo, Ta, Y, Sc, Nb, Pb, Ru, Rh and Zn and combinations thereof.


The surface modification step may comprise contacting the core material with an aluminium-containing compound and optionally one or more of a cobalt-containing compound, a lithium-containing compound and an M-containing compound. The aluminium-containing compound and optional cobalt-containing compound, lithium-containing compound and M-containing compound may be provided in solution, for example in aqueous solution.


In some embodiments, p1=0, such that the core material has the following formula:





Lia1Nix1Coy1Mgz1Mq1O2+b1


In some embodiments q1=0.


The surface-modification step of the processes of the invention (also referred to herein as a surface enrichment step) comprises contacting the core material with cobalt, to increase the concentration of cobalt in the grain boundaries and/or at or near to the surface of the particles. In some embodiments, the surface-modification step (also referred to herein as a surface enrichment step) comprises contacting the core material with additional metal selected from one or more of aluminium, lithium and M, to increase the concentration of such metal in the grain boundaries and/or at or near to the surface of the particles. The surface modification may be carried out by contacting a core material with a cobalt-containing compound and optionally one or more further metal-containing compounds. For example, the compounds may be independently selected from nitrates, sulfates or acetates. Nitrates may be particularly preferred. The compounds may be provided in solution (e.g. aqueous solution). The compounds may be soluble in water.


The mixture of the core material with the cobalt-containing compound and optionally one or more further metal-containing compounds may be heated, for example to a temperature of at least 40° C., e.g. at least 50° C. The temperature may be less than 100° C. or less than 80 ° C. Where the cobalt-containing compound and optional one or more further metal-containing compounds is provided in solution, the mixture of the solution with the intermediate may be dried, e.g. by evaporation of the solvent or by spray drying.


The cobalt-containing compound and optional one or more further metal-containing compounds may be provided as a composition, referred to herein as a “surface modification composition”. The surface modification composition may comprise a solution of the cobalt-containing compound and optional one or more further metal-containing compounds (e.g. aqueous solution).


The surface modification composition may comprise an cobalt-containing compound and optionally one or more of a lithium-containing compound, an aluminium-containing compound and an M-containing compound.


The cobalt-containing compound, the aluminium-containing compound, lithium-containing compound and M-containing compound used in the surface modification step may be as defined above with reference to the cobalt-containing compound, the aluminium-containing compound, the lithium-containing compound and the M-containing compound used in the formation of the intermediate (core) material. It may be particularly preferred that the cobalt-containing compound and each of the one or more further metal-containing compounds is a metal-containing nitrate. It may be particularly preferred that the aluminium-containing compound is aluminium nitrate. It may be particularly preferred that the lithium-containing compound is lithium nitrate. It may be particularly preferred that the cobalt-containing compound is cobalt nitrate. It may be preferred that the cobalt-containing compound, the further aluminium-containing compound and the further lithium-containing compound are soluble in water.


In some embodiments, the surface modification step comprises contacting the core material with additional metal-containing compounds in an aqueous solution. The core material may be added to the aqueous solution to form a slurry or suspension. In some embodiments the slurry is agitated or stirred. In some embodiments, the weight ratio of core material to water in the slurry after addition of the core material to the aqueous solution is from about 1.5:1 to about 1:1.5, for example from about 1.4:1 to about 1:1.4, about 1.3:1 to about 1:1.3, about 1.2:1 to about 1:1.2 or about 1.1:1 to about 1:1.1. The weight ratio may be about 1:1.


Typically, the surface modification step is carried out after the first calcination step described above.


The surface modification step may be followed by a second calcination step. The second calcination step may be carried out at a temperature of at least 400° C., at least 500° C., at least 600° C. or at least 650° C. The second calcination step may be carried out at a temperature of 1000° C. or less, 900° C. or less, 800° C. or less or 750° C. or less. The material to be calcined may be at a temperature of 400° C., at least 500° C., at least 600° C. or at least 650° C. for a period of at least 30 minutes, at least 1 hour or at least 2 hours. The period may be less than 24 hours. The second calcination step may be shorter than the first calcination step.


The second calcination step may be carried out under a CO2-free atmosphere as described above with reference to the first calcination step.


The process may include one or more milling steps, which may be carried out after the first and/or second calcination steps. The nature of the milling equipment is not particularly limited. For example, it may be a ball mill, a planetary ball mill or a rolling bed mill. The milling may be carried out until the particles (e.g. secondary particles) reach the desired size. For example, the particles of lithium nickel oxide (e.g. secondary particles) are typically milled until they have a D50 particle size of at least 5 μm, e.g. at least 5.5 μm, at least 6 μm or at least 6.5 μm. The particles of lithium nickel oxide (e.g. secondary particles) are typically milled until they have a D50 particle size of 15 μm or less, e.g. 14 μm or less or 13 μm or less.


The process of the present invention may further comprise the step of forming an electrode (typically a cathode) comprising the lithium nickel oxide material. Typically, this is carried out by forming a slurry of the particulate lithium nickel oxide, applying the slurry to the surface of a current collector (e.g. an aluminium current collector), and optionally processing (e.g. calendaring) to increase the density of the electrode. The slurry may comprise one or more of a solvent, a binder, carbon material and further additives.


Typically, the electrode of the present invention will have an electrode density of at least 2.5 g/cm3, at least 2.8 g/cm3 or at least 3 g/cm3. It may have an electrode density of 4.5 g/cm3 or less, or 4 g/cm3 or less. The electrode density is the electrode density (mass/volume) of the electrode, not including the current collector the electrode is formed on. It therefore includes contributions from the active material, any additives, any additional carbon material, and any remaining binder.


The process of the present invention may further comprise constructing a battery or electrochemical cell including the electrode comprising the lithium nickel oxide. The battery or cell typically further comprises an anode and an electrolyte. The battery or cell may typically be a secondary (rechargeable) lithium (e.g. lithium ion) battery.


The present invention will now be described with reference to the following examples, which are provided to assist with understanding the present invention, and are not intended to limit its scope.


EXAMPLES
Comparative Example 1—Preparation of base materials
Comparative Example 1A—Base 1 (Li1.030Ni0.953Co0.030Mg0.010O2)

100 g Ni0.960Co0.031Mg0.099(OH)2 and 26.36 g LiOH were dry mixed in a poly-propylene bottle for 30 mins. The LiOH was pre-dried at 200° C. under vacuum for 24 hours and kept dry in a purged glovebox filled with dry N2.


The powder mixture was loaded into 99%+ alumina crucibles and calcined under an artificial CO2-free air mix which was 80:20 N2:O2. Calcination was performed as follows: to 450° C. (5 ° C./min) with 2 hours hold, ramp to 700° C. (2° C./min) with a 6 hour hold and cooled naturally to 130° C. The artificial air mix was flowing over the powder bed throughout the calcination and cooling. The title compound was thereby obtained.


The samples were then removed from the furnace at 130° C. and transferred to a high-alumina lined mill pot and milled on a rolling bed mill until D50 was between 12.0 and 12.5 μm.


D50 was measured according to ASTM B822 of 2017 using a Malvern Mastersizer 3000 under the Mie scattering approximation and was found to be 9.5 μm. The chemical formula of the material was determined by ICP analysis to be Li1.030Ni0.953Co0.030Mg0.010O2.


Comparative Example 1B—Base 2 (Li1.949Co0.031Mg0.020O2)

The procedure according to Comparative Example 1A was repeated except that 26.21 g of LiOH were dry mixed with 100 g Ni0.948Co0.031Mg0.021(OH)2. The title compound was thereby obtained. D50 was found to be 10.2 μm. The chemical formula of the material was determined by ICP analysis to be Li1.019Ni0.949Co0.031Mg0.020O2.


Comparative Example 1C—Base 3 (Li1.027Ni0.923Co0.029O2)

The procedure according to Comparative Example 1A was repeated except that 24.8 g of LiOH were dry mixed with 100 g Ni0.917Co0.050Mg0.033(OH)2. The title compound was thereby obtained. D50 was found to be 9.65 μm. The chemical formula of the material was determined by ICP analysis to be Li1.027Ni0.923Co0.049Mg0.029O2.


Comparative Example 1D—Base 4 (Li1.007Ni0.923Co0.049Mg0.038O2)

The procedure according to Comparative Example 1A was repeated except that 25.92 g of LiOH were dry mixed with 100 g Ni0.915Co0.049Mg0.036(OH)2. The title compound was thereby obtained. D50 was found to be 12.2 μm. The chemical formula of the material was determined by ICP analysis to be Li1.007Ni0.923Co0.049Mg0.038O2.


Comparative Example 1E—Base 5 (Li0.998Ni0.917Co0.049Mg0.052O2)

The procedure according to Comparative Example 1A was repeated except that 25.75 g of LiOH were dry mixed with 100 g Ni0.903Co0.048Mg0.049(OH)2. The title compound was thereby obtained. The chemical formula of the material was determined by ICP analysis to be Li0.998Ni0.917Co0.049Mg0.052O2.


Comparative Example 1F—Base 6 (Li1.024Ni0.926Co0.045Mg0.037O2)

The procedure according to Comparative Example 1A was repeated except that 25.94 g of LiOH were dry mixed with 100 g Ni0.918Co0.045Mg0.037(OH)2. The title compound was thereby obtained. D50 was found to be 9.0 μm. The chemical formula of the material was determined by ICP analysis to be Li1.0241Ni0.926Co0.045Mg0.037O2.


Comparative Example 1G—Base 7 (Li1.003Ni0.956Co0.030Mg0.020O2)

The procedure according to Comparative Example 1A was repeated except that 26.20 g of LiOH were dry mixed with 100 g Ni0.952Co0.029Mg0.019(OH)2. The title compound was thereby obtained. D50 was found to be 9.6 μm. The chemical formula of the material was determined by ICP analysis to be Li1.003Ni0.956Co0.030Mg0.020O2.


Comparative Example 1H—Base 8 (Li.1.009Ni0.957Co0.030Mg0.015O2)

The procedure according to Comparative Example 1A was repeated except that 26.29 g of LiOH were dry mixed with 100 g Ni0.957Co0.029Mg0.014(OH)2. The title compound was thereby obtained. D50 was found to be 9.3 μm. The chemical formula of the material was determined by ICP analysis to be Li1.009Ni0.957Co0.030Mg0.015O2.


Comparative Example 1J—Base 9 (Li1.005Ni0.944Co0.029Mg0.038O2)

The procedure according to Comparative Example 1A was repeated except that 25.96 g of LiOH were dry mixed with 100 g Ni0.935Co0.029Mg0.037(OH)2. The title compound was thereby obtained. D50 was found to be 10.7 μm. The chemical formula of the material was determined by ICP analysis to be Li1.005Ni0.944Co0.029Mg0.038O2.


Comparative Example 1K—Base 10 (Li0.996Ni0.914Co0.053Mg0.051O2)

The procedure according to Comparative Example 1A was repeated except that 25.75 g of LiOH were dry mixed with 100 g Ni0.900Co0.053Mg0.048(OH)2. The title compound was thereby obtained. D50 was found to be 9.49 μm. The chemical formula of the material was determined by ICP analysis to be Li0.996Ni0.914Co0.053Mg0.051O2.


Bases 12 to 20, listed in Table 3 below, were made by an analogous process to Bases 1 to 10.


Example 1—Preparation of Surface-Modified Materials
Example 1A—Compound 1 (Li 1.018Ni0.930Co0.049Mg0.010Al0.006O2)

The product of Comparative Example 1A was sieved through a 53 μm sieve and transferred to a N2-purged glovebox. An aqueous solution containing 5.91 g Co(NO3)2.6H2O, 0.47 g LiNO3 and 2.44 g Al(NO3)3.9H2O in 100 mL water was heated to between 60 and 65° C. 100 g of the sieved powder was added rapidly while stirring vigorously. The slurry was stirred at a temperature between 60 and 65° C. until the supernatant was colourless. The slurry was then spray-dried.


After spray-drying powders were loaded into 99%+alumina crucibles and calcined under an artificial CO2-free air mix which was 80:20 N2:O2. Calcination was performed as follows:


ramp to 130° C. (5° C./min) with 5.5 hours hold, ramp to 450° C. (5° C./min) with 1 hour hold, ramp to 700° C. (2° C./min) with a 2 hours hold and cooled naturally to 130° C. The artificial air mix was flowing over the powder bed through the calcination and cooling. The title compound was thereby obtained.


The samples were then removed from the furnace at 130° C. and transferred to a purged N2-filled glove-box.


The sample was milled in a high-alumina lined mill pot on a rolling bed mill. The target end point of the milling was when D50 was between 10 and 11 μm; D50 was measured after milling and found to be 9.5 μm. The sample was passed through a 53 μm sieve and stored in a purged N2 filledglove-box. The water content of the material was 0.18 wt %. The chemical formula of the material was determined by ICP analysis to be Li1.018Ni0.049Co0.049Mg0.010Al0.006O2.


Example 1E3- Compound 2 (Li 1.002Ni0.927Co0.053Mg0.020Al0.0065O2)

The product of Comparative Example 1B was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 5.90 g Co(NO3)2.6H2O, 0.47 g LiNO3 and 2.43 g Al(NO3)3. 9H2O in 100 mL water. The title compound was thereby obtained. D50 was found to be 8.5 μm. The water content of the material was 0.28 wt %.


The chemical formula of the material was determined by ICP analysis to be Li1.002Ni0.927Co0.053Mg0.020Al0.0065O2.


Example 1C - Compound 3 (Li0.995Ni0.909C00.068Mg0.027Al0.0065O2)

The product of Comparative Example 1C was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 5.89 g Co(NO3)2.6H2O, 0.46 g LiNO3 and 2.43 g Al(NO3)3.9H2O in 100 mL water. The title compound was thereby obtained. D50 was found to be 7.61 μm. The water content of the material was 0.2 wt %. The chemical formula of the material was determined by ICP analysis to be Li0.995Ni0.909C00.068Mg0.027Al0.0065O2.


Example 1D—Compound 4 (Li0.985Ni0.913C00.06Mg0.037Al0.0069O2)

The product of Comparative Example 1D was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 3.94 g Co(NO3)2.6H2O and 2.43 g Al(NO3)3.9H2O in 100 mL water, but did not contain any LiNO3. The title compound was thereby obtained. D50 was found to be 11.7 μm. The water content of the material was 0.26wt %. The chemical formula of the material was determined by ICP analysis to be Li0.985Ni0.913C00.061Mg0.037Al0.0069O2.


Example 1E—Compound 5 (Li0.980Ni0.905Co0.061Mg0.051Al0.0065O2)

The product of Comparative Example 1 E was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 3.93 g Co(NO3)2.6H2O and 2.42 g Al(NO3)3.9H2O in 100 mL water, but did not contain any LiNO3. The title compound was thereby obtained. D50 was found to be 10.7 μm. The water content of the material was 0.09 wt %. The chemical formula of the material was determined by ICP analysis to be Li0.980Ni0.905C00.061Mg0.051Al0.0065O2.


Example 1F—Compound 6 (Li 1.003Ni0.923C00.045Mg0.038Al0.0062O2)

The product of Comparative Example 1F was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 2.43 g Al(NO3)3.9H2O in 100 mL water, but did not contain any Co(NO3)2.6H2O or LiNO3. The title compound was thereby obtained. D50 was found to be 7.5 μm. The water content of the material was 0.18 wt %.


The chemical formula of the material was determined by ICP analysis to be Li1.003Ni0.923Co0.045Mg0.038Al0.0062O2.


Example 1G—Compound 7 (Li0.997Ni0.952Co0.029Mg0.019Al0.0065O2)

The product of Comparative Example 1G was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 2.44 g Al(NO3)3.9H2O in 100 mL water, but did not contain any Co(NO3)2.6H2O or LiNO3. The title compound was thereby obtained. D50 was found to be 7.9 μm. The water content of the material was 0.29 wt %. The chemical formula of the material was determined by ICP analysis to be Li0.997Ni0.952Co0.029Mg0.019Al0.0065O2.


Example 1H—Compound 8 (Li 1.002Ni0.919Co0.064Mg0.014Al0.0062O2)

The product of Comparative Example 1H was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 11.82 g Co(NO3)2.6H2O, 1.88 g LiNO3 and 2.44 g Al(NO3)3.9H2O in 100 mL water. The title compound was thereby obtained. D50 was found to be 8.2 μm. The water content of the material was 0.29 wt %. The chemical formula of the material was determined by ICP analysis to be Li1.002Ni0.919Co0.064Mg0.014Al0.0062O2.


Example 1J—Compound 9 (Li0.9801Ni0.909Co0.066Mg0.037Al0.0066O2)

The product of Comparative Example 1J was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 11.77 g Co(NO3)2.6H2O, 1.87 g LiNO3 and 2.44 g Al(NO3)3.9H2O in 100 mL water. The title compound was thereby obtained. D50 was found to be 10.0 μm. The water content of the material was 0.08 wt %. The chemical formula of the material was determined by ICP analysis to be Li0.980Ni0.909Co0.066Mg0.037Al0.0066O2.


Example 1K—Compound 10 (Li0.987Ni0.900Co0.064Mg0.051Al0.0065O2)

The product of Comparative Example 1K was subjected to the procedure set out under Example 1A, except that the aqueous solution contained 3.93 g Co(NO3)2.6H2O and 2.42 g Al(NO3)3.9H2O in 100 mL water, but did not contain any LiNO3. The title compound was thereby obtained. D50 was found to be 9.4 μm. The water content of the material was 0.17 wt %. The chemical formula of the material was determined by ICP analysis to be Li0.987Ni0.900Co0.064Mg0.051Al0.0065O2.


Example 1L—Compound 11 (Li0.984Ni0.877Co0.115Mg0.010Al0.0066O2)

100 g Ni0.905Co0.084Mg0.010(OH)2 and 26.33 g LiOH were dry mixed in a poly-propylene bottle for 1 hour. The LiOH was pre-dried at 200° C. under vacuum for 24 hours and kept dry in a glovebox purged with dry N2.


The powder mixture was loaded into 99%+ alumina crucibles and calcined under an artificial CO2 free air mix which was 80:20 N2:O2. Calcination was performed as follows: to 450° C. (5 ° C./min) with 2 hours hold, ramp to 700° C. (2° C./min) with a 6 hour hold and cooled naturally to 130° C. The artificial air mix was flowing over the powder bed throughout the calcination and cooling.


The samples were then removed from the furnace at 130° C. and transferred to a purged N2 filled glove-box. The sample was transferred to a high-alumina lined mill pot and milled on a rolling bed mill until D50 was between 12.0-12.5 μm.


After milling, the product was sieved through a 53 μm sieve and transferred to a purged N2 filled glovebox. An aqueous solution containing 11.83 g Co(NO3)2.6H2O, 1.88 g LiNO3 and 2.44 g Al(NO3)3.9H2O in 100 mL water was heated to between 60 and 65° C. 100 g of the sieved powder was added rapidly while stirring vigorously. The slurry was stirred at a temperature between 60 and 65° C. until the supernatant was colourless. The slurry was then spray-dried.


After spray-drying powders were loaded into 99%+alumina crucibles and calcined under an artificial CO2 free air mix which was 80:20 N2:O2. Calcination was performed as follows: ramp to 130° C. (5° C./min) with 5.5 hours hold, ramp to 450° C. (5° C./min) with 1 hour hold, ramp to 700° C. (2° C./min) with a 2 hours hold and cooled naturally to 130° C. The artificial air mix was flowing over the powder bed through the calcination and cooling. The title compound was thereby obtained.


The samples were then removed from the furnace at 130° C. and transferred to a N2 filled glove-box.


The sample was milled in a high-alumina lined mill pot on a rolling bed mill. The end point of the milling was when D50 was between 10 and 11 μm; D50 was measured after milling and found to be 8.8 μm. The sample was passed through a 53 μm sieve and stored in a purged N2 filled glove-box.


The water content of the material was 0.4 wt %. The chemical formula of the material was determined by ICP analysis to be Li0.984Ni0.877Co0.115Mg0.010Al0.0066O2.


Compounds 12 to 20, listed in Table 3 below, were made by an analogous process to Compounds 1 to 10, using the following bases:












TABLE 1







Compound
Base









Compound 12
Base 12



Compound 13
Base 13



Compound 14
Base 14



Compound 15
Base 15



Compound 16
Base 16



Compound 17a
Base 17



Compound 17b
Base 17



Compound 18a
Base 18



Compound 18b
Base 18



Compound 19
Base 19



Compound 20
Base 20











Li2CO3 Content


Surface Li2CO3 content in samples was determined using a two-stage titration with phenolphthalein and bromophenol blue. For the titration, surface lithium carbonate was extracted from a sample of each material by agitating in deionised water for 5 minutes to provide an extractate solution, the extractate solution was separated from residual solid. Phenolphthalein indictor was added to the extractate solution, and the extracted solution was titrated using HCI solution until the extractate solution became clear (indicating the removal of any LiOH). Bromophenol blue indictor was added to the extractate solution, and the extracted solution titrated using HCI solution until the extractate solution turned yellow. The amount of lithium carbonate in the extractate solution was be calculated from this bromophenol titration step, the wt % of surface lithium carbonate in each sample was calculated assuming 100% extraction of surface lithium carbonate into the extractate solution.


The results for the materials tested were as set out in Table 2:












TABLE 2








Li2CO3 content



Material
(wt %)



















Compound 1
0.28



Compound 2
0.26



Compound 3
0.16



Compound 4
0.36



Compound 5
0.41



Compound 6
0.40



Compound 7
0.53



Compound 8
0.19



Compound 9
0.15



Compound 10
0.31



Compound 11
0.19



Compound 12
0.1



Compound 13
0.89



Compound 14
0.23



Compound 15
0.16



Compound 16
0.18



Compound 17a
0.19



Compound 17b
1.02



Compound 18a
0.19



Compound 18b
0.918



Compound 19
0.11



Compound 20
0.61










A plot showing the relationship between cobalt content in the enriched surface layer and surface Li2CO3 content is provided in FIG. 1.


Compositional Analysis

The total magnesium and cobalt contents (weight % based on the total particle weight) in the Comparative and Inventive materials was determined by ICP and is given in Table 3 below.


The surface cobalt content was calculated by subtracting the ICP wt % Co in the base material from the ICP wt % Co in the final material. The core cobalt content is taken as the ICP wt % Co in the base material.


ICP (Inductively Coupled Plasma)

The elemental composition of the compounds was measured by ICP-OES. For that, 0.1 g of material are digested with aqua regia (3:1 ratio of hydrochloric acid and nitric acid) at −130° C. and made up to 100 mL. The ICP-OES analysis was carried out on an Agilent 5110 using matrix matched calibration standards and yttrium as an internal standard. The lines and calibration standards used were instrument-recommended.


Electrochemical Testing

Electrodes were made in a 94:3:3 active:carbon:binder formulation with an ink at 65% solids. 0.6 g of SuperC65 carbon was mixed with 5.25 g of N-methyl pyrrolidone (NMP) on a


Thinky® mixer. 18.80 g of active material was added and further mixed using the Thinky® mixer. Finally, 6.00 g of Solef® 5130 binder solution (10 wt % in NMP) was added and mixed in the Thinky mixer. The resulting ink was cast onto aluminium foils using a 125 μm fixed blade coater and dried at 120° C. for 60 minutes. Once dry, the electrode sheet was calendared in an MTI calendar to achieve a density of 3 g/cm3. Individual electrodes were cut and dried under vacuum overnight before transferring to an argon filled glovebox. Coin cells were built using a lithium anode and 1M LiPF6 in 1:1:1 EC (ethylene carbonate) : EMC (ethyl methyl carbonate) : DMC (dimethyl carbonate) +1 wt % VC (vinylene carbonate) electrolyte. Electrodes selected had a loading of 9.0 mg/cm2 and a density of 3 g/cm3. Electrochemical measurements were taken from averages of three cells measured at 23° C., and a voltage window of 3.0-4.3V.


Electrochemical characteristics evaluated include first cycle efficiency (FCE), 0.1 C specific capacity, 1.0 C specific capacity, capacity retention and DCIR growth using a 10s pulse.


Capacity retention and DCIR growth were determined based on performance after 50 cycles at 1C.


Table 3 below includes details of the materials tested.


















TABLE 3










Total

Specific
Specific


DCIR




Mg
Co

capacity
capacity


growth,




content
content
D50
at 1 C
at 0.1 C
CR
FCE
10 s


Material
Formula
(wt %)
(wt %)
(μm)
(mAh/g)
(mAh/g)
(%)
(%)
(%)





Base 1
Li1.030Ni0.953Co0.030Mg0.010O2
0.2
1.8
9.5
194.6
213.9
80.9
87.3
29


Base 2
Li1.019Ni0.949Co0.031Mg0.020O2
0.5
1.8
10.2
190.2
208.1
85.8
85.8
34


Base 3
Li1.027Ni0.923Co0.049Mg0.029O2
0.7
2.9
9.65
185.0
203.1
93.5
87.2
34


Base 4
Li1.007Ni0.923Co0.049Mg0.038O2
0.9
2.9
12.2
nm
nm
nm
nm
nm


Base 5
Li0.998Ni0.917Co0.049Mg0.052O2
1.3
2.9
12.1
nm
nm
nm
nm
nm


Base 6
Li1.024Ni0.926Co0.045Mg0.037O2
0.9
2.7
9.0
180.6
197.9
96.4
85.2
32


Base 7
Li1.003Ni0.956Co0.030Mg0.020O2
0.5
1.8
9.6
193.4
211.5
84.8
87.3
32


Base 8
Li1.009Ni0.957Co0.030Mg0.015O2
0.4
1.8
9.3
196.3
218.1
80.7
89.2
38


Base 9
Li1.005Ni0.944Co0.029Mg0.038O2
0.9
1.7
10.7
182.7
198.2
91.0
84.1
30


Base 10
Li0.996Ni0.914Co0.053Mg0.051O2
1.3
3.2
9.49
nm
nm
nm
nm
nm


Base 12
Li1.026Ni0.930Co0.049Mg0.019O2
0.5
2.9
8.4
192.5
212.4
92.3
88.5
40


Base 13
Li1.018Ni0.911Co0.058Mg0.038O2
0.9
3.5
9.4
176.7
194.1
95.6
85.4
34


Base 14
Li1.021Ni0.930Co0.048Mg0.028O2
0.7
2.9
9.8
180.6
195.81
92.0
84.9
43


Base 15
Li1.035Ni0.921Co0.048Mg0.029O2
0.7
2.9
9.8
183.4
201.68
91.2
86.4
39


Base 16
Li1.013Ni0.902Co0.081Mg0.020O2
0.5
4.8
8.9
 182.69
204.63
91.8
89.1
45


Base 17
Li1.033Ni0.904Co0.079Mg0.009O2
0.2
4.7
10.2
190.0
212.9
91.4
89.4
40


Base 18
Li1.013Ni0.900Co0.075Mg0.038O2
0.9
4.5
12
 174.96
193.09
96.6
84.8
31


Base 19
Li1.041Ni0.925Co0.048Mg0.019O2
0.5
2.9
9.8
189.9
209.2
88.8
88.1
34


Base 20
Li1.017Ni0.907Co0.068Mg0.029O2
0.7
4.0
9.4
181.9
211.5
94.5
87.3
36























Surface
Total

Specific
Specific


DCIR




Mg
Co
Co

capacity
capacity


growth,




content
content
content
D50
at 1 C
at 0.1 C
CR
FCE
10 s


Material
Formula
(wt %)
(wt %)
(wt %)
(μm)
(mAh/g)
(mAh/g)
(%)
(%)
(%)





Compound 1
Li1.018Ni0.930Co0.049Mg0.010Al0.006O2
0.2
1.1
2.9
8.5
198.5
216.5
87.4
88.3
38


Compound 2
Li1.002Ni0.927Co0.053Mg0.020Al0.0065O2
0.5
1.3
3.2
9.5
192.9
209.6
93.9
87.4
39


Compound 3
Li0.995Ni0.909Co0.068Mg0.027Al0.0065O2
0.7
1.2
4.1
7.61
185.2
203
95.4
95.4
37


Compound 4
Li0.985Ni0.913Co0.061Mg0.037Al0.0069O2
0.9
0.7
3.7
11.7
176.1
192.7
96.2
84.3
29


Compound 5
Li0.980Ni0.905Co0.061Mg0.051Al0.0065O2
1.3
0.7
3.7
10.7
166.7
184.1
97.4
82.3
27


Compound 6
Li1.003Ni0.923Co0.045Mg0.038Al0.0062O2
0.9
0
2.7
7.5
177.4
192.3
97.4
82.9
29


Compound 7
Li0.997Ni0.952Co0.029Mg0.019Al0.0065O2
0.5
0
1.8
7.9
190.4
206.5
87.1
86.1
24


Compound 8
Li1.002Ni0.919Co0.064Mg0.014Al0.0062O2
0.4
2.1
3.9
8.2
198.7
218.4
91.5
91.2
48


Compound 9
Li0.980Ni0.909Co0.066Mg0.037Al0.0066O2
0.9
2.2
3.9
10.0
177.6
192.1
94.2
84.5
36


Compound 10
Li0.987Ni0.900Co0.064Mg0.051Al0.0065O2
1.3
0.7
3.9
9.4
171.6
188.4
97.2
83.8
33


Compound 11
Li0.984Ni0.877Co0.115Mg0.010Al0.0066O2
0.2
2.2
6.9
8.8
191.2
210.2
94.3
90.8
nm


Compound 12
Li0.995Ni0.893Co0.091Mg0.019Al0.006O2
0.5
2.5
5.5
8.4
188.0
206.8
96.2
89.2
46


Compound 13
Li1.018Ni0.904Co0.058Mg0.038Al0.007O2
0.9
0
3.5
8.2
173.1
188.8
96.0
84.4
24


Compound 14
Li1.009Ni0.906Co0.067Mg0.028Al0.007O2
0.7
1.1
4.0
8.8
177.9
193.6
97.3
84.6
23


Compound 15
Li0.988Ni0.896Co0.083Mg0.027Al0.006O2
0.7
2.2
5.0
8.2
182.9
200.3
95.3
95.3
37


Compound 16
Li1.009Ni0.880Co0.097Mg0.019Al0.007O2
0.5
1.0
5.8
7.1
188.9
208.8
95.6
89.9
36


Compound 17a
Li0.992Ni0.874Co0.116Mg0.009Al0.007O2
0.2
2.2
6.9
8.6
189.6
208.6
92.5
90.3
44


Compound 17b
Li1.017Ni0.901Co0.080Mg0.010Al0.007O2
0.2
0
4.7
8.3
185.4
202.8
90.6
90.6
37


Compound 18a
Li0.984Ni0.862Co0.113Mg0.036Al0.007O2
0.9
2.3
6.7
11.2
172.5
189.2
98.6
85.1
31


Compound 18b
Li1.002Ni0.892Co0.076Mg0.038Al0.007O2
0.9
0
4.5
11.2
171.0
187.0
97.2
83.5
25


Compound 19
Li1.009Ni0.896Co0.083Mg0.018Al0.006O2
0.5
2.1
4.9
9.0
189.2
207.2
94.6
88.8
39


Compound 20
Li1.016Ni0.901Co0.068Mg0.029Al0.007O2
0.7
0
4.0
8.0
183.6
202.0
93.3
87.0
37





CR = Capacity retention


FCE = First cycle efficiency


DCIR = Direct current internal resistance


nm = not measured





Claims
  • 1. A surface-modified particulate lithium nickel oxide material comprising: particles having a core and an enriched surface layer at the surface of the core, wherein the enriched surface layer includes 0.9 to 1.5 wt % cobalt and wherein the particulate lithium nickel oxide comprises 0.3 wt % or less of surface Li2CO3.
  • 2. The particulate lithium nickel oxide material according to claim wherein the surface enriched layer includes 1.4 wt % or less of cobalt.
  • 3. The surface-modified particulate lithium nickel oxide material according to claim 1, wherein the particles comprise Formula I LiaNixCoyMgzAlpMqO2+b   Formula I
  • 4. The particulate lithium nickel oxide material according to claim 3, wherein 0.035≤y≤0.1.
  • 5. The particulate lithium nickel oxide material according to claim 3, wherein 0.015≤z≤0.03.
  • 6. The particulate lithium nickel oxide material according to claim 3, wherein 0.004≤p≤0.008.
  • 7. The particulate lithium nickel oxide material according to claim 1, having a D50 particle size in the range from 4 μm to 20 p.m.
  • 8. A method, comprising: application of a cobalt-containing compound to a particulate lithium nickel oxide material comprising particles so as to reduce the formation of surface Li2CO3 in the particulate lithium nickel oxide material comprising particles, by forming on the surface of the particles an enriched surface layer comprising 0.5 to 1.5 wt % cobalt.
  • 9. A method, comprising: forming an enriched surface layer on a particulate lithium nickel oxide material comprising particles so as to reduce the formation of surface Li2CO3 in a particulate lithium nickel oxide material comprising particles, wherein the enriched surface layer comprises 0.5 to 1.5 wt % cobalt.
  • 10. The method according to claim 8, wherein the particulate lithium nickel oxide material oxide comprises 0.3 wt % or less of surface Li2CO3.
  • 11. The method according to claim 8, wherein the particulate lithium nickel oxide material comprises particles having Formula I LiaNixCoyMgzAlpMqO2+b   Formula I
  • 12. A process for preparing particulate lithium nickel oxide material having Formula I LiaNixCoyMgzAlpMqO2+b   Formula I
  • 13. A cathode comprising the particulate lithium nickel oxide material according to claim 1.
  • 14. A lithium secondary cell or battery comprising the cathode according to claim 13.
  • 15. The method according to claim 9, wherein the particulate lithium nickel oxide material oxide comprises 0.3 wt % or less of surface Li2CO3.
  • 16. The method according to claim 9, wherein the particulate lithium nickel oxide material comprises particles having Formula I LiaNixCoyMgzAlpMqO2+b   Formula I
  • 17. The method according to claim 10, wherein the particulate lithium nickel oxide material comprises particles having Formula I LiaNixCoyMgzAlpMgzAlpMqO2+b   Formula I
Priority Claims (1)
Number Date Country Kind
2004489.7 Mar 2020 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2021/050729 3/25/2021 WO