1. Field of the Invention
The invention relates to cathode material particles having the nano-metal oxide layers on the surface and a method of manufacturing the cathode material particles, and more particularly cathode material particles made by the manufacturing method to improve the safety when used on a lithium battery.
2. Description of Related Art
High-capacity cathode material used on a lithium battery not only affects the battery characteristics, but also influences the safety of the lithium battery. In addition to the requirement the high-capacity, thermal stability is an important factor for the safety of the cathode material. The cathode material must be very safe when used on the lithium battery. A new cathode material is lithium-nickel oxide (LiNiO2) that has high-capacity but is unsafe and poor cycleability. Therefore, the lithium-nickel oxide is difficult to use with lithium batteries presently. Another cathode material is lithium-manganese oxide (LiMn2O4) that is safe for lithium battery but only has a capacity of about 110 m-Ah/g (milliampere hour/gram) that is 40%-45% lower than the capacity of still another cathode material of lithium-cobalt-nickel oxide (LiCoNiO2).
Lithium cobalt nickel oxide is a potential material for cathode material but has not been merchandised because the safety problem has not been resolved. To overcome the safety problem with lithium-cobalt-nickel oxide, metal ions such as aluminum or magnesium ions are doped into the lithium-cobalt-nickel oxide to improve the safety. However, the capacity of the cathode in the lithium batteries is reduced and internal resistance is increased so that the lithium batteries can not discharge and charge in high-rate. Alternately, a metal oxide layer can be coated on sintered lithium-cobalt-nickel oxide particles by secondary sintering. However, the thickness of the metal oxide layer is on the order of a micron that increases the surface resistance of the cathode and increases non-charging areas to the lithium-cobalt-nickel oxide. Therefore, the cathode material made of lithium-cobalt-nickel oxide with a micron metal oxide layer also has the problems of increasing internal resistance, decreasing capacity of high-rate discharge, etc.
The present invention has arisen to provide cathode material particles with nano-metal oxide layers on the order of nanometer thickness to mitigate or obviate the drawbacks of conventional cathode material.
A main objective of the present invention is to provide cathode material particles with nano-metal oxide layers on the surface for batteries, which have excellent safety.
Another objective of the present invention is to provide a method for manufacturing the cathode material particles having nano-metal oxide layers on the surface.
Further benefits and advantages of the present invention will become apparent after a careful reading of the detailed description in accordance with the drawings.
Cathode material particles with nano-metal oxide layers on the surface in accordance with the present invention, each cathode material particles comprises a cathode material core and a nano-metal oxide layer covering the cathode material core, wherein thickness of the metal oxide layer has a diameter of 10 nm to 100 nm.
With reference to
In the soaking process (10), a cathode material precursor in particle form serves as cores and is soaked in a surface improving agent containing metal salt or metal ions.
In the drying process (11), the surface improving agent is dried to deposit the metal ions or the metal salt on surfaces of the particles of the cathode material precursor.
In the sintering process (12), lithium hydroxide powder is mixed with the cathode material precursor and then transported into a sintering furnace to sinter at 700° C. to 850° C. for 6 to 24 hours until metal oxide layers covering the cathode material cores (i.e. the cathode material precursor particles). Thereby, cathode material particles with nano-metal oxide layers on the surface are achieved.
The cathode material precursor is cobalt-nickel hydroxides having the following formula: CoxNi1-x(OH), 0≦x≦1. The surface improving agent is a metal salt solution, and metal salt in contained in the metal salt solution is selected from the group consisting of magnesium hydroxide, strontium hydroxide, aluminum hydroxide, manganese nitrate, titanium chloride and gallium nitrate.
<Example of Manufacturing Lithium-Cobalt-Nickel Oxide (LiCoNiO2) Particles with Nano-Metal Oxide Layers on the Surface in Accordance with the Present Invention>
Cobalt-nickel hydroxide of Co0.2Ni0.8(OH) in particle form with particle diameters of 9 μm served as the precursor. The particles were poured into a surface improving agent of magnesium hydroxide (Mg(OH)2) solution to soak. Then, the magnesium hydroxide solvent was heated to evaporate the water and deposit the magnesium hydroxide on surfaces of the cobalt-nickel hydroxide particles. Lithium hydroxide hydrate (LiOH—H2O) powder was mixed with the cobalt-nickel hydroxide particles and transported into a sintering furnace to sinter at 750° C. for 16 hours. Thereby, lithium ions permeated into the precursor to develop crystalline grains inside and a magnesium oxide layer of 15 nm thickness was formed on the surfaces to achieve the cathode material particles. The proportion of metals in the cathode material particles was lithium:magnesium:cobalt:nickel=1.05:0.01:0.2:0.8 (mole ratio). Preferably, lithium content is in mole ratio of 1.00 to 1.05 and magnesium content is in mole ratio of 0.001 to 0.05 both in comparison with total metal content in the cathode material particles.
Cobalt-nickel hydroxide of Co0.2Ni0.8(OH) in particle form of with particle diameter of 9 μm served as the precursor. The particles were mixed with lithium hydroxide hydrate (LiOH—H2O) powder and transported into a sintering furnace to sinter at 750° C. for 16 hours to form lithium cobalt-nickel oxide particles. The proportion of metals in the conventional cathode material particles was lithium:cobalt:nickel=1.05:0.2:0.8 (mole ratio).
The lithium cobalt-nickel oxide cathode material in the foregoing example was mixed with graphite and poly-vinyldiene fluoride (PVDF 1100) in weight proportion of 85:10:5 to compose a mixture. The mixture was further added to N-methylpyrrolidone (NMP) solvent to form slurry. The slurry was coated on a 20 μm aluminum foil by a 250 μm doctor blade to perform an electrode plate. Then, the electrode plate was lightened and dried with infrared light and transported into a vacuum system to remove the N-methylpyrrolidone solvent. Lastly, the electrode plate was compressed and punched into coin-shaped electrode pieces of 12 mm diameter. In a coin cell, the coin-shaped electrode piece was the cathode and a lithium piece was the anode. The electrolyte of the lithium battery is 1M LiPF6-EC+DEC (Ethylene Carbonate+Diethyl carbonate)(volume proportion=1:1). The coin cell was charged and discharged in 0.4 mA/cm2 current density.
The conventional lithium-cobalt-nickel oxide particles were processed into coin-shaped electrode pieces in the same manner as above and then applied to a coin cell.
The coin cell with lithium-cobalt-nickel oxide particles with nano-metal oxide layers in accordance with the present invention was charged to 4.2 volts. Then, the coin-shaped electrode piece was detached from the coin cell and then the cathode material was scratched from the coin-shaped electrode piece. 3 g of the cathode material was inputted into an aluminum can to mix with 3 μL electrolyte. The aluminum can was sealed and scanned with a temperature differential of 5° C./min within 150° C. to 300° C.
The coin cell with the conventional lithium-cobalt-nickel particles without metal oxide layers was tested in the same way as described above.
The standard size of a prismatic battery is 6.3×30×48 mm (width×length×height). The capacity of prismatic battery is about 650 mAh (maximum charge voltage was 4.2 and maximum discharge voltage was 2.8). The cathode material was the lithium-cobalt-nickel oxide particles with nano-metal oxide layers on the surface in the present invention. A conductive additive was KS-6 (purchased from Timcal Company). A binder applied at cathode was polyvinyldiene fluoride, (PVDF, kureha 1100). The weight proportion of the lithium-cobalt-nickel oxide particles, the conductive material and the binder at cathode was 85:10:5. The anode material was mesophase microbead (MCMB), and a binder applied at anode was polyvinyldiene fluoride (PVDF, kureha 1100). The weight proportion of the mesophase microbead to the binder at anode was 90:10.
The lithium-cobalt-nickel oxide particles, the conductive material, the cathode binder and NMP were mixed together to form a cathode slurry. Then, the cathode slurry coated on an aluminum foil substrate. The aluminum foil substrate with the cathode slurry was dried to form the cathode plate.
The mesophase microbead, the anode binder and NMP were mixed together to form an anode slurry. Then, the anode slurry coated on a copper foil substrate. The copper foil substrate with the anode slurry was dried to form the anode plate. The cathode and the anode plates were rolled into Jelly-roll electrode and bound with tape at the sides and bottoms. Then, the Jelly-rolls were canned with isolating sheets in a battery container and capped with covers to form the battery housing. The battery housing was subjected to a vacuum and then filled with electrolyte. After welding a safety vent on the battery housing and washing the battery housing, the prismatic battery was formed. The prismatic battery was subjected to a crushing safety test, in which the prismatic battery was charged to 4.2 voltage and pressed by a flat surface of a round stick (diameter of the flat surface was 25 mm) at 17.2 Mpa. The prismatic battery was also subjected to a drilling safety test, in which the prismatic battery was charged to 4.2 voltage and drilled by a drilling head of 2 mm diameter at 500 rpm.
The conventional lithium-cobalt-nickel oxide particles without nano-metal oxide layers on the surface were processed in the same way as described above to manufacture a conventional prismatic battery. The conventional prismatic battery was also tested for drilling safety and crushing safety.
With reference to
With reference to
With reference to
With reference to
Additionally,
With regard to the crushing safety test and the drilling safety test, the prismatic battery of the conventional cathode material failed to pass the tests because of generated sparks, smoke and even explosion. The prismatic battery of the cathode material of the present invention had neither sparks nor smoke generated in the tests and had a maximum surface temperature of only about 100° C. The test results of prismatic batteries are listed as the following table:
Additionally, the method in accordance with the invention can be applied to various cathode materials such as lithium-cobalt oxide (LixCoO2), lithium manganese oxide (LixMnyO4), lithium-cobalt-nickel oxide (LixCoyNi1-yO2), or those oxides further containing other metals to generate a proper nano-metal oxide layer on the surface of each particle to improve the safety of the lithium batteries.
Although the invention has been explained in relation to its preferred embodiment, many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
092136842 | Dec 2003 | TW | national |