Information
-
Patent Application
-
20040224966
-
Publication Number
20040224966
-
Date Filed
May 11, 200421 years ago
-
Date Published
November 11, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
- A61K031/505
- A61K031/513
- C07D239/12
Abstract
This invention relates to pyrimidine derivatives of general formula I
1
Description
[0001] This invention relates to pyrimidine derivatives, their production as well as their use as medications for treating various diseases.
[0002] The CDKs (cyclin-dependent kinase) is an enzyme family that plays an important role in the regulation of the cell cycle and thus is an especially advantageous target for the development of small inhibitory molecules. Selective inhibitors of the CDKs can be used for treating cancer or other diseases that cause disruptions of cell proliferation.
[0003] Pyrimidines and analogs are already described as active ingredients, such as, for example, the 2-anilino-pyrimidines as fungicides (DE 4029650) or substituted pyrimidine derivatives for treating neurological or neurodegenerative diseases (WO 99/19305). As CDK-inhibitors, the most varied pyrimidine derivatives are described, for example bis(anilino)-pyrimidine derivatives (WO 00/12486), 2-amino-4-substituted pyrimidines (WO 01/14375), purines (WO 99/02162), 5-cyano-pyrimidines (WO 02/04429), anilinopyrimidines (WO 00/12486) and 2-hydroxy-3-N,N-dimethylaminopropoxy-pyrimidines (WO 00/39101).
[0004] The object of this invention is to provide compounds that have better properties than the inhibitors that are already known. The substances that are described here are more effective, since they already inhibit in the nanomolar range and can be distinguished from other already known CDK-inhibitors such as, e.g., olomoucine and roscovitine.
[0005] It has now been found that compounds of general formula I
2
[0006] in which
[0007] R1 stands for hydrogen, halogen, C1-C6 -alkyl, nitro, or for the group —CORs, —OCF3, —(CH2)nR5, —S—CF3 or —SO2CF3,
[0008] R2 stands for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6 -alkoxy, C1-C6 -alkylthio, amino, cyano, C1-C6 -alkyl, —NH—(CH2)n-C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy, heteroaryl, benzoxy or with the group —CF3 or —OCF3, and the ring of the C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or
[0009] R2 stands for the group
3
[0010] X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl) or for —OC3-C10-cycloalkyl, which can be substituted in one or more places in the same way or differently with a heteroaromatic compound, or
[0011] X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen,
[0012] A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —SR7, —S(O)R7, —SO2 R7, —NHSO2R7, —CH(OH)R7, —CR7(OH)—R7, C1-C6-alkylP(O)OR3OR4 or —COR7, or for
4567
[0013] A and B together form a C3-C10-cycloalkyl ring that optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O or ═SO2 groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, and the C3-C10-cycloalkyl ring optionally can be substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, C2-C6-alkenyl, C3C10-cycloalkyl, C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2R7, C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkoxyOAc, phenyl or with the group R6, whereby the phenyl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy or with the group —CF3 or —OCF3,
[0014] R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for
[0015] C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy,
[0016] whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4,
[0017] or for the group —CH2)nNR3R4, —CNHNH2 or —NR3R4, or
[0018] R3 and R4 together form a C3-C10-Cycloalkyl ring that optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,
[0019] R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,
[0020] R stands for a heteroaryl or C3-C10-cycloalkyl ring, whereby the ring has the above-indicated meaning,
[0021] R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, C3-C10-cycloalkyl, with the above-indicated meaning, or for the group —NR3R4, or for a C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl or C3-C7-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkoxy, halogen, phenyl, —NR3R4 or phenyl, which itself can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy, halo-C1-C6-alkyl, halo-C1-C6-alkoxy, or R7 stands for phenyl, which itself can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl or C1-C6-alkoxy, halo-C1-C6-alkyl, or halo-C1-C6-alkoxy,
[0022] R3, R9 and
[0023] R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, C3-C10-cycloalkyl, aryl, heteroaryl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl or C3-C10-cycloalkyl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n-C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-allyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, -NHC1-C6-alkyl, —N(C1-C6-allyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n-R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy or with the group —CF3 or —OCF3, and the ring of C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, and
[0024] n stands for 0-6,
[0025] as well as isomers, diastereomers, enantiomers and salts thereof that overcome known drawbacks.
[0026] Alkyl is defined in each case as a straight-chain or branched alkyl radical, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, heptyl, octyl, nonyl and decyl.
[0027] Alkoxy is defined in each case as a straight-chain or branched alkoxy radical, such as, for example, methyloxy, ethyloxy, propyloxy, isopropyloxy, butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy, pentyloxy, isopentyloxy, or hexyloxy.
[0028] Alkylthio is defined in each case as a straight-chain or branched alkylthio radical, such as, for example, methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio or hexylthio.
[0029] Cycloalkyl is defined in general as monocyclic alkyl rings, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl, but also bicyclic rings or tricyclic rings such as, for example, norbornyl, adamantanyl, etc.
[0030] The ring systems, in which optionally one or more possible double bonds can be contained in the ring, are defined as, for example, cycloalkenyls, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, or cycloheptenyl, whereby the linkage can be carried out both to the double bond and to the single bonds.
[0031] If A and B, R3 and R4, X and R2, in each case independently of one another, together form a C3-C10-cycloalkyl ring, which optionally can be interrupted by one or more heteroatoms, such as nitrogen atoms, oxygen atoms and/or sulfur atoms, and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, however, the above-mentioned definitions are also intended to include heteroaryl radical or heterocycloalkyl and heterocycloalkenyl.
[0032] Halogen is defined in each case as fluorine, chlorine, bromine or iodine.
[0033] The alkenyl substituents in each case are straight-chain or branched, whereby, for example, the following radicals are meant: vinyl, propen-1-yl, propen-2-yl, but-1-en-1-yl, but-1-en-2-yl, but-2-en-1-yl, but-2-en-2-yl, 2-methyl-prop-2-en-1-yl, 2-methyl-prop-1-en-1-yl, but-1-en-3-yl, ethinyl, prop-1-in-1-yl, but-1-in-1-yl, but-2-in-1-yl, but-3-en-1-yl, and allyl.
[0034] Alkinyl is defined in each case as a straight-chain or branched alkinyl radical that contains 2-6, preferably 2-4 C atoms. For example, the following radicals can be mentioned: acetylene, propin-1-yl, propin-3-yl, but-1-in-1-yl, but-1-in-4-yl, but-2-in-1-yl, but-1-in-3-yl, etc.
[0035] The aryl radical in each case comprises 3-12 carbon atoms and in each case can be benzocondensed.
[0036] For example, there can be mentioned: cyclopropenyl, cyclopentadienyl, phenyl, tropyl, cyclooctadienyl, indenyl, naphthyl, azulenyl, biphenyl, fluorenyl, anthracenyl, etc.
[0037] The hetetoaryl radical in each case comprises 3-16 ring atoms, and instead of the carbon can contain one or more heteroatoms that are the same or different, such as oxygen, nitrogen or sulfur, in the ring, and can be monocyclic, bicyclic, or tricyclic and in addition in each-case can be benzocondensed.
[0038] For example, there can be mentioned:
[0039] Thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, etc. and benzo derivatives thereof, such as, e.g., benzofuranyl, benzothienyl, benzoxazolyl, benzimidazolyl, indazolyl, indolyl, isoindolyl, etc.; or pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, etc. and benzo derivatives thereof, such as, e.g., quinolyl, isoquinolyl, etc., or azocinyl, indolizinyl, purinyl, etc. and benzo derivatives thereof; or quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, xanthenyl, oxepinyl, etc.
[0040] Heterocycloalkyl stands for an alkyl ring that comprises 3-12 carbon atoms, which instead of the carbon contains one or more heteroatoms that are the same or different, such as, e.g., oxygen, sulfur or nitrogen.
[0041] As heterocycloalkyls, there can be mentioned, e.g.: oxiranyl, oxethanyl, aziridinyl, azetidinyl, tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, imidazolidinyl, pyrazolidinyl, dioxanyl, piperidinyl, morpholinyl, dithianyl, thiomorpholinyl, piperazinyl, trithianyl, quinuclidinyl, etc.
[0042] Heterocycloalkenyl stands for an alkyl ring that comprises 3-12 carbon atoms, which instead of the carbon contains one or more heteroatoms that are the same or different such as, e.g., oxygen, sulfur or nitrogen, and Which is partially saturated.
[0043] As heterocycloalkenyls, there can be mentioned, e.g.: pyran, thiin, dihydroacet, etc.
[0044] If an acid group is included, the physiologically compatible salts of organic and inorganic bases are suitable as salts, such as, for example, the readily soluble alkali and alkaline-earth salts, as well as N-methyl-glucamine, dimethyl-glucamine, ethyl-glucamine, lysine, 1,6-hexadiamine, ethanolamine, glucosamine, sarcosine, serinol, tris-hydroxy-methyl-amino-methane, aminopropane diol, Sovak base, and 1-amino-2,3,4-butanetriol.
[0045] If a basic group is included, the physiologically compatible salts of organic and inorganic acids are suitable, such as hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, tartaric acid, i.a.
[0046] Those compounds of general formula (I) in which
[0047] R1 stands for hydrogen, halogen, C1-C6-alkyl, nitro, or for the group —COR5, —OCF3, —(CH2)nR5, —S—CF3 or —SO2CF3,
[0048] R2 stands for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2 (C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6 alkoxy, heteroaryl, benzoxy or with the group —CF3 or —OCF3, and the ring of the C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one/or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or
[0049] R2 stands for the group
8
[0050] X stands for oxygen or for the group —NH—, —N(C1C3-alkyl) or for —OC3-C10-cycloalkyl, which can be substituted in one or more places in the same way or differently with a heteroaromatic compound, or
[0051] X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen,
[0052] A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —S—CH3, —SO2—C2H4—OH, —CO—CH3, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —CH2P(O)OR3OR4, —S—CF3, —SO—CH3, —SO2CF3, —SO2—(CH2)n—N—R3R4, —SO2—NR3R4, —SO2R7, —CH—(OH)—CH3 or for
9101112
[0053] A and B together can form a group
13
[0054] R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-allyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl optionally substituted with cyano, or for C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy,
[0055] whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4,
[0056] or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4
[0057] or for
14
[0058] which optionally can be substituted with C1-C6-alkyl,
[0059] R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,
[0060] R6 stands for the group
15
[0061] R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, —C2H4OH, —NR3R4, or the group
16
[0062] R8, R9 and
[0063] R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C6-alkyl, C3-C6-cycloalkyl or for the group
17
[0064] and
[0065] n stands for 0-6,
[0066] as well as isomers, enantiomers, diastereomers, and salts thereof, are especially effective.
[0067] Those compounds of general formula I in which
[0068] R1 stands for hydrogen, halogen, C1-C3-alkyl, or for the group —(CH2)nR5,
[0069] R2 stands for —CH(CH3)—(CH2)n—R5, —CH—(CH2OH)2, —(CH2)nR7, —CH(C3H7)—(CH2)n—R5, —CH(C2H5)—(CH2)n—R5, —CH2—CN, —CH(CH3)COCH3, —CH(CH3)—C(OH)(CH3)2,—CH(CH(OH)CH3)OCH3, —CH(C2H5)CO—R5, C2-C4-alkinyl, —(CH2)n—COR5, —(CH2)n—CO—C1-C6-alkyl, —(CH2)n—C(OH)(CH3)-phenyl, —CH(CH3)—C(CH3)—R5, —CH(CH3)—C(CH3)(C2H5)—R5, —CH(OCH3)—CH2—R5, —CH2—CH(OH)—R5, —CH(OCH3)—CHR5—CH3, —CH(CH3)—CH(OH)—CH2—CH═CH2, —CH(C2H5)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—CH(CH3)2, (CH2OAC)2, —(CH2)n—R6, —(CH2)n—(CF2)n—CF3, —CH(CH2)n—R5)2, —CH(CH3)—CO—NH2, —CH(CH2OH)-phenyl, —CH(CH2OH)—CH(OH)—(CH2)nR5, —CH(CH2OH)—CH(OH)-phenyl, —CH(CH2OH)—C2H4—R5, —(CH2)n—C═C(CH3)═CH—COR5, —CH(Ph)-(CH2)n—R5, —(CH2)n—COR5, —(CH2)nPO3(R5)2, —(CH2)n—COR5, —CH((CH2)nOR5)CO—R5, —(CH2)nCONHCH((CH2)nR5)2, —(CH2)nNH—COR5, —CH(CH2)nR5—(CH2)nC3-C10-cycloalkyl, —(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl; C1-C6-alkyl, C3-C10-cycloalkyl, —(CH2)n—O—(CH2)n—R5, —(CH2)n—NR3R4 that is optionally substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkyl or the group —COONH(CH2)nCH3 or —NR3R4,
[0070] —CH(C3H7)—(CH2)n—OC(O)—(CH2)n—CH3, —(CH2)n—R5, —C(CH3)2—(CH2)n—R5, —C(CH2)n(CH3)—(CH2)nR5, —C(CH2)n—(CH2)nR5, —CH(t-butyl)-(CH2)n—R5, —CCH3(C3H7)—(CH2)nR5, —CH(C3H7)—(CH2)n—R5, —CH(C3H7)—COR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph, —CH((CH2)n(C3H7))—(CH2)nR5,
[0071] —CH(C3H7)—(CH2)n—OC(O)—NH-Ph(OR5)3, —NR3R4, —NH—(CH2)n—NR3R4, R5—(CH2)n—C*H—CH(R5)—(CH2)n—R5, —(CH2)n—CO—NH—(CH2)n—CO—R5, —OC(O)NH—C1-C6-alkyl or —(CH2)n—CO—NH—(CH2)n—CH—((CH2)nR5)2,
[0072] or for C3-C10-cycloalkyl, which is substituted with the group
18
[0073] or for the group
19
[0074] X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl) or
20
[0075] or
[0076] R2 stands for the group
21
[0077] or
[0078] X and R2 together form a group
22
[0079] A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —S—CH3, —SO2—C2H4—OH, —CO—CH3, —S—CHF2, —S(CH2)nCH(OH)CH2N—R3R4, —CH2PO(OC2H5)2, —S—CF3, —SO—CH3, —SO2CF3, —SO2—(CH2)n—N—R3R4, —SO2—NR3R4, —SO2R7, —CH(OH)—CH3, —COOH, —CH((CH2)nR5)2, —(CH2)nR5, —COO—C1C6-alkyl, —CONR3R4 or for
23242526
[0080] or
[0081] A and B together can form a group
27
[0082] R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for
[0083] C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy, whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4,
[0084] or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4 or for
28
[0085] which optionally can be substituted with C1-C6-alkyl,
[0086] R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,
[0087] R6 stands for the group
29
[0088] R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, —(CH2)nOH, —NR3R4 or the group
30
[0089] R8, R9 and
[0090] R10 stand for hydrogen, hydroxy, C1-C6-alkyl or for the group —(CH2)n—COOH, and
[0091] n stands for 0-6,
[0092] as well as isomers, diastereomers, enantiomers and salts thereof, have proven quite especially effective.
[0093] The compounds according to the invention essentially inhibit cyclin-dependent kinases, upon which is based their action, for example, against cancer, such as solid tumors and leukemia; auto-immune diseases such as psoriasis, alopecia, and multiple sclerosis, chemotherapy-induced alopecia and mucositis; cardiovascular diseases such as stenoses, arterioscleroses and restenoses; infectious diseases, such as, e.g., by unicellular parasites, such as trypanosoma, toxoplasma or plasmodium, or produced by fungi; nephrological diseases, such as, e.g., glomerulonephritis, chronic neurodegenerative diseases, such as Huntington's disease, amyotropic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases, such as ischemias of the brain and neurotraumas; viral infections, such as, e.g., cytomegalic infections, herpes, Hepatitis B and C, and HIV diseases.
[0094] The eukaryotic cell division ensures the duplication of the genome and its distribution to the daughter cells by passing through a coordinated and regulated sequence of events. The cell cycle is divided into four successive phases: the G1 phase represents the time before the DNA replication, in which the cell grows and is sensitive to external stimuli. In the S phase, the cell replicates its DNA, and in the G2 phase, preparations are made for entry into mitosis. In mitosis (M phase), the replicated DNA separates, and cell division is completed.
[0095] The cyclin-dependent kinases (CDKs), a family of serine/threonine kinases, whose members require the binding of a cyclin (Cyc) as a regulatory subunit in order for them to activate, drive the cell through the cell cycle. Different CDK/Cyc pairs are active in the various phases of the cell cycle. CDK/Cyc pairs that are important to the basic function of the cell cycle are, for example, CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDK1/CycA and CDK1/CycB. Some members of the CDK enzyme family have a regulatory function by influencing the activity of the above-mentioned cell cycle CDKs, while no specific function could be associated with other members of the CDK enzyme family. One of the latter, CDK5, is distinguished in that it has an atypical regulatory subunit (p35) that deviates from the cyclins, and its activity is highest in the brain.
[0096] The entry into the cell cycle and the passage through the “restriction points,” which marks the independence of a cell from further growth signals for the completion of the cell division that has begun, are controlled by the activity of the CDK4(6)/CycD and CDK2/CycE complexes. The essential substrate of these CDK complexes is the retinoblastoma protein (Rb), the product of the retinoblastoma tumor suppressor gene. Rb is a transcriptional co-repressor protein. In addition to other, still largely little understood mechanisms, Rb binds and inactivates transcription factors of the E2F type and forms transcriptional repressor complexes with histone-deacetylases (HDAC) (Zhang, H. S. et al. (2000). Exit from G1 and S Phase of the Cell Cycle is Regulated by Repressor Complexes Containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79-89). By the phosphorylation of Rb by CDKs, bonded E2F transcription factors are released and result in transcriptional activation of genes, whose products are required for the DNA synthesis and the progression through the S-phase. In addition, the Rb-phosphorylation brings about the breakdown of the Rb-HDAC complexes, by which additional genes are activated. The phosphorylation of Rb by CDK's is to be treated as equivalent to exceeding the “restriction points.” For the progression through the S-phase and its completion, the activity of the CDK2/CycE and CDK2/CycA complexes is necessary, e.g., the activity of the transcription factors of the E2F type is turned off by means of phosphorylation by CDK2/CycA as soon as the cells are entered into the S-phase. After replication of DNA is complete, the CDK1 in the complex with CycA or CycB controls the entry into and the passage through phases G2 and M (FIG. 1).
[0097] According to the extraordinary importance of the cell-division cycle, the passage through the cycle is strictly regulated and controlled. The enzymes that are necessary for the progression through the cycle must be activated at the correct time and are also turned off again as soon as the corresponding phase is passed. Corresponding control points (“checkpoints”) stop the progression through the cell cycle if DNA damage is detected, or the DNA replication or the creation of the spindle device is not yet completed.
[0098] The activity of the CDKs is controlled directly by various mechanisms, such as synthesis and degradation of cyclins, complexing of the CDKs with the corresponding cyclins, phosphorylation and dephosphorylation of regulatory threonine and tyrosine radicals, and the binding of natural inhibitory proteins. While the amount of protein of the CDKs in a proliferating cell is relatively constant, the amount of the individual cyclins oscillates with the passage through the cycle. Thus, for example, the expression of CycD during the early G1 phase is stimulated by growth factors, and the expression of CycE is induced after the “restriction points” are exceeded by the activation of the transcription factors of the E2F type. The cyclins themselves are degraded by the ubiquitin-mediated proteolysis. Activating and inactivating phosphorylations regulate the activities of the CDKs, for example phosphorylate CDK-activating kinases (CAKs) Thr160/161 of the CDK1, while, by contrast, the families of Wee1/Myt1 inactivate kinases CDK1 by phosphorylation of Thr14 and Tyr15. These inactivating phosphorylations can be destroyed in turn by cdc25 phosphatases. The regulation of the activity of the CDK/Cyc complexes by two families of natural CDK inhibitor proteins (CKIs), the protein products of the p21 gene family (p21, p27, p57) and the p16 gene family (p15, p16, p18, p19) is very significant. Members of the p21 family bind to cyclin complexes of CDKs 1,2,4,6, but inhibit only the complexes that contain CDK1 or CDK2. Members of the p16 family are specific inhibitors of the CDK4- and CDK6 complexes.
[0099] The plane of control point regulation lies above this complex direct regulation of the activity of the CDKs. Control points allow the cell to track the orderly sequence of the individual phases during the cell cycle. The most important control points lie at the transition from G1 to S and from G2 to M. The G1 control point ensures that the cell does not initiate any DNA synthesis unless it has proper nutrition, interacts correctly with other cells or the substrate, and its DNA is intact. The G2/M control point ensures the complete replication of DNA and the creation of the mitotic spindle before the cell enters into mitosis. The G1 control point is activated by the gene product of the p53 tumor suppressor gene. p53 is activated after detection of changes in metabolism or the genomic integrity of the cell and can trigger either a stopping of the cell cycle progression or apoptosis. In this case, the transcriptional activation of the expression of the CDK inhibitor protein p21 by p53 plays a decisive role. A second branch of the G1 control point comprises the activation of the ATM and Chk1 kinases after DNA damage by UV light or ionizing radiation and finally the phosphorylation and the subsequent proteolytic degradation of the cdc25A phosphatase (Mailand, N. et al. (2000). Rapid Destruction of Human cdc25A in Response to DNA Damage. Science 288, 1425-1429). A shutdown of the cell cycle results from this, since the inhibitory phosphorylation of the CDKs is not removed. After the G2/M control point is activated by damage of the DNA, both mechanisms are involved in a similar way in stopping the progression through the cell cycle.
[0100] The loss of the regulation of the cell cycle and the loss of function of the control points are characteristics of tumor cells. The CDK-Rb signal path is affected by mutations in over 90% of human tumor cells. These mutations, which finally result in inactivating phosphorylation of the RB, include the over-expression of D- and E-cyclins by gene amplification or chromosomal translocations, inactivating mutations or deletions of CDK inhibitors of the p 16 type, as well as increased (p27) or reduced (CycD) protein degradation. The second group of genes, which are affected by mutations in tumor cells, codes for components of the control points. Thus p53, which is essential for the G1 and G2/M control points, is the most frequently mutated gene in human tumors (about 50%). In tumor cells that express p53 without mutation, it is often inactivated because of a greatly increased protein degradation. In a similar way, the genes of other proteins that are necessary for the function of the control points are affected by mutations, for example ATM (inactivating mutations) or cdc25 phosphatases (over-expression).
[0101] Convincing experimental data indicate that CDK2/Cyc complexes occupy a decisive position during the cell cycle progression. (1) Both dominant-negative forms of CDK2, such as the transcriptional repression of the CDK2 expression by anti-sense oligonucleotides, produce a stopping of the cell cycle progression. (2) The inactivation of the CycA gene in mice is lethal. (3) The disruption of the function of the CDK2/CycA complex in cells by means of cell-permeable peptides resulted in tumor cell-selective apoptosis (Chen, Y. N. P. et al. (1999). Selective Killing of Transformed Cells by Cyclin/Cyclin-Dependent Kinase 2 Antagonists. Proc. Natl. Acad. Sci. USA 96, 4325-4329).
[0102] Changes of the cell cycle control play a role not only in carcinoses. The cell cycle is activated by a number of viruses, both by transforming viruses as well as by non-transforming viruses, to make possible the replication of viruses in the host cell. The false entry into the cell cycle of normally post-mitotic cells is associated with various neurodegenerative diseases. The mechanisms of the cell cycle regulation, their changes in diseases and a number of approaches to develop inhibitors of the cell cycle progression and especially the CDKs were already described in a detailed summary in several publications (Sielecki, T. M. et al. (2000). Cyclin-Dependent Kinase Inhibitors: Useful Targets in Cell Cycle Regulation. J. Med. Chem. 43, 1-18; Fry, D. W. & Garrett, M. D. (2000). Inhibitors of Cyclin-Dependent Kinases as Therapeutic Agents for the Treatment of Cancer. Curr. Opin. Oncol. Endo. Metab. Invest. Drugs 2, 40-59; Rosiania, G. R. & Chang, Y. T. (2000). Targeting Hyperproliferative Disorders with Cyclin-Dependent Kinase Inhibitors. Exp. Opin. Ther. Patents 10, 215-230; Meijer L. et al. (1999). Properties and Potential Applications of Chemical Inhibitors of Cyclin-Dependent Kinases. Pharmacol. Ther. 82,.279-284; Senderowicz, A. M. & Sausville, E. A. (2000). Preclinical and Clinical Development of Cyclin-Dependent Kinase Modulators. J. Natl. Cancer Inst. 92, 376-387).
[0103] To use the compounds according to the invention as pharmaceutical agents, the latter are brought into the form of a pharmaceutical preparation, which in addition to the active ingredient for enteral or parenteral administration contains suitable pharmaceutical, organic or inorganic inert carrier materials, such as, for example, water, gelatin, gum arabic, lactose, starch, magnesium stearate, talc, vegetable oils, polyalkylene glycols, etc. The pharmaceutical preparations can be present in solid form, for example as tablets, coated tablets, suppositories, or capsules, or in liquid form, for example as solutions, suspensions, or emulsions. Moreover, they optionally contain adjuvants, such as preservatives, stabilizers, wetting agents or emulsifiers; salts for changing the osmotic pressure or buffers. These pharmaceutical preparations are also subjects of this invention.
[0104] For parenteral administration, especially injection solutions or suspensions, especially aqueous solutions of active compounds in polyhydroxyethoxylated castor oil, are suitable.
[0105] As carrier systems, surface-active adjuvants such as salts of bile acids or animal or plant phospholipids, but also mixtures thereof, as well as liposomes or their components can also be used.
[0106] For oral administration, especially tablets, coated tablets or capsules with talc and/or hydrocarbon vehicles or binders, such as, for example, lactose, corn or potato starch, are suitable. The administration can also be carried out in liquid form, such as, for example, as a juice, to which optionally a sweetener is added.
[0107] Enteral, parenteral and oral administrations are also subjects of this invention.
[0108] The dosage of the active ingredients can vary depending on the method of administration, age and weight of the patient, type and severity of the disease to be treated and similar factors. The daily dose is 0.5-1000 mg, preferably 50-200 mg, whereby the dose can be given as a single dose to be administered once or divided into two or more daily doses.
[0109] Subjects of this invention also include the use of compounds of general formula I for the production of a pharmaceutical agent for treating cancer, auto-immune diseases, cardiovascular diseases, chemotherapy agent-induced alopecia and mucositis, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases and viral infections, whereby cancer is defined as solid tumors and leukemia; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; cardiovascular diseases are defined as stenoses, arterioscleroses and restenoses; infectious diseases are defined as diseases that are caused by unicellular parasites; nephrological diseases are defined as glomerulonephritis; chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas; and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.
[0110] Subjects of this invention also include pharmaceutical agents for treating the above-cited diseases, which contain at least one compound according to general formula I, as well as pharmaceutical agents with suitable formulation substances and vehicles.
[0111] The compounds of general formula I according to the invention are, i.a., excellent inhibitors of the cyclin-dependent kinases, such as CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9, as well as the glycogen-synthase-kinase (GSK-3β).
[0112] If the production of the starting compounds is not described, these compounds are known or can be produced analogously to known compounds or to processes that are described here. It is also possible to perform all reactions that are described here in parallel reactors or by means of combinatory operating procedures.
[0113] The isomer mixtures can be separated into the enantiomers or E/Z isomers according to commonly used methods, such as, for example, crystallization, chromatography or salt formation.
[0114] The production of the salts is carried out in the usual way by a solution of the compound of formula I being mixed with the equivalent amount of or excess base or acid, which optionally is in solution, and the precipitate being separated or the solution being worked up in the usual way.
[0115] Production of the Compounds According to the Invention
[0116] The following examples explain the production of the compounds according to the invention, without the scope of the claimed compounds being limited to these examples.
[0117] The compounds of general formula I according to the invention can be produced according to the following general diagrams of the process:
31323334
Production of 5-Bromo-N2-(4-difluoromethylthiophenyl)-N4-2-propynyl-2,4-pyrimidine diamine (carried out according to process diagram 1) (compound 23).
[0118] 245 mg (1 mmol) of 2-chloro-4-2-propynylaminopyrimidine is dissolved in 2 ml of acetonitrile, and a suspension of 4-(difluoromethylthio)-aniline hydrochloride [produced from 352 mg (2 mmol) of 4-(difluoromethylthio)-aniline, 1 ml of acetonitrile and 0.5 ml of aqueous HCl (4M in dioxane)] is added at room temperature. Then, the reaction mixture is refluxed overnight under N2 atmosphere. After cooling, the mixture is filtered, the remaining solid phase is washed with H2O and dried. A yield of 328 mg (85%) of the product can be expected
1|
|
|
356H 2C H8.25(s, 1H) 7.86(d, 2H) 7.51(d, 2H) 7.38 (t, 56.8Hz, 1H)Yield: 85% Melting point: >235° C.
|
4C4.18(m, 2H)
H3.16(sb, 1H)
10.24(sb, 1H)
NH8.17(sb, 1H)
|
Production of 5-bromo-N-(3-(oxiranylmethoxy)phenyl)-2-(2-propynyloxy)-2-pyrimidinamine (compound 51) and carried out according to process diagram 2.
[0119] 1.55 g (4.9 mmol) of compound 20 is dissolved in 5.5 ml of epibromohydrin, and 1.38 g of K2CO3 and 65 mg of tetrabutylammonium bromide are added to it. The reaction mixture is stirred under nitrogen atmosphere at 100° C. for 1 hour. After ethyl acetate is added, the resulting precipitate is collected and recrystallized from ethanol. The product yield is 1.15 g (62%) as a white powder.
2|
|
|
366H 2CH8.45(s, 1H) 7.47(s, 1H)
7.32(d, 1H)Yield: 62%
7.20(t, 1H)
6.40(d, 1H)Melting point:
4.32(dd, 1H)173° C.
3.82(dd, 1H)
3.3-3.4
(m, 1H)
2.87(t, 1H)
2.72(dd, 1H)
4CH5.13(d, 2H)
3.67(t, 1H)
NH9.84(sb, 1H)
|
[0120] Substance 40 is produced analogously to Example 2.
3|
|
|
376-H 2CH8.36(s, 1H) 7.60(d, 1H)Chromato- graphy: H/EA 1:3 0.5% TEA
6.91(d, 1H)
4.28(dd, 1H)
3.79(dd, 1H)Yield: 38%
3.31(m, 1H)
2.84(dd, 1H)Melting point:
2.70(dd, 1H)140-141° C.
4CH5.07(d, 12H)
3.65(t, 1H)
NH9.65(sb, 1H)
OH
|
Production of 1-(4-((5-bromo-4-(2-propynyloxy)-pyrimidin-2-yl)-amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol (compound 41).
[0121] 0.2 ml of a 0.5 M 4-phenylpiperazine solution in DMPU is added to a solution of 19 mg (0.05 mmol) of substance 51 in N,N′-dimethylpropylurea (DMPU). The reaction mixture is kept for 18 hours at a temperature of 80° C. After cooling, 3.5 ml of tertiary butyl methyl ether is added, and the organic phase is extracted 5 times with 1.5 ml of H2O and then evaporated in a vacuum. The remaining residue is chromatographed on 1.7 g (15 μM) of Lichrosphere Si60 (gradient: dichloromethane/hexane 1:1 to DCM and then dichloromethane/methanol 99:1 to 93:7). A product yield of 17 mg (64%) is achieved.
38
[0122] Similarly produced are also the following compounds:
4|
|
No.Structure
|
|
|
9639
|
9740
|
9841
|
9942
|
10043
|
10144
|
10245
|
10346
|
10447
|
10548
|
10649
|
10750
|
10851
|
10952
|
11053
|
11154
|
11255
|
11356
|
11457
|
11558
|
11659
|
11760
|
11861
|
11962
|
[0123] The following compounds were similarly produced in the described examples.
5|
|
No.StructureName
|
|
28635-Bromo-N2-(4-(2-diethylaminoethylsulfonyl)phenyl)-N4-2-pro- pynyl-2,4-pyrimidine diamine
|
30641-(4-[5-Bromo-4-(2-propynylamino)-2-py- rimidinyl]amino-phenylthio)-3-(diethylamino)-2-pro- panol
|
32655-Bromo-N2-(3-phenylsulfonylphenyl)-N4-2-propynyl-2,4-py- rimidine diamine
|
3366N-[4-[[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]amino]-ben- zenesulfonyl]morpholine
|
41671-(4-((5-Bromo-4-(2-propynyloxy)-pyrimidin-2-yl)-a- mino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol
|
5768N-[5-Bromo-4-((2R)-1-hydroxy-4-methyl-2-butylamino)-2-py- rimidinyl]-indazol-5-amine
|
58694-[[5-Fluoro-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-py- rimidinyl]amino]-benzenesulfonamide
|
59704-[[5-Iodo-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-py- rimidinyl]amino]-benzenesulfonamide
|
62714-[[5-Fluoro-4-(2-propynylamino)-2-pyrimidinyl]amino]-ben- zenesulfonamide
|
65724-[[5-Ethyl-4-(2-propynylamino)-2-pyrimidinyl]amino]-ben- zenesulfonamide
|
66731-[4-[(5-Iodo-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-py- rimidinyl)amino]phenyl]-ethanone
|
68741-[4-[(5-Ethyl-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2-py- rimidinyl)amino]phenyl]-ethanone
|
72754-[[5-Bromo-4-(2-(2-oxo-imidazolin-1-yl)ethylamine)-2-py- rimidinyl]amino]-benzenesulfonamide
|
73764-[[5-Bromo-4-(2,2,3,3,3-pentafluoropropyloxy)-2-py- rimidinyl]amino]-benzenesulfonamide
|
75774-[[5-Bromo-4-(1,3-bisacetoxy-2-propyloxy)-2-py- rimidinyl]amino]-benzenesulfonamide
|
76784-[[5-Bromo-4-(1,3-dihydroxy-2-propyloxy)-2-py- rimidinyl]amino]-benzenesulfonamide
|
7979N□-(5-Bromo-2-(4-sulfamoylphenyl)amino-pyrimidin-4-yl)-L-ala- nine amide
|
83801-[4-[(5-Bromo-4-(2-propynylamino)-2-py- rimidinyl)amino]phenyl]-ethanol
|
[0124] The following compounds were produced analogously to the described synthesis processes according to Diagram 1 or 2:
[0125] All NMR spectra are measured in the indicated solvent or in DMSO.
[0126] [Key to the Following Tables and Diagrams:]
[0127] Bsp.-Nr. [Beispiel Nr.]=Example No.
[0128] Chromatographie Ausbeute=Chromatography yield
[0129] Schmp.=Melting point
[0130] Kristallisiert=Crystallized
[0131] Masse=Mass
[0132] krist. Wasser=Crystallized water
[0133] Verbindung=Compound
[0134] Hitze=Heat
6|
|
|
81828384
|
|
Bsp.-Nr.3738395
6-H8.34(s, 1H)8.39(s, 1H)8.30(s, 1H)8.00(s, 1H)
2CH12.889.28(s, 1H)7.74(s, 1H)7.52(d, 2H)
(sb, 1H)8.79(s, 1H)7.44(d, 1H)6.65(d, 2H)
8.07(s, 1H)7.70(d, 1H)7.22(d, 1H)
7.93(s, 1H)8.04(d, 1H)3.98(t, 2H)
7.41(d, 1H)3.13(t, 2H)
7.562.99(s, 3H)
4CH(dd, 1H)4.19(d, 2H)4.16(d, 2H)4.09(d, 2H)
3.22(sb, 1H)3.28(sb, 1H)3.09(s, 1H)
NH4.1510.43(sb, 1H)10.6(1H)9.00(s, 1H)
(dd, 2H)8.45(sb, 1H)8.75(1H)8.96(s, 1H)
3.18(t, 1H)7.31(t, 1H)
9.30(sb, 1H)
7.39(tb, 1H)
Chro-EA + 0.5%—Kristallisiert—
mato-TEAMeOH
graphie10%36%73%20%
Ausbeute
Schmpe.231° C.>235° C.237° C.157° C.
|
[0135]
7
|
|
|
85
86
87
88
|
|
|
Beispiel Nr.
16
24
26
35
|
6-H
8.80(s, 1H)
8.30(s, 1H)
8.18(s, 1H)
8.14(s, 1H)
|
2CH
7.67(d, 2H)
7.94(d, 2H)
7.67(s, 1H)
8.28(s, 1H)
|
7.27(d, 2H)
7.63(d, 2H)
7.54(d, 1H)
7.98(d, 1H)
|
2.47(s, 3H)
7.24(t, 1H)
7.41(t, 1H)
|
6.92(d, 1H)
7.25(d, 1H)
|
4CH
4.17(dd, 2H)
4.17(dd, 2H)
4.20(dd, 2H)
4.14(dd, 2H)
|
3.75(t, 1H)
3.18(t, 1H)
3.12(sb, 1H)
3.04(sb, 1H)
|
NH
10.55
10.45
9.78(sb, 1H)
9.58(sb, 1H)
|
(sb, 1H)
(sb, 1H)
7.95(sb, 1H)
7.46(sb, 1H)
|
8.68(sb, 1H)
8.22(sb, 1H)
|
Chrom.
—
—
—
—
|
Ausbeute
94%
86%
73%
69%
|
Schmp.
232-234° C.
160° C.
194° C.
143° C.
|
|
[0136]
8
|
|
|
89
90
91
92
|
|
|
Beispiel Nr.
27
36
34
21
|
6-H
8.18(s, 1H)
8.26(s, 1H)
8.25(s, 1H)
8.17(s, 1H)
|
2CH
8.73(s, 1H)
8.12(s, 1H)
8.16(s, 1H)
8.74(s, 1H)
|
7.62(d, 1H)
7.35-
7.43(d, 1H)
7.43(d, 1H)
|
7.72(t, 1H)
7.55(m, 3H)
7.52(t, 1H)
7.52(t, 1H)
|
8.31(d, 1H)
8.06(d, 1H)
8.01(d, 1H)
8.08(d, 1H)
|
2.78(m, 2H)
3.43(t, 2H)
|
1.35(mc, 2H)
3.70(t, 2H)
|
1.24(mc, 2H)
|
0.80(t, 3H)
|
4CH
4.18(dd, 2H)
4.21(d, 2H)
4.20(dd, 2H)
|
3.06(t, 1H)
4.21(d, 2H)
3.09(sb, 1H)
3.08(t, 1H)
|
NH
10.02(s, 1H)
3.09(sb, 1H)
10.3(sb, 1H)
9.79(s, 1H)
|
7.49(sb, 1H)
9.68(sb, 1H)
8.13(sb, 1H)
7.55(tb, 1H)
|
OH
7.30(sb, 2H)
4.90(sb, 1H)
|
Chrom.
—
krist. EtOH
—
—
|
Aus-
69%
64%
87%
59%
|
beute
|
Schmp.
144° C.
219° C.
220° C.
192.5-193.5° C.
|
|
[0137]
9
|
|
|
93
94
95
96
|
|
|
Beispiel Nr.
31
25
23
11
|
6-H
8.25(s, 1H)
8.14(s, 1H)
8.25(s, 1H)
8.29(s, 1H)
|
2CH
7.65(d, 2H)
8.01(d, 2H)
7.86(d, 2H)
7.95(d, 2H)
|
7.24(d, 2H)
7.56(d, 2H)
7.51(d, 2H)
7.78(d, 2H)
|
3.19(d, 21.3Hz, 2H)
2.70(s, 3H)
7.38(t, 56.8Hz, 1H)
|
4CH
3.95(mc, 4H)
4.15(dd, 2H)
4.18(m, 2H)
4.19(d, 2H)
|
1.20(t, 6H)
3.14(t, 1H)
3.16(sb, 1H)
3.18(sb, 1H)
|
NH
4.17(sb, 2H)
9.69(sb, 1H)
10.24(sb, 1H)
10.40(sb, 1H)
|
3.15(sb, 1H)
7.55(tb, 1H)
8.17(sb, 1H)
8.24(sb, 1H)
|
10.19(sb, 1H)
7.15(sb, 2H)
|
8.34(sb, 1H)
|
Chrom.
EA krist.
DCM/MeOH
—
krist.
|
Ausbeute
H/DIPE
95:5
85%
DIPE/EtOH
|
23%
25%
17%
|
Schmp.
198° C.
217-218° C.
>235° C.
>235° C.
|
|
[0138]
10
|
|
|
97
98
99
|
|
|
Beispiel Nr.
44
45
4
|
6-H
8.34(s, 1H)
8.34(s, 1H)
8.23n(sb, 1H)
|
2CH
7.93(d, 2H)
7.74(mc, 4H)
7.39(d, 2H)
|
7.79(d, 2H)
6.79(d, 2H)
|
4CH
4.20(sb, 2H)
4.55(q, 1H)
3.52-3.71(2H)
|
3.31(sb, 1H)
1.98(dq, 2H)
3.97(mc, 1H)
|
0.94(t, 3H)
1.96(mc, 1H)
|
3.61(s, 3H)
0.91(d, 3H)
|
NH
11.03(sb, 1H)
10.60(s, 1H)
0.85(d, 3H)
|
9.04(sb, 1H)
7.97(d, 1H)
10.35(sb, 1H)
|
7.34(sb, 2H)
7.31(db, 2H)
7.76(sb, 1H)
|
Chrom.
krist. EtOH
krist. EtOH
—
|
Ausbeute
27%
48%
52%
|
Schmp.
252° C.
235° C.
242-243° C.
|
|
[0139]
11
|
|
|
Beispiel
100
101
102
103
|
Nr.
10
15
3
19
|
|
6-H
8.27 (s,1H)
8.17 (s,1H)
7.97 (s,1H)
8.20-8.35
|
2H
7.80
7.60 (d,2H)
7.44 (d,2H)
(2H)
|
(mc,4H)
7.24 (d,2H)
6.67 (d,2H)
7.90 (sb,1H)
|
2.44 (s,3H)
7.50-7.64
|
(2H)
|
3.46 (t,2H)
|
4H
3.5-3.7 (2H)
3.50-3.65
3.70 (t,2H)
|
3.66.
40.1 (mc,1H)
(4H)
|
(mc,2H)
1.98 (mc,1H)
4.12 (mc,1H)
3-56-3.66
|
n.obs.
0.94 (d,3H)
(4H)
|
2.04
0.90 (d,3H)
4.28 (mc,1H)
|
NH
(mc,1H)
9.95 (sb,1H)
|
OH
0.97 (d,3H)
6.96 (sb,1H)
8.98 (sb,1H)
|
0.94 (d,3H)
ca.4, sehr
5.97 (db,1H)
|
10.40
breit
8.90 (sb,1H)
NH and OH
|
(sb,1H)
4.80 (tb,2H)
sind sehr
|
7.18(sb,2H)
breit
|
n. obs.
|
Chrom.
—
—
—
Kristallisiert
|
Wasser
|
Aus-
43%
27%
76%
52%
|
beute
|
Schmp.
252-253° C.
192-193° C.
257-258° C.
209-210° C.
|
|
[0140]
12
|
|
|
Beispiel
104
105
106
107
|
Nr.
9
14
55
50
|
|
6-H
8.30 (s,1H)
8.30 (s,1H)
8.11 (s,1H)
8.17 (s,1H)
|
2H
7.82
7.55 (d,2H)
7.87 (s,4H)
7.95 (d,2H)
|
(mc,4H)
7.30 (d,2H)
2.50 (s)
7.86 (d,2H)
|
2.48 (s,3H)
2.50 (s)
|
4H
3.54-3.68
4.19 (mc,1H)
4.17 (dd,2H)
|
3.63
(4H)
3.61 (mc,4H)
3.13 (t,1H)
|
(mc,4H)
4.24 (mc,1H)
|
NH
4.24
9.73 (s,1H)
9.81 (s,1H)
|
OH
(mc,1H)
10.63 (sb,1H)
6.20 (s,1H)
7.58 (t,1H)
|
7.60 (sb,1H)
4.88 (t,2H)
|
10.59 (b,1H)
4.4 (b)
|
7.2 (sb)
|
6.1 (sb)
|
Chrom.
Kristallisiert
Kristallisiert
—
|
Aus-
MeOH
MeOH/DIPE
|
beute
24%
91%
27%
56%
|
Schmp.
247-248° C.
233-234° C.
228-229° C.
241° C.
|
|
[0141]
13
|
|
|
Beispiel
108
109
110
111
|
Nr.
46
13
52
53
|
|
6-H
8.07s,1H)
8.00 (s,1H)
8.09 (s,1H)
8.11 (s,1H)
|
2H
7.91 (d,2H)
7.68 (d,2H)
7.88 (s,4H)
7.86 (s,4H)
|
7.69 (d,2H)
7.18 (d,2H)
not obs.
|
2.44 (s,3H)
|
4H
3.30 (t,2H)
3.54 (q,2h9
3.32 (t,2H)
3.62 (mc,2H)
|
n.obs.(mc,1
2.53 (t,2H)
1.20 (mc,1H)
4.06 (mc,1H)
|
H)
2.40-2.45
0.44 (mc,2H)
2.02 (mc,1H)
|
0.45
(4H)
0.30 (mc,2H)
0.97 (d,3H)
|
(mc,2H)
3.58 (t,4H)
0.92 (d,3H)
|
NH
0.30
9.70 (s,1H)
9.70 (s,1H)
|
OH
(mc,2H)
9.20 (sb,1H)
7.21 (t,1H)
6.24 (d,1H)
|
6.81 (tb,1H)
4.80 (sb,1H)
|
9.94 (s,1H)
|
7.21 (t,1H)
|
7.18 (s,2H)
|
Chrom.
H/EA 1:2
—
—
H/EA 1:2
|
Aus-
20%
28%
53%
9%
|
beute
|
Schmp.
256° C.
185-186° C.
183° C.
170° C.
|
|
[0142]
14
|
|
|
Beispiel
112
113
114
115
|
Nr.
1
54
12
60
|
|
6-H
7.96 (s,1H)
8.22 (s,1H)
8.03 (s,1H)
8.10 (s,1H)
|
2H
7.43 (d,2H)
7.93 (d,2H)
7.68 (d,2H)
7.92 (d,2H)
|
6.67 (d,2H)
7.85 (d,2H)
7.19 (d,2H)
7.66 (d,2H)
|
2.43 (s,3H)
not. obs.
|
2.74 (t,2H)
|
4H
1.20 (d,3H)
4.26 (d,2H)
1.20 (d,3H)
3.61 (mc,2H)
|
4.38
3.12 (sb,1H)
4.42 (mc,1H)
4.04 (mc,1H)
|
(mc,1H)
3.37 (dd,1H)
2.01 (mc,1H)
|
3.37 (dd,1H)
3.50 (dd,1H)
0.94 (d,3H)
|
3.48 (dd,1H)
3.34 (s,3H)
0.91 (d,3H)
|
NH
3.28 (s,3H)
9.78 (s,1H)
9.26 (s,1H)
9.72 (s,1H)
|
8.92 (sb,1H)
7.65 (s,1H)
|
8.81 (sb,1H)
6.27 (d,1H)
|
OH
7.21 (t,1H)
6.42 (d,1H)
4.80 (sb,1H)
|
6.20 (tb,1H)
4.70 (sb,1H)
|
Chrom.
Kristallisiert
Kristallisiert
Kristallisiert.
|
Aus-
EA
DIPE/MeOH
EA
|
beute
64%
52%
36%
|
Schmp.
165.5-
210° C.
91° C.
150-151° C.
|
166° C.
|
|
[0143]
15
|
|
|
Beispiel
116
117
118
119
|
Nr.
7
17
2
18
|
|
6-H
8.32 (s,1H)
8.08 (s,1H)
7.95 (s,1H)
8.32 (s,1H)
|
4CH
1.22 (d,3H)
1.21 (d,3H)
3.50 (q,2H)
3.10 (m,2H)
|
4.46
4.53 (mc,1H)
2.50 (t,2H)
3.52 (m,4H)
|
(mc,1H)
3.41 (dd,1H)
2.40 (t,4H)
3.77-3.97
|
3.40 (dd,1H)
3.51 (dd,1H)
3.59 (t,4H)
(6H)
|
3.57 (dd,1H)
3.27 (s,3H)
|
2CH
3.28 (s,3H)
8.53 (s,1H)
7.45 (d,2H)
|
7.80 (s,4H)
7.40 (d,1H)
6.66 (d,2H)
8.40 (s,1H)
|
7.50 (t,1H)
7.55-7.70
|
7.86 (d,1H)
(2H)
|
3.40 (t,2H)
7.85 (d,1H)
|
3.68 (t,2H)
3.48 (m,2H)
|
NH
9.65 (sb,1H)
8.94 (sb,1H)
3.70 (m,2H)
|
10.79
6.47 (db,1H)
8.79 (sb,1H)
|
OH
(sb,1H)
4.84 (tb,1H)
6.70 (tb,1H)
11.16 (sb,1H)
|
7.84 (db,1H)
10.60 (sb,1H)
|
7.31 (sb,2H)
8.20 (sb,1H)
|
Chrom.
—
—
kristall.
|
Aus-
25%
10%
62%
MeOH
|
beute
50%
|
Schmp.
247° C. Zers.
201-202° C.
227.5-
245° C. Zers.
|
228.5° C.
|
|
[0144]
16
|
|
|
Beispiel
120
|
Nr.
8 (D2O)
|
|
6-H
8.14 (s,1H)
|
4CH
3.06 (sb,2H)
|
3.39 (t,4H)
|
3.71 (sb,2H)
|
3.85 (sb,2H)
|
3.94 (t,2H)
|
2CH
8.00 (d,2H)
|
7.72 (d,2H
|
NH
|
OH
|
Chrom.
krist. Wasser
|
Aus-
25%
|
beute
|
Schmp.
>275° C.
|
|
[0145]
17
|
|
|
Beispiel
121
122
123
124
|
Nr.
47
6
22
84
|
|
5-H
8.74 (s,1H)
8.31 (s,1H)
8.31 (s,1H)
8.47 (s,1H)
|
2CH
7.87 (d,2H)
7.47 (d,2H)
7.76 (d,2H)
4.48 (t,2H)
|
7.74 (d,2H)
6.71 (d,2H)
7.72 (d,2H)
2.01 (mc,2H)
|
2.58 (s,3H)
2.44 (mc,2H)
|
4CH
4.50 (t,2H)
5.04 (d,2H)
5.05 (d,2H)
|
2.03 (mc,2H)
3.59 (t,1H)
2.57 (t,1H)
7.91 (d,2H)
|
2.44 (mc,2H)
|
2NH
10.14 (s,1H)
9.02 (sb,1H)
7.47 (sb,1H)
7.85 (d,2H)
|
7.21 (s,2H)
9.40 (sb,1H)
2.50 (s)
|
10.19(s,1H)
|
Chrom.
MeOH/DCM
—
—
|
Aus-
1:9
66%
8%
11%
|
beute
4%
|
Schmp.
186-187° C.
146° C.
165-166° C.
152° C.
|
|
[0146]
18
|
|
|
Beispiel
125
126
|
Nr.
86
77
|
|
5-H
8.47 (s,1H)
8.48 (s,1H)
|
2CH
4.07 (mc,2H)
5.52 (m,1H)
|
3.81 (mc,2H)
3.68 (d,4H)
|
3.60 (mc,2H)
3.48 (mc,4H)
|
4CH
3.48 (mc,2H)
1.09 (t,6H)
|
3.41 (t,2H)
7.84 (d,2H)
|
1.07 (t,3H)
|
2NH
7.84 (d,2H)
7.74 (d,2H)
|
7.91 (d,2H)
8.05 (vb)
|
10.18 (s,1H)
3.40 (vb)
|
Chrom.
—
—
|
Aus-
2%
74%
|
beute
|
Schmp.
85° C.
132° C.
|
|
[0147]
19
|
|
|
Beispiel
127
128
|
Nr.
40
20
|
|
6-H
8.36 (s,1H)
8.40 (s,1H)
|
2CH
7.60 (d,1H)
7.23 (s,1H)
|
6.91 (d,1H)
6.42 (d,1H)
|
4.28 (dd,1H)
7.06 (t,1H)
|
3.79 (dd,1H)
7.18 (d,1H)
|
3.31 (m,1H)
|
2.84 (dd,1H)
|
2.70 (dd,1H)
|
4CH
5.07 (d,12H)
5.12 (d,2H)
|
3.65 (t,1H)
3.60 (sb,1H)
|
NH
9.65 (sb,1H)
9.60 (sb,1H)
|
OH
9.21 (sb,1H)
|
Chrom.
H/EA 1:3
krist. DIPE
|
Aus-
0.5% TEA
35%
|
beute
38%
|
Schmp.
140-141° C.
174° C.
|
|
[0148]
20
|
|
|
Beispiel
129
130
131
132
|
Nr.
49
48
29
42
|
|
6-H
8.14 (s,1H)
8.10 (s,1H)
8.09 (s,1H)
7.87 (d,3.4,1H)
|
2H
7.88 (d,2H)
7.92 (d,2H)
8.50 (s,1H)
7.51 (d.2H)
|
7.69 (d,2H)
7.66 (d,2H)
7.86 (d,1H)
6.66 (d,2H)
|
not. obs.
7.50 (t,1H)
|
2.74 (t,2H)
7.40 (d,1H)
|
4H
3.41 (q,2H)
3.61 (mc,2H)
3.40 (t,2H)
4.13 (dd,2H)
|
2.20 (t,2H)
4.04 (mc,1H)
3.52-3.73
3.08 (t,1H)
|
1.81 (q,2H)
2.01 (mc,1H)
(4H)
|
0.94 (d,3H)
4.09 (mc,1H)
|
0.91 (d,3H)
1.98 (mc,1H)
|
0.97 (d,3H)
|
NH
9.64 (s,1H)
9.72 (s,1H)
0.89 (d,3H)
8.76 (s,1H)
|
7.64 (t,1H)
7.65 (s,1H)
9.68 (s,1H)
7.74 (tb,1H)
|
OH
3.5(vb
6.27(d,1H)
6.17(d,1H)
8.88(s,1H)
|
4.80 (sb,1H)
4.74 (t,1H)
|
4.70 (sb,1H)
4.93 (t,1H)
|
Chrom.
—
krist.MeOH/DI
DCM/EA 2:1
H/EA 1:2
|
Aus-
9%
PE
26%
29%
|
beute
16%
|
Schmp.
262° C.
150-151° C.
163° C.
|
|
[0149]
21
|
|
|
133
134
135
136
|
|
Beispiel
43
55
89
88
|
Nr.
|
|
6-H
7.93 (s, 1H)
8.11(s, 1H)
8.36(s,1H)
8.29(s, 1H)
|
2H
7.52(d, 2H)
7.87 (s, 4H)
7.7-7.8(5H)
7.73(d, 2H)
|
6.68(d, 2H)
2.50(s)
7.57(d, 2H)
|
4H
3.09(s, 1H)
4.19(mc, 1H)
3.66(mc, 2H)
3.7-3.9(2H)
|
4.14(d, 2H)
3.61(mc, 4H)
4.04(m, 1H)
5.19(m, 1H)
|
1.99(mc, 1H)
7.2-7.4(5H)
|
0.94(d, 3H)
|
0.89(d, 3H)
|
NH
8.98(sb, 2H)
9.73(s, 1H)
11.11(sb, 1H)
10.50(s, 1H)
|
7.50(s, 1H)
6.20(s, 1H)
5.029(vb)
|
OH
4.88(t, 2H)
7.34(sb, 2H)
|
n. obs.
|
Chrom
H/EA 1:2
krist. MeOH/
—
—
|
Aus-
35%
DIPE
74%
27%
|
beute
27%
|
Schmp.
168° C.
228° C.
248° C. Zers.
159° C. Zers.
|
|
[0150]
22
|
|
|
137
138
139
140
|
|
Beispiel
87
92
91
96
|
Nr.
|
|
6-H
8.09(s, 1H)
8.10(s, 1H)
8.09(s, 1H)
8.06(s, 1H)
|
2H
7.90(d, 2H)
7.91(d, 2H)
7.98(d, 2H)
7.88(d, 2H)
|
7.82(d, 2H)
7.63(d, 2H)
7.61(d, 2H)
7.69(d, 2H)
|
not. obs
2.39(d, 3H)
2.54(s, 6H)
|
4H
3.69(td, 2H)
1.21(d, 3H)
1.20(d, 3H)
2.41(m, 2H)
|
2.84(t, 2H)
4.45(mc, 1H)
4.46(mc, 1H)
1.62(m, 4H)
|
7.60(s, 1H)
3.38(dd, 1H)
3.47(dd, 1H)
2.41(m, 2H)
|
6.86(s, 1H)
3.51(dd, 1H)
3.51(dd, 1H)
5.07(s, 2H)
|
3.38(s, 3H)
|
NH
7.34(tb, 1H)
9.73(sb, 1H)
9.81(sb, 1H)
7.32(s, 5H)
|
9.72(s, 1H)
7.20(q, 1H)
6.58(db, 1H)
9.64(s, 1H)
|
7.16(sb, 2H)
|
OH
11.91(sb, 1H)
6.57(d, 1H)
|
Chrom.
—
H bis H/EA 1:1
H bis H/EA
—
|
Aus-
16%
21%
1:1
33%
|
beute
7%
|
Schmp.
210° C.
167-168° C.
105° C.
202° C.
|
|
[0151]
23
|
|
|
141
142
143
144
|
|
Beispiel
97
98
90
85
|
Nr.
|
|
6-H
8.07(s, 1H)
8.10(s, 1H)
8.30(s, 1H)
|
2H
7.87(s, 4H)
7.86(mc, 4H)
7.95(d, 2H)
|
2.50(s, 3H)
n. obs.
7.69(d, 2H)
|
2.48(s, 3H)
|
4H
3.41(m, 2H)
3.68(t, 2H)
3.50(q, 2H)
|
1.61(m, 4H)
2.68(t, 2H)
1.87(m, 2H)
|
2.41(m, 2H)
4.08(q, 2H)
2.38(t, 2H)
|
5.07(s, 2H)
1.17(t, §H)
4.03(q, 2H)
|
1.13(t, 3H)
|
NH
7.32(s, 5H)
9.74(s, 1H)
10.86(s, 1H)
|
9.70(s, 1H)
7.18(t, 1H)
8.28(sb, 2H)
|
7.19(t, 1H)
|
Chrom.
—
—
—
|
Aus-
23%
32%
53%
|
beute
|
Schmp.
152° C.
172
184° C.
|
|
[0152]
24
|
|
|
145
146
147
148
|
|
Beispiel
63
94
93
80
|
Nr.
|
|
9.73(s, 1H)
10.91(s, 1H)
10.80(s, 1H)
10.88(s, 1H)
|
8.25(s, 1H)
8.34(s, 1H)
8.30(s, 1H)
8.40(s, 1H)
|
7.95(d, 2H)
7.80(s, 4H)
7.81(d, 2H)
8.29(m, 1H)
|
7.67(d, 2H)
7.30(s, 2H)
7.65(d, 2H)
7.79(s, 4H)
|
7.21(s, 3H)
4.35(m, 1H)
7.30(m, 8H)
7.31(s, 2H)
|
4.12(s, 2H)
3.58(m, 2H)
4.95(d, 1H)
4.75(dd, 1H)
|
3.12(s, 1H)
2.47(m, 2H)
4.38(m, 1H)
3.65(m, 1H)
|
2.03(s, 3H)
3.59(d, 1H)
3.49(m, 1H)
|
1.91(m, 2H)
2.10(m, 2H)
|
Aus.
61%
24%
70%
51%
|
beute
|
Schmp.
220
168
243
|
Masse
428(EI)
462(ES)
494(ES)
427(EI)
|
|
[0153]
25
|
|
|
149
150
|
|
Beispiel
120
121
|
Nr.
|
|
9.65(s, 1H)
9.68(s, 1H)
|
8.12(s, 1H)
8.11(s, 1H)
|
7.89(d, 2H)
7.93(t, 1H)
|
7.65(d, 2H)
7.90(d, 2H)
|
7.15(s, 2H)
7.65(d, 2H)
|
6.06(d, 1H)
7.15(s, 2H)
|
4.71(t, 1H)
7.07(t, 1H)
|
4.18(m, 1H)
3.65(m, 2H)
|
3.67(t, 1H)
3.56(s, 3H)
|
0.95(s, 9H)
3.07(q, 2H)
|
2.45(t, 2H)
|
2.30(t, 2H)
|
1.65(p, 2H)
|
Aus-
49%
24%
|
beute
|
Schmp.
|
Masse
445(EI)
516(EI)
|
|
|
151
152
|
|
Beispiel
122
123
|
Nr.
|
|
11.30(s, 1H)
10.79(s, 1H)
|
8.11(d, 1H)
8.35(s, 1H)
|
7.85(d, 2H)
8.25(S, 1H)
|
7.72(d, 2H)
7.80(s, 4H)
|
7.31(s, 2H)
7.30(s, 2H)
|
6.71(d, 1H)
3.41(m, 2H)
|
3.85(m, 8H)
2.22(t, 2H)
|
1.60(m, 4H)
|
1.30(m, 2H)
|
|
|
|
|
Aus-
80%
73%
|
beute
|
Schmp.
252
|
Masse
334(EI)
459(EI)
|
|
[0154]
26
|
|
|
153
154
|
|
Beispiel
95
124
|
Nr.
|
|
11.19(s, 1H)
9.62(s, 1H)
|
8.37(s, 1H)
8.04(s, 1H)
|
8.11(d, 1H)
7.88(m, 3H)
|
7.80(s, 4H)
7.66(d, 2H)
|
7.31(s, 2H)
7.13(s, 3H)
|
3.91(m, 1H)
3.58(s, 3H)
|
1.89(m, 4H)
3.40(m, 2H)
|
1.67(m, 1H)
3.05(m, 2H)
|
1.55(m, 2H)
2.25(m, 2H)
|
1.34(m, 2H)
2.05(m, 2H)
|
1.15(m, 1H)
1.60(m, 5H)
|
1.32(m, 3H)
|
Aus-
29%
25%
|
beute
|
Schmp.
255
|
Masse
425(EI)
557(ES)
|
|
|
155
156
|
|
Beispiel
125
126
|
Nr.
|
|
9.62(s, 1H)
10.91(s, 1H)
|
8.04(s, 1H)
8.38(s, 1H)
|
7.86(d, 2H)
7.83(d, 2H)
|
7.66(d, 2H)
7.77(d, 2H)
|
7.12(s, 3H)
7.28(s, 2H)
|
3.58(s, 3H)
7.04(d, 1H)
|
3.40(m, 2H)
6.40(br, 3H)
|
2.30(t, 2H)
4.35(m, 1H)
|
1.60(m, 4H)
3.87(m, 1H)
|
1.32(m, 2H)
3.60(d, 2H)
|
3.41(dd, 1H)
|
3.28(dd, 1H)
|
Aus-
27%
46%
|
beute
|
Schmp.
218
|
Masse
471(EI)
449(EI)
|
|
[0155]
27
|
|
|
157
158
|
|
Beispiel
127
128
|
Nr.
|
|
9.96(s, 1H)
9.60(s, 1H)
|
8.12(s, 1H)
8.05(s, 1H)
|
7.85(d, 2H)
7.90(d, 2H)
|
7.69(d, 2H)
7.69(d, 2H)
|
7.20(s, 2H)
7.42(d, 1H)
|
6.78(d, 1H)
7.16(m, 3H)
|
4.35(m, 1H)
4.57(t, 2H)
|
3.48(m, 2H)
3.70(m, 1H)
|
1.65(m, 7H)
3.4(m, 5H)
|
1.10(m, 6H)
2.10(t, 2H)
|
1.55(m, 4H)
|
1.30(m, 2H)
|
Aus-
18%
94%
|
beute
|
Schmp.
220
|
Masse
485(EI)
531(ES)
|
|
|
159
160
|
|
Beispiel
129
130
|
Nr.
|
|
9.67(s, 1H)
9.65(s, 1H)
|
8.07(s, 1H)
8.08(s, 1H)
|
7.87(d, 2H)
7.87(d, 2H)
|
7.75(d, 2H)
7.64(d, 2H)
|
7.13(s, 2H)
7.14(s, 2H)
|
6.40(d, 1H)
6.53(d, 1H)
|
4.91(br, 1H) 4.62(d, 1H)
|
4.23(m, 1H)
3.90(br, 1H)
|
3.52(m, 2H)
3.40(br, 1H)
|
1.21(d, 3H)
1.88(m, 4H)
|
1.50(m, 2H)
|
1.30(m, 2H)
|
Aus-
61%
58%
|
beute
|
Schmp.
259
262
|
Masse
403(EI)
443(EI)
|
|
[0156]
28
|
|
|
161
162
163
164
|
|
Beispiel
131
132
133
134
|
Nr.
|
|
9.62(s, 1H)
9.70(s, 1H)
9.69(s, 1H)
10.85(s, 1H)
|
8.08(s, 1H)
8.11(s, 1H)
8.11(s, 1H)
8.31(s, 1H)
|
7.92(d, 2H)
7.90(d, 2H)
7.88(d, 2H)
7.90(d, 1H)
|
7.67(d, 2H)
7.60(d, 2H)
7.66(d, 2H)
7.85(d, 2H)
|
7.23(s, 2H)
7.21(q, 1H)
7.15(s, 2H)
7.75(d, 2H)
|
6.75(t, 1H)
5.25(d, 1H)
6.52(d, 1H)
7.54(s, 1H)
|
3.22(d, 2H)
4.77(t, 1H)
4.35(dd, 1H)
3.90(m,1H)
|
1.95(s, 3H)
4.02(m, 1H)
2.29(m, 1H)
3.38(t, 2H)
|
1.60(m, 12H)
3.60(m,2H)
1.07(d, 3H)
2.78(br, 2H)
|
2.39(d, 3H)
0.91(d, 3H)
1.50(m, 11H)
|
2.02(m, 1H)
|
0.95(dd, 6H)
|
Aus-
9%
42%
25%
64%
|
beute
|
Schmp.
229
141
|
Masse
491(EI)
443(EI)
444(FAB)
|
|
[0157]
29
|
|
|
165
166
|
|
Beispiel
135
136
|
Nr.
|
|
10.01(s, 1H)
9.70(s, 1H)
|
8.28(s, 1H)
8.11(s, 1H)
|
7.81(d, 2H)
7.90(d, 2H)
|
7.71(t, 1H)
7.64(d, 2H)
|
7.63(d, 2H)
7.35(t, 1H)
|
7.45(br, 1H)
6.55(d, 1H)
|
4.34(dt, 2H)
4.65(t, 1H)
|
3.32(t, 2H)
4.45(m, 1H)
|
2.71(br, 2H)
3.53(m, 1H)
|
3.44(m, 6H)
|
2.75(q, 2H)
|
1.20(d, 3H)
|
Aus-
34%
53%
|
beute
|
Schmp.
|
Masse
570(ES)
460(ES)
|
|
|
167
168
|
|
Beispiel
137
138
|
Nr.
|
|
9.65(s, 1H)
9.70(s, 1H)
|
9.58(s, 1H)
8.10(s, 1H)
|
8.10(s, 1H)
7.89(d, 2H)
|
7.85(d, 2H)
7.63(d, 2H)
|
7.68(d, 2H)
7.39(t, 1H)
|
7.40(m, 2H)
6.68(d, 1H)
|
7.18(m, 4H)
4.34(dd, 1H)
|
6.94(t, 1H)
3.36(m, 3H)
|
6.75(d, 1H)
2.25(q, 2H)
|
4.40(m, 3H)
2.29(m, 1H)
|
2.05(m, 1H)
1.05(dd, 6H)
|
0.96(dd, 6H)
|
Aus-
59%
57%
|
beute
|
Schmp.
|
Masse
549(ES)
488(ES)
|
|
[0158]
30
|
|
|
169
170
171
172
|
|
Beispiel
139
140
141
142
|
Nr.
|
|
9.82(s, 1H)
9.82(s, 1H)
9.58(s, 1H)
9.62(s, 1H)
|
8.15(s, 1H)
8.08(s, 1H)
8.12(s, 1H)
8.97(s, 1H)
|
7.82(d, 2H)
7.96(d, 2H)
7.83(d, 2H)
7.87(d, 2H)
|
7.64(d, 2H)
7.75(t, 1H)
7.68(d, 2H)
7.67(d, 2H)
|
7.39(t, 1H)
7.62(d, 2H)
7.15(s, 2H)
7.14(s, 2H)
|
6.55(d, 1H)
7.30(t, 1H)
5.92(s, 1H)
6.36(d, 1H)
|
4.64(t, 1H)
4.64(t, 1H)
5.28(t, 1H)
4.81(t, 1H)
|
4.50(t, 1H)
4.14(m, 2H)
3.50(d, 2H)
4.32(m, 1H)
|
3.65(s, 3H)
3.35(m, 2H)
1.42(s, 6H)
3.47(m, 2H)
|
3.4(m, 2H)
3.16(m, 1H)
1.52(m, 3H)
|
2.75(m, 2H)
2.75(q, 2H)
0.90(d, 3H)
|
2.35(m, 1H)
0.86(d, 3H)
|
1.00(dd, 6H)
|
Aus-
20%
63%
23%
8%
|
beute
|
Schmp.
|
Masse
502(ES)
382(ES)
415(EI)
443(EI)
|
|
[0159]
31
|
|
|
173
174
175
176
|
|
Beispiel
143
144
145
78
|
Nr.
|
|
10.6(s, 1H)
10.11(s, 1H)
11.05(s, 1H)
9.69(s, 1H)
|
8.28(s, 1H)
8.45(s, 1H)
8.32(s, 1H)
8.06(s, 1H)
|
8.30(m, 5H)
7.86(d, 2H)
8.08(d, 1H)
7.88(d, 2H)
|
7.48(d, 1H)
7.78(d, 2H)
7.80(m, 4H)
7.63(d, 2H)
|
7.20(s, 1H)
7.15(br, 2H)
7.30(br, 2H)
7.18(s, 2H)
|
4.05(br, 1H)
5.32(m, 1H)
3.88(m, 1H)
7.10(t, 1H)
|
3.60(br, 2H)
3.91(m, 2H)
3.65(m, 1H)
6.65(d, 1H)
|
2.01(m, 1H)
3.53(m, 2H)
1.95(m, 2H)
4.47(m, 1H)
|
0.90(m, 6H)
2.05(m, 2H)
1.69(m, 2H)
3.97(m, 1H)
|
1.70(m, 2H)
1.35(m, 4H)
2.98(m, 2H)
|
2.00(m, 4H)
|
1.40(m, 8H)
|
0.85(t, 3H)
|
Aus-
13%
47%
42%
20%
|
beute
|
Schmp.
|
Masse
392(EI)
428(EI)
441(EI)
541(ES)
|
|
[0160]
32
|
|
|
177
178
179
180
|
|
Beispiel
146
147
148
149
|
Nr.
|
|
11.13(s, 1H)
11.18(s, 1H)
11.15(s, 1H)
9.19(s, 1H)
|
8.38(s, 1H)
8.35(s, 1H)
8.35(s, 1H)
8.30(s, 1H)
|
7.92(d, 2H)
7.90(s, 4H)
7.90(d, 2H)
8.02(s, 1H)
|
7.75(m, 3H)
7.62(d, 1H)
7.65(m, 3H)
7.62(m, 1H)
|
4.04(m, 1H)
4.02(m, 1H)
4.01(m, 1H)
6.85(d, 1H)
|
3.80(s, 3H)
3.62(m, 2H)
3.60(m, 6H)
6.05(d, 1H)
|
3.65(m, 2H)
3.02(s, 3H)
2.85(m, 4H)
4.03(m, 1H)
|
2.00(m, 1H)
2.00(m, 1H)
2.00(m, 1H)
3.56(m, 2H)
|
0.96(d, 3H)
0.95(d, 3H)
0.95(d, 3H)
1.96(m, 1H)
|
0.89(d, 3H)
0.89(d, 3H)
0.85(d, 3H)
0.97(d, 3H)
|
0.90(d, 3H)
|
Aus-
86%
33%
79%
42%
|
beute
|
Schmp.
225
211
232
241
|
Masse
408(EI)
428(EI)
501(EI)
411(ES)
|
|
[0161]
33
|
|
|
181
182
183
184
|
|
Beispiel
150
151
152
153
|
Nr.
|
|
11.19(s, 1H)
10.96(s, 1H)
9.50(s, 1H)
12.90(s, 1H)
|
10.80(s, 1H)
8.35(s, 1H)
8.08(s, 1H)
9.45(s, 1H)
|
8.30(m, 2H)
7.95(m, 2H)
7.75(m, 5H)
8.52(s, 1H)
|
7.85(d, 1H)
7.65(m, 3H)
6.17(d, 1H)
8.05(s, 1H)
|
7.72(d, 1H)
4.04(m, 1H)
4.80(br, 1H)
7.82(d, 1H)
|
7.20(d, 1H)
3.62(m, 2H)
4.64(br, 2H)
7.50(d, 1H)
|
4.02(m, 1H)
2.00(m, 1H)
4.05(m, 1H)
7.32(t, 1H)
|
3.60(m, 2H)
0.90(M, 6H)
3.94(m, 1H)
6.11(d, 1H)
|
2.00(m, 1H)
3.52(m, 6H)
4.72(s, 1H)
|
1.01(d, 3H)
2.01(m, 1H)
4.10(s, 1H)
|
0.90(d, 3H)
0.93(dd, 6H)
3.60(m, 2H)
|
2.01(m, 1H)
|
0.99(d, 3H)
|
0.92(d, 3H)
|
Aus-
27%
65%
85%
9%
|
beute
|
Schmp.
231
|
Masse
420(ES)
395(ES)
468(ES)
395(ES)
|
|
[0162]
34
|
|
|
185
186
187
188
|
|
Beispiel
154
155
156
157
|
Nr.
|
|
10.91(s, 1H)
11.05(s, 1H)
10.51(s, 1H)
15.5° (s, 1H)
|
8.38(s, 1H)
8.34(m, 2H)
8.22(s, 1H)
9.50(s, 1H)
|
7.90(d, 1H)
7.75(m, 3H)
7.71(d, 1H)
8.40(s, 1H)
|
7.80(m, 4H)
7.52(t, 1H)
7.27(m, 1H)
8.11(s, 1H)
|
7.05(d, 1H)
4.04(m, 1H)
6.86(m, 2H)
7.80(d, 1H)
|
4.50(s, 2H)
3.85(s, 3H)
6.06(s, 2H)
7.53(d, 1H)
|
4.04(m, 1H)
3.65(m, 2H)
3.96(m, 1H)
6.16(d, 1H)
|
3.62(m, 2H)
2.00(m, 1H)
3.62(m, 2H)
4.78(br, 1H)
|
1.96(m, 1H)
0.94(d, 3H)
1.99(m, 1H)
4.03(m, 1H)
|
0.93(d, 3H)
0.85(d, 3H)
0.90(m, 6H)
3.60(m, 2H)
|
0.85(d, 3H)
2.01(m, 1H)
|
0.91(dd, 6H)
|
Aus-
90%
48%
77%
21%
|
beute
|
Schmp.
170
181
177
196
|
Masse
381(ES)
409(ES)
394(EI)
391(EI)
|
|
[0163]
35
|
|
|
189
190
191
192
|
|
Beispiel
158
159*
160*
161*
|
Nr.
|
|
10.80(s, 1H)
9.65
9.65
7.92(s, 1H)
|
8.31(s, 1H)
(s, 1H, 1+2)
(s, 1H, 1+2)
7.84(d, 2H)
|
7.97(d, 2H)
8.08
8.08
7.58(d, 2H)
|
7.88(m, 3H)
(s, 1H, 1+2)
(s, 1H, 1+2)
3.72(m, 1H)
|
7.52(m, 5H)
7.88
7.88
3.35(m, 2H)
|
4.01(m, 1H)
(d, 2H, 1+2)
(d, 2H, 1+2)
3.10(m, 1H)
|
3.62(m, 2H)
7.65
7.65
2.91(m, 2H)
|
2.00(m, 1H)
(d, 2H, 1+2)
(d, 2H, 1+2)
2.00(m, 2H)
|
0.91(m, 6H)
7.15
7.15
1.89(m, 2H)
|
(s, 1H, 1+2)
(s, 1H, 1+2)
1.66(m, 4H)
|
6.62(d, 1H, 2)
6.62(d, 1H, 2)
1.39(m, 5H)
|
6.40(d, 1H, 1)
6.40(d, 1H, 1)
|
4.05(m, 1H, 1)
4.05(m, 1H, 1)
|
3.89(m, 1H, 2)
3.89(m, 1H, 2)
|
2.30-1.20
2.30-1.20
|
(m, 15H, 1+2)
(m, 15H, 1+2)
|
Aus-
37%
21%
14%
8%
|
beute
|
Schmp.
199
>300
|
Masse
469(EI)
468(EI)
468(EI)
508(EI)
|
|
[0164]
36
|
|
|
193
194
|
|
Bsp.-Nr.
162
163*
|
|
11.25(s, 1H)
10.95(s, 1H)
|
9.40(s, 1H)
10.72(s, 1H)
|
8.47(s, 1H)
9.47(br, 2H)
|
8.29(s, 1H)
9.30(br, 2H)
|
7.63(s, 1H)
8.32(2xs, 2H)
|
7.43(d, 1H)
8.08(d, 1H)
|
7.07(m, 3H)
7.88(d, 2H)
|
4.06(m, 1H)
7.75(m, 6H)
|
3.63(m, 2H)
7.30(br, 4H)
|
1.98(m, 1H)
6.95(d, 1H)
|
0.95(d, 3H)
4.12(m, 1H)
|
0.85(d, 3H)
3.98(m, 1H)
|
3.30(m, 1H)
|
3.10(m, 1H)
|
2.69(m, 2H)
|
2.25(m, 2H)
|
1.80(m, 18H)
|
1.01(m, 4H)
|
0.72(m, 4H)
|
Aus-
16%
33%
|
beute
|
Schmp.
195
|
Masse
446(ES)
480(EI)
|
|
|
195
196
|
|
Bsp.-Nr.
164
165
|
|
9.65(s, 1H)
|
8.54(s, 1H)
|
8.10(s, 1H)
|
7.82(d, 1H)
|
7.45(m, 2H)
|
6.20(d, 1H)
|
4.70(t, 1H)
|
4.10(m, 1H)
|
3.60(m, 2H)
|
3.15(s, 3H)
|
2.00(m, 1H)
|
0.96(d, 3H)
|
0.89(d, 3H)
|
Aus-
14%
51%
|
beute
|
Schmp.
162-164
|
Masse
429(ES)
462(EI)
|
|
[0165]
37
|
|
|
197
198
|
|
Beispiel
166
167 *
|
Nr.
|
|
10.90(s, 1H)
11.15(br, 1H)
|
8.95(s, 1H)
10.90(s, 1H)
|
7.93(m, 2H)
9.75(br, 2H)
|
7.25(m, 3H)
8.35(s, 1H)
|
6.30(s, 1H)
7.78(m, 4H)
|
6.00(d, 1H)
7.30(br, 2H)
|
4.75(tr, 1H)
4.15(m, 1H)
|
4.05(m, 1H)
3.50(m, 5H)
|
3.60(m, 2H)
2.85(s, 6H)
|
2.00(m, 1H)
1.90(m, 8H)
|
1.00(m, 6H)
|
|
|
|
|
|
|
Aus-
6%
16%
|
beute
|
Schmp.
256
|
Masse
390(ES)
512(ES)
|
|
|
199
200
|
|
Beispiel
168*
169
|
Nr.
|
|
11.30(br, 2H)
9.05(br, 1H)
|
11.08(s, 1H)
8.85(s, 1H)
|
10.92(s, 1H)
8.11(d, 1H)
|
9.90(s, 1H)
7.97(s, 1H)
|
9.70(s, 1H)
7.47(dd, 1H)
|
8.36(2xs, 2H)
6.80(d, 1H)
|
8.20(d, 1H)
5.95(d, 1H)
|
7.93(d, 2H)
4.80(br, 2H)
|
7.75(m, 6H)
3.90(m, 2H)
|
7.35(br, 4H)
3.45(m, 6H)
|
7.10(d, 1H)
2.00(m, 1H)
|
4.15(m, 1H)
0.90(m, 6H)
|
3.98(m, 1H)
|
3.64(m, 8H)
|
3.40(m, 5H)
|
3.10(m, 5H)
|
1.95(m, 26H)
|
Aus-
58%
60%
|
beute
|
Schmp.
261
|
Masse
538(ES)
484(ES)
|
|
[0166]
38
|
|
|
201
202
203
204
|
|
Beispiel
170*
171
172
173
|
Nr.
|
|
11.05(s, 1H)
10.45(s, 1H)
11.05(s, 1H)
8.90(s, 1H)
|
10.90(s, 1H)
8.25(s, 1H)
8.35(m, 2H)
8.72(s, 1H)
|
10.6(br, 2H)
8.00(br, 1H) 7.82(d, 1H)
7.95(s, 1H)
|
8.35(2xs, 2H)
7.85(d, 2H)
7.65(d, 2H)
7.18(m, 1H)
|
8.15(d, 1H)
7.75(d, 2H)
7.50(t, 1H)
7.05(dd, 1H)
|
7.80(m, 8H)
7.45(br, 1H)
4.05(m, 1H)
6.75(d, 1H)
|
7.30(br, 4H)
3.60(m, 5H)
3.62(m, 2H)
5.99(d, 1H)
|
7.05(m, 1H)
3.35(m, 2H)
2.00(m, 1H)
4.74(t, 1H)
|
4.25(m, 1H)
2.80(m, 2H)
0.96(d, 3H)
4.03(m, 1H)
|
3:95(m, 2H)
2.41(t, 2H)
0.85(d, 3H)
3.70 .(s, 3H)
|
3.65(m, 1H)
1.90(m, 2H)
3.60(m, 2H)
|
3:20(m, 10H)
2.00(m, 1H)
|
1.90(m, 24H)
0.90(m, 6H)
|
Aus-
64%
7%
65%
40%
|
beute
|
Schmp.
226
164
206
144
|
Masse
525(ES)
488(ES)
395(ES)
397(ES)
|
|
[0167]
39
|
|
|
205
206
|
|
Beispiel
174*
175*
|
Nr.
|
|
11.05(m, 3H)
11.15(br, 1H)
|
10.48(s, 1H)
11.05(s, 2H)
|
8:38(s, 2H)
10.65(br, 1H)
|
7.80(m, 8H)
8.30(s, 2H)
|
7.80(br, 4H)
8.13(m, 2H)
|
7.10(s, 1H)
7.88(m, 8H)
|
6.95(s, 1H)
7.30(br, 4H)
|
4.42(m, 2H)
4.40(m, 2H)
|
4.1.8(m, 2H)
4.00(br, 2H)
|
3.70-2.90
3.70-2.90
|
(m, 10H)
(m, 10H)
|
2.40-1.60
2.40-1.40
|
(m, 20H)
(m, 20H)
|
Aus-
95%
51%
|
beute
|
Schmp.
|
Masse
511(ES)
511(ES)
|
|
|
207
208
|
|
Beispiel
176
177
|
Nr.
|
|
8.00(s, 1H)
9.65(s, 1H)
|
7.80(m, 4H)
8.08(s, 1H)
|
4.48(m, 1H)
7.85(d, 2H)
|
3.65(d, 2H)
7.65(d, 2H)
|
1.75(m, 1H)
7.40(br, 1H)
|
1.59(m, 2H)
7.15(s, 2H)
|
1.01(d, 3H)
3.55(m, 2H)
|
0.92(d, 3H)
2.55(m, 2H)
|
2.15(m, 2H)
|
1.80(m, 3H)
|
1.65(m, 1H)
|
Aus-
3%
8%
|
beute
|
Schmp.
|
Masse
443(EI)
456(EI)
|
|
[0168]
40
|
|
|
209
210
211
212
|
|
Beispiel
178
179
180
181
|
Nr.
|
|
9.49(s, 1H)
9.61(s, 1H)
9.65(s, 1H)
9.71(s, 1H)
|
8.25(s, 1H)
8.08(s, 1H)
8.11(s, 1H)
8.06(s, 1H)
|
7.80(m, 4H)
7.88(d, 2H)
7.81(s, 2H)
7.90(d, 2H)
|
7.32(br, 2H)
7.65(d, 2H)
7.63(d, 2H)
7.61(d, 2H)
|
4.03(m, 2H)
7.60(t, 1H)
7.15(s, 2H)
7.37(t, 1H)
|
3.75(m, 1H)
7.15(s, 2H)
6.64(d, 1H)
6.56(d, 1H)
|
3.35(m, 2H)
3.45(m, 2H)
4.28(m, 3H)
4.66(m, 2H)
|
1.80(m, 2H)
2.40(t, 2H)
2.00(m, 1H)
3.90(m, 1H)
|
1.40(m, 2H)
2.20(s, 6H)
1.98(s, 3H)
3.39(m, 3H)
|
1.75(t, 2H)
0.98(d, 3H)
2.78(q, 2H)
|
0.93(d, 3H)
1.96(m, 4H)
|
1.56(m, 2H)
|
1.29(m, 2H)
|
Aus-
17%
9%
27%
24%
|
beute
|
Schmp.
|
Masse
427(EI)
428(EI)
472(ES)
486(ES)
|
|
[0169]
41
|
|
|
213
214
215
216
|
|
|
Beispiel
182
183
184
185
|
Nr.
|
9.68 (s, 1H)
10.97 (s, 1H)
11.06 (s, 1H)
11.01 (s, 1H)
|
9.47 (s, 1H)
8.30 (s, 1H)
8.04 (m, 1H)
8.38 (s, 1H)
|
8.10 (s, 1H)
8.02 (d, 1H)
7.82 (m, 2H)
7.82 (s, 4H)
|
7.81 (d, 2H)
7.81 (m, 4H)
7.70 (m, 2H)
7.40 (d, 1H)
|
7.67 (d, 2H)
7.30 (s, 2H)
7.30 (s, 2H)
7.32 (s, 2H)
|
7.14 (s, 2H)
4.14 (m, 1H)
6.72 (m, 1H)
4.20 (m, 1H)
|
6.76 (m, 3H)
1.80 (m, 12H)
3.75 (m, 5H)
3:70 (m, 2H)
|
4.47 (m, 2H)
1.88 (m, 2H)
0.97 (s, 9H)
|
4.30 (m, 1H)
1.48 (m, 2H)
|
3.65 (s, 6H)
|
3.54 (s, 3H)
|
1.99 (m, 1H)
|
0.98 (d, 3H)
|
0.92 (d, 3H)
|
Aus-
57%
78%
26%
76%
|
beute
|
Schmp.
|
Masse
639 (ES)
439 (EI)
348 (EI)
445 (EI)
|
|
[0170]
42
|
|
|
217
218
219
220
|
|
|
Beispiel
186
187
188
189
|
Nr.
|
9.71 (s, 1H)
7.75 (s, 1H)
10.60 (s, 1H)
11.19 (s, 1H)
|
8.11 (s, 1H)
7.65 (d, 2H)
8.29 (s, 1H)
8.03 (d, 1H)
|
7.90 (d, 2H)
7.58 (d, 2H)
7.79 (d, 2H)
7.88 (d, 2H)
|
7.70 (d, 2H)
5.82 (s, 1H)
7.71 (d, 2H)
7.78 (d, 2H)
|
7.12 (s, 2H)
4.25 (s, 2H)
7.28 (s, 2H)
7.31 (s, 2H)
|
6.75 (d, 1H)
3.40 (t, 2H)
6.60 (s, 1H)
6.58 (d, 1H)
|
4.45 (m, 1H)
2.82 (t, 2H)
3.58 (s, 2H)
3.60 (m, 4H)
|
2.25 (m, 6H)
2.06 (s, 3H)
2.10 (m, 2H)
1.20 (m, 6H)
|
1.90 (m, 2H)
1.78 (m, 2H)
|
1.55 (m, 4H)
|
Aus-
16%
7%
61%
35%
|
beute
|
Schmp.
|
Masse
440 (ES)
480 (ES)
443 (EI)
321 (EI)
|
|
[0171]
43
|
|
|
221
222
223
224
|
|
|
Beispiel
190
191*
192*
193
|
Nr.
|
10.61 (s, 1H)
9.67 (s, 1H)
9.63 (s, 1H)
10.61 (s, 1H)
|
8.28 (s, 1H)
8.08 (s, 1H)
8.06 (s, 1H)
8.28 (s, 1H)
|
7.82 (d, 2H)
7.88 (d, 2H)
7.85 (d, 2H)
7.78 (m, 4H)
|
7.73 (d, 2H)
7.65 (d, 2H)
7.65 (d, 2H)
7.45 (d, 1H)
|
7.53 (br, 1H)
7.11 (s, 2H)
7.15 (s, 2H)
7.20 (s, 2H)
|
7.25 (s, 2H)
6.35 (d, 1H)
6.55 (d, 1H)
4.30 (br, 2H)
|
4.25 (m, 1H)
4.10 (m, 1H)
3.95 (m, 1H)
3.53 (m, 2H)
|
2.59 (br, 1H)
3.62 (m, 4H)
3.58 (m, 4H)
1.21 (d, 3H)
|
2.21 (br, 1H)
2.45 (m, 4H)
2.50 (m, 4H)
|
1.94 (m, 1H)
2.19 (m, 4H)
1.96 (m, 1H)
|
1.40 (m, 7H)
1.88 (m, 4H)
1.50 (m, 4H)
|
1.65 (m, 4H)
1.30 (m, 4H)
|
Aus-
63%
15%
17%
57%
|
beute
|
Schmp.
|
Masse
437 (EI)
511 (ES)
511 (EI)
403 (EI)
|
|
[0172]
44
|
|
|
225
226
227
228
|
|
|
Beispiel
194
195
196
197
|
Nr.
|
9.89 (s, 1H)
10.98 (s, 1H)
10.39 (s, 1H)
10.85 (s, 1H)
|
8.21 (s, 1H)
8.51 (br, 1H)
8.30 (s, 1H)
8.71 (d, 1H)
|
7.82 (d, 2H)
8.29 (s, 1H)
8.04 (d, 2H)
8.31 (s, 1H)
|
7.65 (m, 3H)
7.81 (m, 4H)
7.70 (d, 2H)
7.72 (d, 2H)
|
7.17 (br, 2H)
7.29 (br, 2H)
7.21 (br, 2H)
7.55 (d, 2H)
|
4.30 (m, 2H)
3.45 (m, 4H)
6.55 (s, 1H)
7.30 (m, 6H)
|
1.68 (m, 2H)
3.49 (s, 1H)
5.41 (m, 1H)
|
1.45 (m, 2H)
2.32 (m, 2H)
3.49 (m, 2H)
|
1.85 (m, 2H)
2.11 (m, 2H)
|
1.60 (m, 5H)
|
1.29 (m, 1H)
|
Aus-
26%
56%
12%
61%
|
beute
|
Schmp.
|
Masse
476 (EI)
417 (EI)
450 (EI)
479 (EI)
|
|
[0173]
45
|
|
|
229
230
231
232
|
|
|
Beispiel
198
199
200
201
|
Nr.
|
11.01 (s, 1H)
11.01 (s, 1H)
9.16 (s, 1H)
|
8.32 (s, 1H)
8.32 (s, 1H)
8.07 (s, 1H)
|
8.10 (d, 1H)
8.10 (d, 1H)
7.89 (d, 2H)
|
7.80 (m, 4H)
7.80 (m, 4H)
7.67 (d, 2H)
|
7.30 (br, 2H)
7.30 (br, 2H)
7.15 (s, 2H)
|
3.70 (m, 1H)
3.70 (m, 1H)
6.45 (d, 1H)
|
1.80 (m, 5H)
1.80 (m, 5H)
4.35 (s, 2H)
|
1.48 (m, 1H)
1.48 (m, 1H)
3.97 (m, 1H)
|
1.29 (m, 2H)
1.29 (m, 2H)
3.40 (m, 4H)
|
1.07 (m, 1H)
1.07 (m, 1H)
2.85 (m, 1H)
|
0.83 (d, 3H)
0.83 (d, 3H)
2.55 (m, 1H)
|
1.82 (m, 2H)
|
1.61 (m, 6H)
|
Aus-
4%
4%
7%
2%
|
beute
|
Schmp.
|
Masse
439 (EI)
439 (EI)
515 (ES)
515 (ES)
|
|
[0174]
46
|
|
|
233
234
235
236
|
|
|
Beispiel
202
203 *
204 *
205
|
Nr.
|
10.21 (s, 1H)
9.66 (s, 1H)
9.73 (s, 1H)
|
8.18 (s, 1H)
8.08 (s, 1H)
8.11 (s, 1H)
|
8.10 (d, 2H)
7.90 (d, 2H)
7.82 (d, 2H)
|
7.92 (d, 2H)
7.69 (d, 2H)
7.65 (d, 2H)
|
6.39 (d, 1H)
7.15 (s, 2H)
7.12 (s, 2H)
|
4.80 (br, 1H)
6.53 (d, 1H)
6.80 (d, 1H)
|
4.05 (m, 1H)
3.93 (m, 1H)
4.67 (m, 1H)
|
3.62 (m, 2H)
2.05 (m, 5H)
3.13 (m, 1H)
|
2.00 (m, 1H)
1.51 (m, 2H)
2.86 (m, 3H)
|
0.99 (d, 3H)
1.15 (m, 2H)
2.18 (m, 2H)
|
0.92 (d, 3H)
0.42 (m, 2H)
|
0.25 (m, 2H)
|
Aus-
10%
2%
2%
16%
|
beute
|
Schmp.
|
Masse
483 (ES)
480 (EI)
480 (EI)
430 (ES)
|
|
[0175]
47
|
|
|
237
238
239
240
|
|
|
Beispiel
206
207
208
209
|
Nr.
|
9.75 (s, 1H)
10.98 (s, 1H)
11.00 (s, 1H)
9.55 (s, 1H)
|
8.19 (s, 1H)
8.50 (d, 2H)
8.31 (s, 1H)
8.08 (s, 1H)
|
7.75 (d, 2H)
8.31 (s, 1H)
7.74 (m, 5H)
7.80 (d, 2H)
|
7.18 (d, 2H)
7.97 (d, 2H)
7.21 (d, 1H)
7.60 (d, 2H)
|
7.17 (s, 2H)
7.78 (d, 2H)
6.80 (d, 1H)
6.58 (br, 4H)
|
6.68 (d, 1H)
7.57 (d, 1H)
4.00 (m, 1H)
6.20 (d, 1H)
|
5.35 (t, 1H)
7.00 (t, 1H)
3.62 (m, 2H)
4.80 (br, 1H)
|
4.71 (m, 1H)
4.01 (m, 1H)
1.95 (m, 1H)
4.04 (m, 1H)
|
3.91 (m, 2H)
3.62 (m, 2H)
0.98 (d, 3H)
3.60 (m, 2H)
|
3.65 (s, 3H)
1.97 (m, 1H)
0.90 (d, 3H)
2.00 (m, 1H)
|
0.98 (d, 3H)
0.99 (d, 3H)
|
0.92 (d, 3H)
0.92 (d, 3H)
|
Aus-
5%
55%
44%
77%
|
beute
|
Schmp.
223
248
228
231
|
Masse
446 (ES)
507 (EI)
514 (EI)
|
|
[0176]
48
|
|
|
241
242
243
244
|
|
|
Beispiel
210
211
212
71
|
Nr.
|
10.03 (s, 1H)
10.90 (s, 1H)
9.18 (s, 1H)
9.66 (s, 1H)
|
8.38 (s, 1H)
8.40 (m, 1H)
9.05 (s, 1H)
8.08 (s, 1H)
|
8.14 (s, 1H)
8.30 (s, 1H)
7.98 (s, 1H)
7.88 (d, 2H)
|
7.81 (d, 2H)
7.88 (d, 2H)
7.18 (m, 2H)
7.63 (m, 3H)
|
7.60 (d, 1H)
7.73 (d, 2H)
6.98 (m, 2H)
7.28 (t, 1H)
|
7.30 (m, 7H)
7.38 (br, 1H)
6.31 (m, 1H)
7.11 (s, 2H)
|
4.99 (s, 2H)
3.45 (m, 4H)
4.45 (t, 1H)
6.88 (s, 1H)
|
3.42 (m, 2H)
2.38 (s, 3H)
3.47 (m, 4H)
3.65 (m, 2H)
|
2.97 (m, 2H)
1.62 (m, 2H)
1.63 (m, 2H)
2.88 (t, 2H)
|
1.58 (m, 2H)
1.45 (m, 2H)
1.48 (m, 2H)
|
1.30 (m, 4H)
|
Aus-
86%
22%
41%
77%
|
beute
|
Schmp.
|
Masse
528 (CI)
429 (EI)
352 (EI)
437 (EI)
|
|
[0177]
49
|
|
|
245
246
247
248
|
|
|
Beispiel
213
61
214
215
|
Nr.
|
12.40 (br, 1H)
12.41 (br, 1H)
8.03 (s, 1H)
9.55 (s, 1H)
|
11.10 (s, 1H)
11.11 (s, 1H)
7.76 (m, 4h)
8.10 (s, 1H)
|
8.08 (d, 2H)
8.10 (d, 1H)
3.70 (s, 2H)
7.80 (d, 2H)
|
7.79 (m, 4H)
7.80 (m, 5H)
1.92 (m, 4H)
7.68 (d, 2H)
|
7.30 (s, 2H)
7.30 (s, 2H)
0.92 (m, 6H)
7.15 (s, 2H)
|
4.04 (m, 1H)
4.08 (m, 1H)
(in MeOD)
5.82 (s, 1H)
|
3.60 (m, 2H)
3.63 (m, 2H)
3.74 (d, 1H)
|
2.07 (s, 3H)
2.50 (m, 2H)
3.52 (d, 1H)
|
2.00 (m, 1H)
2.01 (m, 1H)
2.72 (m, 1H)
|
0.97 (d, 3H)
1.15 (t, 3H)
1.35 (s, 3H)
|
0.90 (d, 3H)
0.99 (d, 3H)
0.97 (d, 3H)
|
0.92 (d, 3H)
0.91 (d, 3H)
|
Aus-
49%
25%
2%
9%
|
beute
|
Schmp.
|
Masse
365 (EI)
379 (EI)
443 (ES)
444 (ES)
|
|
[0178]
50
|
|
|
249
250
251
252
|
|
|
Beispiel
216
217
218
219
|
Nr.
|
10.88 (s, 1H)
10.88 (s, 1H)
11.01 (s, 1H)
11.11 (s, 1H)
|
8.36 (s, 1H)
8.36 (s, 1H)
8.52 (br, 1H)
8.53 (m, 1H)
|
8.03 (d, 1H)
8.03 (d, 1H)
8.29 (s, 1H)
8.36 (s, 1H)
|
7.79 (m, 4H)
7.79 (m, 4H)
7.78 (m, 4H)
7.80 (m, 4H)
|
7.28 (br, 2H)
7.28 (br, 2H)
7.32 (s, 2H)
7.31 (s, 2H)
|
4.65 (m, 1H)
4.65 (m, 1H)
3.39 (m, 2H)
3.71 (m, 2H)
|
3.89 (m, 2H)
3.89 (m, 2H)
1.70 (m, 6H)
2.65 (m, 2H)
|
3.71 (m, 2H)
1.15 (m, 3H)
|
2.19 (m, 2H)
0.96 (m, 2H)
|
Aus-
65%
34%
58%
88%
|
beute
|
Schmp.
239
239
238
280
|
Masse
439 (EI)
413 (EI)
439 (EI)
416 (EI)
|
|
[0179]
51
|
|
|
253
254
255
256
|
|
Beispiel
74
56
220
221
|
Nr.
|
|
9.67 (s, 1H)
9.70 (s, 1H)
8.92 (m, 1H)
9.66 (s, 1H)
|
8.11 (s, 1H)
8.81 (m, 1H)
8.08 (s, 1H)
|
7.88 (m, 4H)
7.96 (s, 1H)
7.83 (d, 2H)
|
6.25 (d, 1H)
7.43 (d, 2H)
7.68 (d, 2H)
|
4.81 (m, 1H)
6.67 (d, 2H)
7.22 (t, 1H)
|
4.05 (m, 1H)
6.20 (m, 1H)
7.11 (s, 2H)
|
3.61 (m, 2H)
4.38 (m, 1H)
3.95 (m, 4H)
|
2.01 (m, 1H)
3.48 (m, 1H)
3.48 (m, 2H)
|
0.97 (d, 3H)
3.37 (m, 1H)
1.79 (m, 4H)
|
0.92 (d, 3H)
1.20 (d, 3H)
1.18 (t, 6H)
|
Aus-
7%
17%
65%
19%
|
beute
|
Schmp.
285
158
166
|
Masse
457 (EI)
392 (EI)
354 (EI)
522 (ES)
|
|
[0180]
52
|
|
|
257
258
259
260
|
|
Beispiel
222
223
224
225
|
Nr.
|
|
9.81 (s, 1H)
9.71 (s, 1H)
9.70 (s, 1H)
10.29 (s, 1H)
|
9.08 (s, 1H)
8.13 (s, 1H)
8.08 (s, 1H)
8.83 (m, 2H)
|
8.68 (s, 1H)
7.89 (d, 2H)
7.88 (d, 2H)
8.51 (m, 1H)
|
8.35 (m, 1H)
7.66 (d, 2H)
7.65 (d, 2H)
8.26 (s, 1H)
|
8.20 (s, 1H)
7.31 (t, 1H)
7.25 (m, 3H)
7.93 (d, 2H)
|
8.02 (t, 1H)
7.14 (s, 2H)
6.11 (m, 1H)
7.60 (d, 2H)
|
7.63 (m, 5H)
3.98 (m, 2H)
3.40 (m, 5H)
7.51 (d, 2H)
|
7.17 (s, 2H)
3.69 (s, 3H)
7.25 (br, 2H)
|
7.03 (s, 1H)
3.64 (s, 3H)
4.90 (d, 2H)
|
4.82 (d, 2H)
|
Aus-
54%
23%
7%
43
|
beute
|
Schmp.
300
300
243
|
Masse
501 (EI)
465 (EI)
434 (EI)
|
|
[0181]
53
|
|
|
261
262
263
264
|
|
Beispiel
226
227
228
229
|
Nr.
|
|
10.38 (s, 1H)
10.30 (s, 1H)
10.52 (s, 1H)
10.88 (s, 1H)
|
8.52 (br, 1H)
8.78 (m, 1H)
8.66 (m, 1H)
8.92 (m, 1H)
|
8.23 (s, 1H)
8.36 (m, 3H)
8.28 (s, 1H)
8.33 (s, 1H)
|
7.72 (m, 4H)
7.81 (m, 2H)
7.63 (m, 4H)
7.72 (d, 2H)
|
7.36 (m, 1H)
7.60 (m, 4H)
7.26 (m, 6H)
7.62 (d, 2H)
|
7.22 (s, 2H)
7.22 (br, 2H) 4.63 (d, 2H)
7.30 (m, 4H)
|
7.03 (m, 1H)
4.94 (d, 2H)
6.89 (d, 2H)
|
6.95 (m, 1H)
4.62 (d, 2H)
|
4.80 (d, 2H)
3.70 (s, 3H)
|
Aus-
47%
41%
88%
89%
|
beute
|
Schmp.
229
287
259
233
|
Masse
440 (CI)
434 (EI)
451 (EI)
463 (EI)
|
|
[0182]
54
|
|
|
265
|
|
BeispielNr.
230
|
|
10.45 (s, 1H)
|
8.20 (s, 1H)
|
3.05 (m, 1H)
|
7.79 (m, 4H)
|
7.21 (s, 2H)
|
3.50 (m, 2H)
|
1.83 (m, 2H)
|
1.56 (m, 2H)
|
Ausbeute
58%
|
Schmp.
>300
|
Masse
466 (ES)
|
|
[0183]
55
|
|
|
266
267
268
269
|
|
Beispiel
231
232
233
234
|
Nr.
|
|
10.3 (s, 1H)
9.28 (s, 1H)
10.48 (s, 1H)
9.63 (s, 1H)
|
8.34 (tr, 1H)
8.0 (s, 1H)
8.25 (s, 1H)
8.12 (s, 1H)
|
8.2 (s, 1H)
7.73 (d, 2H)
7.85 (m, 4H)
7.65 (m, 4H)
|
7.9 (m, 4H)
7.63 (tr, 1H)
7.25 (m, 1H)
7.42 (d, 2H)
|
4.3 (q, 2H)
7.18 (d, 2H)
7.15 (s, 1H)
7.35 (tr, 2H)
|
4.2 (m, 2H)
5.0 (m, 1H)
5.1 (m, 1H)
7.21 (m, 1H)
|
3.23 (tr, 1H)
4.3 (s, 2H)
3.58 (m, 4H)
7.16 (s, 1H)
|
1.32 (tr, 3H)
4.14 (m, 2H)
5.35 (m, 1H)
|
3.11 (tr, 1H)
1.55 (d, 3H)
|
Aus-
85%
35%
33%
25%
|
beute
|
Schmp.
|
Masse
330 (EI)
288 (EI)
389 (CI)
448 (ESI)
|
|
[0184]
56
|
|
|
270
271
272
273
|
|
Beispiel-
235
236
237
238
|
Nr.
|
|
Schmp.
|
[° C.]
|
Masse
486 (ES)
516 (ES)
504 (ES)
488 (ES)
|
|
[0185]
57
|
|
|
274
275
276
277
|
|
Beispiel-
239
240
241
242
|
Nr.
|
|
Schmp.
|
[° C.]
|
Masse
536 (ES)
502 (ES)
484 (ES)
551 (ES)
|
|
[0186]
58
|
|
|
278
279
280
|
|
Beispiel-
243
244
245
|
Nr.
|
|
Schmp.
|
[° C.]
|
Masse
516 (ES)
514 (ES)
433 (ES)
|
|
[0187]
59
|
|
|
281
282
283
284
|
|
Beispiel-
246
247
248
249
|
Nr.
|
|
Schmp.
205
>300
|
[° C.]
|
Masse
446 (ES)
415 (EI)
504 (ES)
431 (ES)
|
|
[0188]
60
|
|
|
285
286
287
288
|
|
Beispiel-
250
251
252
253
|
Nr.
|
|
Schmp.
113
231
187
|
[° C.]
|
Masse
488 (ES)
446 (ES)
433 (ES)
|
|
[0189]
61
|
|
|
289
290
|
|
Nr.
254
255
|
|
Sch,p.
|
[° C.]
|
Masse
399 (ES)
444 (ES)
|
|
|
291
292
|
|
Nr.
256
257
|
|
Schmp.
|
[° C.]
|
Masse
474 (ES)
486 (ES)
|
|
[0190] Compounds Nos. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 and 204 that are identified with *) can be produced by the process variants that are described under Example No. 292.
Production of 4-(5-bromo-4-morpholin-4-yl-pyrimidin-2-ylamino)-phenylsulfonamide
[0191]
293
[0192] 202 mg (0.60 mmol) of the compound of Example No. 122 is mixed with 1 ml of water and 0.2 g (1.2 mmol) of bromine and stirred at room temperature. After 24 hours, 0.2 g (1.2 mmol) of bromine is added again, and it is stirred for another 24 hours at room temperature. The solvent is evaporated by means of underpressure, and the remaining residue is purified by chromatography (Flashmaster II, DCM/MeOH 7:3). 17 mg (0.04 mmol,7%) of the product is obtained as a white solid.
62|
|
|
294295296297
|
Beispiel-Nr.259260261262
|
Schmp.205-207202-203
[° C,]
MasseMS (ES) 452,428 (ES)
454 (M+ H,
100%)
|
[0193]
63
|
|
Beispiel-
|
Nr.
Verbindung
ESI-MS
|
|
|
|
263
298
434
|
|
264
299
434
|
|
265
300
477
|
|
266
301
477
|
|
267
302
552
|
|
268
303
552
|
|
269
304
|
|
[0194] Analogously to the process for the production of intermediate products that is described under Example 6.0, following compounds were also produced:
64|
|
Beispiel-270271272
Nr.
305306307
|
Ausbeute47%90%
MasseESI:ESI:ESI:
MH+ 480MH+ 432MH+ 446 (18%)
(100%) (100%)
478 (97%)430 (94%)
115 (30%)157 (43%)
|
[0195] Analogously to production example 1, the following compounds were also produced:
65|
|
|
308309
|
Beispiel-273274
Nr.
|
Aus-61%44%
beute
MasseEI:EI:
M+ 463 (4%)M+ 403 (24%)
277 (8%)358 (100%)
105 (100%)277 (52%)
|
|
310311
|
Beispiel-277278
Nr.
|
Aus-81%58%
beute
MasseEI:ESI:
M+ 431 (5%)MH+ 444
372 (100%)(100%)
291 (46%)442 (97%)
115 (20%)
|
|
312313
|
Beispiel-281282
Nr.
|
Aus-55%43%
beute
MasseESI:ESI:
MH+ 444MH+ 446
(100%)(100%)
442 (97%)444 (95%)
214 (12%)346 (5%)
|
|
314315
|
Beispiel-285286
Nr.
|
Aus-51%46%
beute
MasseESI:ESI:
MH+ 520MH+ 520
(100%)(100%)
518 (97%)518 (97%)
115 (27%)115 (23%)
|
|
316317
|
Beispiel-275276
Nr.
|
Aus-42%68%
beute
MasseESI:EI:
MH+ 418M+ 401 (33%)
100%372 (100%)
416 (94%)344 (38%)
346 (8%)
|
|
318319
|
Beispiel-279280
Nr.
|
Aus-˜20%30%
beute
MasseESI:ESI:
MH+ 494MH+ 418
(75%)100%)
346 (18%)416 (97%)
214 (55%)310 (27%)
|
|
320321
|
Beispiel-283284
Nr.
|
Aus-˜18%35%
beute
MasseESI:ESI:
MH+ 416MH+ 446
(100%)(100%)
414 (96%)444 (90%)
317 (4%)
|
|
322323
|
Beispiel-287288
Nr.
|
Aus-47%61%
beute
MasseESI:ESI:
MH+ 432MH+ 446
(100%)(100%)
430 (95%)444 (93%)
346 (5%)115 (31%)
|
[0196] According to the production variants below, the following compounds are also synthesized:
324
[0197] 30 mg (0.0678 mmol) of compound No. 278 is dissolved in 1 ml of methanol/tetrahydrofuran 1:1. After adding ≈10 mg of sodium borohydride, stirring is continued for 2 hours. Then, it is quenched with ≈3-4 drops of glacial acetic acid while being cooled, and it is concentrated by evaporation. Below, the crude product is taken up with a little water, suctioned off, rewashed with acetonitrile and dried in a vacuum at 60° C. Yield: 21 mg (70% of theory) of the desired compound.
66|
|
|
325326
|
Beispiel-289290
Nr.
|
Aus-52%70%
beute
MasseEI:ESI:
M+ 465 (5%)MH+ 446
358 (40%)(100%)
207 (31%)444 (93%)
117 (20%)
|
Production of the Oxime Ether-Pyrimidine Compounds of General Formula I
[0198] The production of the oxime ether is carried out according to the following general reaction diagram:
327
[0199] R8 and R9 have the meanings that are indicated in general formula I.
PRODUCTION OF EXAMPLE 291
[0200]
328
[0201] 50 mg (0.12 mmol) of compound No. 283, 34 mg of hydroxylammonium chloride and 150 mg of pulverized KOH are reflexed for 2 hours in 2 ml of ethanol. Then, it is poured onto ice water and acidified with glacial acetic acid, extracted 3 times with dichloromethane/isopropanol 4:1, dried with magnesium sulfate and concentrated by evaporation. The residue is suspended with acetonitrile, suctioned off and dried at 60° C.
[0202] Yield: 28 mg (54% of theory) of the desired compound. Mass ESI: MH+429 (29%) 371 (61%) 289 (91%)
[0203] Similarly produced were also the following compounds:
67|
|
|
329330331
Beispiel-Nr.292293294
|
Ausbeute34%36%40%
MasseESI:ESI:ESI:
MH+ 443 (95%)MH+ 485 (92%)MH+ 487 (91%)
445 (99%)487 (99%)489 (89%)
373 (32%)373 (32%)
|
Reduced Amination
[0204]
332
[0205] 50 mg (0.12 mmol) of compound No. 283 and 7.5 mg (0.132 mmol) of cyclopropylamine are dissolved in 2 ml of 1,2-dichloroethane. After 9.1 mg (0.144 mmol) of sodium cyanoborohydride is added, it is allowed to stir for 12 more hours. Then, it is diluted with dichloromethane/isopropanol 4:1, washed 2× with water, dried with magnesium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel with dichloromethane/methanol 95:5. Yield: 18 mg (33% of theory) of the desired compound.
68|
|
|
333
|
Aus-33%
beute
MasseESI:
MH+ 457
(98%)
455 (93%)
249 (55%)
|
[0206] Produced similarly are also compounds Nos. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203, and 204.
EXAMPLES 296 AND 297
[0207] Produced similarly to Example 1 are also the following two compounds:
69|
|
|
334335
|
Beispiel296297
|
Ausbeute46%47%
MasseESI:ESI:
MH+ 432 (30%)MH+ 446 (45%)
434 (31%)448 (49%)
123 (100%)123 (90%)
|
Production of Sulfonamides of General Formula I
[0208]
336
[0209] 0.2 mmol of sulfonic acid fluoride is introduced into the reactor of a synthesizer. 1.0 ml of solvent, preferably 2-butanol, is added. 0.2 ml (0.2 mmol) of DMAP—dissolved in a solvent, for example DMSO or 2-butanol—and 0.2 ml (0.2 mmol) of the amine, dissolved in 2-butanol, are added in succession via a pipette. The reaction mixture is then stirred for 20 hours at 80° C. After the reaction is completed, the crude product is pipetted off, and the reactor is rewashed with 1.0 ml of THF. The solution of the crude product is then concentrated by evaporation and purified by HPLC.
[0210] The compounds below were produced:
[0211] [Key to subsequent tables:]
[0212] Beispiel-Nr.=Example No.
[0213] Verbindung=Compound
[0214] Molgewicht=Molecular Weight
[0215] Schmelzpunkt=Melting point
[0216] und=and
70|
|
Beispiel-
Nr.VerbindungMolgewichtESI-MS
|
|
|
298337526,4968526/528
|
299338562,5298562/564
|
300339624,6006624/626
|
301340501,4471501/503
|
302341538,4682538/540
|
303342588,4465588/590
|
304343528,5126528/530
|
305344542,5394542/544
|
306345556,5662556/558
|
307346570,593570/572
|
308347510,4106510/512
|
309348588,4465588/590
|
310349548,503548/550
|
311350555,4949555/557
|
312351500,459500/502
|
313352514,4858514/516
|
314353515,4739515/517
|
315354557,5543557/559
|
316355470,3896470/472
|
317356551,5069551/553
|
318357534,4762534/536
|
319358568,9213568/570
|
320359524,4374524/526
|
321360534,4839543/545
|
322361488,4044488/490
|
323362526,4776526/528
|
324363564,502564/566
|
325364527,4849527/529
|
326365541,5117541/543
|
327366538,4395538/540
|
328367541,5117541/543
|
329368521,4375521/523
|
330369538,4395538/540
|
331370521,4375521/523
|
332371550,4752550/552
|
333372550,4752550/552
|
334373613,5551613/615
|
335374534,4762534/536
|
336375512,47512/514
|
337376548,503548/550
|
338377610,5738610/612
|
339378487,4203487/489
|
340379524,4414524/526
|
341380574,4197574/576
|
342381514,4858516/514
|
343382528,5126528/530
|
344383542,5394542/544
|
345384556,5662556/558
|
346385496,3838496/498
|
347386574,4197574/576
|
348387534,4762534/536
|
349388541,4681541/543
|
350389486,4322486/488
|
351390500,459500/502
|
352391501,4471501/503
|
353392543,5275543/545
|
354393456,3628456/458
|
355394537,4801537/539
|
356395520,4494520/522
|
357396554,8945554/556
|
358397510,4106510/512
|
359398529,4571529/531
|
360399474,3776474/476
|
361400512,4508541/514
|
362401550,4752550/552
|
363402513,4581513/515
|
364403527,4849527/529
|
365404524,4127524/526
|
366405527,4849527/529
|
367406507,4107507/509
|
368407524,4127524/526
|
369408507,4107507/509
|
370409536,4484536,538
|
371410536,4484536/538
|
372411599,5283599/601
|
373412520,4494520/522
|
374413512,47512/514
|
375414548,503548/550
|
376415610,5738610/612
|
377416524,4414524/526
|
378417574,4197574/576
|
379418514,4858514/516
|
380419528,5126528/530
|
381420542,5394542/544
|
382421496,3838496/498
|
383422574/4197574/576
|
384423534,4762534/536
|
385424541,4681541/543
|
386425486,4322486/488
|
387426500,459500/502
|
388427501,4471501/503
|
389428543,5275543/545
|
390429537,4801537/539
|
391430520,4494520/522
|
392431554,8945554/556
|
393432510,4106510/512
|
394433529,4571529/531
|
395434474,3776474/476
|
396435512,4508512/514
|
397436513,4581513/515
|
398437527,4849527/529
|
399438524,4127524/526
|
400439527,4849527/529
|
401440507,4107507/509
|
402441524,4127524,526
|
403442507,4107507/509
|
404443536,4484526/538
|
405444536,4484536/538
|
406445599,5283599/601
|
407446520,4494520/522
|
408447529,4419529/531
|
409448534,4762534/536
|
410449596,547596/598
|
411450473,3935473/475
|
412451510,4146510/512
|
413452560,3929560/562
|
414453500,549500/502
|
415454514,4858514/516
|
416455528,5126528/530
|
417456482,357482/484
|
418457560,3929560/562
|
419458520,4494520/522
|
420459527,4413527/529
|
421460472,4054472/474
|
422461486,4322486/488
|
423462487,4203487/489
|
424463529/5007529/531
|
425464523,4532523/525
|
426465506,4226506/508
|
427466540,8677540/542
|
428467496,3838496/498
|
429468515,4303515/517
|
430469460,3508460/462
|
431470498,424498/500
|
432471499,4313499/501
|
433472513,4581513/515
|
434473510,3859510/512
|
435474513,4581513/515
|
436475493,3839493/495
|
437476510,3859510/512
|
438477493,3839493/495
|
439478522,4216522/524
|
440479522,4216522/524
|
441480585,5015585/587
|
442481506,4226506/508
|
443482515,4151515/517
|
444483416,30416/418
|
Production of the Pyrimidine-Sulfonyl Fluorides of General Formula I
[0217] The production of the pyrimidine-sulfonic acid fluorides is carried out analogously to the production of the sulfonic acid amides.
48471|
|
Schmelzpunkt
[° C.]
Beispiel-Nr.VerbindwigMolgewichtund ESI-MS
|
|
|
445485405.25217-220 405/407
|
446486419.27196-202 419/421
|
447487419.27165-196 419/421
|
448488433.30198-204 433/435
|
449489433.30144-149 433/435
|
450490447.33219-222 447/449
|
[0218] Similarly produced to the above-described examples were also the following para-compounds:
72|
|
Molekular-
Beispiel-Nr.VerbindunggewichtESI-MS
|
|
|
451491498.4432498/500
|
452492534.4762534/536
|
453493596.547596/598
|
454494473.3935473/475
|
455495510.4146510/512
|
456496560.3929560/562
|
457497500.459500/502
|
458498514.4858514/516
|
459499528.5126528/530
|
460500542.5394542/544
|
461501560.3929560/562
|
462502520.4494520/522
|
463503527.4413527/529
|
464504472.4054472/474
|
465505486.4322486/488
|
466506529.5007529/531
|
467507442.336442/444
|
468508523.4532523/525
|
469509506.4226506/508
|
470510540.8677540/542
|
471511496.3838496/498
|
472512515.4303515/517
|
473513460.3508460/462
|
474514498.424498/500
|
475515536.4484536/538
|
476516499.4313499/501
|
477517513.4581513/515
|
478518510.3859510/512
|
479519513.4581513/515
|
480520493.3839493/495
|
481521510.3859510/512
|
482522493.3839493/495
|
483523522.4216522/524
|
484524522.4216522/524
|
485525585.5015585/587
|
486526506.4226506/508
|
487527515.4151515/517
|
488528512.47512/514
|
489529548.503548/550
|
490530610.5738610/612
|
491531487.4203487/489
|
492532524.4414524/526
|
493533574.4197574/576
|
494534514.4858516/514
|
495535528.5126528/530
|
496536542.5394542/544
|
497537556.5662556/558
|
498538496.3838496/498
|
499539574.4197574/576
|
500540534.4762534/536
|
501541541.4681541/543
|
502542486.4322486/488
|
503543500.459500/502
|
504544501.4471501/503
|
505545543.5275543/545
|
506546456.3628456/458
|
507547537.4801537/539
|
508548520.4494520/522
|
509549566.4742
|
510550554.8945554/556
|
511551510.4106510/512
|
512552529.4571529/531
|
513553474.3776474/476
|
514554512.4508512/514
|
515555550.4752550/552
|
516556513.4581513/515
|
517557527.4849527/529
|
518558524.4127524/526
|
519559527.4849527/529
|
520560507.4107507/509
|
521561524.4127524/526
|
522562507.4107507/509
|
523563536.4484536/538
|
524564536.4484536/538
|
525565599.5283599/601
|
526566520.4494520/522
|
527567529.4419529/531
|
Separation of Diastereomer Mixtures of the Compounds According to the Invention
SEPARATION IN THE EXAMPLE OF THE DIASTEREOMER MIXTURE OF COMPOUND NO. 275
[0219]
568
[0220] The diastereomer mixture was separated in the two corresponding racemates (A and B) by means of HPLC. Conditions:
73|
|
Column:Kromasil C18 (5 μm) 150 × 4.6 mm
Eluant:25% acetonitrile/water with 1 ml of NH3/1;
Flow:1.0 ml/min
Detection:PDA 300 nm
Retention times:Racemate A - 11.6 minutes
Racemate B - 12.4 minutes
|
[0221]
74
|
|
|
569
570
|
|
|
NMR
DMSO-d6:
DMSO-d6:
|
9.68, s, 1 H
9.68, s, 1 H
|
8.12, s, 1 H
8.11, s, 1 H
|
7.87, d, 2 H
7.85, d, 2 H
|
7.70, d, 2 H
7.69, d, 2 H
|
7.14, s, 2 H
7.16, s, 2 H
|
6.15, d, 1 H
6.35, d, 1 H
|
5.01, d, 1 H
4.90, d, 1 H
|
4.10, m, 1 H
4.08, m, 1 H
|
3.80, m, 1 H
3.80, m, 1 H
|
1.22, d, 3 H
1.18, d, 3 H
|
1.1, d, 3 H
1.12, d, 3 H
|
|
[0222] Below, racemates A and B in each case were separated by means of chiral HPLC. Conditions:
75|
|
Column:Chiralpak AD (10 μm) 250 × 4.6 mm
Eluant:Hexane/ethanol 80:20
Flow:1.0 ml/min
Detection:PDA 300 nm
Retention times:Enantiomer A1 - 16.6 minutes
Enantiomer A2 - 19.6 minutes
Enantiomer B1 - 16.0 minutes
Enantiomer B2 - 17.8 minutes
|
[0223] Production of the intermediate stages preferably used for the synthesis of the compounds of general formula I according to the invention.
Production of N-(2-cholor-5-fluoro-4-pyrimidinyl)-N-2-propynylamine
[0224] 11.1 g (66 mmol) of 2,4-dichloro-5-fluoropyrimidine is dissolved in 60 ml of acetonitrile, and 10.2 ml (73 mmol) of triethylamine and 6.0 ml (86 mmol) of propynylamine are added. The reaction mixture is stirred overnight at room temperature and then poured into water. The mixture is extracted by means of ethyl acetate, the combined organic phases are dried on MgSO2, and the solvent is evaporated by means of underpressure. After the remaining material is recrystallized with diisopropyl ether/hexane, the yield is 10.6 g (87% of theory) of the product.
76|
|
|
571
|
|
5-H8.18 (3.3 Hz, 1H)Solvent: DMSO
4CH4.14 (dd, 2H)Yield: 87%
3.20 (t, 1H)Melting point: 96° C.
NH8.65 (tb, 1H)
|
[0225] The 4-(diaminocyclohexyl) derivatives that are described below are synthesized via reductive aminations of the described keto derivative with use of triacetoxy borohydride (Abdel-Magid, Carson, Harris, Maryanoff, Sha, J. Org. Chem. 1996, 61, 3849). The keto derivative is obtained by TPAP oxidation (Griffith, Ley, Aldrichimica Acta 1990, 23, 13) of the corresponding alcohol.
[0226] Similarly produced are also the following intermediate compounds:
[0227] [Key to subsequent tables:]
[0228] Beispiel-Nr.=Example No.
[0229] Losemittel=Solvent
[0230] Ausbeute=Yield
[0231] Schmp.=Melting point
[0232] Masse=Mass
[0233] Chrom. Ausbeute=Chromatography yield
77|
|
|
572573574575
|
Beispiel-Nr.1.11.21.31.4
LösemittelCDCl3DMSODMSODMSO
5-H7.87 (s, 1H)8.34 (s, 1H)8.24 (s, 1H)8.23 (s, 1H)
4CH4.32 (dd, 2H)4.48 (q, 1H)3.59 (td, 2H) 3.21 (t, 2H)
2.30 (t, 1H)1.93 (dq, 2H)2.78 (t, 2H)1.10 (mc, 1H)
0.92 (t, 3H)7.57 (s, 1H)0.42 (mc, 2H)
5CH2.03 (s, 3H)3.66 (s, 3H)6.85 (s, 1H)0.37 (mc, 2H)
7.90 (tb, 1H) 7.84 (t, 1H)
NH4.91 (sb, 1H)7.69 (d, 1H)11.92 (sb, 1H)
Ausbeute80%42%33%74%
Schmp.121-121.5° C.73° C.90° C.98° C.
|
|
576577578579
|
Beispiel-Nr.1.51.61.71.8
LösemittelDMSODMSODMSODMSO
6-H8.26 (s, 1H)8.26 (s, 1H)8.27 (s, 1H)8.37 (s, 1H)
4CH3.59 (mc, 2H)3.58 (mc, 2H)3.58 (sb, 4H)4.40 (m, 1H)
3.90 (mc, 1H)3.97 (mc, 1H)4.14 (mc, 1H)3.49 (dd, 1H)
1.98 (mc, 1H)1.96 (mc, 1H)3.33 (dd, 1H)
0.94 (d, 3H)0.92 (d, 3H)3.26 (s, 3H)
0.86 (d, 3H)0.84 (d, 3H)1.15 (d, 3H)
OH4.67 (mb, 1H)4.74 (t, 1H)4.78 (sb, 2H)
NH6.75 (sb, 1H)6.87 (d, 1H)6.73 (sb, 1H)7.29 (d, 1H)
Ausbeute82%91%41%74%
Schmp.113-114° C.121-122° C.155-156° C.Öl
|
|
580581
|
Beispiel-Nr.1.91.10
LömittelDMSODMSO
6-H8.24 (s, 1H)8.36 (s, 1H)
4CH3.49 (q, 2H)4.14 (d, 2H)
2.50 (t, 2H)3.18 (t, 1H)
2.42 (t, 4H)
3.56 (t, 4H)
OH
NH7.57 (sb, 1H)8.40 (s, 1H)
Ausbeute31%73
Schmp.118-119° C.103-104° C.
|
|
582583584585
|
Beispiel-Nr.1.111.121.131.14
LösemittelDMSODMSODMSODMSO
6-H8.30 (s, 1H)8.32 (s, 1H)8.29 (s, 1H)8.24 (s, 1H)
4.46 (dq, 1H)5.04 (q, 1H)3.7-3.9 (2H)4.25 (m, 1H)
1.38 (d, 3H)2.39 (m, 2H)5.19 (m, 1H)3.48 (m, 2H)
7.2-7.4 (5H)
NH7.60 (sb, 1H)4.31 (q, 1H)7.72 (d, 1H)1.86 (m, 2H)
5.09 (t, 1H)
OH7.29 (sb, 1H)4.40 (t, 1H)2.43 (m, 2H)
7.21 (d, 1H)8.13 (d, 1H)2.03 (s, 3H)
7.13 (d, 1H)
4.88 (t, 1H)
Ausbeute87%63%99%78%
Schmp.234° C. Zers.210° C. Zers.152-153° C.130° C.
|
|
586587588
|
|
Beispiel-Nr.1.151.161.17
LösemittelDMSODMSODMSO
6-H8.20 (s, 1H)8.21 (s, 1H)8.22 (s, 1H)
3.55 (m, 2H)3.33 (q, 2H)3.39 (q, 2H)
4.22 (m, 1H)1.53 (m, 4H)2.26 (t, 2H)
5.03 (m, 2H)1.28 (m, 2H)1.79 (q, 2H)
7.1-7.4 (5H)2.29 (t, 2H)
NH6.53 (d, 1H)7.74 (t, 1H)7.78 (t, 1H)
5.93 (d, 1H)12.11 (sb, 1H)
Ausbeute93%99%11%
Schmp.ÖlÖlÖl
|
|
589590591
|
Beispiel-Nr.1.181.191.20
Ausbeute86%64%87%
MasseESI:ESI:Cl:
MH+ 297 (2%)MH+ 311 (2%)M+ 354 (100%)
266 (22%)248 (20%)352 (72%)
234 (30%)236 (18%)308 (54%)
|
|
592593594
|
|
Beispiel-Nr.1.211.221.23
Ausbeute26%˜20%89%
MasseEI:NMR, CDCl3EI:
M+ 327 (10%)8.16 (s, 1H)M+ 265 (15%)
222 (36%)6.55 (s, 1H)236 (100%)
105 (100%)4.43 (d, 2H)209 (18%)
1.29 (s, 9H)
|
|
595596597
|
|
Beispiel-Nr.1.241.251.26
Ausbeute75%70%83%
MasseCl:ClESI:
M+ 384M+ 384 (100%)319 3%
(100%)212 (21%)278 100%
212 (21%)91 (7%)220 68%
91 (7%)
|
|
598
|
|
Beispiel-Nr.1.27
Ausbeute98%
MasseESI:
MH+296 (90%)
298 (100%)
210 (12%)
|
Production of 5-Bromo-2-chloro-4-(4,4,4-trifluorobutoxy)pyrimidine
[0234] 3.19 g (14 mmol) of 5-bromo-2,4-dichloropyrimidine is mixed with 8.06 g (63 mmol) of 4,4,4-trifluorobutanol, and 0.74 ml (8.4 mmol) of trifluoromethanesulfonic acid is slowly added to it. The reaction mixture is stirred overnight at room temperature and then poured into water. The mixture is extracted by means of ethyl acetate, the combined organic phases are dried on MgSO2, and the solvent is evaporated by means of underpressure. The product is always contaminated with varying amounts of 2,4-bisalkoxypyrimidine. The remaining material is therefore purified by means of gradient chromatography with silica gel as a carrier medium (eluant: hexane and hexane/ethyl acetate at a 9:1 ratio). This process results in a yield of 1.70 g (38%) and also yields 1.93 g (34%) of 5-bromo-2,4-bis-(4,4,4-trifluorobutoxy)pyrimidine (starting compound).
78|
|
|
5995-H 4C H 5C H-8.74(s, 1H) Chromatography: H to H/EA 9:1 4.48(t, 2H) Yield: 38% 2.00(mc, 2H)Melting point: 66.5-67.5°2.44(mc, 2H)
|
[0235] Similarly produced are also the following compounds:
79|
|
|
600601
|
Beispiel-2.12.2
Nr.
|
CDCl3DMSO
5-H8.49(s, 1H)8.75(s, 1H)
4CH5.10(d, 2H)4.05(mc, 2H)
3.79(mc, 2H)
3.60(mc, 2H)
5CH2.59(t, 1H)3.48(mc, 2H)
3.40(t, 2H)
1.07(t, 3H)
Chrom.H toDCM to DCM/
H/EA 4:1MeOH 95:5
Ausbeute78%11%
Schmp.55° C.OI
|
[0236] Analogously to process examples 1 and 2, the following intermediate products are also produced:
80|
|
|
602603
|
Beispiel1-2.11-2.2
-Nr.
|
LöseDMSODMSO
Mittel
8.26(s, 1H)8.26(s, 1H)
6.65(d, 1H)6.65(d, 1H)
4.70(t, 1H)4.70(t, 1H)
4.10(dt, 1H)4.10(dt, 1H)
3.65(at, 2H)3.65(at, 2H)
0.90(s, 9H)0.90(s, 9H)
Aus-49%70%
beute
Masse309(EI)309(EI)
|
|
604605
|
Beispiel1-2.51-2.6
-Nr.
|
Löse-DMSODM30
mittel
8.15(s, 1H)8.22(s, 1H)
7.25(t, 1H)4.82(t, 1H)
3.16(s, 2H)4.49(br, 1H)
1.90(s, 3H)3.85(m, 1H)
1.61(q, 6H)3.76(m, 1H)
1.41(s, 6H)3.54(m, 1H)
3.40(m, 1H)
1.93(m, 3H)
1.80(m, 1H)
Aus-70%75%
beute
Masse357(EI)293(EI)
|
|
606607
|
Beispiel1-2.91-2.10
-Nr.
|
Löse-DMSODMSO
mittel
8.38(s, 1H)8.22(s, 1H)
4.81(br, 1H)7.05(d, 1H)
3.96(m, 2H)4.82(t, 1H)
3.72(m, 1H)4.18(m, 1H)
3.30(m, 2H)3.42(m, 2H)
1.81(m, 2H)1.15(d, 3H)
1.48(m, 2H)
Aus-19%71%
beute
Masse292(EI)266(EI)
|
|
608609
|
Beispiel1-2.131-2.14
-Nr.
|
Löse-DMSODMSO
mittel
8.41(s, 1H)8.25(s, 1H)
8.11(s, 1H)4.53(m, 1H)
4.28(t, 2H)3.88(m, 2H)
3.70(dd, 1H)
3.62(dd, 1H)
2.16(m, 1H)
2.02(m, 1H)
7.56(d, 1H)
Aus-46%72%
beute
Masse390(FAB)277(EI)
|
|
610611
|
Beispiel1-2.171-2.18
-Nr.
|
Löse-DMSODMSO
mittel
8.21(s, 1H)8.35(t, 1H)
7.22(d, 1H)8.19(s, 1H)
3.88(m, 1H)3.40(m, 2H)
1.70(m, 4H)2.97(p, 1H)
1.50(m, 2H)2.22(m, 4H)
1.28(m, 1H)2.08(dd, 1H)
1.01(m, 2H)1.70(m, 6H)
0.82(d, 3H)
Aus-22%32%
beute
Masse303(EI)320(EI)
|
|
612613
|
Beispiel1-2.211-2.22
-Nr.
|
Löse-DMSODM30
mittel
8.25(s, 1H)8.25(s, 1H)
8.08(d, 1H)7.38(d, 1H)
7.35(m, 5H)4.44(m, 1H)
5.30(m, 1H)2.60(m, 2H)
4.81(t, 1H)2.24(m, 2H)
3.45(m, 2H)2.07(m, 2H)
2.05(m, 2H)1.90(m, 2H)
Aus-97%58%
beute
Masse343(EI)304(ES)
|
|
614615
|
Beispiel1-2.251-2.26
-Nr.
|
Löse-DMSODMSO
mittel
8.22(s, 1H)
7.21(d, 1H)
3.82(m, 1H)
2.45(m, 4H)
2.22(m, 1H)
1.78(m, 8H)
1.45(m, 6H)
Aus-n.b.26%
beute
Masse344(EI)374(EI)
|
|
616617
|
Beispiel1-2.291-2.30
-Nr.
|
Löse-DMSODMSO
mittel
8.22(s, 2H)8.21(s, 1H)
7.28(d, 1H)7.18(d, 1H)
7.10(d, 1H)4.62(s, 1H)
4.00(m, 1H)4.20(m, 1H)
3.85(m, 1H)3.95(m, 1H)
2.19(s, 6H)2.75(dd, 1H)
2.17(s, 6H)2.50(m, 2H)
2.15(m, 1H)2.31(dd, 1H)
2.00(m, 1H)2.15(s, 1H)
1.82(m, 8H)2.00(m, 1H)
1.50(m, 6H)1.82(m, 4H)
1.25(m, 2H)1.55(m, 5H)
Aus-13%35%
beute
Masse334(EI)374(EI)
|
|
618619
|
Beispiel1-2.331-2.34
-Nr.
|
Löse-DMSOCDCl3
mittel
8.50(s, 1H)8.08(s, 1H)
4.10(m, 2H)6.04(m, 1H)
3.72(m, 1H)5.71(br, 1H)
3.30(m, 2H)4.48(d, 2H)
1.75(m, 2H)3.71(s, 3H)
1.35(m, 2H)2.25(s, 3H)
Aus-3%30%
beute
Masse291(EI)300(ES)
|
|
620621
|
Beispiel1-2.371-2.38
-Nr.
|
Löse-CDCl3CDCl3
mittel
8.14(s, 1H)8.20(s, 1H)
5.41(m, 1H)7.71(m, 1H)
4.49(m, 1H)7.30(m, 6H)
2.44(m, 6H)4.97(s, 2H)
1.79(m, 2H)3.00(m, 2H)
1.40(m, 8H)
Aus-58%77%
beute
Masse304(ES)427(ES)
|
|
622623
|
Beispiel1-2.411-2.42
-Nr.
|
Löse-DMSODMSO
mittel
8.19(s, 1H)8.21(s, 1H)
7.21(d, 1H)7.03(d, 1H)
4.03(m, 1H)4.83(t, 1H)
1.60(m, 12H)4.13(m, 1H)
3.47(m, 2H)
1.12(d, 3H)
Aus-73%61%
beute
Masse303(EI)267(EI)
|
|
624625
|
Beispiel1-2.451-2.46
-Nr.
|
Löse-DMSODMSO
mittel
8.36(s, 1H)8.26(s, 1H)
6.56(s, 1H)8.06(d, 1H)
3.81(s, 1H)7.30(m, 5H)
2.28(m, 2H)5.29(m, 1H)
1.83(m, 2H)4.81(t, 1H)
1.58(m, 6H)3.42(m, 2H)
2.10(m, 2H)
Aus-84%97%
beute
Masse314(EI)343(EI)
|
|
626627
|
Beispiel1-2.491-2.50
-Nr.
|
Löse-DMSODMSO
mittel
8.29(s, 1H)8.18(s, 1H)
6.05(s, 1H)7.25(d, 1H)
5.18(m, 1H)4.15(m, 1H)
3.54(s, 2H)2.40(m, 6H)
1.92(m, 2H)1.50(m, 4H)
1.76(m, 2H)1.17(d, 3H)
0.90(dd, 6H)
Aus-16%.52%
beute
Masse308(EI)350(EI)
|
|
628629
|
Beispiel1-2.531-2.54
-Nr.
|
Löse-DMSODMSO
mittel
8.22(s, 1H)7.75(s, 1H)
7.65(t, 1H)6.55(d, 1H)
7.30(m, 6H)4.54(m, 1
5.01(s, 2H)
3.38(m, 2H)
3.04(m, 2H)
1.68(m, 2H)
Aus-77%50%
beute
Masse398(EI)229(EI)
|
|
630631
|
Beispiel1-2.31-2.4
-Nr.
|
Löse-DMSODMSO
Mittel
8.29(s, 1H)8.28(s, 1H)
6.32(s, 1H)7.09(d, 1H)
4.89(t, 3H)5.05(d, 1H)
3.74(d, 6H)3.95(m, 1H)
3.60(m, 5H)
1.30(s, 3H)
1.28(s, 3H)
Aus-16%92%
beute
Masse314(EI)354(EI)
|
|
632633
|
Beispiel1-2.71-2.8
-Nr.
|
Löse-DMSODMSO
mittel
8.28(s, 1H)8.22(s, 1H)
6.29(s, 1H)7.23(d, 1H)
5.31(t, 1H)4.60(d, 1H)
3.39(d, 2H)3.85(m, 1H)
1.39(s, 6H)3.35(m, 1H)
1.80(m, 4H)
1.53(m, 2H)
1.20(m, 2H)
Aus-46%24%
beute
Masse281(EI)305(EI)
|
|
634635
|
Beispiel1-2.111-2.12
-Nr.
|
Löse-DMSODMSO
mittel
8.21(s, 1H)8.31(s, 1H)
7.06(d, 1H)7.32(d, 1H)
4.81(t, 1H)4.35(s, 1H)
4.22(m, 1H)3.68(s, 3H)
3.47(m, 2H)2.32(m, 1H)
1.51(m, 2H)0.90(dd, 6H)
1.37(m, 1H)
0.88(m, 6H)
Aus-99%77%
beute
Masse308(EI)322(ES)
|
|
636637
|
Beispiel1-2.151-2.16
-Nr.
|
Löse-DMSODMSO
mittel
8.19(s, 1H)8.19(s, 1H)
7.65(t, 1H)7.30(d, 1H)
3.18(t, 2H)3.65(m, 1H)
1.62(m, 6H)1.68(m, 5H)
1.16(m, 3H)1.25(m, 4H)
0.90(m, 2H)0.78(d, 3H)
Aus-68%31%
beute
Masse303(EI)305(EI)
|
|
638639
|
Beispiel1-2.191-2.20
-Nr.
|
Löse-DMSODMSO
mittel
8.21(s, 1H)8.20(s, 1H)
7.81(t, 1H)7.71(t, 1H)
3.41(dd, 2H)4.45(br, 1H)
2.31(m, 10H)3.40(m, 4H)
2.13(s, 3H)1.60(m, 2H)
1.70(p, 2H)1.44(m, 2H)
Aus-28%98%
beute
Masse349(EI)281(EI)
|
|
640641
|
Beispiel1-2.231-2.24
-Nr.
|
Löse-DMSODMSO
mittel
8.20(s, 1H)8.21(s, 1H)
7.28(d, 1H)7.24(d, 1H)
4.19(m, 1H)7.02(t, 1H)
2.40(m, 6H)4.40(m, 1H)
1.50(m, 4H)3.92(m, 1H)
1.15(d, 3H)2.95(q, 2H)
0.91(t, 6H)1.95(m, 2H)
1.82(m, 2H)
1.59(m, 2H)
1.3(m, 6H)
0.82(t, 3H)
Aus-52%70%
beute
Masse348(EI)
|
|
642643
|
Beispiel1-2.271-2.28
-Nr.
|
Löse-DMSODMSO
mittel
8.25(s, 1H)8.22(s, 1H)
6.87(d, 1H)7.28(d, 1H)
4.02(m, 1H)3.85(m, 1H)
2.45(m, 4H)2.19(s, 6H)
2.22(m, 1H)2.15(m, 1H)
1.78(m, 8H)1.82(m, 4H)
1.45(m, 6H)1.50(m, 2H)
1.25(m, 2H)
Aus-23%51%
beute
Masse374(EI)334(EI)
|
|
644645
|
Beispiel1-2.311-2.32
-Nr.
|
Löse-DMSODMSO
mittel
8.21(s, 1H)8.71(s, 1H)
7.22(d, 1H)5.32(m, 1H)
4.65(s, 1H)3.82(m, 2H)
4.15(m, 1H)3.55(m, 2H)
3.85(m, 1H)2.00(m, 2H)
2.78(m, 1H)1.70(m, 2H)
2.60(m, 1H)
2.38(dd, 1H)
1.95(m, 3H)
1.80(m, 2H)
1.52(m, 3H)
1.20(m, 2H)
Aus-21%40%
beute
Masse374(EI)292(EI)
|
|
646647
|
Beispiel1-2.351-2.36
-Nr.
|
Löse-DMSOCDCl3
mittel
8.23(s, 1H)8.11(s, 2H, 1+2)
7.27(d, 1H)5.55(m, 1H, 1)
7.04(t, 1H)5.29(m, 1H, 2)
4.46(m, 1H)4.25(m, 1H, 1)
3.95(m, 1H)3.98(m, 1H, 2)
2.94(m, 2H)3.72(m, 8H, 1+2)
1.92(m, 4H)2.65(m, 8H, 1+2)
1.62(m, 2H)1.70
1.32(m, 6H)(m, 18H, 1+2)
0.84(t, 3H)
Aus-70%66%
beute
Masse405(ES)375(ES)
|
|
648649
|
Beispiel1-2.391-2.40
-Nr.
|
Löse-DMSODMSO
mittel
8.22(s, 1H)8.22(s, 1H)
6.35(s, 1H)7.12(d, 1H)
5.19(t, 1H)4.10(m, 1H)
3.54(d, 2H)2.20(m, 1H)
2.00(m, 2H)1.89(m, 1H)
1.75(m, 4H)1.35(m, 8H)
1.53(m, 2H)
Aus-48%60%
beute
Masse308(EI)301(EI)
|
|
650651
|
Beispiel1-2.431-2.44
-Nr.
|
Löse-DMSODMSO
mittel
8.28(s, 1H)8.41(s, 1H)
3.62(q, 4H)8.15(t, 1H)
1.18(t, 6H)4.21(td, 2H)
Aus-13%21%
beute
Masse265(EI)339(EI)
|
|
652653
|
Beispiel1-2.471-2.48
-Nr.
|
Löse-DMSODMSO
mittel
8.32(t, 1H)8.15(s, 1H)
8.15(s, 1H)7.06(d, 1H)
3.40(m, 2H)4.65(br, 1H)
2.34(m, 2H)3.79(m, 1H)
2.18(s, 6H)3.52(m, 1H)
1.69(m, 2H)1.86(m, 2H)
1.61(m, 2H)
1.25(m, 4H)
Aus-22%53%
beute
Masse294(EI)307(EI)
|
|
654655
|
Beispiel1-2.511-2.52
-Nr.
|
Löse-DMSODMSO
mittel
8.29(s, 1H)8.38(s, 1H)
6.18(s, 1H)7.28(d, 1H)
5.15(t, 1H)5.28(t, 1H)
3.70(m, 1H)4.65(m, 1H)
3.49(m, 1H)3.86(m, 2H)
2.60(m, 1H)3.65(s, 3H)
0.92(d, 3H)
0.83(d, 3H)
Aus-27%63%
beute
Masse308(EI)309(EI)
|
|
656
|
Beispiel1-2.55
-Nr.
|
Löse-DMSO
mittel
8.18(s, 1H)
7.69(t, 1H)
4.32(br, 1H)
3.35(m, 4H)
1.40(m, 6H)
Aus-43%
beute
Masse295(EI)
|
Production of Amines
[0237]
657
[0238] 4.5 g (20 mmol) of 2-bromobutyraldehyde diethyl acetyl (Pfaltz-Bauer Company) and 5.2 g (80 mmol) of sodium azide are stirred for 5 days in 15 ml of DMF at 100° C. Then, it is poured onto cold dilute sodium bicarbonate solution, extracted 3× with ether, the organic phase is dried with magnesium sulfate and concentrated by evaporation: raw yield 1.87 g (50% of theory).
[0239] 936 mg of the crude product is dissolved in 50 ml of methanol, mixed with palladium on carbon (10%) and stirred for 12 hours under H2 atmosphere. After the catalyst is filtered off and after concentration by evaporation, 457 mg (57% of theory) of the desired amine remains.
81|
|
|
658659660661
|
Beispiel-3.03.13.23.3
Nr.
|
Ausbeute50%57%50%71%
NMR4,38(d, 1H)4,19(d, 1H)4, 38(d, 1H)4,25(d, 1H)
CDCl33,72(m, 2H)3,68(m, 2H)3,58(m, 2H)3,5(m, 1H)
3,6(m, 2H)3,52(m, 2H)3,5(m, 1H)3,42(s, 3H)
3,25(m, 1H)2,7(m, 1H)3,49(s, 3H)3,41(s, 3H)
1,7(m, 1H)1,60(m, 1H)3,43(s, 3H)3,40(m, 1H)
1,46(m, 1H)1,25(m, 1H)3,39(s, 3H)3,08(m, 1H)
1,25(trtr, 6H)1,2(trtr, 6H)
1,0(tr, 3H)0,95(tr, 3H)
|
Production of the Free Aldehydes
[0240]
662
[0241] 148 mg (0.5 mmol) of intermediate product compound 1.18 is dissolved in 1 ml of glacial acetic acid. At room temperature, 0.5 ml of 1N hydrochloric acid is added, and it is stirred for 12 hours. For working-up, it is poured onto ice water and carefully neutralized with pulverized sodium bicarbonate. Then, it is extracted 3× with ethyl acetate, the organic phase is dried with magnesium sulfate and concentrated by evaporation, crude product 104 mg (83% of theory) of the aldehyde of compound 4.0. The crude product can be used without further purification.
82|
|
|
663664665666
|
Beispiel4.14.04.24.3
-Nr.
|
Aus-82%83%89%79%
beute
MasseESI:ESI:ESI:ESI:
MH+ 278MH+ 250MH+ 266MH+ 294
(39%)(9%)(8%)(10%)
210(100%)
|
Production of Ketones
[0242]
667
[0243] 100 mg (0.356 mmol) of compound 6.0 and 126 mg of N-methylmorpholine-N-oxide are dissolved in 5 ml of dichloromethane and stirred for 10 minutes with pulverized molecular sieve (4 A). Then, 6 mg of tetrapropylammonium perruthenate is added, and it is stirred for 4 more hours at room temperature. After concentration by evaporation, it is chromatographed on silica gel (hexane/ethyl acetate 4:1>2:1). Yield: 75 mg (76% of theory) of the ketone of compound 5.0.
83|
|
|
668
|
Beispiel5.0
-Nr.
|
Aus-76%
beute
MasseESI:
MH+ 280
(100%)
200(37%)
156(30%)
|
EXAMPLE 6.0
[0244] Production of Alcohols
669
[0245] 265 mg (1 mmol) of compound 4.2 is dissolved in 20 ml of tetrahydrofuran. While being cooled in an ice bath, 5 equivalents of methylmagnesium bromide (3 molar solution in ether) is added in portions. Then, it is stirred for 3 more hours at room temperature and then quenched with water while being cooled. Then, it is mixed with ammonium chloride solution, extracted 3× with ethyl acetate, the organic phase is dried with magnesium sulfate and concentrated by evaporation. Flash chromatography (hexane/ethyl acetate 2:1) yields 213 mg (76% of theory) of the alcohol of compound 6.0.
670
[0246] ESI:MH+ 282 (100%) 276 (5%)
[0247] Similarly produced are also the following intermediate products:
84|
|
|
671672673
|
Beispiel6.16.26.3
-Nr.
|
Aus-46%32%39%
beute
MasseEI:ESI:ESI:
M+ 267(3%)MH+ 308MH+ 296
223(100%)(100%)(100%)
132(27%)306(71%)294(73%)
268(31%)217(4%)
|
|
674675
|
Beispiel6.46.5
-Nr.
|
Aus-36%50%
beute
MasseEIESI:
M+ 281MH+ 310
(3%)(100%)
223(100%)308(87%)
114(38%)298(9%)
|
|
676677678
|
Beispiel6.66.76.8
-Nr.
|
Aus-40%20%35%
beute
MasseEI:CI:ESI:
M+ 358M+ 310 (100%)MH+ 294
(100%)308 (84%)(28%)
356(97%)130(54%)296(36%)
277(29%)210(100%)
|
|
679680
|
Beispiel6.96.10
-Nr.
|
Aus-29%67%
beute
MasseESI:ESI:
MH+ 308MH+ 310(87%)
(28%)312(100%)
310123(24%)
(38%)
210
(100%)
|
[0248] Subjects of this invention are thus also compounds of general formula Ia
681
[0249] in which
[0250] D stands for halogen, and X, R1, and R2 have the meanings that are indicated in general formula (I).
[0251] Those intermediate products of general formula Ia, in which D stands for chlorine and X, R1 and R2 have the meanings that are indicated in the general formula, are especially valuable.
[0252] Another subject of this invention are also those compounds that fall under industrial property right DE 4029650, whose action is in the fungicide range and which are not described as CDK inhibitors, however, and also their use for treating cancer is not described.
85|
|
No.StructureName
|
|
56824-[[5-Bromo-4-(2-propynylamino)-2- pyrimidinyl]amino]-phenol
|
66834-[[5-Bromo-4-(2-propynyloxy)-2- pyrimidinyl]amino]-phenol
|
166845-Bromo-N2-(4-methylthiophenyl)-N4-2- propynyl-2,4-pyrimidine diamine
|
226851-[4-[(5-Bromo-4-(2-propynyloxy)-2- pyrimidinyl)amino]phenyl]-ethanone
|
236865-Bromo-N2-(4-difluoromethylthiophenyl)-N4-2- propynyl-2,4-pyrimidine diamine
|
246875-Bromo-N4-2-propynyl-N2-(4- trifluoromethylthiophenyl)-2,4-pyrimidine diamine
|
356885-Bromo-N4-2-propynyl-N2-(3- trifluoromethylthiophenyl)-2,4-pyrimidine diamine
|
37689N-[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]- indazol-5-amine
|
38690N-[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]- benzothiazole-5-amine
|
426914-[[5-Fluoro-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
|
436924-[[5-Chloro-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol
|
506931-[4-[(5-Bromo-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanone
|
546941-[4-[(5-Iodo-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanone
|
706951-[4-[(5-Ethyl-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanone
|
816961-[4-[(5-Bromo-4-(2-propynylamino)-2- pyrimidinyl)aminolphenyl]-ethanol
|
826971-[4-[(5-Bromo-4-(2-propynyloxy)-2- pyrimidinyl)amino]phenyl]-ethanol
|
[0253] The invention thus relates in addition to pharmaceutical agents that comprise a compound of general formula I
[0254] in which
[0255] R1 stands for halogen or C1-C3-alkyl
[0256] X stands for oxygen or —NH,
[0257] A stands for hydrogen
[0258] B stands for hydroxy, —CO-alkyl-R7, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —S—CF3, or —CH—(OH)—CH3, or
[0259] A and B, independently of one another, can form a group
698
[0260] R2, R3, R4, R7 and R8 have the meanings that are indicated in general formula I, as well as isomers, diastereomers, enantiomers and salts thereof.
[0261] The agents according to the invention can also be used for treating cancer, auto-immune diseases, cardiovascular diseases, chemotherapy agent-induced alopecia and mucositis, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases and viral infections, whereby cancer is defined as solid tumors and leukemia; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; cardiovascular diseases are defined as stenoses, arterioscleroses and restenoses; infectious diseases are defined as diseases that are caused by unicellular parasites; nephrological diseases are defined as glomerulonephritis; chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas; and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.
[0262] The following examples describe the biological action of the compounds according to the invention without limiting the invention to these examples.
EXAMPLE 1
[0263] CDK2/CycE Kinase Assay
[0264] Recombinant CDK2- and CycE-GST-fusion proteins, purified from baculovirus-infected insect cells (Sf9), were obtained by Dr. Dieter Marmé, Klinik für Tumorbiologie [Clinic for Tumor Biology], Freiburg. Histone IIIS, which was used as a kinase substrate, was purchased by the Sigma Company.
[0265] CDK2/CycE (50 ng/measuring point) was incubated for 15 minutes at 22° C. in the presence of various concentrations of test substances (0 μm, as well as within the range of 0.01-100 μm) in assay buffer [50 mmol of tris/HCl pH 8.0, 10 mmol of MgCl2, 0.1 mmol of Na ortho-vanadate, 1.0 mmol of dithiothreitol, 0.5. μm of adenosine triphosphate (ATP), 10 μg/measuring point of histone IIIS, 0.2 μCi/measuring point of 33P-gamma ATP, 0.05% NP40, 12.5% dimethyl sulfoxide]. The reaction was stopped by adding EDTA solution (250 mmol, pH 8.0, 14 μl/measuring point).
[0266] From each reaction batch, 10 μl was applied to P30 filter strips (Wallac Company), and non-incorporated 33P-ATP was removed by subjecting the filter strips to three washing cycles for 10 minutes each in 0.5% phosphoric acid. After the filter strips were dried for one hour at 70° C., the filter strips were covered with scintillator strips (MeltiLex™ A, Wallac Company) and baked for one hour at 90° C. The amount of incorporated 33P (substrate phosphorylation) was determined by scintillation measurement in a gamma-radiation measuring device (Wallac).
EXAMPLE 2
[0267] Proliferation Assay Cultivated human tumor cells (as indicated) were flattened out at a density of 5000 cells/measuring point in a 96-hole multititer plate in 200 μl of the corresponding growth medium. After 24 hours, the cells of one plate (zero-point plate) were colored with crystal violet (see below), while the medium of the other plates was replaced by fresh culture medium (200 μl), to which the test substances were added at various concentrations (0 μm, as well as in the range of 0.01-30 μm; the final concentration of the solvent dimethyl sulfoxide was 0.5%). The cells were incubated for 4 days in the presence of test substances. The cell proliferation was determined by coloring the cells with crystal violet: the cells were fixed by adding 20 μl/measuring point of a 11% glutaric aldehyde solution for 15 minutes at room temperature. After three washing cycles of the fixed cells with water, the plates were dried at room temperature. The cells were colored by adding 100 μl/measuring point of a 0.1% crystal violet solution (pH was set at 3 by adding acetic acid). After three washing cycles of the colored cells with water, the plates were dried at room temperature. The dye was dissolved by adding 100 μl/measuring point of a 10% acetic acid solution. The extinction was determined by photometry at a wavelength of 595 nm. The change of cell growth, in percent, was calculated by standardization of the measured values to the extinction values of the zero-point plate (=0%) and the extinction of the untreated (0 μm) cells (=100%).
[0268] The results of Examples 1 and 2 are cited in the following tables.
[0269] [Key to Subsequent Tables:]
[0270] Beispiel Nummer=Example Number
86|
|
Inhibition
BeispielIC50 [nM]Proliferation IC50 [μM]Sw
NummerCDK2/CycEMCF7H460HCT116DU145(g/l)
|
22401.21.51.51.50.003
377040.006
670460.008
402013390.002
51708
20604
214002
13008
2700
163003
244005
263003
35120>10
231803
1160.20.50.30.2
3880>10
341800
1040.20.50.50.5
124004
25701.21.51.11.20.017
970.933
760.71.51.20.50.028
3180070.0023
1420030.013
1820000.039
320080.039
19800>100.041
132000>10
171000>100.04
44080.042
15300>100.024
8<1040.007
4320060.04
36300.40.60.50.60.018
27>10000
4220000.043
393000.0016
4481.20.40.40.30.005
451021.71.20.50.0094
50150
590100.043
46720.0069
522000.21.61.220.0005
533001.60.026
541001.10.0015
47120.71.81.30.9
568040.023
4950>100.044
4840.210.40.30.042
964000.0005
982000
8520000.001
844000.0005
863000
872500.80.003
22401.21.51.51.50.003
377040.006
670460.008
163003
244005
35120>10
231803
3880>10
4320060.04
4220000.043
50150
590100.043
541001.10.0015
|
[0271] Proof of Superiority of the Compounds According to the Invention Compared to the Known Compounds
[0272] To prove the superiority of the compounds according to the invention compared to the known compounds, the compounds according to the invention were compared to known reference compounds and structurally-similar known compounds in the enzyme test. The result is cited in the following table:
[0273] [Key to the following tables:]
[0274] Beispiel-Nr.=Example No.
[0275] Löslichkeit (g/l)=Solubility (g/l)
[0276] Beispiel 11 aus WO01/14375 (Seite 38)=Example 11 from WO01/14375 (page 38)
87|
|
CDK2/Löslish-
CycEMCF-7keit
Beispiel-Nr.R2AIC50 [nM]IC50 [μM](g/l)
|
|
|
699CH(C3H7—CH2OH——SO2—N—(CH2)2—OH40.20.042
|
Nr. 48
|
700CH(CH2OH)2SO2NH270.90.009
|
Nr. 9
|
701Propargyl—NH—SO2NH260.2
|
Nr. 11
|
702700030
|
Olomoucine
|
70315008
|
Roscovitine
|
70418006
|
Kenpaullone
|
705901.2
|
Alsterpaullone
|
706102
|
Purvalanol A
|
Beispiel 11 aus190
WO01/14375
(Seite 38)
|
707
|
[0277] It can be seen from the results of the table that both in the enzyme test and in the cell test, the compounds according to the invention have significantly higher activities in the enzyme and in the MCF-7 cells than the compounds that are known from the prior art. The compounds according to the invention are thus far superior to the known compounds.
Claims
- 1. A compound of formula I
- 2. A compound of claim 1 wherein
R1 stands for hydrogen, halogen, C1-C6-alkyl, nitro, or for the group —COR5, —OCF3, —(CH2)nR5, —S—CF3 or —SO2CF3, R2 stands for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2 (C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n-R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy, heteroaryl, benzoxy or with the group —CF3 or —OCF3, and the ring of the C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or R2 stands for the group 714X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl)- or for —OC3-C10-cycloalkylene, which can be substituted in one or more places in the same way or differently with a heteroaromatic compound, or X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen, A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —S—CH3, —SO2—C2H4—OH, —CO—CH3, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —CH2P(O)OR3OR4, —S—CF3, —SO—CH3, —SO2CF3, —SO2—(CH2)n—N—R3R4, —SO2—NR3R4, —SO2R7, —CH—(OH)—CH3 or for 715716717718or A and B together can form a group 719R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl optionally substituted with cyano, or for C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy,
wherein the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4, or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4 or for 720or
which optionally can be substituted with C1-C6-alkyl, R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy, R6 stands for the group 721R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, —C2H4OH, —NR3R4, or the group 722R8, R9 and R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C6-alkyl, C3-C6-cycloalkyl or for the group 723and n stands for 0-6.
- 3. A compound according to claim 1, wherein
R1 stands for hydrogen, halogen, C1-C3-alkyl, or for the group —(CH2)nR5, R2 stands for —CH(CH3)—(CH2)n—R5, —CH—(CH2OH)2, —(CH2)nR7, —CH(C3H7)—(CH2)n—R5, —CH(C2H5)—(CH2)n—R5, —CH2—CN, —CH(CH3)COCH3, —CH(CH3)—C(OH)(CH3)2, —CH(CH(OH)CH3)OCH3, —CH(C2H5)CO—R5, C2-C4-alkinyl, —(CH2)n—COR5, —(CH2)n—CO—C1-C6-alkyl, —(CH2)n—C(OH)(CH3)-phenyl, —CH(CH3)—C(CH3)—R5, —CH(CH3)—C(CH3)(C2H5)—R5, —CH(OCH3)—CH2—R5, —CH2—CH(OH)—R5, —CH(OCH3)—CHR5—CH3, —CH(CH3)—CH(OH)—CH2—CH═CH2, —CH(C2H5)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—CH(CH3)2, CH2(OAc)2, —(CH2)nR6, —(CH2)n—(CF2)n—CF3, —CH((CH2)n—R5)2, —CH(CH3)—CO—NH2, —CH(CH2OH)-phenyl, —CH(CH2OH)—CH(OH)—(CH2)nR5, —CH(CH2OH)—CH(OH)-phenyl, —CH(CH2OH)—C2H4—R5, —(CH2)n—C≡C—C(CH3)═CH—COR5, —CH(Ph)-(CH2)n—R5, —(CH2)n—COR5, —(CH2)nPO3(R5)2, —(CH2)n—COR5, —CH((CH2)nOR5)CO—R5, —(CH2)nCONHCH((CH2)nR5)2, —(CH2)nNH—COR5, —CH(CH2)nR5—(CH2)nC3C10-cycloalkyl, —(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-alkyl, C3-C10-cycloalkyl, —(CH2)n—O—(CH2)n-R5, or —(CH2)n—NR3R4 that is optionally substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkyl or the group —COONH(CH2)nCH3 or —NR3R4, —CH(C3H7)—(CH2)n—OC(O)—(CH2)n—CH3, —(CH2)n—R5, —C(CH3)2—(CH2)n—R5, —C(CH2)n(CH3)—(CH2)nR5, —C(CH2)n—(CH2)nR5, —CH(t-butyl)-(CH2)n—R5, —CCH3(C3H7)—(CH2)nR5, —CH(C3H7)—(CH2)n—R5, —CH(C3H7)—COR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph, —CH((CH2)n(C3H7))—(CH2)nR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph(OR5)3, —NR3R4, —NH—(CH2)n—NR3R4, R5—(CH2)n—C*H—CH(R5)—(CH2)n—R5, —(CH2)n—CO—NH—(CH2)n—CO—R5, —OC(O)NH—C1-C6-alkyl or —(CH2)n—CO—NH—(CH2)n—CH—((CH2)nR5)2, or for C3-C10-cycloalkyl, which is substituted with the group 724725X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl) or 726or R2 stands for the group 727or X and R2 together form a group 728A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —S—CH3, —SO2—C2H4—OH, —CO—CH3, —S—CHF2, —S(CH2)nCH(OH)CH2N—R3R4, —CH2PO(OC2H5)2, —S—CF3, —SO—CH3, —SO2CF3, —SO2—(CH2)n—N—R3R4, —SO2—NR3R4, —SO2R7, —CH(OH)—CH3, —COOH, —CH((CH2)nR5)2, —(CH2)nR5, —COO—C1-C6-alkyl, —CONR3R4 or for 729730731732A and B together can form a group 733R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy, wherein the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group
—SO2NR3R4, or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4 or for 734which optionally can be substituted with C1-C6-alkyl, R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy, R6 stands for the group 735R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, —(CH2)nOH, —NR3R4 or the group 736R8, R9 and R10 stand for hydrogen, hydroxy, C1-C6-alkyl or for the group —(CH2)n—COOH, and n stands for 0-6 thereof.
- 4. A process for producing a compound of general formula I according to claim 1, by reacting a compound of formula Ia
- 5. A process according to claim 4, wherein D stands for chlorine.
- 6. A composition comprising a compound of claim 1, wherein
R1 stands for halogen or C1-C3-alkyl, X stands for oxygen or —NH—, A stands for hydrogen, B stands for hydroxy, —CO-alkyl-R7, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —S—CF3, or —CH—(OH)—CH3, or A and B, independently of one another, can form a group 738and a pharmaceutically acceptable carrier.
- 7. A method of treating cancer, an auto-immune disease, a chemotherapy agent-induced alopecia or mucositis, a cardiovascular disease, an infectious disease, a nephrological disease, a chronic or an acute neurodegenerative disease or a viral infection comprising administering an effective amount of a compound according to claim 1.
- 8. A method according to claim 7, for treating a solid tumor, or leukemia; psoriasis, alopecia, or multiple sclerosis; stenoses, arterioscleroses, or restenoses; a unicellular parasite; glomerulonephritis; Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia or Alzheimer's disease; an ischemia of the brain, or a neurotrauma; a cytomegalic infection, herpes, hepatitis B or C, or HIV.
- 9. A pharmaceutical agent comprising at least one compound according to claim 1.
- 10. A method for treating cancer, an auto-immune disease, a cardiovascular disease, an infectious disease, a nephrological disease, a neurodegenerative disease or a viral infection comprising administering an effective amount of a compound according to claim 1 to a patient in need thereof.
- 11. A composition comprising a compound according to claim 1 and at least one suitable formulation substance and/or vehicle.
- 12. A method of inhibiting cyclin-dependent kinase comprising administering an effective amount of a compound according to claim 1.
- 13. A method according to claim 12, wherein the kinase is CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 or CDK9.
- 14. A method of inhibiting the glycogen-synthase-kinase (GSK-3β) comprising administering an effective amount of a compound according to claim 1.
- 15. A method of claim 1 comprising enterally, parenterally or orally administering an effective amount of the compound according to claim 1.
- 16. A preparation for enteral, parenteral and oral administration comprising an agent according to claim 6.
- 17. A compound according to claim 1, in the form of an isomer, a diastereomer or an enantiomer.
Priority Claims (2)
Number |
Date |
Country |
Kind |
10127581.1 |
May 2001 |
DE |
|
10212098 6 |
Mar 2002 |
DE |
|
Divisions (1)
|
Number |
Date |
Country |
Parent |
10156759 |
Nov 2002 |
US |
Child |
10842419 |
May 2004 |
US |