CATIONIC LIPID

Information

  • Patent Application
  • 20130129811
  • Publication Number
    20130129811
  • Date Filed
    April 28, 2011
    13 years ago
  • Date Published
    May 23, 2013
    11 years ago
Abstract
The present invention provides a cationic lipid, which allow nucleic acids to be easily introduced into cells, represented by formula (I)
Description
TECHNICAL FIELD

The present invention relates to a novel cationic lipid that allows, for example, nucleic acid to be easily introduced into cells, and to a novel composition comprising the cationic lipid, and the like.


BACKGROUND ART

Cationic lipids are amphiphilic molecules that generally contain a lipophilic region containing one or more hydrocarbon groups, and a hydrophilic region containing at least one positively charged polar head group. Cationic lipids are useful, because cationic lipids facilitate entry of macromolecules such as nucleic acids into the cytoplasm through the cell plasma membrane by forming a positively charged (total charge) complex with macromolecules such as nucleic acids. This process, performed in vitro and in vivo, is known as transfection.


Typically, cationic lipids are used either alone, or in combination with neutral lipids such as phospholipids. A combination of cationic lipids and neutral lipids is known to be useful, because it can easily form a vesicle that contains an aligned lipid bilayer. Vesicles and liposomes formed by cationic lipids either alone or in combination with neutral lipids have many positive charges on the surface, and, with these charges, can form a complex with polynucleotides or other anionic molecules such as negatively charged proteins. The remaining total cationic charge on the surface of a polynucleotide/cationic lipid/neutral lipid complex can cause strong interaction with the cell membrane, mainly with the negative charge on the surface of the cell membrane.


To date, many different cationic lipids have been synthesized for transfection, and are commercially available. Such cationic lipids include, for example, Lipofectin, Lipofectin ACE, Lipofect AMINE, Transfeactam, DOTAP, etc.


The N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), etc disclosed in Patent Document 1 are one of the cationic lipids developed in the early. DOTMA, etc. are characterized by the propanaminium group having quaternary nitrogen providing a cationic part to the molecule, and a pair of higher hydrocarbons attached to the propyl backbone of the molecule by an ether bond. The quaternary nitrogen is trisubstituted with relatively short alkyl chains such as methyl groups. As structurally similar cationic lipid, N-(2,3-di-(9-(Z)-octadecenoyloxy))-prop-1-yl-N,N,N-trimethylammonium chloride (DOTAP) contains acyl groups, instead of the ether-bonded alkyl groups.


For example, the N-[1-(2,3-dioleyloxypropyl)]-N,N-dimethyl-N-hydroxyethylammoniumbromide (DORIE), 2,3-dioleyloxy-N-[2-(spermine carboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), etc disclosed in Patent Documents 2 and 3 are characterized by the propanaminium group having quaternary nitrogen providing a cationic part to the molecule, and a pair of higher hydrocarbons attached to the propyl backbone of the molecule by an ether bond, the propanaminium group. The quaternary nitrogen is characterized by being trisubstituted with relatively short alkyl chains such as methyl groups, and with hydroxyalkyl.


Patent Document 4 discloses, for example, 1,2-dilinoleyloxy-N,N-dimethylaminopropane (DLinDMA), etc. DLinDMA, etc are characterized by the higher alkyl group that contains at least two unsaturated moieties. The higher alkyl group is contained as a replacement for the higher alkyl groups of the structurally similar cationic lipids DOTAP and DOTMA for the purpose of developing more flexible cationic lipids and improving the membrane fluidity of liposomes or the like. Patent Document 5 discloses, for example, 2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolan (DLin-K-DMA), etc.


CITATION LIST
Patent Documents



  • [Patent Document 1] Japanese Published Unexamined Patent Application No. 161246/1986 (U.S. Pat. No. 5,049,386)

  • [Patent Document 2] WO1991/16024

  • [Patent Document 3] WO1997/019675

  • [Patent Document 4] WO2005/121348

  • [Patent Document 5] WO2009/086558



SUMMARY OF THE INVENTION
Problems to be Solved by the Invention

An object of the present invention is to provide a novel cationic lipid that allows, for example, nucleic acids to be easily introduced into cells, and a novel composition comprising the cationic lipid, and the like.


Means for Solving the Problems

The present invention is concerned with the following (1) to (25).


(1) A cationic lipid represented by formula (I):




embedded image


(wherein:


R1 and R2 are, the same or different, each (Z)-pentadecenyl, (Z)-hexadecenyl or (Z)-heptadecenyl, or are combined together to form di((Z)-tetradecenyl)methylene, di((Z)-pentadecenyl)methylene or di((Z)-hexadecenyl)methylene,


the dotted line is a single bond or absent,


when the dotted line is a single bond,

    • m is 1, a and b are 0, X1 and X2 are hydrogen atoms, X4 is methylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are —O—,
    • m is 1 or 2, a and b are 0, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are —O—,
    • m is 1, a and b are, the same or different, each 0 to 3, and are not 0 at the same time, X1 and X2 are hydrogen atoms, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, and are not 0 at the same time, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L3 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are hydrogen atoms, or are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is a hydrogen atom, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are hydrogen atoms, or are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is —CO— or —CO—O—, R3 is pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—, or
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are hydrogen atoms, or are combined together to form a single bond or alkylene, X4 is alkylene, X3 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, Y is a pharmaceutically acceptable anion, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—, when the dotted line is absent,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X3 are combined together to form a single bond or alkylene, X4 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are —O—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, X3 and Y are absent, L3 is a single bond, R3 is a hydrogen atom, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, X3 and Y are absent, L3 is —CO— or —CO—O—, R3 is pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—, or
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is combined with the adjacent nitrogen atom, L3, and R3 to form pyrrolidine or piperidine, X3 and Y are absent, L1 and L2 are —O—).


(2) The cationic lipid as set forth above in (1), wherein X1 and X2 are combined together to form a single bond or alkylene.


(3) The cationic lipid as set forth above in (2), wherein L3 is a single bond, R3 is a hydrogen atom, methyl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, and L1 and L2 are —O—.


(4) The cationic lipid as set forth above in (1) or (2), wherein L3 is —CO— or —CO—O—, R3 is pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl, and L1 and L2 are identically —CO—O— or —O—CO—.


(5) The cationic lipid as set forth above in any one of (1) to (4), wherein X3 is absent, or is methyl.


(6) The cationic lipid as set forth above in any one of (1) to (5), wherein L1 and L2 are —O— or —O—CO—, and R1 and R2 are (Z)-hexadec-6-enyl or (Z)-hexadec-9-enyl.


(7) The cationic lipid as set forth above in any one of (1) to (5), wherein L1 and L2 are —CO—O—, and R1 and R2 are (Z)-pentadec-5-enyl or (Z)-pentadec-8-enyl.


(8) A cationic lipid represented by formula (IA):




embedded image


(wherein:


R1 and R2 are, the same or different, each tetradecyl, (Z)-tetradecenyl, pentadecyl, hexadecyl or heptadecyl, or are combined together to form di(tridecyl)methylene, di((Z)-tridecenyl)methylene, di(tetradecyl)methylene, di(pentadecyl)methylene or di(hexadecyl)methylene,


m is 1 or 2,


the dotted line is a single bond,


X1 and X2 are combined together to form a single bond or alkylene,


X4 is alkylene,


X3 and Y are absent,


L3 is a single bond,


R3 is a hydrogen atom, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl,


when R3 is a hydrogen atom,

    • a and b are, the same or different, each 0 to 3, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,


when R3 is pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl,

    • a and b are 0, L1 and L2 are —O—, or
    • a and b are, the same or different, each 0 to 3, and are not 0 at the same time, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—).


(9) The cationic lipid as set forth above in any one of (1) to (8), wherein a and b are both 0 or 1.


(10) The cationic lipid as set forth above in any one of (1) to (9), wherein X4 is methylene or ethylene.


(11) A composition that comprises the cationic lipid as set forth above in any one of (1) to (10) and a nucleic acid.


(12) A composition comprising a complex particle of the cationic lipid as set forth above in any one of (1) to (10) and a nucleic acid, or a complex particle of a nucleic acid and a combination of the cationic lipid and a neutral lipid and/or a polymer.


(13) A composition comprising a liposome constituted of a complex particle of the cationic lipid as set forth above in any one of (1) to (10) and a nucleic acid, or a complex particle of a nucleic acid and a combination of the cationic lipid and a neutral lipid and/or a polymer, and a lipid bilayer membrane that encapsulates the complex particle.


(14) The composition as set forth above in any one of (11) to (13), wherein the nucleic acid is a nucleic acid having an activity of suppressing the expression of the target gene by utilizing RNA interference (RNAi).


(15) The composition as set forth above in (14), wherein the target gene is a gene associated with tumor or inflammation.


(16) A method for introducing the nucleic acid into a cell by using the composition as set forth above in any one of (11) to (15).


(17) The method as set forth above in (16), wherein the cell is a cell at a tumor or inflammation site of a mammal.


(18) The method as set forth above in (16) or (17), wherein the cell is a cell in the liver, lungs, kidneys or spleen of a mammal.


(19) The method as set forth above in (17) or (18), wherein the method of the introduction into a cell is a method of introduction into a cell by intravenous administration.


(20) A method for treating cancer or inflammatory disease, wherein the composition as set forth above in (15) is administered to a mammal.


(21) The method as set forth above in (20), wherein the method of administration is intravenous administration.


(22) A medicament comprising the composition as set forth above in (14) and for treating disease through administration of the composition to a mammal.


(23) The medicament as set forth above in (22), wherein the method of administration is intravenous administration.


(24) A cancer or inflammatory disease therapeutic agent comprising the composition as set forth above in (15) and for treating cancer or inflammatory disease through administration of the composition to a mammal.


(25) The cancer or inflammatory disease therapeutic agent as set forth above in (24), wherein the method of administration is intravenous administration.


Advantage of the Invention

A composition comprising the novel cationic lipid of the present invention and a nucleic acid can be administered to mammals and the like to easily introduce the nucleic acid into cells and the like.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the expression rate of target gene mRNA after the introduction of the preparations obtained in Examples 13 to 18 into human liver cancer-derived cell line HepG2. The vertical axis represents target gene mRNA expression rate relative to the negative control taken at 1; the horizontal axis represents nucleic acid concentration (nM), and the compound numbers and example numbers of the cationic lipids used.



FIG. 2 shows the expression rate of target gene mRNA after the introduction of the preparations obtained in Examples 19 to 24 into cells as that in FIG. 1.



FIG. 3 shows the expression rate of target gene mRNA after the introduction of the preparations obtained in Comparative Examples 1 to 6 into cells as that in FIG. 1.





MODE FOR CARRYING OUT THE INVENTION

A cationic lipid of the present invention is represented by the following formula (I)




embedded image


(wherein:


R1 and R2 are, the same or different, each (Z)-pentadecenyl, (Z)-hexadecenyl or (Z)-heptadecenyl, or are combined together to form di((Z)-tetradecenyl)methylene, di((Z)-pentadecenyl)methylene or di((Z)-hexadecenyl)methylene,


the dotted line is a single bond or absent,


when the dotted line is a single bond,

    • m is 1, a and b are 0, X1 and X2 are hydrogen atoms, X4 is methylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are —O—,
    • m is 1 or 2, a and b are 0, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are —O—,
    • m is 1, a and b are, the same or different, each 0 to 3, and are not 0 at the same time, X1 and X2 are hydrogen atoms, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, and are not 0 at the same time, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L3 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are hydrogen atoms, or are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is a single bond, R3 is a hydrogen atom, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are hydrogen atoms, or are combined together to form a single bond or alkylene, X4 is alkylene, X3 and Y are absent, L3 is —CO— or —CO—O—, R3 is pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—, or
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are hydrogen atoms, or are combined together to form a single bond or alkylene, X4 is alkylene, X3 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, Y is a pharmaceutically acceptable anion, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,


when the dotted line is absent,

    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, X3 and Y are absent, L3 is a single bond, R3 is alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are —O—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, X3 and Y are absent, L3 is a single bond, R3 is a hydrogen atom, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, X3 and Y are absent, L3 is —CO— or —CO—O—, R3 is pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—, or
    • m is 1 or 2, a and b are, the same or different, each 0 to 3, X1 and X2 are combined together to form a single bond or alkylene, X4 is combined with the adjacent nitrogen atom, L3, and R3 to form pyrrolidine or piperidine, X3 and Y are absent, L1 and L2 are —O—), or formula (Ia):




embedded image


(wherein:


R1 and R2 are, the same or different, each tetradecyl, (Z)-tetradecenyl, pentadecyl, hexadecyl or heptadecyl, or are combined together to form di(tridecyl)methylene, di((Z)-tridecenyl)methylene, di(tetradecyl)methylene, di(pentadecyl)methylene or di(hexadecyl)methylene,


m is 1 or 2,


the dotted line is a single bond,


X1 and X2 are combined together to form a single bond or alkylene,


X4 is alkylene,


X3 and Y are absent,


L3 is a single bond,


R3 is a hydrogen atom, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl,


when R3 is a hydrogen atom,

    • a and b are, the same or different, each 0 to 3, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—,


when R3 is pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl,

    • a and b are 0, L1 and L2 are —O—, or
    • a and b are, the same or different, each 0 to 3, and are not 0 at the same time, L1 and L2 are, the same or different, each —O—, —CO—O— or —O—CO—).


The compound represented by the formula (I) will be hereinafter also referred to as “Compound (I)”. The same is also applicable to compounds designated with other numbers.


The (Z)-tetradecenyl, (Z)-pentadecenyl, (Z)-hexadecenyl, and (Z)-heptadecenyl, and the (Z)-tridecenyl, (Z)-tetradecenyl, (Z)-pentadecenyl, and (Z)-hexadecenyl in di((Z)-tridecenyl)methylene, di((Z)-tetradecenyl)methylene, di((Z)-pentadecenyl)methylene, and di((Z)-hexadecenyl)methylene may have the double bond at any position. Preferred examples include (Z)-tridec-5-enyl, (Z)-tetradec-9-enyl, (Z)-tetradec-6-enyl, (Z)-pentadec-8-enyl, (Z)-pentadec-5-enyl, (Z)-hexadec-9-enyl, (Z)-hexadec-6-enyl, (Z)-heptadec-11-enyl, and (Z)-heptadec-8-enyl.


Examples of the alkylene include methylene, ethylene, propylene, and the like.


Examples of the alkyl having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, cyclopropylmethyl, pentyl, isopentyl, sec-pentyl, neopentyl, tert-pentyl, cyclopentyl, hexyl, cyclohexyl, and the like. Preferred examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, sec-pentyl, tert-pentyl, neopentyl, hexyl, and the like. More preferred examples include methyl, ethyl, propyl, and the like.


Examples of the alkenyl having 3 to 6 carbon atoms include allyl, 1-propenyl, butenyl, pentenyl, hexenyl, and the like. Preferred examples include allyl, and the like.


The alkyl moiety in the substituted alkyl having 1 to 6 carbon atoms, and the alkenyl moiety in the substituted alkenyl having 3 to 6 carbon atoms have the same definitions as in alkyl having 1 to 6 carbon atoms and alkenyl having 3 to 6 carbon atoms from which the hydrogen atoms have been removed from the substitution positions, respectively.


Examples of the pharmaceutically acceptable anions include inorganic ions such as chloride ions, bromide ions, nitric acid ions, sulfuric acid ions, and phosphoric acid ions, and organic acid ions such as acetic acid ions, oxalic acid ions, maleic acid ions, fumaric acid ions, citric acid ions, benzoic acid ions, and methanesulfonic acid ions.


In the present invention, the pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, and morpholin-3-yl encompass those in which the hydrogen atom on the nitrogen atom in the ring has been converted to methyl or ethyl.


Each of the monoalkylamino and the dialkylamino may be an amino which is substituted with one or two alkyls, being the same or different, and having a carbon number of 1 to 6 (having the same definition as above) or an alkyl or alkyls having a carbon number of 1 to 6 (having the same definition as above) substituted with amino, methylamino, ethylamino, dimethylamino, diethylamino, pyrrolidinyl, piperidyl or morpholinyl. Examples thereof include methylamino, ethylamino, propylamino, butylamino, pentylamino, hexylamino, dimethylamino, diethylamino, ethylmethylamino, methylpropylamino, butylmethylamino, methylpentylamino, hexylmethylamino, aminoethylamino, aminopropylamino, (aminoethyl)methylamino, and bis(aminoethyl)amino. Of these, methylamino, ethylamino, dimethylamino, diethylamino, aminopropylamino, and bis(aminoethyl)amino, and the like are preferable.


In the present invention, the amino, monoalkylamino, and dialkylamino may form ammonio, monoalkylammonio, and dialkylammonio, respectively, through coordination of a hydrogen ion to a lone pair on the nitrogen atom. The amino, monoalkylamino, and dialkylamino include ammonio, monoalkylammonio, and dialkylammonio, respectively.


The trialkylammonio may be an ammonio substituted with three substituents, which are, the same or different, alkyl having 1 to 6 carbon atoms (having the same definition as described above), and alkyl having 1 to 6 carbon atoms (having the same definition as described above) substituted with amino, methylamino, ethylamino, dimethylamino, diethylamino, pyrrolidinyl, piperidyl or morpholinyl. Examples thereof include trimethylammonio, ethyldimethylammonio, diethylmethylammonio, triethylammonio, tripropylammonio, tributylammonio, tripentylammonio, trihexylammonio, tris(aminoethyl)ammonio, (aminoethyl)dimethylammonio, bis(aminoethyl)methylammonio, and the like. Preferred examples thereof include trimethylammonio, triethylammonio, tris(aminoethyl)ammonio, (aminoethyl)dimethylammonio, bis(aminoethyl)methylammonio, and the like.


In the present invention, the ammonio, monoalkylammonio, and dialkylammonio in which a hydrogen ion coordinates to a lone pair on the nitrogen atom of the amino, monoalkylamino, and dialkylamino, respectively, and the trialkylammonio may form salts with pharmaceutically acceptable anions (having the same definitions as described above).


The alkoxy may be hydroxy which is substituted with an alkyl having a carbon number of 1 to 6 (having the same definition as above) or an alkyl having a carbon number of 1 to 6 (having the same definition as above) substituted with amino, methylamino, ethylamino, dimethylamino, diethylamino, pyrrolidinyl, piperidyl or morpholinyl. Examples thereof include methoxy, ethoxy, propyloxy, butyloxy, pentyloxy, hexyloxy, aminoethoxy, and methylaminoethoxy. Of these, methoxy, ethoxy, aminoethoxy, methylaminoethoxy, and the like are preferable.


The monoalkylcarbamoyl and dialkylcarbamoyl may be carbamoyls substituted with one or two substituent(s), which is(are), the same or different, alkyl having 1 to 6 carbon atoms (having the same definition as described above), and alkyl having 1 to 6 carbon atoms (having the same definition as described above) substituted with amino, methylamino, ethylamino, dimethylamino, diethylamino, pyrrolidinyl, piperidyl or morpholinyl. Examples thereof include methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, butylcarbamoyl, pentylcarbamoyl, hexylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, ethylmethylcarbamoyl, methylpropylcarbamoyl, butylmethylcarbamoyl, methylpentylcarbamoyl, hexylmethylcarbamoyl, aminoethylcarbamoyl, aminopropylcarbamoyl, (aminoethyl)methylcarbamoyl, bis(aminoethyl)carbamoyl, and the like. Preferred example include methylcarbamoyl, ethylcarbamoyl, dimethylcarbamoyl, and the like.


Further preferably, L1 and L2 are identically —O—, —CO—O— or —O—CO—.


When at least one of L1 and L2 is —O— or —O—CO—, it is more preferable that the R1 and R2 bound to —O— or —O—CO— are, the same or different, each (Z)-hexadec-6-enyl or (Z)-hexadec-9-enyl.


When at least one of L1 and L2 is —CO—O—, it is more preferable that the R1 and R2 bound to —CO—O— are, the same or different, each (Z)-pentadec-5-enyl or (Z)-pentadec-8-enyl.


In either case, it is further preferable that R1 and R2 are the same, or are combined together to form dialkylmethylene, dialkenylmethylene or dialkynylmethylene having the same alkyl, alkenyl or alkynyl moieties.


It is more preferable that a and b are 0 or 1 at the same time.


When a and b are 1 at the same time, it is more preferable that X1 and X2 are combined together to form a single bond or alkylene.


More preferably, X1 and X2 are combined together to form a single bond or alkylene. When X1 and X2 are combined together to form a single bond or alkylene, R3 is more preferably a hydrogen atom, methyl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl. Further preferably, R3 is a hydrogen atom, methyl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, hydroxy or carbamoyl. Most preferably, R3 is a hydrogen atom, methyl, 2,3-dihydroxypropyl, 3-hydroxypropyl, aminomethyl, 1,2-diaminoethyl, 2-aminoethyl, 1,3-diaminopropyl, 1,4-diaminobutyl, 1,5-diaminopentyl, 3-aminopropyl, 4-aminobutyl, 5-aminopentyl, 2-carbamoylethyl, or the like.


When X1 and X2 are combined together to form a single bond, L3 is —CO— or —CO—O—, preferably —CO— in one of the more preferred modes of the present invention. In this case, R3 is more preferably aminomethyl, 1,2-diaminoethyl, 2-aminoethyl, 1,3-diaminopropyl, 1,4-diaminobutyl, 1,5-diaminopentyl, 3-aminopropyl, 4-aminobutyl, 5-aminopentyl, or the like, most preferably 1,2-diaminoethyl, 1,3-diaminopropyl, 1,4-diaminobutyl or 1,5-diaminopentyl.


Further, when X1 and X2 are combined together to form a single bond, a and b are, the same or different, 1 to 3, preferably 1 in one of the more preferred modes of the present invention. In this case, L1 and L2 are identically —CO—O— or —O—CO—, preferably —CO—O—, and R3 is methyl in one of the more preferred modes of the present invention.


When X1 and X2 are combined together to form a single bond, X3 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, preferably methyl in one of the more preferred modes of the present invention. In this case, L1 and L2 are more preferably identically —CO—O— or —O—CO—, most preferably —CO—O—.


When X1 and X2 are hydrogen atoms, R3 is more preferably a hydrogen atom, methyl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl. Further preferably, R3 is a hydrogen atom, methyl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, hydroxy or carbamoyl. Most preferably, R3 is a hydrogen atom, methyl, 2,3-dihydroxypropyl, 3-hydroxypropyl, aminomethyl, 1,2-diaminoethyl, 2-aminoethyl, 1-amino-2-hydroxyethyl, 1,3-diaminopropyl, 1,4-diaminobutyl, 1,5-diaminopentyl, 3-aminopropyl, 4-aminobutyl, 5-aminopentyl, 2-carbamoylethyl, or the like.


When X1 and X2 are hydrogen atoms, it is more preferable that a and b are 0 at the same time.


More preferably, L3 is a single bond. When L3 is a single bond, L1 and L2 are more preferably —O—.


When L3 is a single bond, R3 is more preferably a hydrogen atom, methyl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl. Further preferably, R3 is a hydrogen atom, methyl, hydroxymethyl, 2-hydroxyethyl, 2,3-dihydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxy-3-methoxypropyl, aminomethyl, 2-aminoethyl, 1,5-diaminopentyl, 3-aminopropyl, 4-aminobutyl, 5-aminopentyl, 2-(N,N-dimethylamino)ethyl, 3-(N,N-dimethylamino)propyl, 2-carbamoylethyl, 2-dimethylcarbamoylethyl, 1-methylpiperidin-4-yl, or the like, even more preferably a hydrogen atom, methyl, 2,3-dihydroxypropyl, 3-hydroxypropyl, 2-aminoethyl, 1,5-diaminopentyl, 3-aminopropyl, 4-aminobutyl, 5-aminopentyl, 2-carbamoylethyl, or the like. In either case, L1 and L2 are most preferably —O—.


L1 and L2 are identically —CO—O— or —O—CO—, preferably —CO—O— in one of the more preferred modes of the present invention when X3 is absent, Y is absent, L3 is a single bond, and R3 is a hydrogen atom.


When L3 is —CO— or —CO—O—, it is more preferable that L1 and L2 are identically —CO—O— or —O—CO—.


When L3 is —CO— or —CO—O—, R3 is more preferably pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl. Further preferably, R3 is aminomethyl, 1,2-diaminoethyl, 2-aminoethyl, 1,3-diaminopropyl, 3-aminopropyl, 1,4-diaminobutyl, 4-aminobutyl, 1,5-diaminopentyl, 5-aminopentyl, (N,N-dimethylamino)methyl, 2-(N,N-dimethylamino)ethyl, 3-(N,N-dimethylamino)propyl, 1-amino-2-hydroxyethyl, or the like, even more preferably aminomethyl, 1,2-diaminoethyl, 2-aminoethyl, 1,3-diaminopropyl, 3-aminopropyl, 1,4-diaminobutyl, 4-aminobutyl, 1,5-diaminopentyl, 5-aminopentyl, or the like.


When L3 is —CO— or —CO—O—, R3 is aminomethyl, 1-hydroxy-2-aminoethyl, 2-aminoethyl, 1,3-diaminopropyl, 3-aminopropyl, 1,4-diaminobutyl, 4-aminobutyl, 1,5-diaminopentyl or 5-aminopentyl, and L1 and L2 are identically —O— in one of the more preferred modes of the present invention.


It is more preferable that X3 is absent, or is methyl.


When b is 0, X4 preferably forms alkylene.


Production methods of Compound (I) are described below. In the following production methods, in the case where the defined group or groups change under the conditions of the production method or are impertinent for carrying out the production method, the target compound can be produced by adopting common introduction and removal methods of a protective group in synthetic organic chemistry [for example, a method described in Protective Groups in Organic Synthesis, Third Edition, T. W. Greene, John Wiley & Sons Inc. (1999), etc.]. In addition, if desired, the order of reaction steps such as introduction of a substituent can be altered.


Production Method 1

Among the Compound (I), Compound (Ia) in which L1 and L2 are —O—, L3 is a single bond, and X3 and Y are absent can be produced by the following method.




embedded image


(In the formula, R1, R2, R3, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively, and Z represents a leaving group such as a chlorine atom, a bromine atom, an iodine atom, trifluoromethanesulfonyloxy, methanesulfonyloxy, benzenesulfonyloxy, and p-toluenesulfonyloxy).


Steps 1 and 2

Compound (IIb) can be produced by treating Compound (IIa) and Compound (IIIa) in a solvent in the presence of 1 to 30 equivalents of a base at a temperature between room temperature and 150° C. for 5 minutes to 100 hours, followed by isolation. Compound (Ia) can be produced by treating Compound (IIb) and Compound (IIIb) in a solvent in the presence of 1 to 30 equivalents of a base at a temperature between room temperature and 150° C. for 5 minutes to 100 hours, followed by isolation.


Examples of the solvent include toluene, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, and the like. These may be used either alone or as a mixture.


Examples of the base include sodium hydride, sodium hydroxide, potassium hydroxide, sodium tert-butoxide, potassium tert-butoxide, and the like.


Compound (IIa) can be obtained as a commercially available product or by known methods (for example, Chemical & Pharmaceutical Bulletin (Chem. Pharm. Bull.), 1991, Vol. 39, p. 2219, and WO2006/10036) or a method in conformity thereof, or by using the methods described in Reference Examples.


Compound (IIa) and Compound (IIIb) can be obtained as commercially available products or by known methods (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition. Courses in Experimental Chemistry) 13, “Synthesis of Organic Compounds I”, 5th Ed., p. 374, Maruzen (2005)), or a method in conformity thereof.


Compound (Ia) having the identical R1 and R2 can be obtained by using 2 equivalents or more of the Compound (IIIa) in step 1.


Production Method

Among the Compound (I), Compound (Ib) in which L1 and L2 are —CO—O—, L3 is a single bond, and X3 and Y are absent can be produced by the following method.




embedded image


(In the formula, R1, R2, R3, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively).


Steps 3 and 4

Compound (IIc) can be produced by treating Compound (IIa) and Compound (IVa) in a solvent in the presence of 1 to 30 equivalents of a condensing agent at a temperature between −20° C. and 150° C. for 5 minutes to 100 hours, followed by isolation. Compound (Ib) can be produced by treating Compound (IIc) and Compound (IVb) in a solvent in the presence of 1 to 30 equivalents of a condensing agent at a temperature between −20° C. and 150° C. for 5 minutes to 100 hours, followed by isolation. In steps 3 and 4, 0.01 to 30 equivalents of an additive and/or 1 equivalent to large excess amounts of a base may be added to promote the reactions.


Examples of the solvent include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and the like. These may be used either alone or as a mixture.


Examples of the condensing agent include 1,3-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-hydrochloride, carbonyldiimidazole, benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, (benzotriazol-1-yloxy)tripyrrolizinophosphonium hexafluorophosphate, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate, 2-chloro-1-methylpyridinium iodide, and the like.


Examples of the additive include 1-hydroxybenzotriazole, 4-dimethylaminopyridine, and the like.


Examples of the base include potassium acetate, sodium bicarbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, and the like.


Compound (IVa) and Compound (IVb) can be obtained as commercially available products or by known methods (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition, Courses in Experimental Chemistry) 16, Synthesis of Organic Compounds IV, 5th Ed., p. 1, Maruzen (2005)), or a method in conformity thereof.


Compound (Ib) having the identical R1 and R2 can be obtained by using 2 equivalents or more of Compound (IVa) in step 3.


Production Method 3

Among the Compound (I), Compound (Ic) in which L1 and L2 are —O—CO—, L3 is a single bond, and X3 and Y are absent can be produced by the following method.




embedded image


(In the formula, R1, R2, R3, X1, X2, X4, a, b, m, and the dotted line have the same definitions as above, respectively).


Steps 5 and 6

Compound (IIe) can be produced by treating Compound (IId) and Compound (Va) in a solvent at a temperature between −20° C. and 150° C. for 5 minutes to 100 hours in the presence of 1 to 30 equivalents of a condensing agent, followed by isolation. Compound (Ic) can be produced by treating Compound (IIe) and Compound (Vb) in a solvent at a temperature between −20° C. and 150° C. for 5 minutes to 100 hours in the presence of 1 to 30 equivalents of a condensing agent, followed by isolation. In steps 5 and 6, 0.01 to 30 equivalents of an additive and/or 1 equivalent to large excess amounts of a base may be added to promote the reaction.


Examples of the solvent include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and the like. These may be used either alone or as a mixture.


Examples of the condensing agent include those used in production method 2.


Examples of the additive include 1-hydroxybenzotriazole, 4-dimethylaminopyridine, and the like.


Examples of the base include potassium acetate, sodium bicarbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, and the like.


Compound (IId) may be a commercially available product, or may be obtained by using known methods (for example, Dai 5-han, Jikken Kagaku Kouza 16, Synthesis of Organic Compounds IV, 5th Ed., p. 1, Maruzen (2005)), or modified methods thereof.


Compound (Va) and Compound (Vb) may be commercially available products, or may be obtained by using known methods (for example, Dai 5-han, Jikken Kagaku Kouza 14, Synthesis of Organic Compounds II, 5th Ed., p. 1, Maruzen (2005)), or modified methods thereof.


Compound (Ic) having the identical R1 and R2 may be obtained by using 2 equivalents or more of Compound (Va) in step 5.


Production Method 4

Among the Compound (I), Compound (Id) in which L3 is a single bond, R3 is a hydrogen atom and, X3 and Y are absent can be produced by the following method.




embedded image


(In the formula, R1, R2, L1, L2, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively).


Step 7

Compound (Id) can be produced by treating Compound (VI) and 1-chloroethyl chloroformate in an inert solvent at a temperature between −20° C. and 230° C. for 5 minutes to 100 hours, and then at a temperature between −20° C. and 230° C. for 5 minutes to 100 hours after adding 1 to large excess amounts of an alcohol.


Examples of the inert solvent include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and the like. These may be used either alone or as a mixture.


Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, and the like. These may be used either alone or as a mixture.


Compound (VI) can be obtained by using a modified method of production method 1, 2 or 3.


Production Method 5

Among the Compound (I), Compound (Ie) can be produced by the following method. In Compound (Ie), L3 is a single bond, R3 is —CHRARB (RA and RB are, the same or different, hydrogen atoms, alkyl having 1 to 5 carbon atoms, alkenyl having 3 to 5 carbon atoms, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, or alkyl having 1 to 5 carbon atoms or alkenyl having 3 to 5 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, or RA and RB are combined together with the adjacent carbon atom thereto to form pyrrolidin-3-yl, piperidin-3-yl or piperidin-4-yl. The sum of the carbon atoms in the alkyl, the alkyl moiety of the substituted alkyl, alkenyl, and the alkenyl moiety of the substituted alkenyl in RA and RB is 1 to 5 except when RA and RB are both hydrogen atoms. When either of RA and RB is pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl or morpholin-3-yl, the other is a hydrogen atom, alkyl having 1 to 5 carbon atoms, alkenyl having 3 to 5 carbon atoms, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, or alkyl having 1 to 5 carbon atoms or alkenyl having 3 to 5 carbon atoms substituted with 1 or 2 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl. The total number of the substituents is 2 or 3 when RA and RB are substituted alkyl or substituted alkenyl), and X3 and Y do not exist.




embedded image


(In the formula, R1, R2, RA, RB, L1, L2, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively).


Step 8

Compound (Ie) can be produced by reacting Compound (Id) with preferably 1 to 10 equivalents of Compound (VII) in a solvent at a temperature between −20° C. and 150° C. for 5 minutes to 72 hours in the presence of preferably 1 to large excess amounts of a reducing agent, and, if necessary, preferably 1 to 10 equivalents of an acid.


Examples of the solvent include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, water, and the like. These may be used either alone or as a mixture.


Examples of the reducing agent include sodium triacetoxyborohydride, sodium cyanoborohydride, and the like.


Examples of the acid include hydrochloric acid, acetic acid, and the like.


Compound (VII) can be obtained as a commercially available product or by known methods (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition, Courses in Experimental Chemistry) 15, Synthesis of Organic Compounds III, 5th Ed., p. 1, Maruzen (2005), and Dai 5-han, Jikken Kagaku Kouza 15, Synthesis of Organic Compounds III, 5th Ed., p. 153, Maruzen (2005)), or a method in conformity thereof.


Production Method 6

Among the Compound (I), Compound (If) in which L3 is a single bond, and X3 and Y are absent can be produced by the following method.




embedded image


(In the formula, R1, R2, R3, L1, L2, X1, X2, X4, a, b, m, the dotted line and Z have the same definitions as described above, respectively).


Step 9

Compound (If) can be produced by reacting Compound (Id) with Compound (VIII) without solvent or in a solvent at a temperature between −20° C. and 150° C. for 5 minutes to 72 hours, in the presence of preferably 1 to 10 equivalents of an additive, and/or preferably 1 to 10 equivalents of a base, if necessary.


Examples of the solvent include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, pyridine, water, and the like. These may be used either alone or as a mixture.


Examples of the base include potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene (DBU), and the like.


Examples of the additive include sodium iodide, potassium iodide, tetra-n-butylammonium iodide, and the like.


Compound (VIII) can be obtained as a commercially available product or by known methods (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition, Courses in Experimental Chemistry) 13, Synthesis of Organic Compounds I, 5th Ed., p. 374, Maruzen (2005)), or a method in conformity thereof.


Production Method 7

Among the Compound (I), Compound (Ig) in which L3 is —CO—, and X3 and Y are absent can be produced by the following method.




embedded image


(In the formula, R1, R2, R3, L1, L2, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively).


Step 10

Compound (Ig) can be produced by treating Compound (Id) and Compound (IX) in a solvent at a temperature between −20° C. and 150° C. for 5 minutes to 100 hours in the presence of 1 equivalent to large excess amounts of a condensing agent. If necessary, preferably 0.01 to 10 equivalents of an additive, and/or preferably 1 to large excess amounts of a base may be added to promote the reaction.


Examples of the solvent include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, water, and the like. These may be used either alone or as a mixture.


The same condensing agents, additives, and bases used in production method 2 may be used.


Compound (IX) can be obtained as a commercially available product or by known methods (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition, Courses in Experimental Chemistry) 16, Synthesis of Organic Compounds IV, 5th Ed., p. 1, Maruzen (2005)), or a method in conformity thereof.


Production Method 8

Among the Compound (I), Compound (Ih) in which L3 is —CO—O—, and X3 and Y are absent can be produced by the following methods.




embedded image


(In the formula, R1, R2, R3, L1, L2, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively).


Step 11

Compound (Ih) can be produced by reacting Compound (Id) with Compound (X) without solvent or in a solvent at a temperature between −20° C. and 150° C. for 5 minutes to 72 hours, in the presence of preferably 1 to 10 equivalents of an additive, and/or preferably 1 to 10 equivalents of a base, if necessary.


The same solvents and additives used in production method 2 may be used. Examples of the base include triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, and the like.


Compound (X) can be obtained as a commercially available product or by known methods (for example, Journal of American Chemical Society (J. Am. Chem. Soc.), 1981, Vol. 103, p. 4194-4199), or a method in conformity thereof.


Production Method 9

Among the Compound (I), Compound (Ii) can be produced by the following method. In Compound (Ii), L3 is a single bond, R3 is —CH2—C(OH)RCRD (RC and RD are, the same or different, hydrogen atoms, alkyl having 1 to 4 carbon atoms, alkenyl having 3 to 4 carbon atoms, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, or alkyl having 1 to 4 carbon atoms or alkenyl having 3 to 4 carbon atoms substituted with 1 or 2 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl. The sum of the carbon atoms in the alkyl, the alkyl moiety of the substituted alkyl, alkenyl, and the alkenyl moiety of the substituted alkenyl in RC and RD is 1 to 4 except when RC and RD are both hydrogen atoms. When either of RC and RD is pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl or morpholin-3-yl, the other is a hydrogen atom, alkyl having 1 to 4 carbon atoms, alkenyl having 3 to 4 carbon atoms, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl, or alkyl having 1 to 4 carbon atoms or alkenyl having 3 to 4 carbon atoms substituted with a substituent(s), which is(are) amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl. The total number of the substituents is 2 when RC and RD are substituted alkyl or substituted alkenyl), and X3 and Y do not exist.




embedded image


(In the formula, R1, R2, RC, RD, L1, L2, X1, X2, X4, a, b, m and the dotted line have the same definitions as described above, respectively).


Step 12

Compound (Ii) can be produced by treating Compound (Id) and Compound (XI) in the absence or presence of a solvent at a temperature between 0° C. and 230° C. for 5 minutes to 100 hours.


Examples of the solvent include methanol, ethanol, 1-propanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and dimethyl sulfoxide. These solvents are used solely or in admixture.


Compound (XI) can be obtained as a commercially available product or by a known method (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition, Courses in Experimental Chemistry) 17, “Synthesis of Organic Compounds V”, 5th edition, p. 186, Maruzen (2005)) or a method in conformity therewith.


Production Method 10

Among the Compound (I), Compound (Ij) in which L3 is a single bond, X3 is alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms, and Y is a pharmaceutically acceptable anion can be produced by the following method.




embedded image


(In the formula, R1, R2, R3, L1, L2, X1, X2, X3, X4, Y, a, b, m the dotted line and Z have the same definitions as described above, respectively).


Steps 13 and 14

Compound (Ij-A) can be produced by treating Compound (If) and Compound (XII) in a solvent or without solvent at a temperature between 0° C. and 230° C. for 5 minutes to 100 hours. Compound (Ij) can be produced by treating Compound (Ij-A) with Y-type anion-exchange resin.


Examples of the solvent include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, pyridine, and the like. These may be used either alone or as a mixture.


Compound (XII) can be obtained as a commercially available product or by known methods (for example, Dai 5-han, Jikken Kagaku Kouza (5th edition, Courses in Experimental Chemistry) 13, Synthesis of Organic Compounds I, 5th Ed., p. 374, Maruzen (2005)), or a method in conformity thereof.


When Z and Y are identical, Compound (Ij) may be produced by omitting step 14.


Conversion of the functional groups contained in R1, R2 or R3 in Compound (I) can be performed by known methods [for example, methods described in Comprehensive Organic Transformations, 2nd edition, R. C. Larock, Vch Verlagsgesellschaft Mbh (1999), etc.], or a method in conformity thereof.


The intermediates and the target compounds in the foregoing production methods can be isolated and purified by using the common separation and purification techniques used in organic synthesis chemistry, including, for example, filtration, extraction, washing, drying, concentration, recrystallization, various chromatography techniques, and the like. The intermediates may be fed to the subsequent reactions without purification.


Compound (IA) is obtainable in the same manner as that of Compound (I)


In the Compound (I), a hydrogen ion may coordinate to a lone pair on the nitrogen atom in the structure, and the nitrogen atom may form a salt together with a pharmaceutically acceptable anion (having the same definition as described above). The Compound (I) encompass compounds in which a hydrogen ion coordinates to a lone pair on the nitrogen atom. Note that, in the present invention, the absence of X3 encompasses the case where a hydrogen ion is coordinated.


Compound (I) and Compound (IA) may exist as stereoisomers (such as geometrical isomers and optical isomers), tautomers, and the like. Compound (I) and Compound (IA) encompass all of possible isomers and mixtures thereof, inclusive of stereoisomers and tautomers.


A part of or all of the atoms in the Compound (I) and Compound (IA) may be replaced with corresponding isotope atoms. The Compound (I) and Compound (IA) encompass compounds in which a part of or all of the atoms thereof are replaced with such isotope atoms. For example, a part of or all of the hydrogen atoms in the Compound (I) and Compound (IA) may be hydrogen atoms having an atomic weight of 2 (deuterium atoms).


The compounds in which a part of or all of the atoms in the Compound (I) and Compound (IA) are replaced with corresponding isotope atoms can be produced by using methods similar to the foregoing production methods, using commercially available building blocks. Further, the compounds in which a part of or all of the hydrogen atoms in the Compound (I) and Compound (IA) are replaced with deuterium atoms can be synthesized by using various methods, including, for example, (1) a method in which a carboxylic acid or the like is deuterated using deuterium peroxide under a basic condition (see U.S. Pat. No. 3,849,458), (2) a method in which an alcohol, a carboxylic acid, or the like is deuterated using an iridium complex as a catalyst and using heavy water as a deuterium source (see J. Am. Chem. Soc., Vol. 124, No. 10, 2092 (2002)), (3) a method in which a fatty acid is deuterated using palladium-carbon as a catalyst and using only a deuterium gas as a deuterium source (see LIPIDS, Vol. 9, No. 11, 913 (1974)), (4) a method in which acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, or the like is deuterated using a metal such as platinum, palladium, rhodium, ruthenium, and iridium as a catalyst and using heavy water or heavy water and a deuterium gas as a deuterium source (see Japanese Published Examined Patent Application No. 19536/1993, and Japanese Published Unexamined Patent Application No. 277648/1986 and No. 275241/1986), and (5) a method in which acrylic acid, methyl methacrylate, or the like is deuterated using a catalyst such as palladium, nickel, copper, and copper chromite and using heavy water as a deuterium source (see Japanese Published Unexamined Patent Application No. 198638/1988), and the like.


Specific examples of the Compound (I) and Compound (IA) obtained in the present invention are shown in Tables 1 to 3. It should be noted, however, that the compounds of the present invention are not limited to these.










TABLE 1





Compound No.
Structure







1


embedded image







2


embedded image







3


embedded image







4


embedded image







5


embedded image







6


embedded image



















TABLE 2





Compound No.
Structure
















7


embedded image







8


embedded image







9


embedded image







10


embedded image







11


embedded image







12


embedded image



















TABLE 3





Compound No.
Structure







13


embedded image







14


embedded image







15


embedded image







16


embedded image







17


embedded image











The nucleic acid which is used in the present invention may be any molecule so far as it is a molecule obtained through polymerization of nucleotide and/or a molecule having an equal function to the nucleotide. Examples thereof include RNA that is a polymer of ribonucleotide; DNA that is a polymer of deoxyribonucleotide; a chimera nucleic acid composed of RNA and DNA; and a nucleotide polymer in which at least one nucleotide of these nucleic acids is substituted with a molecule having an equal function to the nucleotide. In addition, a derivative containing at least one polymerized molecule of nucleotide and/or a molecule having an equal function to the nucleotide is also included in the nucleic acid of the present invention. Incidentally, in the present invention, uridine U in RNA and thymine T in DNA shall be deemed to be replaced with each other.


Examples of the molecule having an equal function to nucleotide include nucleotide derivatives.


The nucleotide derivative may be any molecule so far as it is a molecule obtained by applying modification to nucleotide. For example, for the purpose of enhancing the nuclease resistance or achieving stabilization from other decomposing factor as compared with RNA or DNA, increasing the affinity with the complementary strand nucleic acid, increasing the cellular permeability, or achieving the visualization, molecules obtained by applying modification to ribonucleotide or deoxyribonucleotide are suitably used.


Examples of the nucleotide derivative include a sugar moiety modified nucleotide, a phosphodiester bond modified nucleotide, and a base modified nucleotide.


The sugar moiety modified nucleotide may be any nucleotide in which a part or the entirety of the chemical structure of the sugar moiety of nucleotide is modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom. Above all, a 2′-modified nucleotide is preferably used.


Examples of the modifying group in the sugar moiety modified nucleotide include 2′-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-alkenyl, 2′-substituted alkenyl, 2′-halogen, 2′-O-cyano, 2′-O-alkyl, 2′-O-substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2′-S-alkyl, 2′-S-substituted alkyl, 2′-S-alkenyl, 2′-S-substituted alkenyl, 2′-amino, 2′—NH-alkyl, 2′—NH-substituted alkyl, 2′—NH-alkenyl, 2′—NH-substituted alkenyl, 2′-SO-alkyl, 2′-SO-substituted alkyl, 2′-carboxy, 2′-CO-alkyl, 2′-CO-substituted alkyl, 2′-Se-alkyl, 2′-Se-substituted alkyl, 2′—SiH2-alkyl, 2′—SiH2-substituted alkyl, 2′-0NO2, 2′-NO2, 2′-N3, 2′-amino acid residue (the residue that the hydroxyl group is removed from the carboxylic acid of amino acid), and 2′-O-amino acid residue (having the same definition as above), and the like. In addition, Examples thereof include a peptide nucleic acid (PNA) [Acc. Chem. Res., 32, 624 (1999)], an oxy-peptide nucleic acid (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001)], a peptide ribonucleic acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)]. The ribose with the substitution by a modifying group at 2′ position in the present invention also encompasses bridged nucleic acids (BNAs) of a structure in which the modifying group at 2′ position is bridged to the 4′ carbon atom, specifically, locked nucleic acids (LNAs) in which the oxygen atom at 2′ position is bridged to the 4′ carbon atom via methylene, ethylene bridged nucleic acids (ENAs) [Nucleic Acid Research, 32, e175 (2004)], and the like.


The preferred modifying group in the sugar moiety modified nucleotide include 2′-cyano, 2′-halogen, 2′-O-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-O-alkyl, 2′-O-substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2′-Se-alkyl, and 2′-Se-substituted alkyl. More preferred examples include 2′-cyano, 2′-fluoro, 2′-chloro, 2′-bromo, 2′-trifluoromethyl, 2′-O-methyl, 2′-O-ethyl, 2′-O-isopropyl, 2′-O-trifluoromethyl, 2′-O-[2-(methoxy)ethyl], 2′-O-(3-aminopropyl), 2′-O-(2-[N,N-dimethyl]aminooxy)ethyl, 2′-O-[3-(N,N-dimethylamino)propyl], 2′-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl], 2′-O-[2-(methylamino)-2-oxoethyl], 2′-Se-methyl, and the like. Even more preferred are 2′-O-methyl, 2′-O-ethyl, 2′-fluoro, and the like. 2′-O-methyl and 2′-O-ethyl are most preferable.


The preferred range of the modifying group in the sugar moiety modified nucleotide may be defined based on its size. Modifying groups of a size corresponding to the size of fluoro to the size of —O-butyl are preferable, and modifying groups of a size corresponding to the size of —O-methyl to the size of —O-ethyl are more preferable.


The alkyl in the modifying group of the sugar moiety modified nucleotide is the same as the above-mentioned definition of the alkyl having a carbon number of 1 to 6 in the cationic lipid of the present invention.


The alkenyl in the modifying group of the sugar moiety modified nucleotide is the same as the above-mentioned definition of the alkenyl having a carbon number of 3 to 6 in the cationic lipid of the present invention.


Examples of the halogen in the modifying group of the sugar moiety modified nucleotide include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.


Examples of the amino acid in amino acid residue include aliphatic amino acids (specifically, glycine, alanine, valine, leucine, isoleucine, and the like), hydroxy amino acids (specifically, serine, threonine, and the like), acidic amino acids (specifically, aspartic acid, glutamic acid, and the like), acidic amino acid amides (specifically, asparagine, glutamine, and the like), basic amino acids (specifically, lysine, hydroxylysine, arginine, ornithine, and the like), sulfur-containing amino acids (specifically, cysteine, cystine, methionine, and the like), imino acids (specifically, proline, 4-hydroxy proline, and the like), and the like.


Examples of the substituents of the substituted alkyl and the substituted alkenyl in the sugar moiety modified nucleotide include halogen (having the same definition as above), hydroxy, sulfanyl, amino, oxo, —O-alkyl (the alkyl moiety of —O-alkyl has the same definition as above), —S-alkyl (the alkyl moiety of —S-alkyl has the same definition as above), —NH-alkyl (the alkyl moiety of —NH-alkyl has the same definition as above), dialkylaminooxy (the two alkyls of the dialkylaminooxy may be the same or different, and have the same definition as above), dialkylamino (the two alkyls of the dialkylamino may be the same or different, and have the same definition as above), dialkylaminoalkyleneoxy (the two alkyls of the dialkylaminoalkyleneoxy may be the same or different, and have the same definition as above; the alkylene means a group wherein the one hydrogen atom is removed from above-defined alkyl), and the like, and number of substituent is preferably 1 to 3.


The phosphodiester bond modified nucleotide may be any nucleotide in which a part or the entirety of the chemical structure of the phosphodiester bond of nucleotide is modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom. Examples thereof include a nucleotide in which the phosphodiester bond is substituted with a phosphorothioate bond, a nucleotide in which the phosphodiester bond is substituted with a phosphorodithioate bond, a nucleotide in which the phosphodiester bond is substituted with an alkylphosphonate bond, and a nucleotide in which the phosphodiester bond is substituted with a phosphoroamidate bond.


The base-modified nucleotide may be any nucleotide in which a part or the entirety of the chemical structure of the base of nucleotide is modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom. Examples thereof include a nucleotide in which an oxygen atom in the base is substituted with a sulfur atom, a nucleotide in which a hydrogen atom is substituted with an alkyl group having a carbon number of 1 to 6, a nucleotide in which a methyl group is substituted with a hydrogen atom or an alkyl group having a carbon number of 2 to 6, and a nucleotide in which an amino group is protected by a protective group such as an alkyl group having a carbon number of 1 to 6 and an alkanoyl group having a carbon number of 1 to 6.


Furthermore, examples of the nucleotide derivative include those in which other chemical substance such as a lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and a pigment is added to nucleotide or a nucleotide derivative in which at least one of the sugar moiety, the phosphodiester bond, and the base is modified. Specific examples thereof include 5′-polyamine added nucleotide derivatives, cholesterol added nucleotide derivatives, steroid added nucleotide derivatives, bile acid added nucleotide derivatives, vitamin added nucleotide derivatives, Cy5 added nucleotide derivatives, Cy3 added nucleotide derivatives, 6-FAM added nucleotide derivatives, and biotin added nucleotide derivatives.


In addition, the nucleotide derivatives may form, together with other nucleotides or nucleotide derivatives within the nucleic acid, a crosslinked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, and an ester structure, or a structure combined with at least one of these structures.


Examples of the nucleic acids used in the present invention include preferably nucleic acids that suppress the expression of the target gene, more preferably nucleic acids that have an activity of suppressing the expression of the target gene by utilizing RNA interference (RNAi).


The target gene used in the present invention is not particularly limited, as long as it is expressed through mRNA production. Preferred examples thereof include genes associated with tumor or inflammation, including, for example, genes that encodes proteins such as vascular endothelial growth factors (hereinafter, “VEGF”), vascular endothelial growth factor receptors (hereinafter, “VEGFR”), fibroblast growth factors, fibroblast growth factor receptors, platelet-derived growth factors, platelet-derived growth factor receptors, liver cell growth factors, liver cell growth factor receptors, Kruppel-like factors (hereinafter, “KLF”), Ets transcription factors, nuclear factors, and hypoxia-inducible factors. Specific examples thereof include VEGF genes, VEGFR genes, fibroblast growth factor genes, fibroblast growth factor receptor genes, platelet-derived growth factor genes, platelet-derived growth factor receptor genes, liver cell growth factor genes, liver cell growth factor receptor genes, KLF genes, Ets transcription factor genes, nuclear factor genes, hypoxia-inducible factor genes, and the like.


Preferably, the target gene used in the present invention is a gene that is expressed, for example, in liver, lungs, kidneys or spleen. Examples thereof include genes associated with tumor or inflammation (such as above), hepatitis B virus genome, hepatitis C virus genome, and genes that encode proteins such as apolipoprotein (APO), hydroxymethyl glutaryl (HMG) CoA reductase, kexin type 9 serine protease (PCSK9), factor XII, glucagon receptor, glucocorticoid receptor, leukotriene receptor, thromboxane A2 receptor, histamine H1 receptor, carbonic anhydrase, angiotensin converting enzyme, renin, p53, tyrosine phosphatase (PTP), sodium dependent glucose transporter, tumor necrosis factor, and interleukin, and the like.


The nucleic acid that suppresses the expression of the target gene may be any of, for example, double-stranded nucleic acids (such as siRNA (short interference RNA), and miRNA (micro RNA)), single-stranded nucleic acid (shRNA (short hairpin RNA), antisense nucleic acids, ribozyme, etc), and the like, provided that, for example, the nucleic acid contains a base sequence complementary to a part of the base sequence of the mRNA of the gene (target gene) encoding a protein and the like, and that the nucleic acid suppresses the expression of the target gene. Double-stranded nucleic acids are preferably used.


The nucleic acids that contain a base sequence complementary to a part of the base sequence of the target gene mRNA are also referred to as antisense strand nucleic acids, and the nucleic acids that contain a base sequence complementary to the base sequence of the antisense strand nucleic acid are also referred to as sense strand nucleic acids. The sense strand nucleic acids are nucleic acids that can form a double strand by pairing with antisense strand nucleic acids, including the nucleic acid itself that has a partial base sequence of the target gene.


The double-stranded nucleic acids are nucleic acids that have two strands forming a double-stranded portion by pairing. The double-stranded portion is a portion where a double strand is formed by the base pairing of the nucleotides or derivatives thereof forming a double-stranded nucleic acid. The base pairs forming the double-stranded portion are typically 15 to 27 bps, preferably 15 to 25 bps, more preferably 15 to 23 bps, further preferably 15 to 21 bps, particularly preferably 15 to 19 bps.


Preferred for use as the antisense strand nucleic acid of the double-stranded portion are nucleic acids that contain a partial sequence of the target gene mRNA, with or without the substitution, deletion, or addition of 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base, and that have a target protein expression suppressing activity. The length of the single-stranded nucleic acid forming a double-stranded nucleic acid is typically 15 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, further preferably 15 to 25 bases, particularly preferably 17 to 23 bases, most preferably 19 to 21 bases.


The nucleic acid in the antisense strand and/or the sense strand forming a double-stranded nucleic acid may have an additional nucleic acid that does not form a double strand, contiguous from the 3′-end or 5′-end of the double-stranded portion. Such portions not forming a double strand are also referred to as an extension (overhang).


The extension in such double-stranded nucleic acids has 1 to 4 bases, typically 1 to 3 bases at the 3′-end or 5′-end of at least one of the strands. Preferably, the extension has 2 bases, more preferably dTdT or UU. The extension may be present on only one of the antisense strand and the sense strand, or on both of the antisense strand and the sense strand. However, double-stranded nucleic acids having extensions on both the antisense strand and the sense strand are preferably used.


It is also possible to use a sequence contiguous from the double-stranded portion and partially or completely matches the target gene mRNA, or a sequence contiguous from the double-stranded portion and matches the base sequence of the complementary strand of the target gene mRNA. Further, the nucleic acid that suppresses the expression of the target gene may be, for example, a nucleic acid molecule that generates a double-stranded nucleic acid by the activity of a ribonuclease such as Dicer (WO2005/089287), or a double-stranded nucleic acid that does not have a 3′ or 5′ extension.


When the double-stranded nucleic acid is siRNA, the antisense strand has a base sequence in which at least bases 1 to 17 from the 5′-end to the 3′-end are complementary to 17 contiguous bases of the target gene mRNA. Preferably, the antisense strand has a base sequence in which bases 1 to 19 from the 5′-end to the 3′-end are complementary to 19 contiguous bases of the target gene mRNA, a base sequence in which bases 1 to 21 are complementary to 21 contiguous bases of the target gene mRNA, or a base sequence in which bases 1 to 25 are complementary to 25 contiguous bases of the target gene mRNA.


Further, when the nucleic acid used in the present invention is siRNA, preferably 10 to 70%, more preferably 15 to 60%, further preferably 20 to 50% of the sugars in the nucleic acid are riboses substituted with a modifying group at the 2′-position. In the present invention, the substitution of the ribose with a modifying group at the 2′-position means the substitution of the hydroxyl group with a modifying group at the 2′-position. The configuration may be the same as or different from the configuration of the ribose hydroxyl group at the 2′-position. Preferably, the configuration is the same as the configuration of the ribose hydroxyl group at the 2′-position. The ribose substituted with a modifying group at the 2′-position is included within a 2′-modified nucleotide from among sugar-modified nucleotides, and the modifying group of the ribose substituted at the 2′-position has the same definition as the modifying group of 2′-modified nucleotides.


The nucleic acid used in the present invention includes derivatives in which the oxygen atom or the like contained in the phosphate moiety, the ester moiety, or the like in the structure of the nucleic acid is replaced with other atoms, for example, such as a sulfur atom.


In addition, in the sugar binding to the base at the 5′-end of each of the antisense strand and the sense strand, the hydroxyl group at the 5′-end may be modified with a phosphate group or the foregoing modifying group, or a group which is converted into a phosphate group or the foregoing modifying group by a nucleolytic enzyme or the like in a living body.


In addition, in the sugar binding to the base at the 3′-end of each of the antisense strand and the sense strand, the hydroxyl group at the 3′-end may be modified with a phosphate group or the foregoing modifying group, or a group which is converted into a phosphate group or the foregoing modifying group by a nucleolytic enzyme or the like in a living body.


The single-stranded nucleic acid may be any of nucleic acids that contain a sequence complementary to the contiguous 15 to 27 base sequence, preferably 15 to 25 base sequence, more preferably 15 to 23 base sequence, further preferably 15 to 21 base sequence, particularly preferably 15 to 19 base sequence of the target gene, with or without the substitution, deletion, or addition of 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base, and that have a target protein expression suppressing activity. Preferred for use is a single-stranded nucleic acid having 15 to at most 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, further preferably 15 to 25 bases, particularly preferably 15 to 23 bases.


The single-stranded nucleic acid may be one obtained by connecting the antisense strand and the sense strand of the double-stranded nucleic acid via a spacer sequence. Preferred as the spacer oligonucleotide is a single-stranded nucleic acid molecule of 6 to 12 bases, with a UU sequence at the 5′-end. Examples of the spacer oligonucleotide contain a nucleic acid having the sequence UUCAAGAGA. Either the antisense strand or the sense strand joined by a spacer oligonucleotide may represent the 5′-end. Preferably, the single-stranded nucleic acid is a single-stranded nucleic acid, such as shRNA, that has a stem-loop structure with a double-stranded portion. Single-stranded nucleic acids such as shRNA are typically 50 to 70 bases long.


It is also possible to use nucleic acids at most 70 bases long, preferably at most 50 bases long, further preferably at most 30 bases long, designed to generate the single-stranded nucleic acid or the double-stranded nucleic acid by the activity of ribonuclease or the like.


In addition, the nucleic acids used in the present invention may be produced by using known RNA or DNA synthesis techniques, and RNA or DNA modification techniques. For example, the nucleic acids may be chemically synthesized and obtained from Hokkaido System Science Co., Ltd.


Examples of the composition in the present invention include a composition comprising a complex particle of the cationic lipid of the present invention and a nucleic acid, a composition comprising a complex particle of a nucleic acid and the cationic lipid of the present invention combined with neutral lipid and/or a polymer, a lipid particle constituted of the complex particle and a lipid membrane encapsulating the complex particle, and the like. Examples of the lipid particle include a composition comprising a liposome constituted of the complex particle and a lipid bilayer encapsulating the complex particle, and the like. Examples of the complex particle include a complex of a nucleic acid and a membrane constituted of lipid bilayer, a complex of a nucleic acid and a liposome, a complex of a nucleic acid and a micelle, and the like. Preferred are a complex of a nucleic acid and a micelle, and a complex of a nucleic acid and a liposome.


The composition in the present invention can be produced by a known production method or a method in conformity therewith and may be a composition produced by any production method. For example, in the production of a liposome as one of the composition, a known preparation method of a liposome can be applied. Examples of the known preparation method of a liposome include a liposome preparation method by Bangham et al. (see J. Mol. Biol., 1965, Vol. 13, pp. 238-252); an ethanol injection method (see J. Cell. Biol., 1975, Vol. 66, pp. 621-634); a French press method (see FEBS Lett., 1979, Vol. 99, pp. 210-214); a freeze-thawing method (see Arch. Biochem. Biophys., 1981, Vol. 212, pp. 186-194); a reverse phase evaporation method (see Proc. Natl. Acad. Sci. USA, 1978, Vol. 75, pp. 4194-4198); and a pH gradient method (see, for example, Japanese Patents Nos. 2572554 and 2659136, etc.). As a solution which disperses the liposome in the production of liposome, for example, water, an acid, an alkali, a variety of buffer solution, a saline, an amino acid infusion, and the like can be used. In addition, in the production of a liposome, it is also possible to add an antioxidant, for example, citric acid, ascorbic acid, cysteine, ethylenediaminetetraacetic acid (EDTA), etc., an isotonic agent, for example, glycerin, glucose, sodium chloride, etc., or the like. In addition, the liposome can also be produced by dissolving a lipid or the like in an organic solvent, for example, ethanol, etc., distilling off the solvent, adding a saline or the like, and stirring and shaking the mixture, thereby forming a liposome.


In addition, the composition of the present invention can be produced by various methods. As an example, the cationic lipid of the present invention is dissolved in chloroform in advance, and a nucleic acid aqueous solution and methanol are added. These are mixed to form a cationic lipid/nucleic acid complex. Then, the chloroform layer is removed, and a water-in-oil (W/O) emulsion is formed by addition of a polyethylene glycolated phospholipid, a neutral lipid, and water. The mixture is then treated by using a reverse phase evaporation method (see JP-T-2002-508765; the term “JP-T” as used herein means a published Japanese translation of a PCT patent application). In another method, a nucleic acid is dissolved in an acidic electrolytic aqueous solution, and lipid is added (in ethanol) to lower the ethanol concentration to 20 v/v % and form the nucleic acid-encapsulating liposome. After sizing filtration, excess amounts of ethanol are removed by dialysis. The nucleic acid adhering to the liposome surface is then removed by further dialysis at an increased sample pH (see JP-T-2002-501511, and Biochimica et Biophysica Acta, 2001, Vol. 1510, p. 152-166).


The production methods described in, for example, WO2002/28367 and WO2006/080118 can be used to produce the compositions of the present invention, specifically the liposome constituted of complex particle of the cationic lipid of the present invention and a nucleic acid, or the complex particle of a nucleic acid and the cationic lipid of the present invention combined with neutral lipid and/or a polymer, and a lipid bilayer encapsulating the complex particle.


The neutral lipid may be any lipid including a simple lipid, a complex lipid, and a derived lipid. Examples thereof include a phospholipid, a glyceroglycolipid, a sphingoglycolipid, a sphingoid, and a sterol. However, it should not be construed that the present invention is limited thereto.


Examples of the phospholipid in the neutral lipid include natural or synthetic phospholipids such as phosphatidylcholines (specifically, soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoyl phosphatidylcholine (DSPC), dipalmitoyl phosphatidylcholine (DPPC), palmitoyloleoyl phosphatidylcholine (POPC), dimyristoyl phosphatidylcholine (DMPC), dioleoyl phosphatidylcholine (DOPC), etc.), phosphatidylethanolamines (specifically, distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylethanolamine (DPPE), dioleoyl phosphatidylethanolamine (DOPE), dimyristoyl phosphoethanolamine (DMPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, palmitoyloleoyl-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE), etc.), glycerophospholipids (specifically, phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, palmitoyloleoyl phosphatidylglycerol (POPG), lysophosphatidylcholine, etc.), sphingophospholipids (specifically, sphingomyelin, ceramide phosphoethanolamine, ceramide phosphoglycerol, ceramide phosphoglycerophosphate, etc.), a glycerophosphono lipid, a sphingophosphonolipid, natural lecithins (specifically, egg yolk lecithin, soybean lecithin, etc.), and hydrogenated phospholipids (specifically, hydrogenated soybean phosphatidylcholine, etc.).


Examples of the glyceroglycolipid in the neutral lipid include sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, and glycosyl diglyceride.


Examples of the sphingoglycolipid in the neutral lipid include galactosyl cerebroside, lactosyl cerebroside, and ganglioside.


Examples of the sphingoid in the neutral lipid include sphingan, icosasphingan, sphingosine, and a derivative thereof. Examples of the derivative include those in which —NH2 of sphingan, icosasphingan, sphingosine, or the like is replaced with —NHCO(CH2)xCH2 (in the formula, x is an integer of 0 to 18, with 6, 12 or 18 being preferable).


Examples of the sterol in the neutral lipid include cholesterol, dihydrocholesterol, lanosterol, β-sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol, and 3β-[N—(N′,N′-dimethylaminoethyl)carbamoyl]cholesterol (DC-Chol).


The polymer may be one or more micelles selected from, for example, protein, albumin, dextran, polyfect, chitosan, dextran sulfate; and polymers, for example, such as poly-L-lysine, polyethyleneimine, polyaspartic acid, a copolymer of styrene and maleic acid, a copolymer of isopropylacrylamide and acrylpyrrolidone, poly-ethylene glycol (PEG)-modified dendrimer, polylactic acid, polylactic acid polyglycolic acid, and polyethylene glycolated polylactic acid, and a salt thereof.


Here, the salt of the polymer includes, for example, a metal salt, an ammonium salt, an acid addition salt, an organic amine addition salt, an amino acid addition salt, and the like. Examples of the metal salt include alkali metal salts such as a lithium salt, a sodium salt and a potassium salt; alkaline earth metal salts such as a magnesium salt and a calcium salt; an aluminum salt; a zinc salt, and the like. Examples of the ammonium salt include salts of ammonium, tetramethylammonium, and the like. Examples of the acid addition salt include inorganates such as a hydrochloride, a sulfate, a nitrate, and a phosphate, and organates such as an acetate, a maleate, a fumarate, and a citrate. Examples of the organic amine addition salt include addition salts of morpholine, piperidine, and the like, and examples of the amino acid addition salt include addition salts of glycine, phenylalanine, aspartic acid, glutamic acid, lysine, and the like.


Further, the composition of the present invention may comprise, for example, a lipid conjugate or a fatty acid conjugate of at least one substance selected from sugar, peptide, nucleic acid, and water-soluble polymer. The composition may also comprise a surfactant or the like. A lipid conjugate or a fatty acid conjugate of at least one substance selected from sugar, peptide, nucleic acid, and water-soluble polymer, or a surfactant may be comprised in the composite particle, or may be added external to the composite particle.


The lipid conjugate or fatty acid conjugate of at least one substance selected from sugar, peptide, nucleic acid, and water-soluble polymer, or the surfactant is preferably a glycolipid, or a lipid conjugate or a fatty acid conjugate of a water-soluble polymer, more preferably a lipid conjugate or a fatty acid conjugate of a water-soluble polymer. Preferably, the lipid conjugate or fatty acid conjugate of at least one substance selected from sugar, peptide, nucleic acid, and water-soluble polymer, or the surfactant is a substance having dual properties in which a part of the molecule has the property to bind to the other constituent components of the composition through, for example, hydrophobic affinity, electrostatic interaction, and the like, whereas other parts of the molecule have the property to bind to the solvent used for the production of the composition, through, for example, hydrophilic affinity, electrostatic interaction, and the like.


Examples of the lipid conjugate or fatty acid conjugate of sugar, peptide or nucleic acid include products formed by means of binding of sugars (such as sucrose, sorbitol, lactose, etc), peptides (such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides, glutathione, etc) or nucleic acids (such as DNA, RNA, plasmids, siRNA ODN, etc) with the neutral lipids as exemplified above in the definition of the composition or the cationic lipids of the present invention, or with fatty acids (such as stearic acid, palmitic acid, myristic acid, lauric acid, etc).


Examples of the lipid conjugate or fatty acid conjugate of sugar include the glyceroglycolipids, the sphingoglycolipids, and the like as exemplified above in the definition of the composition.


Examples of the lipid conjugate or fatty acid conjugate of water-soluble polymer include products formed by means of binding of, for example, polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, chitosan, polyvinylpyrrolidone, polyaspartamide, poly-L-lysine, mannan, pullulan, oligoglycerol, etc, and derivatives thereof with the neutral lipids as exemplified above in the definition of the composition, the cationic lipids of the present invention, or fatty acids (such as stearic acid, palmitic acid, myristic acid, lauric acid, etc). More preferred examples thereof include lipid conjugates or fatty acid conjugates of polyethylene glycol derivatives, polyglycerin derivatives, and the like. Further preferred examples thereof include lipid conjugates or fatty acid conjugates of polyethylene glycol derivatives.


Examples of the lipid conjugate or fatty acid conjugate of a polyethylene glycol derivative include a polyethylene glycolated lipid (specifically, polyethylene glycol-phosphatidylethanolamines (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG-DSPE), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG-DMPE), etc.)), polyoxyethylene hydrogenated castor oil 60, CREMOPHOR EL, and the like), a polyethylene glycol sorbitan fatty acid ester (specifically, polyoxyethylene sorbitan monooleate, etc.), and a polyethylene glycol fatty acid ester; preferred examples thereof include a polyethylene glycolated lipid.


Examples of the lipid conjugate or the fatty acid conjugate of a polyglycerol derivative include a polyglycerolated lipid (specifically, polyglycerol phosphatidyl ethanolamine and the like), a polyglycerol fatty acid ester and the like, and more preferred examples include a polyglycerolated lipid.


Examples of the surfactant include polyoxyethylene sorbitan monooleates (specifically, Polysorbate 80, and the like), polyoxyethylene polyoxypropylene glycols (specifically, Pluronic F68, and the like), sorbitan fatty acid esters (specifically, sorbitan monolaurate, sorbitan monooleate, and the like), polyoxyethylene derivatives (specifically, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, and the like), glycerin fatty acid esters, and polyethylene glycolalkyl ethers. Preferred examples thereof include polyoxyethylene polyoxypropylene glycols, glycerin fatty acid esters, polyethylene glycolalkyl ethers, and the like.


When the composition of the present invention is a liposome, the composition of the liposome may be subjected to any surface modification with, for example, a polymer, a polyoxyethylene derivative, and the like. [see D. D. Lasic, F. Martin], Stealth Liposomes, CRC Press Inc., US, 1995, p. 93-102]. Examples of polymers usable for the surface modification include dextran, pullulan, mannan, amylopectin, hydroxyethyl starch, and the like. Examples of the polyoxyethylene derivatives include Polysorbate 80, Pluronic F68, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, PEG-DSPE, and the like. The surface modification of the composition such as the liposome enables the composition to comprise a lipid conjugate or a fatty acid conjugate of at least one substance selected from sugar, peptide, nucleic acid, and water-soluble polymer, or a surfactant.


The average particle diameter of the composition in the present invention may be freely selected as desired. Preferably, the average particle diameter of the liposome is adjusted as follows. Examples of a method for adjusting the average particle diameter include an extrusion method, a method in which a large multilamellar liposome vesicle (MLV) and like is mechanically pulverized (specifically, by using Manton-gaulin, a microfluidizer or the like) (see Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs, edited by R. H. Muller, S. Benita and B. Bohm, Scientific Publishers, Stuttgart, Germany, pp. 267-294, 1998), and the like.


A complex as a combination of two or more selected from, for example, a lipid assembly, a liposome, a polymer micelle, and the like used as the composition may be produced simply by mixing the lipid, polymer, and the like, for example, in water. Other step such as a granulating step and a sterilizing step may be added, as desired. The complex may be produced in various solvents, for example, acetone, ether, and the like.


As for the size of the composition in the present invention, an average particle diameter is preferably about 10 nm to 1,000 nm, more preferably about 30 nm to 300 nm, and still more preferably about 50 nm to 200 nm.


By administering the composition in the present invention to a mammalian cell, the nucleic acid in the composition in the present invention can be introduced into the cell.


A method for administering the composition in the present invention to a mammalian cell in vitro may be carried out according to the procedures of known transfection capable of being carried out in vitro.


A method for administering the composition of the present invention to a mammalian cell in vivo may be carried out according to the procedures of known transfection that can be performed in vivo. For example, by the intravenous administration of the composition of the present invention to mammals including humans, the composition is delivered to, for example, an organ or a site involving cancer or inflammation, and the nucleic acid in the composition of the present invention can be introduced into the cells at these organs or sites. The organs or sites involving cancer or inflammation are not particularly limited. Examples thereof include stomach, large intestine, liver, lungs, spleen, pancreas, kidneys, bladder, skin, blood vessel, and eye ball. In addition, by the intravenous administration of the composition of the present invention to mammals including humans, the composition can be delivered to, for example, blood vessel, liver, lungs, spleen, and/or kidneys, and the nucleic acid in the composition of the present invention can be introduced into the cells at these organs or sites. The liver, lung, spleen, and/or kidney cells may be any of normal cells, cells associated with cancer or inflammation, and cells associated with other diseases.


When the nucleic acid in the composition in the present invention is a nucleic acid having an activity of suppressing the expression of the target gene by utilizing RNA interference (RNAi), nucleic acids such as RNA that suppress the expression of the gene can be introduced to mammalian cells in vivo, and expression of genes can be suppressed. The administration target is preferably human.


In addition, when the target gene of composition in the present invention is, for example, a gene associated with tumor or inflammation, the composition of the present invention can be used as a therapeutic agent or a preventive agent for cancer or inflammatory disease, preferably a therapeutic agent or a preventive agent for solid cancer or for inflammation in blood vessels or in the vicinity of blood vessels. Specifically, when the target gene of the composition of the present invention is, for example, a gene associated with angiogenesis, the composition of the present invention can suppress the proliferation, angiogenesis, or the like in the vascular smooth muscle, and can thus be used as a therapeutic agent or a preventive agent for cancer or inflammatory disease that involves, for example, proliferation or angiogenesis in the vascular smooth muscle.


Specifically, the present invention also provides a cancer or inflammatory disease therapeutic method that includes administering the composition of the present invention to a mammal. The administration target is preferably human, more preferably humans having cancer or inflammatory disease.


Further, the composition of the present invention also can be used as a tool for acquiring a POC (proof of concept) in an in vivo screening system concerning the cancer or inflammatory disease therapeutic or preventive agent.


The composition of the present invention also can be used as a preparation for, for example, stabilizing the nucleic acid in biogenic substances (for example, blood, digestive tract, and the like) such as blood components, reducing side effects, or increasing drug accumulation in tissues or organs containing the expression site of the target gene.


When the composition of the present invention is used as a medicament, specifically a therapeutic agent or a preventive agent for cancer, inflammatory disease, or the like, it is desirable to use an administration route that is most effective for the treatment. The administration route may be parenteral or oral, including buccal administration, airway administration, rectal administration, subcutaneous administration, intramuscular administration, intravenous administration, and the like. Intravenous administration and intramuscular administration are preferable, and intravenous administration is more preferable.


The dose may vary depending upon factors such as the conditions and the age of a subject, and the administration route. For example, the administration may be made in a daily dose of, for example, about 0.1 μg to 1,000 mg in terms of the nucleic acid.


As a preparation suitable for the intravenous administration or intramuscular administration, for example, an injection can be exemplified, and it is also possible to use a dispersion liquid of the composition prepared by the foregoing method as it is in the form of, for example, an injection or the like. However, it can also be used after removing the solvent from the dispersion liquid by, for example, filtration, centrifugation, or the like, or after lyophilizing the dispersion liquid or the dispersion liquid supplemented with an excipient such as mannitol, lactose, trehalose, maltose, and glycine.


In the case of an injection, it is preferable that an injection is prepared by mixing, for example, water, an acid, an alkali, a variety of buffer solution, a saline, an amino acid infusion, or the like with the foregoing dispersion liquid of the composition or the foregoing composition obtained by removing the solvent or lyophilization. In addition, it is also possible to prepare an injection by adding an antioxidant such as citric acid, ascorbic acid, cysteine, and EDTA, an isotonic agent such as glycerin, glucose, and sodium chloride, or the like. In addition, it can also be cryopreserved by adding a cryopreservation agent such as glycerin.


Next, the present invention is specifically described with reference to the following Examples and Test Examples. However, it should not be construed that the present invention is limited to these Examples and Test Examples.


Incidentally, proton nuclear magnetic resonance spectra (1H NMR) shown in Examples and Reference Examples were measured at 270 MHz, 300 MHz or 400 MHz, there may be the case where an exchangeable proton is not distinctly observed depending upon the compound and measuring conditions. Incidentally, the expression for multiplicity of a signal is a usually used expression. The term “br” indicates an apparently broad signal.


Reference Example 1
(3R,4R)-1-Benzyl-3,4-bis((Z)-hexadec-9-enyloxy)pyrrolidine (Compound VI-1)

(3R,4R)-1-Benzylpyrrolidine-3,4-diol (Diverchim S. A.; 146 mg, 0.753 mmol) was dissolved in tetrahydrofuran (5 mL), and stirred for 30 minutes under heat and reflux after adding sodium hydride (oily, 60%, 241 mg, 6.03 mmol) under ice-cooled conditions. A tetrahydrofuran (5 mL) solution of (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep., Inc.; 600 mg, 1.88 mmol) was dropped on the reaction mixture, and the mixture was stirred for 4 hours under heat and reflux. The reaction was stopped with water after cooling the mixture to room temperature. After adding saturated brine, the mixture was extracted twice with ethyl acetate. The organic layers were combined, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 98/2) to give Compound VI-1 (231 mg, 48.0%). ESI-MS m/z: 639 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.28-1.37 (m, 36H), 1.50-1.60 (m, 4H), 2.01 (q, J=5.9 Hz, 8H), 2.50 (dd, J=9.8, 4.6 Hz, 2H), 2.85 (dd, J=9.8, 5.9 Hz, 2H), 3.34-3.47 (m, 4H), 3.59 (q, J=12.6 Hz, 2H), 3.83 (t, J=4.6 Hz, 2H), 5.29-5.40 (m, 4H), 7.20-7.34 (m, 5H).


Reference Example 2
(trans-1-Benzylpyrrolidine-3,4-diyl)dimethanol

trans-Diethyl 1-benzylpyrrolidine-3,4-dicarboxylate (830 mg, 2.72 mmol) synthesized by using WO2009/027820 as a reference was dissolved in tetrahydrofuran (THF; 24 mL), and stirred at room temperature for 1.3 hours after adding lithium aluminum hydride (206 mg, 5.44 mmol) at 0° C. The reaction mixture was further stirred at room temperature after adding sodium sulfate decahydrate, chloroform, and Celite. The mixture was filtered after adding anhydrous magnesium sulfate, and the filtrate was concentrated under reduced pressure. Hexane was added, and the solid was acquired by filtration to give (trans-1-benzylpyrrolidine-3,4-diyl)dimethanol (565 mg, 93.9%).


ESI-MS m/z: 222 (M+H)+; 1H-NMR (CDCl3) δ: 2.17-2.28 (m, 2H), 2.35 (dd, J=9.0, 5.1 Hz, 2H), 2.77 (dd, J=9.0, 7.1 Hz, 2H), 3.56-3.68 (m, 6H), 7.22-7.34 (m, 5H).


Reference Example 3
trans-1-Benzyl-3,4-bis(((Z)-hexadec-9-enyloxy)methyl)pyrrolidine

A toluene (4.2 mL) solution of the (trans-1-benzylpyrrolidine-3,4-diyl)dimethanol (150 mg, 0.678 mmol) obtained in Reference Example 2 was slowly added to a toluene (6 mL) suspension of sodium hydride (oily, 60%, 217 mg, 5.42 mmol) while being stirred, and a toluene (1.8 mL) solution of (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep., Inc.; 540 mg, 1.70 mmol) was dropped on the mixture. The resulting mixture was stirred for 4.5 hours under heat and reflux. After cooling the mixture to room temperature, the reaction was stopped with a saturated ammonium chloride aqueous solution. After adding saturated brine, the mixture was extracted twice with ethyl acetate. The organic layers were combined, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 97/3) to give trans-1-benzyl-3,4-bis(((Z)-hexadec-9-enyloxy)methyl)pyrrolidine (372 mg, 82.3%). ESI-MS m/z: 667 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.28-1.35 (m, 36H), 1.49-1.57 (m, 4H), 1.95-2.10 (m, 10H), 2.37 (dd, J=9.2, 5.5 Hz, 2H), 2.67 (dd, J=9.2, 7.0 Hz, 2H), 3.31-3.44 (m, 8H), 3.57 (dd, J=18.1, 13.0 Hz, 2H), 5.29-5.40 (m, 4H), 7.19-7.32 (m, 5H).


Reference Example 4
N-Benzyldiethanolamine

Diisopropylethylamine (2.99 mL, 17.1 mmol) and benzyl bromide (1.36 mL, 11.4 mmol) were added to a chloroform (46 mL) solution of diethanolamine (1.80 g, 17.1 mmol), and the solution was stirred for 5 hours under heat and reflux. The reaction solution was washed with water, saturated sodium bicarbonate water, and saturated brine, dried over magnesium sulfate, and evaporated after filtration. The resulting residue was purified by silica gel column chromatography (methanol/chloroform=0/100 to 12/88) to give N-benzyldiethanolamine (1.77 g, 79.4%).


ESI-MS m/z: 196 (M+H)+; 1H-NMR (CDCl3) δ: 2.29 (br s, 2H), 2.73 (t, J=5.3 Hz, 4H), 3.63 (t, J=5.3 Hz, 4H), 3.71 (s, 2H), 7.24-7.37 (m, 5H).


Reference Example 5
N-Benzyl-N,N-bis(2-((Z)-hexadec-9-enyloxy)ethyl)amine

N-Benzyl-N,N-bis(2-((Z)-hexadec-9-enyloxy)ethyl)amine (739 mg, 81.4%) was obtained in the same manner as that in Reference Example 3, by using N-Benzyldiethanolamine (277 mg, 1.42 mmol) obtained in Reference Example 4 and (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep, Inc; 1.13 g, 3.55 mmol).


ESI-MS m/z: 641 (M+H); 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.28-1.35 (m, 36H), 1.49-1.58 (m, 4H), 2.01 (q, J=5.5 Hz, 8H), 2.74 (t, J=6.2 Hz, 4H), 3.37 (t, J=6.6 Hz, 4H), 3.50 (t, J=6.2 Hz, 4H), 3.71 (s, 2H), 5.29-5.40 (m, 4H), 7.19-7.35 (m, 5H).


Reference Example 6
(3R,4R)-1-Benzyl-3,4-bis(tetradecyloxy)pyrrolidine

(3R,4R)-1-Benzylpyrrolidine-3,4-diol (Diverchim S. A.; 150 mg, 0.776 mmol) was dissolved in dimethylsulfoxide (4 mL), and stirred at 100° C. for 15 minutes after adding potassium hydroxide (348 mg, 6.21 mmol). The reaction solution was further stirred at 100° C. for 4 hours after adding a dimethylsulfoxide (4 mL) solution of tetradecyl methanesulfonate (Nu-Chek Prep., Inc.; 568 mg, 1.94 mmol). Water was added after cooling the solution to room temperature, and the aqueous layer was extracted with ethyl acetate. The organic layer was washed with water and a saturated sodium chloride aqueous solution, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure after filtration. The resulting residue was purified by silica gel column chromatography (chloroform 100%) to give (3R,4R)-1-benzyl-3,4-bis(tetradecyloxy)pyrrolidine (449 mg, 98.6%).


ESI-MS m/z: 587 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.25-1.33 (m, 44H), 1.51-1.60 (m, 4H), 2.50 (dd, J=9.9, 4.7 Hz, 2H), 2.85 (dd, J=9.9, 6.0 Hz, 2H), 3.35-3.47 (m, 4H), 3.59 (q, J=12.8 Hz, 2H), 3.83 (t, J=4.7 Hz, 2H), 7.21-7.33 (m, 5H).


Reference Example 7
(3R,4R)-1-Benzyl-3,4-bis((Z)-tetradec-9-enyloxy)pyrrolidine

(3R,4R)-1-Benzyl-3,4-bis((Z)-tetradec-9-enyloxy)pyrrolidine (119 mg, 49.5%) was obtained in the same manner as that in Reference Example 3, by using (3R,4R)-1-Benzylpyrrolidine-3,4-diol (Diverchim S. A.; 80.0 mg, 0.414 mmol) and (Z)-tetradec-9-enyl methanesulfonate (Nu-Chek Prep, Inc; 301 mg, 1.04 mmol).


ESI-MS m/z: 583 (M+H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J=7.0 Hz, 6H), 1.28-1.37 (m, 28H), 1.51-1.60 (m, 4H), 1.98-2.05 (m, 8H), 2.50 (dd, J=9.8, 4.6 Hz, 2H), 2.85 (dd, J=9.8, 6.0 Hz, 2H), 3.35-3.47 (m, 4H), 3.59 (q, J=12.6 Hz, 2H), 3.83 (t, J=4.6 Hz, 2H), 5.29-5.40 (m, 4H), 7.21-7.34 (m, 5H).


Reference Example 8
(3R,4R)-1-Benzyl-3,4-bis(hexadecyloxy)pyrrolidine

(3R,4R)-1-Benzyl-3,4-bis(hexadecyloxy)pyrrolidine (324 mg, 97.6%) was obtained in the same manner as that in Reference Example 6, by using (3R,4R)-1-Benzylpyrrolidine-3,4-diol (Diverchim S. A.; 100 mg, 0.517 mmol) and hexadecyl methanesulfonate (Nu-Chek Prep, Inc; 415 mg, 1.29 mmol).


ESI-MS m/z: 643 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.25-1.33 (m, 52H), 1.50-1.58 (m, 4H), 2.50 (dd, J=9.9, 4.8 Hz, 2H), 2.85 (dd, J=9.9, 6.0 Hz, 2H), 3.35-3.47 (m, 4H), 3.59 (q, J=12.8 Hz, 2H), 3.83 (t, J=4.8 Hz, 2H), 7.20-7.33 (m, 5H).


Example 1
(3R,4R)-3,4-bis((Z)-Hexadec-9-enyloxy)pyrrolidine (Compound 1)

Compound VI-1 (208 mg, 0.326 mmol) obtained in Reference Example 1 was dissolved in 1,2-dichloroethane (4 mL), and stirred at 130° C. for 1 hour after adding 1-chloroethyl chloroformate (Tokyo Chemical Industry Co., Ltd.; 0.107 mL, 0.978 mmol). The reaction solution was further stirred at 130° C. for 1 hour after adding methanol (4 mL). After being cooled to room temperature, the solution was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 92/8). The organic layer was washed with a saturated sodium bicarbonate aqueous solution and with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure after filtration to give Compound 1 (160 mg, 89.2%).


ESI-MS m/z: 549 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.27-1.36 (m, 34H), 1.50-1.59 (m, 4H), 1.82 (br s, 3H), 2.01 (q, J=6.2 Hz, 8H), 2.84 (dd, J=12.5, 3.0 Hz, 2H), 3.10 (dd, J=12.5, 5.0 Hz, 2H), 3.43 (t, J=6.8 Hz, 4H), 3.77 (dd, J=5.0, 3.0 Hz, 2H), 5.29-5.40 (m, 4H).


Example 2
(3R,4R)-3,4-bis((Z)-Hexadec-9-enyloxy)-1-methylpyrrolidine (Compound 2)

Compound 1 (107 mg, 0.195 mmol) obtained in Example 1 was dissolved in 1,2-dichloroethane (1.5 mL) and methanol (1.5 mL), and stirred at room temperature for 1 hour after adding formaldehyde (0.145 mL, 1.95 mmol) and sodium triacetoxyborohydride (Acros Organics; 207 mg, 0.976 mmol). The aqueous layer was extracted with ethyl acetate after adding a saturated sodium bicarbonate aqueous solution to the reaction solution. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure after filtration. The resulting residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 96/4) to give Compound 2 (107 mg, 97.4%).


ESI-MS m/z: 563 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.27-1.38 (m, 34H), 1.52-1.62 (m, 4H), 1.67 (br s, 2H), 2.01 (q, J=6.1 Hz, 8H), 2.32 (s, 3H), 2.47 (dd, J=9.8, 4.4 Hz, 2H), 2.83 (dd, J=9.8, 5.8 Hz, 2H), 3.36-3.49 (m, 4H), 3.81 (t, J=4.4 Hz, 2H), 5.29-5.41 (m, 4H).


Example 3
N-Methyl-N,N-bis(2-((Z)-hexadec-9-enyloxy)ethyl)amine (Compound 3)

A toluene (2 mL) solution of N-methyldiethanolamine (Tokyo Chemical Industry Co., Ltd.; 82.6 mg, 0.693 mmol) was slowly added to a toluene (2 mL) suspension of sodium hydride (oily, 60%, 222 mg, 5.55 mmol) while being stirred. A toluene (2 mL) solution of (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep., Inc.; 530 mg, 1.66 mmol) was then dropped on the mixture. The resulting mixture was stirred for 2 hours under heat and reflux. The reaction was stopped with water after cooling the mixture to room temperature. This was followed by extraction with ethyl acetate after adding saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 98/2) to give Compound 3 (199 mg, 50.9%).


ESI-MS m/z: 565 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.29 (br s, 36H), 1.51-1.56 (m, 4H), 1.97-2.04 (m, 8H), 2.33 (s, 3H), 2.64 (t, J=6.1 Hz, 4H), 3.41 (t, J=6.8 Hz, 4H), 3.52 (t, J=6.1 Hz, 4H), 5.28-5.40 (m, 4H).


Example 4
2,3-bis((Z)-Hexadec-9-enyloxy)-N,N-dimethylpropane-1-amine (Compound 4)

Compound 4 (714 mg, 84.6%) was obtained in the same manner as that in Example 3, by using 3-(dimethylamino)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 178 mg, 1.49 mmol) and (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep, Inc; 1.19 g, 3.74 mmol).


ESI-MS m/z: 565 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.27-1.35 (m, 34H), 1.51-1.62 (m, 6H), 2.01 (q, J=5.9 Hz, 8H), 2.26 (s, 6H), 2.32-2.45 (m, 2H), 3.41-3.63 (m, 7H), 5.29-5.40 (m, 4H).


Example 5
N,N-Diethyl-2,3-bis((Z)-hexadec-9-enyloxy)propane-1-amine (Compound 5)

Compound 5 (545 mg, 64.9%) was obtained in the same manner as that in Example 3, by using 3-(diethylamino)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 209 mg, 1.42 mmol) and (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep, Inc; 1.13 g, 3.55 mmol).


ESI-MS m/z: 593 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.01 (t, J=7.1 Hz, 6H), 1.26-1.35 (m, 34H), 1.51-1.61 (m, 6H), 2.01 (q, J=5.9 Hz, 8H), 2.43-2.64 (m, 6H), 3.39-3.62 (m, 7H), 5.29-5.40 (m, 4H).


Example 6
1-(2,3-bis((Z)-Hexadec-9-enyloxy)propyl)pyrrolidine (Compound 6)

Compound 6 (654 mg, 76.8%) was obtained in the same manner as that in Example 3, by using 3-(pyrrolidine-1-yl)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 210 mg, 1.44 mmol) and (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep, Inc; 1.15 g, 3.61 mmol).


ESI-MS m/z: 591 (M+H); 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.26-1.35 (m, 34H), 1.51-1.60 (m, 4H), 1.62-1.66 (m, 2H), 1.72-1.77 (m, 4H), 2.01 (q, J=6.3 Hz, 8H), 2.44-2.69 (m, 6H), 3.41-3.64 (m, 7H), 5.29-5.40 (m, 4H).


Example 7
trans-3,4-bis(((Z)-Hexadec-9-enyloxy)methyl)pyrrolidine (Compound 7)

Compound 7 (260 mg, 89.7%) was obtained in the same manner as that in Example 1, by using trans-1-Benzyl-3,4-bis(((Z)-hexadec-9-enyloxy)methyl)pyrrolidine (335 mg, 0.503 mmol) obtained in Reference Example 3.


ESI-MS m/z: 577 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.29-1.35 (m, 36H), 1.50-1.59 (m, 4H), 1.96-2.07 (m, 10H), 2.70 (dd, J=11.1, 5.7 Hz, 2H), 3.06 (dd, J=11.1, 7.3 Hz, 2H), 3.28-3.46 (m, 8H), 5.30-5.40 (m, 4H).


Example 8
trans-3,4-bis(((Z)-Hexadec-9-enyloxy)methyl)-1-methylpyrrolidine (Compound 8)

Compound 7 (175 mg, 0.304 mmol) obtained in Example 7 was dissolved in 1,2-dichloroethane (3 mL) and methanol (3 mL), and stirred at room temperature for hour after adding formaldehyde (0.226 mL, 3.04 mmol) and sodium triacetoxyborohydride (Acros Organics; 322 mg, 1.52 mmol). The aqueous layer was extracted with ethyl acetate after adding a saturated sodium bicarbonate aqueous solution to the reaction solution. The organic layer was washed with a saturated sodium chloride aqueous solution, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure after filtration. The resulting residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 93/7) to give Compound 8 (174 mg, 97.1%).


ESI-MS m/z: 591 (M+H); 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.26-1.35 (m, 36H), 1.50-1.59 (m, 4H), 1.98-2.11 (m, 10H), 2.33 (s, 3H), 2.39 (dd, J=9.2, 5.3 Hz, 2H), 2.67 (dd, J=9.2, 7.3 Hz, 2H), 3.31-3.45 (m, 8H), 5.30-5.40 (m, 4H).


Example 9
bis(2-((Z)-Hexadec-9-enyloxy)ethyl)amine (Compound 9)

Compound 9 (516 mg, 85.9%) was obtained in the same manner as that in Example 1, by using N-Benzyl-N,N-bis(2-((Z)-hexadec-9-enyloxy)ethyl)amine (700 mg, 1.09 mmol) obtained in Reference Example 5.


ESI-MS m/z: 550 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.26-1.35 (m, 36H), 1.52-1.63 (m, 4H), 2.01 (q, J=5.5 Hz, 8H), 2.80 (t, J=5.3 Hz, 4H), 3.42 (t, J=6.6 Hz, 4H), 3.53 (t, J=5.3 Hz, 4H), 5.30-5.40 (m, 4H).


Example 10
(3R,4R)-3,4-bis(Tetradecyloxy)pyrrolidine (Compound 10)

Compound 10 (331 mg, 86.1%) was obtained in the same manner as that in Example 1, by using (3R,4R)-1-Benzyl-3,4-bis(tetradecyloxy)pyrrolidine (454 mg, 0.775 mmol) obtained in Reference Example 6.


ESI-MS m/z: 497 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.26-1.34 (m, 41H), 1.50-1.59 (m, 4H), 1.66 (br s, 4H), 2.82 (dd, J=12.6, 3.0 Hz, 2H), 3.09 (dd, J=12.6, 5.0 Hz, 2H), 3.40-3.46 (m, 4H), 3.76 (dd, J=5.0, 3.0 Hz, 2H).


Example 11
(3R,4R)-3,4-bis((Z)-Tetradec-9-enyloxy)pyrrolidine (Compound 11)

Compound 11 (71.4 mg, 84.0%) was obtained in the same manner as that in Example 1, by using (3R,4R)-1-Benzyl-3,4-bis((Z)-tetradec-9-enyloxy)pyrrolidine (100 mg, 0.172 mmol) obtained in Reference Example 7.


ESI-MS m/z: 492 (M+H); 1H-NMR (CDCl3) δ: 0.87-0.92 (m, 6H), 1.29-1.35 (m, 26H), 1.50-1.59 (m, 4H), 1.64 (br s, 3H), 2.02 (q, J=5.9 Hz, 8H), 2.82 (dd, J=12.5, 2.9 Hz, 2H), 3.09 (dd, J=12.5, 4.9 Hz, 2H), 3.37-3.49 (m, 4H), 3.76 (dd, J=4.9, 2.9 Hz, 2H), 5.30-5.40 (m, 4H).


Example 12
(3R,4R)-3,4-bis(Hexadecyloxy)pyrrolidine (Compound 12)

Compound 12 (210 mg, 84.8%) was obtained in the same manner as that in Example 1, by using (3R,4R)-1-Benzyl-3,4-bis(hexadecyloxy)pyrrolidine (288 mg, 0.449 mmol) obtained in Reference Example 8.


ESI-MS m/z: 553 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.26-1.34 (m, 50H), 1.50-1.59 (m, 4H), 1.66-1.68 (m, 3H), 2.82 (dd, J=12.5, 3.0 Hz, 2H), 3.09 (dd, J=12.5, 5.0 Hz, 2H), 3.43 (td, J=6.6, 0.7 Hz, 4H), 3.76 (dd, J=5.0, 3.0 Hz, 2H).


Compounds 13 to 17 can be obtained by using the same methods used in Examples 1 to 12 or Reference Examples 9 to 13. Compounds 14 to 17 also can be produced by using the method described in WO2009/086558.


Reference Example 9
2,3-bis(Hexadecyloxy)-N,N-dimethylpropane-1-amine (Compound A-1)

3-(Dimethylamino)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 110 mg, 0.923 mmol) was dissolved in dimethylsulfoxide (12 mL), and stirred at 100° C. for 15 minutes after adding potassium hydroxide (414 mg, 7.38 mmol). The solution was further stirred at 100° C. for 5 hours after adding hexadecyl methanesulfonate (Nu-Chek Prep., Inc.; 1.18 g, 3.69 mmol). Water was added after cooling the solution to room temperature, and the aqueous layer was extracted with ethyl acetate. The organic layer was washed with water and with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure after filtration. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=100/0 to 0/100) to give Compound A-1 (28.5 mg, 5.44%).


ESI-MS m/z: 569 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.26-1.33 (m, 46H), 1.52-1.62 (m, 10H), 2.28 (s, 6H), 2.41 (br s, 2H), 3.41-3.63 (m, 7H).


Reference Example 10
3-(Dimethylamino)propane-1,2-diyl di((Z)-hexadec-9-enoate) (Compound A-2)

3-(Dimethylamino)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 106 mg, 0.893 mmol) was dissolved in dichloromethane (10 mL), and stirred overnight at room temperature after adding (Z)-9-hexadecenoic acid (Tokyo Chemical Industry Co., Ltd.; 0.556 mL, 1.97 mmol), N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (394 mg, 2.06 mmol), and N,N-dimethylaminopyridine (27 mg, 0.223 mmol). The aqueous layer was extracted with chloroform after adding water to the reaction mixture. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure after filtration. The resulting residue was purified by silica gel column chromatography (chloroform/methanol=100/0 to 97/3) to give Compound A-2 (495 mg, 93.5%).


ESI-MS m/z: 593 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.26-1.35 (m, 32H), 1.56-1.66 (m, 4H), 2.01 (q, J=5.3 Hz, 8H), 2.26-2.33 (m, 10H), 2.44 (dd, J=6.4, 4.1 Hz, 2H), 4.09 (dd, J=12.1, 6.4 Hz, 1H), 4.36 (dd, J=12.1, 3.1 Hz, 1H), 5.15-5.23 (m, 1H), 5.28-5.41 (m, 4H).


Reference Example 11
1-(2,3-bis(Hexadecyloxy)propyl)pyrrolidine (Compound A-3)

Compound A-3 (52.3 mg, 8.52%) was obtained in the same manner as that in Reference Example 9, by using 3-(pyrrolidine-1-yl)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 150 mg, 1.03 mmol) and hexadecyl methanesulfonate (Nu-Chek Prep, Inc; 1.33 g, 4.13 mmol).


ESI-MS m/z: 595 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.21-1.34 (m, 50H), 1.51-1.61 (m, 4H), 1.75-1.85 (m, 6H), 2.48-2.74 (m, 6H), 3.41-3.63 (m, 7H).


Reference Example 12
3-(Pyrrolidine-1-yl)propane-1,2-diyl di((Z)-hexadec-9-enoate) (Compound A-4)

Compound A-4 (201 mg, 91.0%) was obtained in the same manner as that in Reference Example 10, by using 3-(pyrrolidine-1-yl)propane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 52 mg, 0.357 mmol) and (Z)-9-hexadecenic acid (Tokyo Chemical Industry Co., Ltd.; 0.222 mL, 0.786 mmol).


ESI-MS m/z: 619 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.8 Hz, 6H), 1.26-1.35 (m, 32H), 1.56-1.64 (m, 4H), 1.71-1.76 (m, 4H), 2.01 (q, J=6.5 Hz, 8H), 2.30 (td, J=7.5, 2.0 Hz, 4H), 2.50-2.55 (m, 4H), 2.63 (dd, J=6.5, 2.0 Hz, 2H), 4.10 (dd, J=11.8, 6.5 Hz, 1H), 4.38 (dd, J=11.8, 3.1 Hz, 1H), 5.16-5.25 (m, 1H), 5.28-5.40 (m, 4H).


Reference Example 13
4-(2,3-bis((Z)-Hexadec-9-enyloxy)propyl)morpholine (Compound A-5)

Compound A-5 (65.0 mg, 17.1%) was obtained in the same manner as that in Example 10, by using 3-morpholinopropane-1,2-diol (Tokyo Chemical Industry Co., Ltd.; 101 mg, 0.628 mmol) and (Z)-hexadec-9-enyl methanesulfonate (Nu-Chek Prep, Inc; 500 mg, 1.57 mmol).


ESI-MS m/z: 607 (M+H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J=6.6 Hz, 6H), 1.26-1.35 (m, 36H), 1.52-1.59 (m, 4H), 2.01 (q, J=6.3 Hz, 8H), 2.45-2.52 (m, 6H), 3.41-3.71 (m, 11H), 5.29-5.40 (m, 4H).


The composition of the present invention is described below in detail using Examples and Test Examples. It should be noted that the present invention is in no way limited by the following Examples and Test Examples.


Anti-APO-B siRNA was used as the nucleic acid in Examples 13 to 24 below. Anti-APO-B siRNA suppresses expression of an apolipoprotein-B (hereinafter, “apo-b”) gene that has a sense strand with the base sequence 5′-GmUCAmUCACACmUGAAmUACCAAmU-3′ (the sugars bound to the bases appended with m are 2′-O-methyl-substituted riboses), and an antisense strand with the base sequence 5′-AUUGGUAUUCAGUGUGAUGACAC-3′ (the 5′-end is phosphorylated). The sense strand and the antisense strand were obtained from Nippon EGT or Hokkaido System Science Co., Ltd., and annealed to prepare the nucleic acid (hereinafter, “apo-b siRNA”).


Example 13

A solution comprising the constituent components of a lipid membrane was prepared by dissolving each of the weighed samples in 90 vol % ethanol in 8.947/1.059/5.708/13.697 mmol/L [Compound 1/1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy(polyethylene glycol)-2000) (PEG-DMPE, N-(carbonylmethoxypolyethylene glycol 2000)-1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine sodium salt, NOF Corporation)/distearoylphosphatidyl choline (DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine, NOF Corporation)/cholesterol (Avanti Polar Lipids)]. Separately, apo-b siRNA/distilled water (24 mg/mL) was diluted with a Tris-EDTA buffer (200 mM Tris-HCl, 20 mM EDTA, Invitrogen) and a 20 mM citric acid buffer (pH 5.0) to prepare a 1.5 mg/mL apo-b siRNA aqueous solution (2 mM Tris-EDTA buffer, pH 5.0).


The resulting lipid solution was heated to 37° C., and a 100-μL portion was transferred to a preparation container. The apo-b siRNA aqueous solution (100 μL) was then added thereto while being stirred. Then, a 20 mM citric acid buffer (containing 300 mM NaCl, pH 6.0; 200 μL) was added to the lipid nucleic acid mixed suspension (200 μL) while being stirred. The siRNA concentration was brought to 10 μM by dropping a Dulbecco phosphate buffer (DPBS, Invitrogen; 662 μL), and a preparation was obtained.


The average particle diameter of the liposomes in the preparation was measured with a particle diameter measurement device (Malvern; Zetasizer Nano ZS). The average particle diameter was 140.3 nm.


Example 14

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 2. The average particle diameter of the liposomes in the preparation was 139.3 nm.


Example 15

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 3. The average particle diameter of the liposomes in the preparation was 126.5 nm.


Example 16

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 4. The average particle diameter of the liposomes in the preparation was 120.6 nm.


Example 17

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 5. The average particle diameter of the liposomes in the preparation was 120.5 nm.


Example 18

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 6. The average particle diameter of the liposomes in the preparation was 116.1 nm.


Example 19

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 7. The average particle diameter of the liposomes in the preparation was 143.5 nm.


Example 20

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 8. The average particle diameter of the liposomes in the preparation was 123.9 nm.


Example 21

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 9. The average particle diameter of the liposomes in the preparation was 130.6 nm.


Example 22

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 10. The average particle diameter of the liposomes in the preparation was 154.2 nm.


Example 23

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 11. The average particle diameter of the liposomes in the preparation was 133.8 nm.


Example 24

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound 12. The average particle diameter of the liposomes in the preparation was 157.2 nm.


Comparative Example 1

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound A-1 obtained in Reference Example 9. The average particle diameter of the liposomes in the preparation was 153.0 nm.


Comparative Example 2

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound A-2 obtained in Reference Example 10. The average particle diameter of the liposomes in the preparation was 134.9 nm.


Comparative Example 3

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound A-3 obtained in Reference Example 11. The average particle diameter of the liposomes in the preparation was 136.6 nm.


Comparative Example 4

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound A-4 obtained in Reference Example 12. The average particle diameter of the liposomes in the preparation was 145.2 nm.


Comparative Example 5

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound A-5 obtained in Reference Example 13. The average particle diameter of the liposomes in the preparation was 135.0 nm.


Comparative Example 6

A preparation was obtained in the same manner as in Example 13, except that Compound 1 was changed to Compound VI-1 obtained in Reference Example 1. The average particle diameter of the liposomes in the preparation was 132.0 nm.


The structures of Compound A-1 to 5 and Compound VI-1 used in Comparative Examples are shown in Tables 4.










TABLE 4





Compound No.
Structure







A-1


embedded image







A-2


embedded image







A-3


embedded image







A-4


embedded image







A-5


embedded image







VI-1


embedded image











Test Example 1

The preparations obtained in Examples 13 to 24 and Comparative Examples 1 to 6 were introduced into human liver cancer-derived cell line HepG2 (HB-8065) by using the following method.


Each preparation diluted with Opti-MEM (GIBCO; 31985) to make the nucleic acid final concentrations 3 to 100 nM was dispensed in a 96-well culture plate in 20-μL portions. Then, HepG2 cells suspended in MEM containing 1.25% fetal bovine serum (FBS; SAFC Biosciences; 12203C) were inoculated in 6250 cells/80 μL/well, and cultured under 37° C., 5% CO2 conditions to introduce the preparation into the HepG2 cells. Untreated cells were also inoculated as a negative control group.


The cells after the introduction of the preparation were cultured in a 37° C., 5% CO2 incubator for 24 hours, and washed with ice-cooled phosphate buffered saline (PBS; GIBCO; 14190). Total RNA was collected, and cDNA was produced by reverse transcription reaction using the total RNA as a template, using a Cells-to-Ct Kit (Applied Bioscience; ABI; AM1728) according to the protocol attached to the kit.


By using the cDNA as a template, a PCR reaction was performed for the apo-b gene and the constitutively expressed gene D-glyceraldehyde-3-phosphate dehydrogenase (hereinafter, “gapdh”) gene using a universal probe library (Roche Applied Science; 04683633001) as the probe. For the PCR, ABI7900HT Fast (ABI) was used according to the protocol attached to the system. The mRNA amplification amounts were measured, and a quasi-quantitative value for the apo-b mRNA was calculated using the gapdh mRNA amplification amount as the internal control. The apo-b mRNA level and the gapdh mRNA amplification amount in the negative control group were also measured in the same manner, and a quasi-quantitative value for the apo-b mRNA was calculated using the gapdh mRNA amplification amount as the internal control.


The apo-b mRNA expression rate was determined from the calculated apo-b mRNA quasi-quantitative value relative to the apo-b mRNA quasi-quantitative value of the negative control as 1. The results for Examples 13 to 24 are presented in FIGS. 1 and 2, and the results for Comparative Examples 1 to 6 are presented in FIG. 3. The vertical axis represents the target gene mRNA expression rate relative to the negative control taken at 1. The horizontal axis represents nucleic acid concentration (nM), and the compound numbers and example numbers of the cationic lipids used.


As is clear FIGS. 1 and 2, the apo-b gene mRNA expression rate was suppressed after the introduction of the preparations obtained in Example 13 to 24 (compositions comprising the apo-b gene expression-suppressing anti-APO-B siRNA, and compounds 1 to 12) into the human liver cancer-derived cell line HepG2. On the other hand, as is clear FIG. 3, the apo-b gene mRNA expression rate was not suppressed after the introduction of the preparations obtained in Comparative Examples 1 to 6 (compositions comprising the apo-b gene expression-suppressing anti-APO-B siRNA, and compounds A-1 to 5 and VI-1) into the human liver cancer-derived cell line HepG2.


It was therefore found that the composition of the present invention can be used to introduce nucleic acid into cells and the like, and that the cationic lipid of the present invention represents a novel cationic lipid that allows nucleic acid to be easily introduced into cells.


INDUSTRIAL APPLICABILITY

A composition comprising the novel cationic lipid of the present invention and a nucleic acid can be used to easily introduce the nucleic acid into, for example, cells and the like through administration to mammals and the like.


SEQUENCE LISTING FREE TEXT

SEQ No. 1: siRNA sense


SEQ No. 2: siRNA antisense


SEQ No. 2: 5′-phosphorylated Adenosine


SEQUENCE LISTING

1000P12144Apo-b siRNA20110427.text

Claims
  • 1. A cationic lipid represented by formula (I):
  • 2. The cationic lipid according to claim 1, wherein X1 and X2 are combined together to form a single bond or alkylene.
  • 3. The cationic lipid according to claim 1, wherein L3 is a single bond, R3 is a hydrogen atom, methyl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, and L1 and L2 are —O—.
  • 4. The cationic lipid according to claim 1, wherein L3 is —CO— or —CO—O—, R3 is pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, or alkyl having 1 to 6 carbon atoms or alkenyl having 3 to 6 carbon atoms substituted with 1 to 3 substituent(s), which is(are), the same or different, amino, monoalkylamino, dialkylamino, trialkylammonio, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, pyrrolidinyl, piperidyl or morpholinyl, wherein at least one of the substituents is amino, monoalkylamino, dialkylamino, trialkylammonio, pyrrolidinyl, piperidyl or morpholinyl, and L1 and L2 are identically —CO—O— or —O—CO—.
  • 5. The cationic lipid according to any one of claims 1 to 4, wherein X3 is absent, or is methyl.
  • 6. The cationic lipid according to any one of claims 1 to 4, wherein L1 and L2 are —O— or —O—CO—, and R1 and R2 are (Z)-hexadec-6-enyl or (Z)-hexadec-9-enyl.
  • 7. The cationic lipid according to any one of claims 1 to 4, wherein L1 and L2 are —CO—O—, and R1 and R2 are (Z)-pentadec-5-enyl or (Z)-pentadec-8-enyl.
  • 8. A cationic lipid represented by formula (IA):
  • 9. The cationic lipid according to any one of claims 1 to 4 and 8, wherein a and b are both 0 or 1.
  • 10. The cationic lipid according to any one of claims 1 to 4 and 8, wherein X4 is methylene or ethylene.
  • 11. A composition that comprises the cationic lipid according to any one of claims 1 to 4 and 8 and a nucleic acid.
  • 12. A composition comprising a complex particle of the cationic lipid according to any one of claims 1 to 4 and 8 and a nucleic acid, or a complex particle of a nucleic acid and a combination of the cationic lipid and a neutral lipid and/or a polymer.
  • 13. A composition comprising a liposome constituted of a complex particle of the cationic lipid according to any one of claims 1 to 4 and 8 and a nucleic acid, or a complex particle of a nucleic acid and a combination of the cationic lipid and a neutral lipid and/or a polymer, and a lipid bilayer membrane that encapsulates the complex particle.
  • 14. The composition according to claim 11, wherein the nucleic acid is a nucleic acid having an activity of suppressing the expression of the target gene by utilizing RNA interference (RNAi).
  • 15. The composition according to claim 14, wherein the target gene is a gene associated with tumor or inflammation.
  • 16. A method for introducing the nucleic acid into a cell by using the composition according to claim 11.
  • 17. The method according to claim 16, wherein the cell is a cell at a tumor or inflammation site of a mammal.
  • 18. The method according to claim 16, wherein the cell is a cell in the liver, lungs, kidneys or spleen of a mammal.
  • 19. The method according to claim 17, wherein the method of the introduction into a cell is a method of introduction into a cell by intravenous administration.
  • 20. A method for treating cancer or inflammatory disease, wherein the composition according to claim 15 is administered to a mammal.
  • 21. The method according to claim 20, wherein the method of administration is intravenous administration.
  • 22-25. (canceled)
Priority Claims (3)
Number Date Country Kind
2010-104159 Apr 2010 JP national
2010-132712 Jun 2010 JP national
2010-209938 Sep 2010 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2011/060459 4/28/2011 WO 00 1/14/2013