This application is a 35 U.S.C. § 371 National Phase conversion of International (PCT) Patent Application No. PCT/CN2018/119776, filed on Dec. 7, 2018, which claims the priority of Chinese patent application, the filing date of which is Dec. 11, 2017, the application number is 201711310071.1, and the title of invention is “cavity muffler and refrigerator”, the entire contents of which are incorporated herein by reference in its entirety. The PCT International Patent Application was filed and published in Chinese.
The present invention relates to the technical field of noise reduction of refrigeration apparatus, and specifically to a muffler for reducing noise of a vacuum pump.
Freshness of food in a refrigerator is closely related to temperature, humidity and gas environment, wherein oxygen is an important factor causing spoilage, deterioration and bacteria multiplication of the food. A preservation period of the food may be significantly prolonged by pumping oxygen in the compartment to control a nitrogen-to-oxygen ratio of the refrigerator.
Oxygen may be pumped out from a specific space via a vacuum pump, and discharged outside the refrigerator. However, when gas, as a medium for conducting a sound, conducts noise in the refrigerator to an external space of the refrigerator during the discharge, thereby causing noise interference.
An object of the present invention is to provide a muffler to solve the problem of noise output of a vacuum pump.
To achieve the object, the present invention provides a muffler comprises a housing enclosed to form a hollow cavity, the cavity comprises a cylindrical chamber and a rectangular parallelepiped chamber, wherein one of bottom surfaces of the cylindrical chamber is connected with a first surface of the rectangular parallelepiped chamber, the cylindrical chamber communicates with an interior of the rectangular parallelepiped chamber, and the cylindrical chamber is provided with an air inlet and an air outlet.
A further improvement as an embodiment of the present invention, a diameter of the bottom surface of the cylindrical chamber is smaller than or equal to a length of a side of the first surface.
A further improvement as an embodiment of the present invention, the air inlet and the air outlet are arranged at an angle.
A further improvement as an embodiment of the present invention, the air inlet is provided on the bottom surface of the cylindrical chamber, and the air outlet is provided on a side of the cylindrical chamber.
A further improvement as an embodiment of the present invention, inner diameters of the air inlet and the air outlet are the same.
To achieve the object, the present invention provides a refrigerator vacuum assembly comprising a sealed box the sealed box comprises an upper sealing body and a lower sealing body, and the upper sealing body and the lower sealing body can be snap-fitted to define a receiving cavity; a vacuum pump is arranged in the receiving cavity, and the vacuum pump is connected with any one of the above mufflers.
A further improvement as an embodiment of the present invention, further comprises an air outlet pipe passing through the sealed box, the air inlet of the muffler is connected with the vacuum pump, and the air outlet is connected with the air outlet pipe.
A further improvement as an embodiment of the present invention, a notch portion is provided where the upper sealing body engages the lower sealing body, the vacuum assembly further comprises a seal capable of being embedded in the notch portion, the seal comprises a snap-fittable portion which is composed of two H-shaped members that are flexibly connected, the two H-shaped members can be snap-fitted to each other to form a mounted state, and the H-shaped member has a first arm and a second arm which are parallel to each other, and a connecting portion connecting the first arm with the second arm, the connecting portion has an arc-shaped surface, and arc-shaped surfaces of the two H-shaped members jointly enclose to form a hollow cavity when the H-shaped members are in the mounted state.
A further improvement as an embodiment of the present invention, the two H-shaped members, in the mounted state, match the notch portion in shape.
To achieve the object, the present invention provides a refrigerator, comprising a sealed box receiving a vacuum pump, wherein the refrigerator further comprises the muffler according to claim 1, and the muffler is disposed in the sealed box and connected with the vacuum pump.
As compared with the prior art, a refrigerator vacuum assembly provided by the present invention is provided with a muffler in a closed box body receiving the vacuum pump, the shape of the hollow cavity changes so that the sound waves are enabled to be reflected and refracted irregularly and the energy is dissipated, and vibrational noise of the vacuum pump is prevented from being conducted through the sealed box.
The present invention will be described in detail in conjunction with specific embodiments shown in the figures. However, these embodiments are not limited to the present invention. Variations in terms of structure, method or function made by those having ordinary skill in the art according to these embodiments are all comprised in the scope of the present invention.
Terms indicating positions and directions described in the present invention all take a vacuum pump as a reference. An end close to the vacuum pump is a proximal end, and an end away from the vacuum pump is a distal end.
Referring to
The sealed box 200 comprises an upper sealing body 230 and a lower sealing body 240. The upper sealing body 230 comprises a top wall and side walls which are integrally formed and jointly define a receiving cavity with a lower end opening. The lower sealing body 240 comprises a bottom wall and side walls which are integrally formed and jointly define a receiving cavity with an upper end opening. The opening of the upper sealing body 230 and the opening of the lower sealing body 240 match each other, and snap fit each other to form a receiving space of the vacuum pump 100.
Preferably, the upper sealing body 230 and the lower sealing body 240 are made of plastic.
Referring to
Referring to
In a case where a plurality of wires passes through the notch portion 251, if the wires as a whole pass through the notch portion 251, since the cross section of the wires is circular, a gap formed between the wires will reduce the sealing performance. In this case, the arc-shaped surface of the connecting portion 2533 may be wavy (not shown) to form a plurality of independent hollow cavities in the mounted state to better seal the wires with a circular cross-section.
Referring to
Preferably, the metal plate 260 is an aluminum plate, a steel plate, or a galvanized plate.
Referring to
Referring to
The metal plate 260 is disposed close to the side wall of the sealed box 200. The vibration of the vacuum pump 100 might cause resonance of the metal plate 260 to form new noise which is conducted externally through the walls of the sealed box 200. The above limiting structures strictly limit the position of the metal plates 260 to avoid resonating and generating noise.
In an embodiment of the present invention, a notch portion 251 is disposed on one of the upper sealing body 230 and lower sealing body 240, or on an engagement portion of the upper sealing body 230 and lower sealing body 240, to allow an air pipe assembly to pass therethrough.
The air pipe assembly comprises an air inlet pipe 210, an air outlet pipe 220 and a base plate that are integrally formed. The air inlet pipe 210 and the air outlet pipe 220 are disposed through the base plate, and an outer edge of the base plate matches the shape of the notch portion 251. A groove is provided on the outer edge of the base plate to mate with a flange on the periphery of the notch portion 251, the mating of the groove and the flange can clamp and secure the base plate to the notch portion, and the sealing unit 270 is embedded at a gap between the groove and the flange.
The space of the cavity for receiving the vacuum pump 100 is compact and does not facilitate the operation of connecting and passing the air pipe line. It is possible to, by setting the air pipe assembly as an embedded mounting structure, conveniently embed and secure the air pipe assembly in the notch portion 251 after the air pipe assembly is connected with the vacuum pump 100, and then snap-fit the upper sealing body 230 and the lower sealing body 240 to complete the assembling.
The gas from the air outlet pipe 220 is exhausted to the outside of the refrigerator after being silenced. Referring to
Preferably, there are three chambers, which are a first chamber 361, an intermediate chamber 362 and a second chamber 363 in turn from the proximal end to the distal end. The first chamber 361 is adjacent to the first bottom surface 310, the second chamber 363 is adjacent to the second bottom surface 320, and the intermediate cavity 362 is located between the first chamber 361 and the second chamber 363. A first duct 371 is communicated with the air inlet 340 and the intermediate chamber 362, a second duct 372 is communicated with the intermediate chamber 362 and the second chamber 363, a third duct 373 is communicated with the first chamber 361 and the second chamber 363, and a fourth duct 374 is communicated with the first chamber 361 and the air outlet 350.
There may be a plurality of intermediate chambers 362.
The shape of the housing of the muffler is not limited to a cylindrical shape, and may be set to a rectangular parallelepiped shape or an irregular shape.
Sound waves from the vacuum pump 100 pass through the first duct 371, the second duct 372, the third duct 373 and the fourth duct 374 in turn along with the airflow, and are reflected and refracted in turn in the intermediate chamber 362, the second chamber 363 and the first chamber 361 which have different volumes, and their energy is gradually dissipated. The muffling frequencies corresponding to the first chamber 361, the intermediate chamber 362 and the second chamber 363 are a low frequency, a medium frequency and a high frequency. In addition, the first duct 371, the second duct 372, the third duct 373 and the fourth duct 374 are provided with narrow inner diameters, so that partial energy of the sound waves is converted into thermal energy and dissipated when the sound waves pass through the ducts.
The muffler is arranged in a way that the sound waves travel in a path as long as possible in the muffler to reduce the energy and are reflected and refracted in different chambers, and a better muffling effect is achieved with a smaller muffler axial distance.
Referring to
The sound waves are reflected and refracted in the chamber, and the energy is gradually dissipated. The length of the first duct 471 and the second duct 472 is a quarter of a wavelength of a target audio to specifically eliminate the sound of the target audio. Preferably, a frequency of the target audio is 1000 Hz.
The first duct 471 and the second duct 472 are provided with narrow inner diameters, so that partial energy of the sound waves is converted into thermal energy and dissipated when the sound waves pass through the ducts.
In the noise generated by the vacuum pump 100 and conducted via gas, the high-frequency noise cannot be heard by human ears, and the noise causing interference to the user is mainly low-frequency noise. The present embodiment may purposefully eliminate low-frequency noise and make the structure of the muffler simpler.
Referring to
The diameter of the bottom surface of the cylindrical chamber 510 is less than or equal to a length of a side of a connecting surface 521 of the rectangular parallelepiped chamber 520.
The cylinder chamber 510 of the muffler 500 is provided with an air inlet 540 and an air outlet 550, and the air inlet 540 and the air outlet 550 are arranged at an angle so that the gas entering the hollow cavity reaches the outlet through reflected and refracted. During the process, the energy loses to achieve the muffling purpose.
Preferably, the air inlet 540 is disposed on the bottom surface 511 of the cylindrical chamber 510, and the air outlet 550 is disposed on a side of the cylindrical chamber 510.
The inner diameters of the air inlet 540 and the air outlet 550 are the same, so that the pressures at the two ports are balanced.
In the present embodiment, through the change of the shape of the hollow cavity, the sound waves are enabled to be reflected and refracted irregularly, and the energy is dissipated.
Referring to
A plurality of through holes 680 are defined on the side wall of the duct 670, so that the duct 670 can implement communication with the cavity. The through holes 680 are distributed spaced apart in a circumferential direction of the sidewall of the duct 670, that is, the duct 670 defines through holes in a plurality of directions.
Preferably, the housing is enclosed jointly by a first bottom surface 610 at a proximal end, a second bottom surface 620 at a distal end, and a side wall 630 connecting the first bottom surface 610 with the second bottom surface 620 to form a cylindrical hollow cavity. The first bottom surface 610 is provided with an air inlet 640, and the second bottom surface 620 is provided with an air outlet 650.
Preferably, a diameter of the through holes is less than 1 mm.
Preferably, the cavity enclosed by the housing is divided into several chambers arranged from the proximal end to the distal end.
The sound waves from the vacuum pump 100 enter the duct 670 from the air inlet 640, and reach the air outlet 650 after being silenced by the medium. The sound waves at a specific frequency are attenuated and the sound intensity is weakened. During this process, partial sound waves, being diffracted by the through holes 680, enter the cavity, and are further attenuated after being refracted and reflected in the cavity.
The muffler is arranged in a way that the sound intensity is reduced through multiple channels by combining medium sound reduction with cavity sound reduction and be employing small holes to implement sound wave diffraction.
It should be understood that although the description is described according to the embodiments, not every embodiment only comprises one independent technical solution, that such a description manner is only for the sake of clarity, that those skilled in the art should take the description as an integral part, and that the technical solutions in the embodiments may be suitably combined to form other embodiments understandable by those skilled in the art.
The detailed descriptions set forth above are merely specific illustrations of feasible embodiments of the present invention, and are not intended to limit the scope of protection of the present invention. All equivalent embodiments or modifications that do not depart from the art spirit of the present invention should fall within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201711310071.1 | Dec 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/119776 | 12/7/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/114627 | 6/20/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4177875 | Kurobe et al. | Dec 1979 | A |
5493080 | Moss | Feb 1996 | A |
Number | Date | Country |
---|---|---|
1216345 | May 1999 | CN |
1487200 | Apr 2004 | CN |
201218181 | Apr 2009 | CN |
101886624 | Nov 2010 | CN |
201916031 | Aug 2011 | CN |
103644699 | Mar 2014 | CN |
104675676 | Jun 2015 | CN |
106098051 | Nov 2016 | CN |
106098051 | Nov 2016 | CN |
106593818 | Apr 2017 | CN |
107989774 | May 2018 | CN |
108131277 | Jun 2018 | CN |
108150388 | Jun 2018 | CN |
108195126 | Jun 2018 | CN |
108302008 | Jul 2018 | CN |
102015211460 | Dec 2016 | DE |
Number | Date | Country | |
---|---|---|---|
20210071656 A1 | Mar 2021 | US |