Information
-
Patent Grant
-
6597095
-
Patent Number
6,597,095
-
Date Filed
Tuesday, November 20, 200123 years ago
-
Date Issued
Tuesday, July 22, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Tripoli; Joseph S.
- Laks; Joseph J.
- Herrera; Carlos M.
-
CPC
-
US Classifications
Field of Search
US
- 313 407
- 313 402
- 313 403
- 313 404
- 313 405
- 313 406
- 313 408
-
International Classifications
-
Abstract
The invention relates to a tension mask frame for a CRT having a generally rectangular support frame to which a peripheral portion of a tension mask is attached. The support frame has at least a long side and a short side. One side extends along an outer edge of the mask and protrudes inward toward the outer edge of the mask. The short side is attached to the long side to form a closed corner portion between the long side and short side of the support frame. The closed corner portion is used to suspend the mask within a panel portion of the color cathode ray tube.
Description
FIELD OF THE INVENTION
This invention generally relates to cathode ray tubes (CRTs), and more particularly, to a shadow mask frame assembly for CRTs that eliminates the use of separate corner brackets for supporting the frame assembly within CRTs.
BACKGROUND OF THE INVENTION
A color cathode ray tube, or CRT, includes an electron gun for forming and directing three electron beams to a screen of the tube. A shadow mask, which may be either a formed mask or a tension mask having strands, is located between the electron gun and the screen. The electron beams emitted from the electron gun pass through apertures in the shadow mask and strike the screen causing the phosphors to emit light, so that an image is displayed on the viewing surface of the faceplate panel.
Present CRTs use steel frames to support the shadow mask within the faceplate panels of the tubes. Typically, such frames incorporate two long sides to which the mask is attached, two short sides perpendicular to the long sides and four corner brackets. The short sides are open at the ends, and a substantially flat corner bracket is used to provide the required strength in each corner. All parts are typically assembled by welding.
Because a plurality of parts and extensive welding is employed to make the frame, the ability to control the initial dimensions of the frame at fabrication, as well as dimensional changes during mask/frame assembly and processing, is extremely difficult. Additionally, dimensional inaccuracies affect the ability to attach springs or clips that support the frame in the proper location and orientation.
It is desirable to develop a mask frame assembly that reduces complexity and material usage of the frame without compromising the strength of the frame. Reducing the number of parts and the associated welding will improve the dimensional control of the frame at fabrication, reduce the propensity for dimensional changes during mask/frame assembly and processing, and reduce cost. Further, facilitating in-situ forming of the clip/spring attachment zone will improve the reliability of the structural detail.
SUMMARY OF THE INVENTION
This invention relates to a CRT having a tension mask frame assembly comprising a substantially rectangular support frame having two long sides, two short side, four corners and a tension mask attached to the two long sides of the support frame. The assembly includes closed ends at each of the corners, wherein the closed ends are contiguous with one of the adjacent sides at respective corners and each of the closed ends has a plurality of walls forming a closed corner portion between the long side and the short side of the support frame and including an angled mounting wall for use in suspending the mask within the color cathode ray tube.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described by way of example with reference to the accompanying figures in which:
FIG. 1
is a cross-sectional top view of a CRT showing a mask frame assembly.
FIG. 2
is a perspective view of a mask frame assembly.
FIG. 3
is cross-sectional view of the mask frame taken along line
3
—
3
of FIG.
2
.
FIG. 4
is an exploded view of a folded closed end of a side rail.
FIG. 5
is an exploded view of a welded closed end of a side rail.
FIG. 6
is a top view of the short sides of the mask support frame flat blank prior to forming the closed end.
FIG. 7
is an exploded view of the closed end having a clip/spring assembly applied.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1
shows a cathode ray tube (CRT)
1
having a glass envelope
2
comprising a rectangular faceplate panel
3
and a tubular neck
4
connected by a funnel
5
. The funnel
5
has an internal conductive coating (not shown) that extends from an anode button
6
toward the faceplate panel
3
and to the neck
4
. The faceplate panel
3
comprises a viewing faceplate
8
and a peripheral flange or sidewall
9
, which is sealed to the funnel
5
by a glass frit
7
.
A three-color phosphor screen
12
is carried by the inner surface of the faceplate panel
3
. The screen
12
is a line screen with the phosphor lines arranged in triads, each of the triads including a phosphor line of each of the three colors. A tension mask support frame assembly
10
is removably mounted in predetermined spaced relation to the screen
12
. An electron gun
13
(shown schematically by dashed lines in
FIG. 1
) is centrally mounted within the neck
4
to generate and direct three inline electron beams, a center beam and two side or outer beams, along convergent paths through the tension mask frame assembly
10
to the screen
12
.
The CRT
1
of
FIG. 1
is designed to be used with an external magnetic deflection yoke
14
located in the vicinity of the funnel-to-neck junction. When activated, the yoke
14
subjects the three electron beams to magnetic fields which cause the beams to scan horizontally and vertically in a rectangular raster over the screen
12
.
The tension mask support frame assembly
10
, as shown in
FIGS. 1 and 2
, has a generally rectangular support frame
20
to which a peripheral portion of a tension mask
30
is attached. The frame
20
includes two long sides
22
and
24
and two short sides
26
and
28
with closed ends
32
. The two long sides
22
and
24
of the frame
20
are parallel to a central major axis, X, of the CRT
1
; and the two short sides
26
,
28
are parallel to a central minor axis, Y, of the CRT
1
. The two long sides
22
and
24
and two short sides
26
and
28
preferably form a continuous mask support frame
20
. The long sides
22
and
24
can have various cross section shapes which can include rectangles, triangles or L-shapes. Referring now to
FIGS. 2-5
, the short sides
26
and
28
will be described in greater detail. Each short side
26
and
28
is a one-piece side rail having a closed end
32
, as shown in
FIGS. 4 and 5
. The portions of the short side
26
and
28
forming the closed end
32
, can be folded, welded or drawn in such a fashion to replicate the geometry of a corner bracket.
FIG. 6
shows the flat blank prior to folding of short sides
26
and
28
of the mask support frame
20
, wherein the dotted lines represent the fold lines. Referring to
FIGS. 2
,
4
and
5
, the closed end
32
begins at an outer wall
34
of the short side
28
. A clip mounting wall
36
extends from a front surface
37
adjacent to the outer wall
34
. The clip mounting wall
36
is oriented at an angle to the outer wail
34
. A top wall
38
also extends from the front surface
37
adjacent to the clip mounting wall
36
. The top wall
38
is oriented at an angle to the clip mounting wall
36
and approximately perpendicular to the outer wall
34
. A closure wall
39
extends also from the front surface
37
and is oriented approximately perpendicular to the top wall
38
and approximately parallel to the outer surface
34
. The closure wall
39
extends between the top wall
38
and an outer surface of the long side
22
,
24
and is preferably fixed thereto. It should be understood that while each of the walls
34
,
36
,
38
, and
39
are shown as separate sections all bent from the front surface
37
they may be alternatively welded to each other as shown in
FIG. 5
wherein the gaps between each wall are filled welds. The short side
26
,
28
is attached to the long side
22
and
24
to form a closed corner portion
32
between the long side
22
and
24
and short side
26
and
28
of the support frame
20
. The juncture is joined by electric arc welding techniques, laser welding, or other suitable welding techniques. It should be understood that while the closed ends
32
have been described here as extending from the short sides,
26
and
28
, the closed ends could alternatively be formed to extend from the long sides
22
and
24
, and closed on the short sides
26
and
28
respectively. The tension mask support frame assembly
10
includes an apertured tension mask
30
(shown here diagrammatically as a sheet for simplicity) that contains a plurality of metal strips (not shown) having a multiplicity of elongated slits (not shown) therebetween or a web mask having a plurality of aperutures that parallel the minor axis, Y, of the tube. The tension mask
30
can either be fixed directly to the long sides
22
and
24
or is fixed to a pair of support blade members
40
, which are fastened to the frame
20
, as best shown in FIG.
3
. The support blade members
40
may vary in height from the center of each support blade member
40
longitudinally to the ends thereof to permit the best curvature and tension compliance over the tension mask
30
.
In use, as shown in
FIG. 7
, a clip
42
is welded to an outer surface the clip mounting wall
36
and a spring
44
extends from the clip
42
having mounting features
46
for mounting the support frame
20
to the inside of the CRT
1
. As a result, the weld zone between the clip
42
and the spring
44
, a clip/spring assembly
48
is formed in its proper location and orientation. Further, the weld zone could be formed and fixed just prior to clip/spring assembly
48
is attached. The closed corner portion
32
is used to suspend the mask
30
within the panel
3
of the color cathode ray tube
1
.
In use, it is desirable to have the support frame
20
made of a low expansion material such as from the class of iron-nickel alloys. Examples include INVAR (from Imphy Ugine Precision, F—92070 La Défense Cedex, France), GAMMAPHY (from Imphy Ugine Precision, F—92070 La Défense Cedex, France) and carbide hardened iron-nickel alloys. GAMMAPHY and carbide hardened iron-nickel alloys are preferred over INVAR because they both have greater mechanical strength in terms of being able to provide the required load to a tension mask
30
. The carbide hardened iron-nickel alloys are preferred over GAMMAPHY because they do not need to be thermally precipitation hardened, whereas GAMMAPHY does require thermal precipitation hardening.
As the embodiments that incorporate the teachings of the present invention have been shown and described in detail, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings without departing from the spirit of the invention.
Claims
- 1. A cathode ray tube tension mask frame assembly comprising:a pair of symmetrical long sides, each being formed of a singular structural member; a pair of symmetrical short sides, each being formed of a singular structural member; the pair of long sides each being joined to the pair of short sides at corners to form a substantially rectangular support frame; the short sides each having an integral clip mounting wall being bent inward from a front surface and extending from an outer wall of each short side; a top wall, also extending from the front surface adjacent to the clip mounting wall; and, a closure wall, also extending from the front surface and oriented approximately perpendicular to the top wall and adjacent thereto, to form a closed end at each of the corners.
- 2. The cathode ray tube tension mask frame of claim 1 wherein each long side has a cross-sectional shape which is rectangular, triangular or L-shaped.
- 3. The cathode ray tube tension mask frame of claim 1, wherein each long side is attached to each short side by a weld.
- 4. The cathode ray tube tension mask frame of claim 1, wherein the support frame is an iron-nickel alloy selected from the groups consisting of INVAR, GAMMPHY, and carbide-hardened iron-nickel alloys.
US Referenced Citations (12)