The present invention relates generally to sonoluminescence and, more particularly, to an apparatus for improving the resonant cavity qualities of a cavitation chamber coupled to an acoustic driver.
Sonoluminescence is a well-known phenomena discovered in the 1930's in which light is generated when a liquid is cavitated. Although a variety of techniques for cavitating the liquid are known (e.g., spark discharge, laser pulse, flowing the liquid through a Venturi tube), one of the most common techniques is through the application of high intensity sound waves.
In essence, the cavitation process consists of three stages; bubble formation, growth and subsequent collapse. The bubble or bubbles cavitated during this process absorb the applied energy, for example sound energy, and then release the energy in the form of light emission during an extremely brief period of time. The intensity of the generated light depends on a variety of factors including the physical properties of the liquid (e.g., density, surface tension, vapor pressure, chemical structure, temperature, hydrostatic pressure, etc.) and the applied energy (e.g., sound wave amplitude, sound wave frequency, etc.).
Although it is generally recognized that during the collapse of a cavitating bubble extremely high temperature plasmas are developed, leading to the observed sonoluminescence effect, many aspects of the phenomena have not yet been characterized. As such, the phenomena is at the heart of a considerable amount of research as scientists attempt to not only completely characterize the phenomena (e.g., effects of pressure on the cavitating medium), but also its many applications (e.g., sonochemistry, chemical detoxification, ultrasonic cleaning, etc.).
In a typical cavitation system, for example as shown by Dan et al. in an article entitled Ambient Pressure Effect on Single-Bubble Sonoluminescence (vol. 83, no. 9 of Physical Review Letters), the cavitation chamber is a simple glass flask that is filled or semi-filled with cavitation fluid. A spherical flask is also disclosed in U.S. Pat. No. 5,659,173. The specification of this patent discloses using flasks of Pyrex®, Kontes®, and glass with sizes ranging from 10 milliliters to 5 liters. The drivers as well as a microphone piezoelectric were epoxied to the exterior surface of the chamber.
In some instances, more elaborate chambers are employed in the cavitation system. For example, U.S. Pat. No. 4,333,796 discloses a cavitation chamber designed for use with a liquid metal. As disclosed, the chamber is generally cylindrical and comprised of a refractory metal such as tungsten, titanium, molybdenum, rhenium or some alloy thereof. Surrounding the cavitation chamber is a housing which is purportedly used as a neutron and tritium shield. Projecting through both the outer housing and the cavitation chamber walls are a number of acoustic horns, each of the acoustic horns being coupled to a transducer which supplies the mechanical energy to the associated horn. The specification discloses that the horns, through the use of flanges, are secured to the chamber/housing walls in such a way as to provide a seal and that the transducers are mounted to the outer ends of the horns.
A tube-shaped cavitation system is disclosed in U.S. Pat. No. 5,658,534, the tube fabricated from stainless steel. Multiple ultrasonic transducers are attached to the cavitation tube, each transducer being fixed to a cylindrical half-wavelength coupler by a stud, the coupler being clamped within a stainless steel collar welded to the outside of the sonochemical tube. The collars allow circulation of oil through the collar and an external heat exchanger.
Another tube-shaped cavitation system is disclosed in U.S. Pat. No. 6,361,747. In this cavitation system the acoustic cavitation reactor is comprised of a flexible tube. The liquid to be treated circulates through the tube. Electroacoustic transducers are radially and uniformly distributed around the tube, each of the electroacoustic transducers having a prismatic bar shape. A film of lubricant is interposed between the transducer heads and the wall of the tube to help couple the acoustic energy into the tube.
U.S. Pat. No. 5,858,104 discloses a shock wave chamber partially filled with a liquid. The remaining portion of the chamber is filled with gas which can be pressurized by a connected pressure source. Acoustic transducers are used to position an object within the chamber while another transducer delivers a compressional acoustic shock wave into the liquid. A flexible membrane separating the liquid from the gas reflects the compressional shock wave as a dilation wave focused on the location of the object about which a bubble is formed.
PCT Application No. US02/16761 discloses a nuclear fusion reactor in which at least a portion of the liquid within the reactor is placed into a state of tension, this state of tension being less than the cavitation threshold of the liquid. The liquid preferably includes enriched deuterium or tritium, the inventors citing deuterated acetone as an exemplary liquid. In at least one disclosed embodiment, acoustic waves are used to pretension the liquid. In order to minimize the effects of gas cushioning during bubble implosion, the liquid is degassed prior to tensioning. A resonant cavity is formed within the chamber using upper and lower pistons, the pistons preferably fabricated from glass. The upper and lower pistons are smaller than the inside diameter of the chamber, thus allowing cavitation fluid to pass by the pistons. In a preferred embodiment, the upper piston is flexibly anchored to the chamber using wire anchors while the lower piston is rigidly anchored to the chamber.
The present invention provides a cavitation chamber separated into two volumes by a gas-tight and liquid-tight seal, the seal formed by the combination of a rigid acoustic reflector and a flexible member. The rigid reflector improves the cavitation characteristics of the chamber while the flexible member insures that the reflector can move during the cavitation process. One of the two chamber volumes is filled, or at least partially filled, with cavitation fluid while the other chamber volume remains devoid of cavitation fluid during system operation. A conduit couples a region above the liquid free surface in one cavitation volume to the second, unfilled chamber volume, thus preventing the reflector from being subjected to undue pressures which could possibly lead to its failure. An acoustic driver, such as a ring of piezoelectric material, is coupled to the chamber and used to drive cavitation within the cavitation fluid contained within the chamber.
Various methods are disclosed to flexibly couple the rigid reflector to the internal surfaces of the cavitation chamber. In one embodiment, the flexible coupling member is comprised of a flexible adhesive/sealant such as a silicon adhesive. In an alternate embodiment, the flexible coupling is fabricated from an elastomeric material such as a natural or synthetic rubber. The elastomeric material can be bonded or otherwise attached to both the rigid reflector and the internal surfaces of the cavitation chamber.
In at least one embodiment of the invention, the rigid reflector can be used in conjunction with a second reflector, the second reflector located along a liquid free surface within the chamber.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
During system operation, cavitation is driven within cavitation fluid 115 by one or more acoustic drivers. In the embodiment illustrated in
In order to insure flexibility of reflector 111 along bond joint 113, and to prevent breakage of reflector 111 if it is fabricated from a relatively fragile material such as glass, the pressure within portion 117 of chamber 101 is kept in equilibrium with the pressure above the cavitation fluid free surface (e.g., interface 127). Preferably pressure equalization is maintained by physically coupling the two regions, for example with a conduit 129. It will be appreciated that the cavitation fluid free surface does not have to occur within chamber 101 as shown (i.e., interface 127). For example, the interface can occur within the portion of conduit 129 that passes through end cap 107. Typically the location of the cavitation fluid free surface is selected to optimize the cavitation process and thus is dependent upon a number of factors including, but not limited to, the selected cavitation fluid, the dimensions of the chamber, and the type, location, number and capabilities of the driver(s).
In order to efficiently achieve high energy density (e.g., temperature) cavitation induced implosions within the cavitation fluid within the cavitation chamber, preferably the cavitation fluid is first adequately degassed of unwanted contaminants. Without sufficient degassing, gas within the cavitation fluid will impede the cavitation process by decreasing the maximum rate of collapse as well as the peak stagnation pressure and temperature of the plasma within the cavitating bubbles. It will be understood that the term “gas”, as used herein, refers to any of a variety of gases that are trapped within the cavitation fluid, these gases typically reflecting the gases contained within air (e.g., oxygen, nitrogen, argon, etc.). In contrast, “vapor” only refers to molecules of the cavitation fluid that are in the gaseous phase.
The present invention is not limited to a particular degassing technique. In the preferred embodiment, degassing is performed with a vacuum pump 131 that is coupled to chamber 101 via conduit 133. In an alternate embodiment, degassing can be performed within a separate degassing reservoir in which the cavitation fluid is degassed prior to filling the cavitation chamber. In yet another alternate embodiment, the cavitation fluid can be degassed initially outside of chamber 101 and then again within chamber 101.
In the embodiment illustrated in
A cavitation fluid filling system, not shown, is coupled to chamber 101 and used to fill the chamber to the desired level. It will be appreciated that the operating level for a particular cavitation chamber is based on obtaining the most efficient cavitation action. For example, while a spherical chamber may be most efficiently operated when it is completely full, a vertically aligned cylindrical chamber (e.g., the chamber shown in
Although not required, the filling system may include a circulatory system, such as that described in co-pending U.S. patent application Ser. No. 11/001,720, filed Dec. 1, 2004, entitled Cavitation Fluid Circulatory System for a Cavitation Chamber, the disclosure of which is incorporated herein for any and all purposes. Other components that may or may not be coupled to the cavitation fluid filling and/or circulatory system include bubble traps, cavitation fluid filters, and heat exchange systems. Further descriptions of some of these variations are provided in co-pending U.S. patent application Ser. No. 10/961,353, filed Oct. 7, 2004, entitled Heat Exchange System for a Cavitation Chamber, the disclosure of which is incorporated herein for any and all purposes.
Although the chamber shown in the embodiment of
The cavitation chamber of the invention can be fabricated from any of a variety of materials, or any combination of materials. The primary considerations for material selection are the desired operating pressure and temperature of the chamber and system. Additionally, the chamber materials can be selected to simplify viewing of the sonoluminescence phenomena, for example utilizing a transparent material such as glass, borosilicate glass (e.g., Pyrex®), or quartz glass. Alternately the cavitation chamber can be fabricated from a more robust material (e.g., 17-4 precipitation hardened stainless steel) and one which is preferably machinable, thus simplifying fabrication. Alternately a portion of the chamber can be fabricated from one material while other portions of the chamber can be fabricated from one or more different materials. For example, in the preferred embodiment illustrated in
Although reflector 111 can be fabricated from any of a variety of materials, preferably the selected material is rigid and relatively light weight. Additionally, reflector 111 must be capable of withstanding the pressure waves created by the cavitating bubbles within cavitation fluid 115. The inventor has found that reflector 111 can either be hollow (e.g., a hollow disc) or solid. For example, in one embodiment reflector 111 is comprised of a hollow glass disc. In an alternate embodiment, reflector 111 is comprised of a solid glass disc. In yet another alternate embodiment, reflector 111 is comprised of a hollow metal disc, preferably a titanium hollow disc. In yet another alternate embodiment, reflector 111 is comprised of a solid metal disc, preferably a titanium disc. It will be appreciated that glass and titanium are exemplary materials and that the invention is not limited to these materials. Additionally, it should be understood that the shape of the reflector is driven by the shape of the cavitation chamber, thus reflector 111 is disc-shaped only because chamber 101 is cylindrically-shaped.
Although in the preferred embodiment shown in
The embodiment illustrated in
In the embodiment illustrated in
In the embodiments illustrated in
As previously noted, the use of a reflector as described herein is not limited to the illustrated embodiments. For example, the reflector can be used in conjunction with an upper reflector 501 in order to create a resonant cavity within a cavitation chamber (see, for example, the embodiment illustrated in
As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2108416 | Smith et al. | Feb 1938 | A |
2667706 | Morse et al. | Feb 1954 | A |
2875989 | Toulmin | Mar 1959 | A |
3113761 | Platzman | Dec 1963 | A |
3516645 | Arndt et al. | Jun 1970 | A |
4333796 | Flynn | Jun 1982 | A |
4339247 | Faulkner et al. | Jul 1982 | A |
4563341 | Flynn | Jan 1986 | A |
4991152 | Letiche | Feb 1991 | A |
5030873 | Owen | Jul 1991 | A |
5658534 | Desborough et al. | Aug 1997 | A |
5659173 | Putterman et al. | Aug 1997 | A |
5722444 | Prokopenko et al. | Mar 1998 | A |
5858104 | Clark | Jan 1999 | A |
5968323 | Pless | Oct 1999 | A |
5994818 | Abramov et al. | Nov 1999 | A |
5998908 | Goodson | Dec 1999 | A |
6361747 | Dion et al. | Mar 2002 | B1 |
6617765 | Lagier | Sep 2003 | B1 |
6690621 | Porzio | Feb 2004 | B2 |
20020090047 | Stringham | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
PCTUS9515972 | Jul 1996 | WO |
WO 0139200 | May 2001 | WO |
PCTUS0216761 | Dec 2002 | WO |
PCTCA0300342 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070138912 A1 | Jun 2007 | US |