Ultraviolet (UV) light is a form of electromagnetic radiation with wavelengths from about 10 nanometers (nm) to 400 nm. UV light has a shorter wavelength than visible light, but longer than X-rays. Short wave ultraviolet light damages DNA and sterilizes surfaces with which it comes into contact. For humans, suntan and sunburn are familiar effects of exposure of the skin to UV light, along with increased risk of skin cancer.
There are no natural sources of UV light below about 280 nm due to atmospheric absorption. This includes the UVC spectrum of 190 nm to 280 nm, which can be used for disinfection because UVC light is strongly absorbed by nucleic acids which can damage DNA and RNA. However, since mammalian DNA is confined to the nucleus of cells, proteins in the cell's cytoplasm effectively shield mammalian nucleus DNA from <230 nm UV light. Therefore, a UVC light source with a wavelength from 190-230 nm is effective at sterilizing surfaces without posing a danger to humans in the vicinity. Below 190 nm a UV light would produce significant amounts of ozone, which have been known to have deleterious effects on humans.
Due to atmospheric absorption of light below about 280 nm, this portion of the spectrum is also known as the solar blind spectrum. Due to atmospheric absorption UV light with a wavelength <280 nm has a limited range of transmission and is also efficiently scattered by aerosols and molecules in air. Because of these factors, light with a wavelength <280 nm may also be used for non-line of sight (NLOS) covert communication systems.
Low pressure mercury vapor lamps have been used to produce UVC light for sterilization. Such lamps are energy efficient and cost effective but suffer from their use of mercury, which is an environmental hazard and can be toxic to humans. There has been a movement away from the use of low pressure mercury vapor lamps in recent years due to environmental and health concerns.
Light Emitting Diodes have also been used to produce UVC light. While they do not include mercury or other heavy metals, they are not very efficient and are relative low capacity compared to other UVC light technologies.
Pulsed Xenon lamps produce a wide spectrum of UV light but are relatively expensive compared to other technologies. Since the spectrum of UV is so wide, the output of the lamps need to be filtered to attenuate wavelengths outside of the 190-230 nm range.
These and other limitations of the prior art will become apparent to those of skill in the art upon a reading of the following descriptions and a study of the several figures of the drawing.
A cathode-ray ultraviolet light source includes: an elongated glass envelope having a first end and second end, the glass envelope defining an evacuated volume; an electron gun positioned within the evacuated volume proximate to the first end and being capable of developing an electron beam; a target disposed within the evacuated volume between the first and second end of the glass envelope, the target comprising a phosphor material covered with a reflective metal film; and an electron beam focusing and deflecting mechanism disposed within the evacuated volume between the electron gun and the target to direct the electron beam towards the reflective metal film of the target.
A method for operating a cathode-ray tube ultraviolet light source includes directing an electron beam to reflective metal film covering a phosphor in an evacuated glass envelope and emitting ultraviolet light from the phosphor the glass envelope. In an embodiment, the electron beam is focused and steered across the reflective metal film in a pattern.
Advantages of various embodiments are that UVC light can be produced in an efficient, cost-effective manner without the use of dangerous and environmentally unfriendly heavy metals such as mercury.
These and other embodiments, features and advantages will become apparent to those of skill in the art upon a reading of the following descriptions and a study of the several figures of the drawing.
Several example embodiments will now be described with reference to the drawings, wherein like components are provided with like reference numerals. The example embodiments are intended to illustrate, but not to limit, the invention. The drawings include the following figures:
In this example, a target 24 is disposed within the evacuated volume 18 proximate the second end 16 of the glass envelope 12. The target 24 includes a phosphor material 26 covered with a reflective metal film 28. When the electron beam 22 impinges upon the reflective metal film 28, it penetrates the film and causes the phosphor material 26 to emit ultraviolet (UV) light from the second end 16 of the glass envelope 12 with relatively little internal loss due to the reflective film 28.
The emission wavelength of a light source 10 is determined by the phosphor material being irradiated. For example, AlN is a material that can emit UVC light at 210 nm. As another example, AlGaN can emit at different (longer) wavelengths. For AlGaN, the amount of gallium will determine the emission wavelength which will increase with the amount of gallium added to the alloy. Furthermore, dopants can be added to AlN or AlGaN to change their emission wavelengths. As still another example, hexagonal boron nitride will emit UVC light in the range of 210-220 nm.
Other phosphor materials that emit UV light in the range of 190-280 nm include:
Since the human visual system is incapable of detecting light in with a wavelength less than about 360 nm, in some embodiments a phosphor material that emits in the wavelength range of about 450 nm to about 650 nm may be incorporated with a phosphor material that emits in the wavelength range of about 190 nm to about 280 n in order to provide a visual indication that the device is operating. It should be noted that while a preferred wavelength range for safety is 190-230 nm, for certain applications this range may be extended up to about 280 nm. Depending upon the sterilization target, some wavelengths <280 nm may be optimal, although special precautions are recommended outside of the optimal 190-230 nm range.
Preferred electron beam energy is 6,000 to 34,000 V. Beam current can range from 1 μA to 5 mA. Suitable spot sizes for certain applications is in the range of 0.1 to 1.0 mm in diameter. For some applications, a maximum spot size of up to about 5 mm in diameter may be desirable.
Although various embodiments have been described using specific terms and devices, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of various inventions supported by the written disclosure and the drawings. In addition, it should be understood that aspects of various other embodiments may be interchanged either in whole or in part. It is therefore intended that the claims be interpreted in accordance with the true spirit and scope of the invention without limitation or estoppel.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US22/42265 | 8/31/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63239196 | Aug 2021 | US |