The invention is related to the field of photonic devices, and in particular to cavity enhanced photonic devices capable of emitting or detecting multiple wavelengths simultaneously in a single pixel.
Multispectral infrared (IR) detection has been widely employed for applications including hyperspectral imaging, IR spectroscopy, and target identification. Traditional multispectral detection technology is based on the combination of single spectral Focal Plane Arrays (FPAs) and spectral filters or spectrometers, which require bulky, high-cost mechanical scanning instruments and have a slow response. Single pixels capable of detecting multiple wavebands simultaneously enable dramatically simplified system design with superior mechanical robustness, and thus have become the focus of third generation FPA development. Recently, three-color HgCdTe (MCT) photodiodes have been demonstrated, although their spectral cross talk is still large (>10%) due to radiative coupling. A competing multi-color detector technology is quantum-well IR photodetectors (QWIPs). However, QWIP device optimization is largely limited by its low quantum efficiency (<10%). Another alternative solution, tandem detectors have limited band selection options and large cross talk due to challenges associated with material compatibility and band edge absorption. A solution which combines high quantum efficiency and low spectral cross talk is yet to be explored.
According to one aspect of the invention, there is provided an optical device. The optical device includes a plurality of stacked cavity arrangements for emitting or detecting a plurality of specified wavelengths, wherein each stacked cavity arrangement having a photoactive layer for spectral emission or detection of one of the specified wavelengths. The photoactive layer is positioned within a resonant cavity stack and the resonant cavity stack is positioned between two adjacent mirror stacks. A plurality of coupling-matching layers are positioned between one or more of the stack mirror arrangements for controlling optical phase and coupling strength between emitted or incident light and resonant modes in each of the stacked cavity arrangements.
According to another aspect of the invention, there is provided a multispectral pixel structure. The multispectral pixel structure includes a plurality of stacked cavity arrangements for emitting or detecting a plurality of specified wavelengths, wherein each stacked cavity arrangement having a photoactive layer for spectral emission or detection of one of the specified wavelengths. The photoactive layer is positioned within a resonant cavity stack and the resonant cavity stack is positioned between two adjacent mirror stacks. A plurality of coupling-matching layers are positioned between one or more of the stack mirror arrangements for controlling optical phase and coupling strength between emitted or incident light and resonant modes in each of the stacked cavity arrangements.
According to another aspect of the invention, there is provided a method of forming an optical device. The method includes forming a plurality of stacked cavity arrangements for emitting or detecting a plurality of specified wavelengths, wherein each stacked cavity arrangement having a photoactive layer for spectral emission or detection of one of the specified wavelengths. The photoactive layer is positioned within a resonant cavity stack and the resonant cavity stack is positioned between two adjacent mirror stacks. Also, the method includes positioning a plurality of coupling-matching layers between one or more of the stack mirror arrangements for controlling optical phase and coupling strength between emitted or incident light and resonant modes in each of the stacked cavity arrangements.
The invention involves a novel design of cavity-enhanced photonic devices capable of emitting or detecting multiple wavelengths simultaneously in a single pixel. The invention is based on phase-tuned propagation of resonant modes in cascaded planar resonant cavities. Moreover, the invention can be generalized to emit or detect multiple wavelength combinations covering the entire ultraviolet (UV) to infrared (IR) spectrum. In the detecting part, besides its multispectral detection capability, the invention also features minimal spectral cross talk and significantly suppressed noise. In the light emission part, gain medium can replace the photodetection material in the design, and thus enable multi-color light emission in single pixel. Resonant cavity structure can also help to increase the extraction coefficient for the multi-wavelength light source, so both multi-color lasers and sub-threshold cavity enhanced light emitting diodes (LEDs) can be designed according to our concept. Both the intrinsic design versatility and scalability, as well as process compatibility with planar microfabrication, suggest the design's wide application potential for: telecommunications, e.g. multi-wavelength light sources/photodetectors for WDM; solid-state lighting with arbitrary combination and number of colors, e.g. white light for illumination; multi-spectral photovoltaics; infrared hyperspectral imaging/spectroscopy; and biochemical sensing/identification.
The inventive approach involves a multi-layer cascaded cavity structure shown schematically in
Comparing to previous work on multispectral detection using a single cavity, spectral cross talk is significantly suppressed in the inventive design given the wavelength-selective spatial localization of resonant modes in different cavities. Electrical signals I(λ1)-I(λi) originating from each wavelength can be separately read out by contacting the corresponding active layer, either in a photoconductive or in a photovoltaic mode. Further, since resonant cavity enhancement (RCE) effect leads to optical field build-up in the cavity and dramatically increases absorption, photoactive layers with reduced thickness can be used while maintaining near unity QE. Consequently, photodetector noise can be suppressed without compromising responsivity. The design principles of the inventive multispectral pixel design are analyzed using the transfer matrix method (TMM). These principles are then illustrated by a specific design example. The method can be generalized to emit or detect virtually any multiple wavelength combination covering the entire UV to IR spectrum, and thus holds immense potential for the aforementioned applications.
To start with, one can consider a photoactive layer sandwiched within a generic multi-layer resonant cavity stack, where near unity light emission or absorption (internal QE) can be attained when the critical coupling condition is met at resonant wavelength:
Rt=(1−AL)Rb,Rb→1 (1)
where Rt and Rb are the reflectance values of top and bottom mirrors, and AL denotes the optical resonant mode gain or loss. When the cavity quality factor Q>>1, AL can be calculated using cavity perturbation theory as:
where ∈ and α are the dielectric constant and gain or absorption coefficient of the photoactive material, d is the cavity length, E0 denotes the electric field distribution of the resonant mode, and ∈c gives the dielectric constant profile of the stack. Notably, when the active material completely fills the cavity between the two mirrors, AL can simply be given as (1−e−2αd) and Eq. 1 reduces to the critical coupling formulation by Unlu. Eq. 1 states that given a bottom mirror with near unity reflectance (Rb→1) and a specific thickness of photoactive material in the cavity, maximum QE at resonant wavelength may be obtained by appropriately choosing a top mirror reflectance (Rt) to satisfy Eq. 1.
Now one can apply the above analysis to the ith (i=1, 2, 3 . . . ) cavity in the cascaded structure in
Here TMM is used to derive the top mirror reflectance Rt,i of the ith cavity in the stack, as is shown in
Tf=T(3)·M1−·Mm·Lm·T(2) (3)
where T(2) corresponds to the transfer matrix of layers from the 1st to the (i−1)th cavity including the mth coupling-matching layer, and T(3) is transfer matrix of the quarter wavelength stack (QWS) designed for the ith cavity's resonant wavelength λi. It can be proven that the matrix T(2) may be generically represented as:
where T(2)21, T(2)22, θ21, and θ22 are functions of φj, nj, μj, tj to (j=1 to m), and λ. T(3) follows the general formulation of QWS transfer matrices at normal angle (λ=λ1, p pairs):
Substituting Eq. 4 and 5 into Eq. 3 produces the following relation:
where
and nm and tm are refractive index and thickness of the mth layer, i.e. the coupling-matching layer at λi. Such a functional dependence provides a lever to tune Rt,i simply by adjusting tm to satisfy Eq. 1 and thereby reach near unity QE. In the example given later, how the critical coupling condition can be solved graphically is illustrated.
To summarize, one can follow the generic procedures to design multispectral light sources or photodetectors for selectively emitting or detecting N different wavelengths λ1, λ2, . . . λN:
1) Select mirror materials for the N wavelengths to avoid overlapping λi and the photonic stop bands of cavities 1 to i−1, and to minimize parasitic loss due to mirror absorption;
2) Start from the first cavity on top of the stack, choose appropriate numbers of top/bottom mirror QWS pairs to satisfy Eq. 1;
3) Move on to the next cavity i, adjust the coupling-matching layer thickness sandwiched between cavity i−1 and cavity i so that the critical coupling condition is met;
4) Repeat steps 2) and 3) until the entire stack design is complete.
The design procedures ensure that near unity quantum efficiency is attained for all N different wavelengths; in addition, as we will show in the following embodiment, the high degree of modal spatial localization ensures minimal cross talk between the different wavelengths to be emitted or detected. In reality, the coupling-matching layers can be chosen from metal materials, dielectric materials, glass materials, etc. The mirror/reflector layers/stacks in the cavities in
As an example to validate the design principles, λ1=1550 nm and λ2=3600 nm are chosen as the two wavelengths to be detected. However, due to the intrinsic design versatility and scalability, the concept can be employed for arbitrary combination and number of wavelengths emission or detection.
As2S3 and a-Ge are used as the low and high index mirror materials given their excellent IR-transparency. As an example,
Besides the high QE, the high degree of spatial localization of modes effectively minimizes cross talk between the two photoactive layers.
where ηactive2(λ1) is the QE of 2nd photoactive layer at λ1, and ηactive2(λ2) is the peak QE of 2nd photoactive layer at λ2. This design leads to spectral cross talk as low as 0.1%, more than two orders of magnitude lower compared to a tandem design or a single cavity design.
The invention provides a versatile and scalable design for cavity-enhanced light sources or photodetectors capable of emitting or detecting multiple wavebands simultaneously in a single pixel. The design is based on phase-tuned propagation in cascaded planar resonant cavities and this concept can be generalized to emit or detect virtually any arbitrary number of wavelengths. This inventive pixel structure combines high QE, reduced detector noise as well as low spectral cross talk, and thus may find wide applications in security surveillance, hyperspectral imaging, and IR spectroscopy.
Although the present invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
This application claims priority from provisional application Ser. No. 61/265,433 filed Dec. 1, 2009, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5978401 | Morgan | Nov 1999 | A |
6858882 | Tsuda et al. | Feb 2005 | B2 |
20030030870 | Joannopoulos et al. | Feb 2003 | A1 |
20040169188 | Nunoue et al. | Sep 2004 | A1 |
20050029510 | Mears et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0004593 | Jan 2000 | WO |
2004033813 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20110127547 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61265433 | Dec 2009 | US |