CDK-inhibitory pyrimidines, their production and use as pharmaceutical agents

Information

  • Patent Grant
  • 7598260
  • Patent Number
    7,598,260
  • Date Filed
    Tuesday, June 26, 2007
    17 years ago
  • Date Issued
    Tuesday, October 6, 2009
    15 years ago
Abstract
This invention relates to pyrimidine derivatives of general formula I
Description

This invention relates to pyrimidine derivatives, their production as well as their use as medications for treating various diseases.


The CDKs (cyclin-dependent kinase) is an enzyme family that plays an important role in the regulation of the cell cycle and thus is an especially advantageous target for the development of small inhibitory molecules. Selective inhibitors of the CDKs can be used for treating cancer or other diseases that cause disruptions of cell proliferation.


Pyrimidines and analogs are already described as active ingredients, such as, for example, the 2-anilino-pyrimidines as fungicides (DE 4029650) or substituted pyrimidine derivatives for treating neurological or neurodegenerative diseases (WO 99/19305). As CDK-inhibitors, the most varied pyrimidine derivatives are described, for example bis(anilino)-pyrimidine derivatives (WO 00/12486), 2-amino-4-substituted pyrimidines (WO 01/14375), purines (WO 99/02162), 5-cyano-pyrimidines (WO 02/04429), anilinopyrimidines (WO 00/12486) and 2-hydroxy-3-N,N-dimethylaminopropoxy-pyrimidines (WO 00/39101).


The object of this invention is to provide compounds that have better properties than the inhibitors that are already known. The substances that are described here are more effective, since they already inhibit in the nanomolar range and can be distinguished from other already known CDK-inhibitors such as, e.g., olomoucine and roscovitine.


It has now been found that compounds of general formula I




embedded image


in which

    • R1 stands for hydrogen, halogen, C1-C6-alkyl, nitro, or for the group —COR5, —OCF3, —(CH2)nR5, —S—CF3 or —SO2CF3,
    • R2 stands for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy, heteroaryl, benzoxy or with the group —CF3 or —OCF3, and the ring of the C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or
    • R2 stands for the group




embedded image




    • X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl) or for —OC3—C10-cycloalkyl, which can be substituted in one or more places in the same way or differently with a heteroaromatic compound, or

    • X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen,

    • A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —SR7, —S(O)R7, —SO2R7, —NHSO2R7, —CH(OH)R7, —CR7(OH)—R7, C1-C6-alkylP(O)OR3OR4 or —COR7, or for







embedded image


embedded image


embedded image




    • A and B together form a C3-C10-cycloalkyl ring that optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O or ═SO2 groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, and the C3-C10-cycloalkyl ring optionally can be substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, C2-C6-alkenyl, C3-C10-cycloalkyl, C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2R7, C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkoxyOAc, phenyl or with the group R6, whereby the phenyl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy or with the group —CF3 or —OCF3,

    • R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for
      • C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy,
      • whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4,
      • or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4, or

    • R3 and R4 together form a C3-C10-cycloalkyl ring that optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

    • R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,

    • R6 stands for a heteroaryl or C3-C10-cycloalkyl ring, whereby the ring has the above-indicated meaning,

    • R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkinyl, C3-C10-cycloalkyl, with the above-indicated meaning, or for the group —NR3R4, or for a C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl or C3-C7-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkoxy, halogen, phenyl, —NR3R4 or phenyl, which itself can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy, halo-C1-C6-alkyl, halo-C1-C6-alkoxy, or R7 stands for phenyl, which itself can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl or C1-C6-alkoxy, halo-C1-C6-alkyl, or halo-C1-C6-alkoxy,

    • R8, R9 and

    • R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, C3-C10-cycloalkyl, aryl, heteroaryl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl or C3-C10-cycloalkyl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy or with the group —CF3 or —OCF3, and the ring of C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, and

    • n stands for 0-6,


      as well as isomers, diastereomers, enantiomers and salts thereof that overcome known drawbacks.





Alkyl is defined in each case as a straight-chain or branched alkyl radical, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, heptyl, octyl, nonyl and decyl.


Alkoxy is defined in each case as a straight-chain or branched alkoxy radical, such as, for example, methyloxy, ethyloxy, propyloxy, isopropyloxy, butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy, pentyloxy, isopentyloxy, or hexyloxy.


Alkylthio is defined in each case as a straight-chain or branched alkylthio radical, such as, for example, methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio or hexylthio.


Cycloalkyl is defined in general as monocyclic alkyl rings, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl, but also bicyclic rings or tricyclic rings such as, for example, norbornyl, adamantanyl, etc.


The ring systems, in which optionally one or more possible double bonds can be contained in the ring, are defined as, for example, cycloalkenyls, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, or cycloheptenyl, whereby the linkage can be carried out both to the double bond and to the single bonds.


If A and B, R3 and R4, X and R2, in each case independently of one another, together form a C3-C10-cycloalkyl ring, which optionally can be interrupted by one or more heteroatoms, such as nitrogen atoms, oxygen atoms and/or sulfur atoms, and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, however, the above-mentioned definitions are also intended to include heteroaryl radical or heterocycloalkyl and heterocycloalkenyl.


Halogen is defined in each case as fluorine, chlorine, bromine or iodine.


The alkenyl substituents in each case are straight-chain or branched, whereby, for example, the following radicals are meant: vinyl, propen-1-yl, propen-2-yl, but-1-en-1-yl, but-1-en-2-yl, but-2-en-1-yl, but-2-en-2-yl, 2-methyl-prop-2-en-1-yl, 2-methyl-prop-1-en-1-yl, but-1-en-3-yl, ethinyl, prop-1-in-1-yl, but-1-in-1-yl, but-2-in-1-yl, but-3-en-1-yl, and allyl.


Alkinyl is defined in each case as a straight-chain or branched alkinyl radical that contains 2-6, preferably 2-4 C atoms. For example, the following radicals can be mentioned: acetylene, propin-1-yl, propin-3-yl, but-1-in-1-yl, but-1-in-4-yl, but-2-in-1-yl, but-1-in-3-yl, etc.


The aryl radical in each case comprises 3-12 carbon atoms and in each case can be benzocondensed.


For example, there can be mentioned: cyclopropenyl, cyclopentadienyl, phenyl, tropyl, cyclooctadienyl, indenyl, naphthyl, azulenyl, biphenyl, fluorenyl, anthracenyl, etc.


The heteroaryl radical in each case comprises 3-16 ring atoms, and instead of the carbon can contain one or more heteroatoms that are the same or different, such as oxygen, nitrogen or sulfur, in the ring, and can be monocyclic, bicyclic, or tricyclic and in addition in each case can be benzocondensed.


For example, there can be mentioned:


Thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, etc. and benzo derivatives thereof, such as, e.g., benzofuranyl, benzothienyl, benzoxazolyl, benzimidazolyl, indazolyl, indolyl, isoindolyl, etc.; or pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, etc. and benzo derivatives thereof, such as, e.g., quinolyl, isoquinolyl, etc., or azocinyl, indolizinyl, purinyl, etc. and benzo derivatives thereof; or quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, xanthenyl, oxepinyl, etc.


Heterocycloalkyl stands for an alkyl ring that comprises 3-12 carbon atoms, which instead of the carbon contains one or more heteroatoms that are the same or different, such as, e.g., oxygen, sulfur or nitrogen.


As heterocycloalkyls, there can be mentioned, e.g.: oxiranyl, oxethanyl, aziridinyl, azetidinyl, tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, imidazolidinyl, pyrazolidinyl, dioxanyl, piperidinyl, morpholinyl, dithianyl, thiomorpholinyl, piperazinyl, trithianyl, quinuclidinyl, etc.


Heterocycloalkenyl stands for an alkyl ring that comprises 3-12 carbon atoms, which instead of the carbon contains one or more heteroatoms that are the same or different such as, e.g., oxygen, sulfur or nitrogen, and which is partially saturated.


As heterocycloalkenyls, there can be mentioned, e.g.: pyran, thiin, dihydroacet, etc.


If an acid group is included, the physiologically compatible salts of organic and inorganic bases are suitable as salts, such as, for example, the readily soluble alkali and alkaline-earth salts, as well as N-methyl-glucamine, dimethyl-glucamine, ethyl-glucamine, lysine, 1,6-hexadiamine, ethanolamine, glucosamine, sarcosine, serinol, tris-hydroxy-methyl-amino-methane, aminopropane diol, Sovak base, and 1-amino-2,3,4-butanetriol.


If a basic group is included, the physiologically compatible salts of organic and inorganic acids are suitable, such as hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, tartaric acid, i.a.


Those compounds of general formula (I) in which

    • R1 stands for hydrogen, halogen, C1-C6-alkyl, nitro, or for the group —COR5, —OCF3, —(CH2)nR5, —S—CF3 or —SO2CF3,
    • R2 stands for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1-C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, —(CH2)n-aryl, —(CH2)n-heteroaryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, —(CH2)n-aryl and —(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6 alkoxy, heteroaryl, benzoxy or with the group —CF3 or —OCF3, and the ring of the C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more ═C═O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or
    • R2 stands for the group




embedded image




    • X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl) or for —OC3—C10-cycloalkyl, which can be substituted in one or more places in the same way or differently with a heteroaromatic compound, or

    • X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen,

    • A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —S—CH3, —SO2—C2H4—OH, —CO—CH3, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —CH2P(O)OR3OR4, —S—CF3, —SO—CH3, —SO2CF3, —SO2—(CH2)n—N—R3R4, —SO2—NR3R4, —SO2R7, —CH—(OH)—CH3 or for







embedded image


embedded image


embedded image




    • A and B together can form a group







embedded image




    • R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl optionally substituted with cyano, or for C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy,
      • whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4,
      • or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4
      • or for







embedded image






      • which optionally can be substituted with C1-C6-alkyl,



    • R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,

    • R6 stands for the group







embedded image




    • R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, —C2H4OH, —NR3R4, or the group







embedded image




    • R8, R9 and

    • R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C6-alkyl, C3-C6-cycloalkyl or for the group







embedded image






      • and



    • n stands for 0-6,


      as well as isomers, enantiomers, diastereomers, and salts thereof, are especially effective.





Those compounds of general formula I in which

    • R1 stands for hydrogen, halogen, C1-C3-alkyl, or for the group —(CH2)nR5,
    • R2 stands for —CH(CH3)—(CH2)n—R5, —CH—(CH2OH)2, —(CH2)nR7, —CH(C3H7)—(CH2)n—R5, —CH(C2H5)—(CH2)n—R5, —CH2—CN, —CH(CH3)COCH3, —CH(CH3)—C(OH)(CH3)2, —CH(CH(OH)CH3)OCH3, —CH(C2H5)CO—R5, C2-C4-alkinyl, —(CH2)n—COR5, —(CH2)n—CO—C1-C6-alkyl, —(CH2)n—C(OH)(CH3)-phenyl, —CH(CH3)—C(CH3)—R5, —CH(CH3)—C(CH3)(C2H5)—R5, —CH(OCH3)—CH2—R5, —CH2—CH(OH)—R5, —CH(OCH3)—CHR5—CH3, —CH(CH3)—CH(OH)—CH2—CH═CH2, —CH(C2H5)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—CH(CH3)2, (CH2OAC)2, —(CH2)n—R6, —(CH2)n—(CF2)n—CF3, —CH(CH2)n—R5)2, —CH(CH3)—CO—NH2, —CH(CH2OH)-phenyl, —CH(CH2OH)—CH(OH)—(CH2)nR5, —CH(CH2OH)—CH(OH)-phenyl, —CH(CH2OH)—C2H4—R5, —(CH2)n—C≡C(CH3)═CH—COR5, —CH(Ph)—(CH2)n—R5, —CH2)n—COR5, —(CH2)nPO3(R5)2, —(CH2)n—COR5, —CH((CH2)nOR5)CO—R5, —(CH2)nCONHCH((CH2)nR5)2, —(CH2)nNH—COR5, —CH(CH2)nR5—(CH2)nC3-C10-cycloalkyl, —(CH2)n—C3-C10-cycloalky, C3-C10-cycloalkyl; C1-C6-alkyl, C3-C10-cycloalkyl, —(CH2)n—O—(CH2)n—R5, —(CH2)n—NR3R4 that is optionally substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkyl or the group —COONH(CH2)nCH3 or —NR3R4,
      • —CH(C3H7)—(CH2)n—OC(O)—(CH2)n—CH3, —(CH2)n—R5,
      • —C(CH3)2—(CH2)n—R5, —C(CH2)n(CH3)—(CH2)nR5,
      • —C(CH2)n—(CH2)nR5, —CH(t-butyl)-(CH2)n—R5,
      • —CCH3(C3H7)—(CH2)nR5, —CH(C3H7)—(CH2)n—R5,
      • —CH(C3H7)—COR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph,
      • —CH((CH2)n(C3H7))—(CH2)nR5,
      • —CH(C3H7)—(CH2)n—OC(O)—NH-Ph(OR5)3, —NR3R4,
      • —NH—(CH2)n—NR3R4, R5—(CH2)n—C*H—CH(R5)—(CH2)n—R5,
      • —(CH2)n—CO—NH—(CH2)n—CO—R5, —OC(O)NH—C1-C6-alkyl or
      • —(CH2)n—CO—NH—(CH2)n—CH—((CH2)nR5)2,
      • or for C3-C10-cycloalkyl, which is substituted with the group




embedded image






      • or for the group









embedded image




    • X stands for oxygen or for the group —NH—, —N(C1-C3-alkyl) or







embedded image






      • or



    • R2 stands for the group







embedded image






      • or



    • X and R2 together form a group







embedded image




    • A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group —S—CH3, —SO2—C2H4—OH, —CO—CH3, —S—CHF2, —S(CH2)nCH(OH)CH2N—R3R4, —CH2PO(OC2H5)2, —S—CF3, —SO—CH3, —SO2CF3, —SO2—(CH2)n—N—R3R4, —SO2—NR3R4, —SO2R7, —CH(OH)—CH3, —COOH, —CH((CH2)nR5)2, —(CH2)nR5, —COO—C1-C6-alkyl, —CONR3R4 or for







embedded image


embedded image


embedded image




    • A and B together can form a group







embedded image




    • R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for
      • C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy, whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4,
      • or for the group —(CH2)nNR3R4, —CNHNH2 or —NR3R4 or for







embedded image






      • which optionally can be substituted with C1-C6-alkyl,



    • R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,

    • R6 stands for the group







embedded image




    • R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, —(CH2)nOH, —NR3R4 or the group







embedded image




    • R8, R9 and

    • R10 stand for hydrogen, hydroxy, C1-C6-alkyl or for the group —(CH2)n—COOH, and

    • n stands for 0-6,


      as well as isomers, diastereomers, enantiomers and salts thereof, have proven quite especially effective.





The compounds according to the invention essentially inhibit cyclin-dependent kinases, upon which is based their action, for example, against cancer, such as solid tumors and leukemia; auto-immune diseases such as psoriasis, alopecia, and multiple sclerosis, chemotherapy-induced alopecia and mucositis; cardiovascular diseases such as stenoses, arterioscleroses and restenoses; infectious diseases, such as, e.g., by unicellular parasites, such as trypanosoma, toxoplasma or plasmodium, or produced by fungi; nephrological diseases, such as, e.g., glomerulonephritis, chronic neurodegenerative diseases, such as Huntington's disease, amyotropic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases, such as ischemias of the brain and neurotraumas; viral infections, such as, e.g., cytomegalic infections, herpes, Hepatitis B and C, and HIV diseases.


The eukaryotic cell division ensures the duplication of the genome and its distribution to the daughter cells by passing through a coordinated and regulated sequence of events. The cell cycle is divided into four successive phases: the G1 phase represents the time before the DNA replication, in which the cell grows and is sensitive to external stimuli. In the S phase, the cell replicates its DNA, and in the G2 phase, preparations are made for entry into mitosis. In mitosis (M phase), the replicated DNA separates, and cell division is completed.


The cyclin-dependent kinases (CDKs), a family of serine/threonine kinases, whose members require the binding of a cyclin (Cyc) as a regulatory subunit in order for them to activate, drive the cell through the cell cycle. Different CDK/Cyc pairs are active in the various phases of the cell cycle. CDK/Cyc pairs that are important to the basic function of the cell cycle are, for example, CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDK1/CycA and CDK1/CycB. Some members of the CDK enzyme family have a regulatory function by influencing the activity of the above-mentioned cell cycle CDKs, while no specific function could be associated with other members of the CDK enzyme family. One of the latter, CDK5, is distinguished in that it has an atypical regulatory subunit (p35) that deviates from the cyclins, and its activity is highest in the brain.


The entry into the cell cycle and the passage through the “restriction points,” which marks the independence of a cell from further growth signals for the completion of the cell division that has begun, are controlled by the activity of the CDK4(6)/CycD and CDK2/CycE complexes. The essential substrate of these CDK complexes is the retinoblastoma protein (Rb), the product of the retinoblastoma tumor suppressor gene. Rb is a transcriptional co-repressor protein. In addition to other, still largely little understood mechanisms, Rb binds and inactivates transcription factors of the E2F type and forms transcriptional repressor complexes with histone-deacetylases (HDAC) (Zhang, H. S. et al. (2000). Exit from G1 and S Phase of the Cell Cycle is Regulated by Repressor Complexes Containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79-89). By the phosphorylation of Rb by CDKs, bonded E2F transcription factors are released and result in transcriptional activation of genes, whose products are required for the DNA synthesis and the progression through the S-phase. In addition, the Rb-phosphorylation brings about the breakdown of the Rb-HDAC complexes, by which additional genes are activated. The phosphorylation of Rb by CDK's is to be treated as equivalent to exceeding the “restriction points.” For the progression through the S-phase and its completion, the activity of the CDK2/CycE and CDK2/CycA complexes is necessary, e.g., the activity of the transcription factors of the E2F type is turned off by means of phosphorylation by CDK2/CycA as soon as the cells are entered into the S-phase. After replication of DNA is complete, the CDK1 in the complex with CycA or CycB controls the entry into and the passage through phases G2 and M (FIG. 1).


According to the extraordinary importance of the cell-division cycle, the passage through the cycle is strictly regulated and controlled. The enzymes that are necessary for the progression through the cycle must be activated at the correct time and are also turned off again as soon as the corresponding phase is passed. Corresponding control points (“checkpoints”) stop the progression through the cell cycle if DNA damage is detected, or the DNA replication or the creation of the spindle device is not yet completed.


The activity of the CDKs is controlled directly by various mechanisms, such as synthesis and degradation of cyclins, complexing of the CDKs with the corresponding cyclins, phosphorylation and dephosphorylation of regulatory threonine and tyrosine radicals, and the binding of natural inhibitory proteins. While the amount of protein of the CDKs in a proliferating cell is relatively constant, the amount of the individual cyclins oscillates with the passage through the cycle. Thus, for example, the expression of CycD during the early G1 phase is stimulated by growth factors, and the expression of CycE is induced after the “restriction points” are exceeded by the activation of the transcription factors of the E2F type. The cyclins themselves are degraded by the ubiquitin-mediated proteolysis. Activating and inactivating phosphorylations regulate the activities of the CDKs, for example phosphorylate CDK-activating kinases (CAKs) Thr160/161 of the CDK1, while, by contrast, the families of Wee1/Myt1 inactivate kinases CDK1 by phosphorylation of Thr14 and Tyr15. These inactivating phosphorylations can be destroyed in turn by cdc25 phosphatases. The regulation of the activity of the CDK/Cyc complexes by two families of natural CDK inhibitor proteins (CKIs), the protein products of the p21 gene family (p21, p27, p57) and the p16 gene family (p15, p16, p18, p19) is very significant. Members of the p21 family bind to cyclin complexes of CDKs 1, 2, 4, 6, but inhibit only the complexes that contain CDK1 or CDK2. Members of the p16 family are specific inhibitors of the CDK4- and CDK6 complexes.


The plane of control point regulation lies above this complex direct regulation of the activity of the CDKs. Control points allow the cell to track the orderly sequence of the individual phases during the cell cycle. The most important control points lie at the transition from G1 to S and from G2 to M. The G1 control point ensures that the cell does not initiate any DNA synthesis unless it has proper nutrition, interacts correctly with other cells or the substrate, and its DNA is intact. The G2/M control point ensures the complete replication of DNA and the creation of the mitotic spindle before the cell enters into mitosis. The G1 control point is activated by the gene product of the p53 tumor suppressor gene. p53 is activated after detection of changes in metabolism or the genomic integrity of the cell and can trigger either a stopping of the cell cycle progression or apoptosis. In this case, the transcriptional activation of the expression of the CDK inhibitor protein p21 by p53 plays a decisive role. A second branch of the G1 control point comprises the activation of the ATM and Chk1 kinases after DNA damage by UV light or ionizing radiation and finally the phosphorylation and the subsequent proteolytic degradation of the cdc25A phosphatase (Mailand, N. et al. (2000). Rapid Destruction of Human cdc25A in Response to DNA Damage. Science 288, 1425-1429). A shutdown of the cell cycle results from this, since the inhibitory phosphorylation of the CDKs is not removed. After the G2/M control point is activated by damage of the DNA, both mechanisms are involved in a similar way in stopping the progression through the cell cycle.


The loss of the regulation of the cell cycle and the loss of function of the control points are characteristics of tumor cells. The CDK-Rb signal path is affected by mutations in over 90% of human tumor cells. These mutations, which finally result in inactivating phosphorylation of the RB, include the over-expression of D- and E-cyclins by gene amplification or chromosomal translocations, inactivating mutations or deletions of CDK inhibitors of the p16 type, as well as increased (p27) or reduced (CycD) protein degradation. The second group of genes, which are affected by mutations in tumor cells, codes for components of the control points. Thus p53, which is essential for the G1 and G2/M control points, is the most frequently mutated gene in human tumors (about 50%). In tumor cells that express p53 without mutation, it is often inactivated because of a greatly increased protein degradation. In a similar way, the genes of other proteins that are necessary for the function of the control points are affected by mutations, for example ATM (inactivating mutations) or cdc25 phosphatases (over-expression).


Convincing experimental data indicate that CDK2/Cyc complexes occupy a decisive position during the cell cycle progression: (1) Both dominant-negative forms of CDK2, such as the transcriptional repression of the CDK2 expression by anti-sense oligonucleotides, produce a stopping of the cell cycle progression. (2) The inactivation of the CycA gene in mice is lethal. (3) The disruption of the function of the CDK2/CycA complex in cells by means of cell-permeable peptides resulted in tumor cell-selective apoptosis (Chen, Y. N. P. et al. (1999). Selective Killing of Transformed Cells by Cyclin/Cyclin-Dependent Kinase 2 Antagonists. Proc. Natl. Acad. Sci. USA 96, 4325-4329).


Changes of the cell cycle control play a role not only in carcinoses. The cell cycle is activated by a number of viruses, both by transforming viruses as well as by non-transforming viruses, to make possible the replication of viruses in the host cell. The false entry into the cell cycle of normally post-mitotic cells is associated with various neurodegenerative diseases. The mechanisms of the cell cycle regulation, their changes in diseases and a number of approaches to develop inhibitors of the cell cycle progression and especially the CDKs were already described in a detailed summary in several publications (Sielecki, T. M. et al. (2000). Cyclin-Dependent Kinase Inhibitors: Useful Targets in Cell Cycle Regulation. J. Med. Chem. 43, 1-18; Fry, D. W. & Garrett, M. D. (2000). Inhibitors of Cyclin-Dependent Kinases as Therapeutic Agents for the Treatment of Cancer. Curr. Opin. Oncol. Endo. Metab. Invest. Drugs 2, 40-59; Rosiania, G. R. & Chang, Y. T. (2000). Targeting Hyperproliferative Disorders with Cyclin-Dependent Kinase Inhibitors. Exp. Opin. Ther. Patents 10, 215-230; Meijer L. et al. (1999). Properties and Potential Applications of Chemical Inhibitors of Cyclin-Dependent Kinases. Pharmacol. Ther. 82, 279-284; Senderowicz, A. M. & Sausville, E. A. (2000). Preclinical and Clinical Development of Cyclin-Dependent Kinase Modulators. J. Natl. Cancer Inst. 92, 376-387).


To use the compounds according to the invention as pharmaceutical agents, the latter are brought into the form of a pharmaceutical preparation, which in addition to the active ingredient for enteral or parenteral administration contains suitable pharmaceutical, organic or inorganic inert carrier materials, such as, for example, water, gelatin, gum arabic, lactose, starch, magnesium stearate, talc, vegetable oils, polyalkylene glycols, etc. The pharmaceutical preparations can be present in solid form, for example as tablets, coated tablets, suppositories, or capsules, or in liquid form, for example as solutions, suspensions, or emulsions. Moreover, they optionally contain adjuvants, such as preservatives, stabilizers, wetting agents or emulsifiers; salts for changing the osmotic pressure or buffers. These pharmaceutical preparations are also subjects of this invention.


For parenteral administration, especially injection solutions or suspensions, especially aqueous solutions of active compounds in polyhydroxyethoxylated castor oil, are suitable.


As carrier systems, surface-active adjuvants such as salts of bile acids or animal or plant phospholipids, but also mixtures thereof, as well as liposomes or their components can also be used.


For oral administration, especially tablets, coated tablets or capsules with talc and/or hydrocarbon vehicles or binders, such as, for example, lactose, corn or potato starch, are suitable. The administration can also be carried out in liquid form, such as, for example, as a juice, to which optionally a sweetener is added.


Enteral, parenteral and oral administrations are also subjects of this invention.


The dosage of the active ingredients can vary depending on the method of administration, age and weight of the patient, type and severity of the disease to be treated and similar factors. The daily dose is 0.5-1000 mg, preferably 50-200 mg, whereby the dose can be given as a single dose to be administered once or divided into two or more daily doses.


Subjects of this invention also include the use of compounds of general formula I for the production of a pharmaceutical agent for treating cancer, auto-immune diseases, cardiovascular diseases, chemotherapy agent-induced alopecia and mucositis, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases and viral infections, whereby cancer is defined as solid tumors and leukemia; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; cardiovascular diseases are defined as stenoses, arterioscleroses and restenoses; infectious diseases are defined as diseases that are caused by unicellular parasites; nephrological diseases are defined as glomerulonephritis; chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas; and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.


Subjects of this invention also include pharmaceutical agents for treating the above-cited diseases, which contain at least one compound according to general formula I, as well as pharmaceutical agents with suitable formulation substances and vehicles.


The compounds of general formula I according to the invention are, i.a., excellent inhibitors of the cyclin-dependent kinases, such as CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9, as well as the glycogen-synthase-kinase (GSK-3β).


If the production of the starting compounds is not described, these compounds are known or can be produced analogously to known compounds or to processes that are described here. It is also possible to perform all reactions that are described here in parallel reactors or by means of combinatory operating procedures.


The isomer mixtures can be separated into the enantiomers or E/Z isomers according to commonly used methods, such as, for example, crystallization, chromatography or salt formation.


The production of the salts is carried out in the usual way by a solution of the compound of formula I being mixed with the equivalent amount of or excess base or acid, which optionally is in solution, and the precipitate being separated or the solution being worked up in the usual way.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates aspects of the cell cycle.





PRODUCTION OF THE COMPOUNDS ACCORDING TO THE INVENTION

The following examples explain the production of the compounds according to the invention, without the scope of the claimed compounds being limited to these examples.


The compounds of general formula I according to the invention can be produced according to the following general diagrams of the process:




embedded image




embedded image




embedded image


embedded image


EXAMPLE 1
Production of 5-Bromo-N2-(4-difluoromethylthiophenyl)-N4-2-propynyl-2,4-pyrimidine diamine (is carried out according to process diagram 1) (compound 23)

245 mg (1 mmol) of 2-chloro-4-2-propynylaminopyrimidine is dissolved in 2 ml of acetonitrile, and a suspension of 4-(difluoromethylthio)-aniline hydrochloride [produced from 352 mg (2 mmol) of 4-(difluoromethylthio)-aniline, 1 ml of acetonitrile and 0.5 ml of aqueous HCl (4M in dioxane)] is added at room temperature. Then, the reaction mixture is refluxed overnight under N2 atmosphere. After cooling, the mixture is filtered, the remaining solid phase is washed with H2O and dried. A yield of 328 mg (85%) of the product can be expected














embedded image





















6H
8.25(s, 1H)
Yield:



2C
7.86(d, 2H)
85%



H
7.51(d, 2H)




7.38




(t, 56.8 Hz, 1H)
Melting point:





>235° C.



4C
4.18(m, 2H)



H
3.16(sb, 1H)




10.24(sb, 1H)



NH
8.17(sb, 1H)










EXAMPLE 2
Production of 5-bromo-N-(3-(oxiranylmethoxy)phenyl)-2-(2-propynyloxy)-2-pyrimidinamine (compound 51) is carried out according to process diagram 2

1.55 g (4.9 mmol) of compound 20 is dissolved in 5.5 ml of epibromohydrin, and 1.38 g of K2CO3 and 65 mg of tetrabutylammonium bromide are added to it. The reaction mixture is stirred under nitrogen atmosphere at 100° C. for 1 hour. After ethyl acetate is added, the resulting precipitate is collected and recrystallized from ethanol. The product yield is 1.15 g (62%) as a white powder.














embedded image





















6H
8.45(s, 1H)




2CH
7.47(s, 1H)




7.32(d, 1H)
Yield: 62%




7.20(t, 1H)




6.40(d, 1H)
Melting point: 173° C.




4.32(dd, 1H)




3.82(dd, 1H)




3.3-3.4(m, 1H)




2.87(t, 1H)




2.72(dd, 1H)



4CH
5.13(d, 2H)




3.67(t, 1H)



NH
9.84(sb, 1H)










Substance 40 is produced analogously to Example 2.














embedded image





















6-H
8.36(s, 1H)
Chromatography:



2CH
7.60(d, 1H)
H/EA 1:3 0.5% TEA




6.91(d, 1H)




4.28(dd, 1H)




3.79(dd, 1H)
Yield: 38%




3.31(m, 1H)




2.84(dd, 1H)
Melting point: 140-141° C.




2.70(dd, 1H)



4CH
5.07(d, 12H)




3.65(t, 1H)



NH
9.65(sb, 1H)



OH










EXAMPLE 3
Production of 1-(4-((5-bromo-4-(2-propynyloxy)-pyrimidin-2-yl)-amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol (compound 41)

0.2 ml of a 0.5 M 4-phenylpiperazine solution in DMPU is added to a solution of 19 mg (0.05 mmol) of substance 51 in N,N′-dimethylpropylurea (DMPU). The reaction mixture is kept for 18 hours at a temperature of 80° C. After cooling, 3.5 ml of tertiary butyl methyl ether is added, and the organic phase is extracted 5 times with 1.5 ml of H2O and then evaporated in a vacuum. The remaining residue is chromatographed on 1.7 g (15 μM) of Lichrosphere Si60 (gradient: dichloromethane/hexane 1:1 to DCM and then dichloromethane/methanol 99:1 to 93:7). A product yield of 17 mg (64%) is achieved.




embedded image



Similarly produced are also the following compounds:













No.
Structure
















96


embedded image







97


embedded image







98


embedded image







99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image











The following compounds are produced similarly to the described examples.














No.
Structure
Name







28


embedded image


5-Bromo-N2-(4-(2-diethylaminoethylsulfonyl)phenyl)- N4-2-propynyl-2,4-pyrimidine diamine





30


embedded image


1-(4-[5-Bromo-4-(2-propynylamino)-2- pyrimidinyl]amino-phenylthio)-3-(diethylamino)-2- propanol





32


embedded image


5-Bromo-N2-(3-phenylsulfonylphenyl)-N4-2-propynyl- 2,4-pyrimidine diamine





33


embedded image


N-[4-[[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]amino]- benzenesulfonyl]morpholine





41


embedded image


1-(4-((5-Bromo-4-(2-propynyloxy)-pyrimidin-2-yl)- amino)phenoxy)-3-(4-phenylpiperazin-1-yl)-2-propanol





57


embedded image


N-[5-Bromo-4-((2R)-1-hydroxy-4-methyl-2-butylamino)-2- pyrimidinyl]-indazol-5-amine





58


embedded image


4-[[5-Fluoro-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2- pyrimidinyl]amino]-benzenesulfonamide





59


embedded image


4-[[5-Iodo-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2- pyrimidinyl]amino]-benzenesulfonamide





62


embedded image


4-[[5-Fluoro-4-(2-propynylamino)-2-pyrimidinyl]amino]- benzenesulfonamide





65


embedded image


4-[[5-Ethyl-4-(2-propynylamino)-2-pyrimidinyl]amino]- benzenesulfonamide





66


embedded image


1-[4-[(5-Iodo-4-((2R)-1-hydroxy-3-methyl-2-butylamino)-2- pyrimidinyl)amino]phenyl]-ethanone





68


embedded image


1-[4-[(5-Ethyl-4-((2R)-1-hydroxy-3-methyl-2-butylamino)- 2-pyrimidinyl)amino]phenyl]-ethanone





72


embedded image


4-[[5-Bromo-4-(2-(2-oxo-imidazolin-1-yl)ethylamine)-2- pyrimidinyl]amino]-benzenesulfonamide





73


embedded image


4-[[5-Bromo-4-(2,2,3,3,3-pentafluoropropyloxy)-2- pyrimidinyl]amino]-benzenesulfonamide





75


embedded image


4-[[5-Bromo-4-(1,3-bisacetoxy-2-propyloxy)-2- pyrimidinyl]amino]-benzenesulfonamide





76


embedded image


4-[[5-Bromo-4-(1,3-dihydroxy-2-propyloxy)-2- pyrimidinyl]amino]-benzenesulfonamide





79


embedded image


N□-(5-Bromo-2-(4-sulfamoylphenyl)amino-pyrimidin-4-yl)- L-alanine amide





83


embedded image


1-[4-[(5-Bromo-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanol









The following compounds are produced analogously to the described synthesis processes according to Diagram 1 or 2:


All NMR spectra are measured in the indicated solvent or in DMSO.


[Key to the Following Tables and Diagrams:]


Bsp.-Nr. [Beispiel Nr.]=Example No.


Chromatographie Ausbeute=Chromatography yield


Schmp.=Melting point


Kristallisiert=Crystallized


Masse=Mass


krist. Wasser=Crystallized water


Verbindung=Compound


Hitze=Heat




















embedded image




embedded image




embedded image




embedded image











Bsp.-Nr.












37
38
39
5















6-H
8.34(s, 1H)
8.39(s, 1H)
8.30(s, 1H)
8.00(s, 1H)


2CH
12.88
9.28(s, 1H)
7.74(s, 1H)
7.52(d, 2H)



(sb, 1H)
8.79(s, 1H)
7.44(d, 1H)
6.65(d, 2H)



8.07(s, 1H)
7.70(d, 1H)
7.22(d, 1H)



7.93(s, 1H)
8.04(d, 1H)
3.98(t, 2H)



7.41(d, 1H)

3.13(t, 2H)



7.56

2.99(s, 3H)


4CH
(dd, 1H)
4.19(d, 2H)
4.16(d, 2H)
4.09(d, 2H)




3.22(sb, 1H)
3.28(sb, 1H)
3.09(s, 1H)


NH
4.15
10.43(sb, 1H)
10.6(1H)
9.00(s, 1H)



(dd, 2H)
8.45(sb, 1H)
8.75(1H)
8.96(s, 1H)



3.18(t, 1H)


7.31(t, 1H)



9.30



(sb, 1H)



7.39



(tb, 1H)


Chro-
EA + 0.5%

Kristallisiert



mato-
TEA
36%
MeOH
20%


graphie
10%

73%


Aus-


beute


Schmp.
231° C.
>235° C.
237° C.
157° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












16
24
26
35















6-H
8.80(s, 1H)
8.30(s, 1H)
8.18(s, 1H)
8.14(s, 1H)


2CH
7.67(d, 2H)
7.94(d, 2H)
7.67(s, 1H)
8.28(s, 1H)



7.27(d, 2H)
7.63(d, 2H)
7.54(d, 1H)
7.98(d, 1H)



2.47(s, 3H)

7.24(t, 1H)
7.41(t, 1H)





6.92(d, 1H)
7.25(d, 1H)


4CH
4.17(dd, 2H)
4.17(dd, 2H)
4.20(dd, 2H)
4.14(dd, 2H)



3.75(t, 1H)
3.18(t, 1H)
3.12(sb, 1H)
3.04(sb, 1H)


NH
10.55
10.45
9.78(sb, 1H)
9.58(sb, 1H)



(sb, 1H)
(sb, 1H)
7.95(sb, 1H)
7.46(sb, 1H)



8.68(sb, 1H)
8.22(sb, 1H)


Chrom.






Aus-
94%
86%
73%
69%


beute


Schmp.
232-234° C.
160° C.
194° C.
143° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












27
36
34
21















6-H
8.18(s, 1H)
8.26(s, 1H)
8.25(s, 1H)
8.17(s, 1H)


2CH
8.73(s, 1H)
8.12(s, 1H)
8.16.(s, 1H)
8.74(s, 1H)



7.62(d, 1H)
7.35-7.55
7.43(d, 1H)
7.43(d, 1H)



7.72(t, 1H)
(m, 3H)
7.52(t, 1H)
7.52(t, 1H)



8.31(d, 1H)
8.06(d, 1H)
8.01(d, 1H)
8.08(d, 1H)





2.78(m, 2H)
3.43(t, 2H)





1.35(mc, 2H)
3.70(t, 2H)





1.24(mc, 2H)





0.80(t, 3H)


4CH
4.18(dd, 2H)

4.21(d, 2H)
4.20(dd, 2H)



3.06(t, 1H)
4.21(d, 2H)
3.09(sb, 1H)
3.08(t, 1H)


NH
10.02(s, 1H)
3.09(sb, 1H)
10.3(sb, 1H)
9.79(s, 1H)



7.49(sb, 1H)
9.68(sb, 1H)
8.13(sb, 1H)
7.55(tb, 1H)


OH

7.30(sb, 2H)

4.90(sb, 1H)


Chrom.

krist. EtOH




Aus-
69%
64%
87%
59%


beute


Schmp.
144° C.
219° C.
220° C.
192.5-193.5° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












31
25
23
11















6-H
8.25(s, 1H)
8.14(s, 1H)
8.25(s, 1H)
8.29(s, 1H)


2CH
7.65(d, 2H)
8.01(d, 2H)
7.86(d, 2H)
7.95(d, 2H)



7.24(d, 2H)
7.56(d, 2H)
7.51(d, 2H)
7.78(d, 2H)



3.19
2.70(s, 3H)
7.38



(d, 21.3 Hz, 2H)

(t, 56.8 Hz, 1H)



3.95


4CH
(mc, 4H)
4.15(dd, 2H)
4.18(m, 2H)
4.19(d, 2H)



1.20(t, 6H)
3.14(t, 1H)
3.16(sb, 1H)
3.18(sb, 1H)


NH

9.69(sb, 1H)
10.24(sb, 1H)
10.40



4.17(sb, 2H)
7.55(tb, 1H)
8.17(sb, 1H)
(sb, 1H)



3.15(sb, 1H)


8.24(sb, 1H)



10.19


7.15(sb, 2H)



(sb, 1H)



8.34(sb, 1H)


Chrom.
EA krist.
DCM/MeOH

krist.


Aus-
H/DIPE
95:5
85%
DIPE/EtOH


beute
23%
25%

17%


Schmp.
198° C.
217-218° C.
>235° C.
>235° C.


























embedded image




embedded image




embedded image











Beispiel Nr.











44
45
4














6-H
8.34(s, 1H)
8.34(s, 1H)
8.23 n(sb, 1H)


2CH
7.93(d, 2H)
7.74(mc, 4H)
7.39(d, 2H)



7.79(d, 2H)

6.79(d, 2H)


4CH
4.20(sb, 2H)
4.55(q, 1H)
3.52-3.71(2H)



3.31(sb, 1H)
1.98(dq, 2H)
3.97(mc, 1H)




0.94(t, 3H)
1.96(mc, 1H)




3.61(s, 3H)
0.91(d, 3H)


NH
11.03(sb, 1H)
10.60(s, 1H)
0.85(d, 3H)



9.04(sb, 1H)
7.97(d, 1H)
10.35(sb, 1H)



7.34(sb, 2H)
7.31(db, 2H)
7.76(sb, 1H)


Chrom.
krist. EtOH
krist. EtOH



Aus-
27%
48%
52%


beute


Schmp.
252° C.
235° C.
242-243° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












10
15
3
19















6-H
8.27(s, 1H)
8.17(s, 1H)
7.97.(s, 1H)
8.20-8.35


2H
7.80
7.60(d, 2H)
7.44(d, 2H)
(2H)



(mc, 4H)
7.24(d, 2H)
6.67(d, 2H)
7.90(sb, 1H)




2.44(s, 3H)

7.50-7.64






(2H)






3.46(t, 2H)


4H

3.5-3.7(2H)
3.50-3.65
3.70(t, 2H)



3.66
40.1(mc, 1H)
(4H)



(mc, 2H)
1.98(mc, 1H)
4.12(mc, 1H)
3-56-3.66



n. obs.
0.94(d, 3H)

(4H)



2.04
0.90(d, 3H)

4.28(mc, 1H)


NH
(mc, 1H)
9.95(sb, 1H)


OH
0.97(d, 3H)
6.96(sb, 1H)
8.98(sb, 1H)



0.94(d, 3H)
ca.4, sehr
5.97(db, 1H)



10.40
breit
8.90(sb, 1H)
NH and OH



(sb, 1H)

4.80(tb, 2H)
sind sehr



7.18(sb, 2H)


breit



n. obs.


Chrom.



Kristallisiert


Aus-
43%
27%
76%
Wasser


beute



52%


Schmp.
252-253° C.
192-193° C.
257-258° C.
209-210° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












9
14
55
50















6-H
8.30(s, 1H)
8.30(s, 1H)
8.11(s, 1H)
8.17(s, 1H)


2H
7.82
7.55(d, 2H)
7.87(s, 4H)
7.95(d, 2H)



(mc, 4H)
7.30(d, 2H)
2.50(s)
7.86(d, 2H)




2.48(s, 3H)

2.50(s)


4H

3.54-3.68
4.19(mc, 1H)
4.17(dd, 2H)



3.63
(4H)
3.61(mc, 4H)
3.13(t, 1H)



(mc, 4H)
4.24(mc, 1H)


NH
4.24

9.73(s, 1H)
9.81(s, 1H)


OH
(mc, 1H)
10.63(sb, 1H)
6.20(s, 1H)
7.58(t, 1H)




7.60(sb, 1H)
4.88(t, 2H)



10.59(b, 1H)
4.4(b)



7.2(sb)



6.1(sb)


Chrom.
Kristallisiert
91%
Kristallisiert



Aus-
MeOH

MeOH/DIPE
56%


beute
24%

27%


Schmp.
247-248° C.
233-234° C.
228-229° C.
241° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












46
13
52
53















6-H
8.07s, 1H)
8.00(s, 1H)
8.09(s, 1H)
8.11(s, 1H)


2H
7.91(d, 2H)
7.68(d, 2H)
7.88(s, 4H)
7.86(s, 4H)



7.69(d, 2H)
7.18(d, 2H)

not obs.




2.44(s, 3H)


4H
3.30(t, 2H)
3.54(q, 2h9
3.32(t, 2H)
3.62(mc, 2H)



n. obs.(mc, 1H)
2.53(t, 2H)
1.20(mc, 1H)
4.06(mc, 1H)




2.40-2.45
0.44(mc, 2H)
2.02(mc, 1H)



0.45
(4H)
0.30(mc, 2H)
0.97(d, 3H)



(mc, 2H)
3.58(t, 4H)

0.92(d, 3H)


NH
0.30

9.70(s, 1H)
9.70(s, 1H)


OH
(mc, 2H)
9.20(sb, 1H)
7.21(t, 1H)
6.24(d, 1H)




6.81(tb, 1H)

4.80(sb, 1H)



9.94(s, 1H)



7.21(t, 1H)



7.18(s, 2H)


Chrom.
H/EA 1:2


H/EA 1:2


Aus-
20%
28%
53%
9%


beute


Schmp.
256° C.
185-186° C.
183° C.
170° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












1
54
12
60















6-H
7.96(s, 1H)
8.22(s, 1H)
8.03(s, 1H)
8.10(s, 1H)


2H
7.43(d, 2H)
7.93(d, 2H)
7.68(d, 2H)
7.92(d, 2H)



6.67(d, 2H)
7.85(d, 2H)
7.19(d, 2H)
7.66(d, 2H)





2.43(s, 3H)
not. obs.






2.74(t, 2H)


4H
1.20(d, 3H)
4.26(d, 2H)
1.20(d, 3H)
3.61(mc, 2H)



4.38
3.12(sb, 1H)
4.42(mc, 1H)
4.04(mc, 1H)



(mc, 1H)

3.37(dd, 1H)
2.01(mc, 1H)



3.37(dd, 1H)

3.50(dd, 1H)
0.94(d, 3H)



3.48(dd, 1H)

3.34(s, 3H)
0.91(d, 3H)


NH
3.28(s, 3H)
9.78(s, 1H)
9.26(s, 1H)
9.72(s, 1H)



8.92(sb, 1H)


7.65(s, 1H)



8.81(sb, 1H)


6.27(d, 1H)


OH

7.21(t, 1H)
6.42(d, 1H)
4.80(sb, 1H)



6.20(tb, 1H)


4.70(sb, 1H)


Chrom.
Kristallisiert
Kristallisiert
Kristallisiert.


Aus-
EA
DIPE/MeOH
EA


beute
64%
52%
36%


Schmp.
165.5-166° C.
210° C.
91° C.
150-151° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












7
17
2
18















6-H
8.32(s, 1H)
8.08(s, 1H)
7.95(s, 1H)
8.32(s, 1H)


4CH
1.22(d, 3H)
1.21(d, 3H)
3.50(q, 2H)
3.10(m, 2H)



4.46
4.53(mc, 1H)
2.50(t, 2H)
3.52(m, 4H)



(mc, 1H)
3.41(dd, 1H)
2.40(t, 4H)
3.77-3.97



3.40(dd, 1H)
3.51(dd, 1H)
3.59(t, 4H)
(6H)



3.57(dd, 1H)
3.27(s, 3H)


2CH
3.28(s, 3H)
8.53(s, 1H)
7.45(d, 2H)



7.80(s, 4H)
7.40(d, 1H)
6.66(d, 2H)
8.40(s, 1H)




7.50(t, 1H)

7.55-7.70




7.86(d, 1H)

(2H)




3.40(t, 2H)

7.85(d, 1H)




3.68(t, 2H)

3.48(m, 2H)


NH

9.65(sb, 1H)
8.94(sb, 1H)
3.70(m, 2H)



10.79
6.47(db, 1H)
8.79(sb, 1H)


OH
(sb, 1H)
4.84(tb, 1H)
6.70(tb, 1H)
11.16(sb, 1H)



7.84(db, 1H)


10.60(sb, 1H)



7.31(sb, 1H)


8.20(sb, 1H)


Chrom.
25%


kristall.


Aus-

10%
62%
MeOH


beute



50%


Schmp.
247° C. Zers.
201-202° C.
227.5-228.5° C.
245° C. Zers.
























embedded image





Beispiel Nr.



8(D2O)



















6-H
8.14(s, 1H)



4CH
3.06(sb, 1H)




3.39(t, 4H)




3.71(sb, 2H)




3.85(sb, 2H)




3.94(t, 2H)



2CH
8.00(d, 2H)




7.72(d, 2H



NH



OH



Chrom.
krist. Wasser



Aus-
25%



beute



Schmp.
>275° C.




























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












47
6
22
84















5-H
8.74(s, 1H)
8.31(s, 1H)
8.31(s, 1H)
8.47(s, 1H)


2CH
7.87(d, 2H)
7.47(d, 2H)
7.76(d, 2H)
4.48(t, 2H)



7.74(d, 2H)
6.71(d, 2H)
7.72(d, 2H)
2.01(mc, 2H)





2.58(s, 3H)
2.44(mc, 2H)


4CH
4.50(t, 2H)
5.04(d, 2H)
5.05(d, 2H)



2.03(mc, 2H)
3.59(t, 1H)
2.57(t, 1H)
7.91(d, 2H)



2.44(mc, 2H)


2NH
10.14(s, 1H)
9.02(sb, 1H)
7.47(sb, 1H)
7.85(d, 2H)



7.21(s, 2H)
9.40(sb, 1H)

2.50(s)






10.19(s, 1H)


Chrom.
MeOH/DCM
66%




Aus-
1:9

8%
11%


beute
4%


Schmp.
186-187° C.
146° C.
165-166° C.
152° C.

























embedded image




embedded image











Beispiel Nr.










86
77













5-H
8.47(s, 1H)
8.48(s, 1H)


2CH
4.07(mc, 2H)
5.52(m, 1H)



3.81(mc, 2H)
3.68(d, 4H)



3.60(mc, 2H)
3.48(mc, 4H)


4CH
3.48(mc, 2H)
1.09(t, 6H)



3.41(t, 2H)
7.84(d, 2H)



1.07(t, 3H)


2NH
7.84(d, 2H)
7.74(d, 2H)



7.91(d, 2H)
8.05(vb)



10.18(s, 1H)
3.40(vb)


Chrom.




Aus-
2%
74%


beute


Schmp.
85° C.
132° C.

























embedded image




embedded image











Beispiel Nr.










40
20













6-H
8.36(s, 1H)
8.40(s, 1H)


2CH
7.60(d, 1H)
7.23(s, 1H)



6.91(d, 1H)
6.42(d, 1H)



4.28(dd, 1H)
7.06(t, 1H)



3.79(dd, 1H)
7.18(d, 1H)



3.31(m, 1H)



2.84(dd, 1H)



2.70(dd, 1H)


4CH
5.07(d, 12H)
5.12(d, 2H)



3.65(t, 1H)
3.60(sb, 1H)


NH
9.65(sb, 1H)
9.60(sb, 1H)


OH

9.21(sb, 1H)


Chrom.
H/EA 1:3
krist. DIPE


Aus-
0.5% TEA
35%


beute
38%


Schmp.
140-141° C.
174° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












49
48
29
42















6-H
8.14(s, 1H)
8.10(s, 1H)
8.09(s, 1H)
7.87(d, 3.4, 1H)


2H
7.88(d, 2H)
7.92(d, 2H)
8.50(s, 1H)
7.51(d, 2H)



7.69(d, 2H)
7.66(d, 2H)
7.86(d, 1H)
6.66(d, 2H)




not. obs.
7.50(t, 1H)




2.74(t, 2H)
7.40(d, 1H)


4H
3.41(q, 2H)
3.61(mc, 2H)
3.40(t, 2H)
4.13(dd, 2H)



2.20(t, 2H)
4.04(mc, 1H)
3.52-3.73
3.08(t, 1H)



1.81(q, 2H)
2.01(mc, 1H)
(4H)




0.94(d, 3H)
4.09(mc, 1H)




0.91(d, 3H)
1.98(mc, 1H)





0.97(d, 3H)


NH
9.64(s, 1H)
9.72(s, 1H)
0.89(d, 3H)
8.76(s, 1H)



7.64(t, 1H)
7.65(s, 1H)
9.68(s, 1H)
7.74(tb, 1H)


OH
3.5(vb
6.27(d, 1H)
6.17(d, 1H)
8.88(s, 1H)




4.80(sb, 1H)
4.74(t, 1H)




4.70(sb, 1H)
4.93(t, 1H)


Chrom.

krist. MeOH/DI
DCM/EA 2:1
H/EA 1:2


Aus-
9%
PE
26%
29%


beute

16%


Schmp.
262° C.
150-151° C.

163° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












43
55
89
88















6-H
7.93(s, 1H)
8.11(s, 1H)
8.36(s, 1H)
8.29(s, 1H)


2H
7.52(d, 2H)
7.87(s, 4H)
7.7-7.8(5H)
7.73(d, 2H)



6.68(d, 2H)
2.50(s)

7.57(d, 2H)


4H
3.09(s, 1H)
4.19(mc, 1H)
3.66(mc, 2H)
3.7-3.9(2H)



4.14(d, 2H)
3.61(mc, 4H)
4.04(m, 1H)
5.19(m, 1H)





1.99(mc, 1H)
7.2-7.4(5H)





0.94(d, 3H)





0.89(d, 3H)


NH
8.98(sb, 2H)
9.73(s, 1H)
11.11(sb, 1H)
10.50(s, 1H)



7.50(s, 1H)
6.20(s, 1H)

5.029(vb)


OH

4.88(t, 2H)
7.34(sb, 2H)





n. obs.


Chrom.
H/EA 1:2
krist. MeOH/




Aus-
35%
DIPE
74%
27%


beute

27%


Schmp.
168° C.
228° C.
248° C. Zers.
159° C. Zers.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












87
92
91
96















6-H
8.09(s, 1H)
8.10(s, 1H)
8.09(s, 1H)
8.06(s, 1H)


2H
7.90(d, 2H)
7.91(d, 2H)
7.98(d, 2H)
7.88(d, 2H)



7.82(d, 2H)
7.63(d, 2H)
7.61(d, 2H)
7.69(d, 2H)



not. obs
2.39(d, 3H)
2.54(s, 6H)


4H
3.69(td, 2H)
1.21(d, 3H)
1.20(d, 3H)
3.41(m, 2H)



2.84(t, 2H)
4.45(mc, 1H)
4.46(mc, 1H)
1.62(m, 4H)



7.60(s, 1H)
3.38(dd, 1H)
3.47(dd, 1H)
2.41(m, 2H)



6.86(s, 1H)
3.51(dd, 1H)
3.51(dd, 1H)
5.07(s, 2H)





3.38(s, 3H)


NH
7.34(tb, 1H)
9.73(sb, 1H)
9.81(sb, 1H)
7.32(s, 5H)



9.72(s, 1H)
7.20(q, 1H)
6.58(db, 1H)
9.64(s, 1H)






7.16(sb, 2H)


OH
11.91(sb, 1H)
6.57(d, 1H)


Chrom.

H bis H/EA 1:1
H bis H/EA



Aus-
16%
21%
1:1
33%


beute


7%


Schmp.
210° C.
167-168° C.
105° C.
202° C



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












97
98
90
85















6-H
8.07(s, 1H)
8.10(s, 1H)

8.30(s, 1H)


2H
7.87(s, 4H)
7.86(mc, 4H)

7.95(d, 2H)



2.50(s, 3H)
n. obs.

7.69(d, 2H)






2.48(s, 3H)


4H
3.41(m, 2H)
3.68(t, 2H)

3.50(q, 2H)



1.61(m, 4H)
2.68(t, 2H)

1.87(m, 2H)



2.41(m, 2H)
4.08(q, 2H)

2.38(t, 2H)



5.07(s, 2H)
1.17(t, §H)

4.03(q, 2H)






1.13(t, 3H)


NH
7.32(s, 5H)
9.74(s, 1H)

10.86(s, 1H)



9.70(s, 1H)
7.18(t, 1H)

8.28(sb, 2H)



7.19(t, 1H)


Chrom.






Aus-
23%
32%

53%


beute


Schmp.
152° C.
172

184° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












63
94
93
80
















9.73(s, 1H)
10.91(s, 1H)
10.80(s, 1H)
10.88(s, 1H)



8.25(s, 1H)
8.34(s, 1H)
8.30(s, 1H)
8.40(s, 1H)



7.95(d, 2H)
7.80(s, 4H)
7.81(d, 2H)
8.29(m, 1H)



7.67(d, 2H)
7.30(s, 2H)
7.65(d, 2H)
7.79(s, 4H)



7.21(s, 3H)
4.35(m, 1H)
7.30(m, 8H)
7.31(s, 2H)



4.12(s, 2H)
3.58(m, 2H)
4.95(d, 1H)
4.75(dd, 1H)



3.12(s, 1H)
2.47(m, 2H)
4.38(m, 1H)
3.65(m, 1H)




2.03(s, 3H)
3.59(d, 1H)
3.49(m, 1H)




1.91(m, 2H)

2.10(m, 2H)


Aus-
61%
24%
70%
51%


beute


Schmp.
220
168
243


Masse
428(EI)
462(ES)
494(ES)
427(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












120
121
122
123
















9.65(s, 1H)
9.68(s, 1H)
11.30(s, 1H)
10.79(s, 1H)



8.12(s, 1H)
8.11(s, 1H)
8.11(d, 1H)
8.35(s, 1H)



7.89(d, 2H)
7.93(t, 1H)
7.85(d, 2H)
8.25(s, 1H)



7.65(d, 2H)
7.90(d, 2H)
7.72(d, 2H)
7.80(s, 4H)



7.15(s, 2H)
7.65(d, 2H)
7.31(s, 2H)
7.30(s, 2H)



6.06(d, 1H)
7.15(s, 2H)
6.71(d, 1H)
3.41(m, 2H)



4.71(t, 1H)
7.07(t, 1H)
3.85(m, 8H)
2.22(t, 2H)



4.18(m, 1H)
3.65(m, 2H)

1.60(m, 4H)



3.67(t, 1H)
3.56(s, 3H)

1.30(m, 2H)



0.95(s, 9H)
3.07(q, 2H)




2.45(t, 2H)




2.30(t, 2H)




1.65(p, 2H)


Aus-
49%
24%
80%
73%


beute


Schmp.



252


Masse
445(EI)
516(EI)
334(EI)
459(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












95
124
125
126
















11.19(s, 1H)
9.62(s, 1H)
9.62(s, 1H)
10.91(s, 1H)



8.37(s, 1H)
8.04(s, 1H)
8.04(s, 1H)
8.38(s, 1H)



8.11(d, 1H)
7.88(m, 3H)
7.86(d, 2H)
7.83(d, 2H)



7.80(s, 4H)
7.66(d, 2H)
7.66(d, 2H)
7.77(d, 2H)



7.31(s, 2H)
7.13(s, 3H)
7.12(s, 3H)
7.28(s, 2H)



3.91(m, 1H)
3.58(s, 3H)
3.58(s, 3H)
7.04(d, 1H)



1.89(m, 4H)
3.40(m, 2H)
3.40(m, 2H)
6.40(br, 3H)



1.67(m, 1H)
3.05(m, 2H)
2.30(t, 2H)
4.35(m, 1H)



1.55(m, 2H)
2.25(m, 2H)
1.60(m, 4H)
3.87(m, 1H)



1.34(m, 2H)
2.05(m, 2H)
1.32(m, 2H)
3.60(d, 2H)



1.15(m, 1H)
1.60(m, 5H)

3.41(dd, 1H)




1.32(m, 3H)

3.28(dd, 1H)


Aus-
29%
25%
27%
46%


beute


Schmp.
255

218


Masse
425(EI)
557(ES)
471(EI)
449(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












127
128
129
130
















9.96(s, 1H)
9.60(s, 1H)
9.67(s, 1H)
9.65(s, 1H)



8.12(s, 1H)
8.05(s, 1H)
8.07(s, 1H)
8.08(s, 1H)



7.85(d, 2H)
7.90(d, 2H)
7.87(d, 2H)
7.87(d, 2H)



7.69(d, 2H)
7.69(d, 2H)
7.75(d, 2H)
7.64(d, 2H)



7.20(s, 2H)
7.42(d, 1H)
7.13(s, 2H)
7.14(s, 2H)



6.78(d, 1H)
7.16(m, 3H)
6.40(d, 1H)
6.53(d, 1H)



4.35(m, 1H)
4.57(t, 2H)
4.91(br, 1H)
4.62(d, 1H)



3.48(m, 2H)
3.70(m, 1H)
4.23(m, 1H)
3.90(br, 1H)



1.65(m, 7H)
3.4(m, 5H)
3.52(m, 2H)
3.40(br, 1H)



1.10(m, 6H)
2.10(t, 2H)
1.21(d, 3H)
1.88(m, 4H)




1.55(m, 4H)

1.50(m, 2H)




1.30(m, 2H)

1.30(m, 2H)


Aus-
18%
94%
61%
58%


beute


Schmp.
220

259
262


Masse
485(EI)
531(ES)
403(EI)
443(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












131
132
133
134
















9.62(s, 1H)
9.70(s, 1H)
9.69(s, 1H)
10.85(s, 1H)



8.08(s, 1H)
8.11(s, 1H)
8.11(s, 1H)
8.31(s, 1H)



7.92(d, 2H)
7.90(d, 2H)
7.88(d, 2H)
7.90(d, 1H)



7.67(d, 2H)
7.60(d, 2H)
7.66(d, 2H)
7.85(d, 2H)



7.23(s, 2H)
7.21(q, 1H)
7.15(s, 2H)
7.75(d, 2H)



6.75(t, 1H)
5.25(d, 1H)
6.52(d, 1H)
7.54(s, 1H)



3.22(d, 2H)
4.77(t, 1H)
4.35(dd, 1H)
3.90(m, 1H)



1.95(s, 3H)
4.02(m, 1H)
2.29(m, 1H)
3.38(t, 2H)



1.60(m, 12H)
3.60(m, 2H)
1.07(d, 3H)
2.78(br, 2H)




2.39(d, 3H)
0.91(d, 3H)
1.50(m, 11H)




2.02(m, 1H)




0.95(dd, 6H)


Aus-
9%
42%
25%
64%


beute


Schmp.
229
141


Masse
491(EI)
443(EI)
444(FAB)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












135
136
137
138
















10.01(s, 1H)
9.70(s, 1H)
9.65(s, 1H)
9.70(s, 1H)



8.28(s, 1H)
8.11(s, 1H)
9.58(s, 1H)
8.10(s, 1H)



7.81(d, 2H)
7.90(d, 2H)
8.10(s, 1H)
7.89(d, 2H)



7.71(t, 1H)
7.64(d, 2H)
7.85(d, 2H)
7.63(d, 2H)



7.63(d, 2H)
7.35(t, 1H)
7.68(d, 2H)
7.39(t, 1H)



7.45(br, 1H)
6.55(d, 1H)
7.40(m, 2H)
6.68(d, 1H)



4.34(dt, 2H)
4.65(t, 1H)
7.18(m, 4H)
4.34(dd, 1H)



3.32(t, 2H)
4.45(m, 1H)
6.94(t, 1H)
3.36(m, 3H)



2.71(br, 2H)
3.53(m, 1H)
6.75(d, 1H)
2.25(q, 2H)




3.44(m, 6H)
4.40(m, 3H)
2.29(m, 1H)




2.75(q, 2H)
2.05(m, 1H)
1.05(dd, 6H)




1.20(d, 3H)
0.96(dd, 6H)


Aus-
34%
53%
59%
57%


beute


Schmp.


Masse
570(ES)
460(ES)
549(ES)
488(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












139
140
141
142
















9.82(s, 1H)
9.82(s, 1H)
9.58(s, 1H)
9.62(s, 1H)



8.15(s, 1H)
8.08(s, 1H)
8.12(s, 1H)
8.07(s, 1H)



7.82(d, 2H)
7.96(d, 2H)
7.83(d, 2H)
7.87(d, 2H)



7.64(d, 2H)
7.75(t, 1H)
7.68(d, 2H)
7.67(d, 2H)



7.39(t, 1H)
7.62(d, 2H)
7.15(s, 2H)
7.14(s, 2H)



6.55(d, 1H)
7.30(t, 1H)
5.92(s, 1H)
6.36(d, 1H)



4.64(t, 1H)
4.64(t, 1H)
5.28(t, 1H)
4.81(t, 1H)



4.50(t, 1H)
4.14(m, 2H)
3.50(d, 2H)
4.32(m, 1H)



3.65(s, 3H)
3.35(m, 2H)
1.42(s, 6H)
3.47(m, 2H)



3.4(m, 2H)
3.16(m, 1H)

1.52(m, 3H)



2.75(m, 2H)
2.75(q, 2H)

0.90(d, 3H)



2.35(m, 1H)


0.86(d, 3H)



1.00(dd, 6H)


Aus-
20%
63%
23%
8%


beute


Schmp.


Masse
502(ES)
382(ES)
415(EI)
443(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












143
144
145
78
















10.6(s, 1H)
10.11(s, 1H)
11.05(s, 1H)
9.69(s, 1H)



8.28(s, 1H)
8.45(s, 1H)
8.32(s, 1H)
8.06(s, 1H)



8.30(m, 5H)
7.86(d, 2H)
8.08(d, 1H)
7.88(d, 2H)



7.48(d, 1H)
7.78(d, 2H)
7.80(m, 4H)
7.63(d, 2H)



7.20(s, 1H)
7.15(br, 2H)
7.30(br, 2H)
7.18(s, 2H)



4.05(br, 1H)
5.32(m, 1H)
3.88(m, 1H)
7.10(t, 1H)



3.60(br, 2H)
3.91(m, 2H)
3.65(m, 1H)
6.65(d, 1H)



2.01(m, 1H)
3.53(m, 2H)
1.95(m, 2H)
4.47(m, 1H)



0.90(m, 6H)
2.05(m, 2H)
1.69(m, 2H)
3.97(m, 1H)




1.70(m, 2H)
1.35(m, 4H)
2.98(m, 2H)






2.00(m, 4H)






1.40(m, 8H)






0.85(t, 3H)


Aus-
13%
47%
42%
20%


beute


Schmp.


Masse
392(EI)
428(EI)
441(EI)
541(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












146
147
148
149
















11.13(s, 1H)
11.18(s, 1H)
11.15(s, 1H)
9.19(s, 1H)



8.38(s, 1H)
8.35(s, 1H)
8.35(s, 1H)
8.30(s, 1H)



7.92(d, 2H)
7.90(s, 4H)
7.90(d, 2H)
8.02(s, 1H)



7.75(m, 3H)
7.62(d, 1H)
7.65(m, 3H)
7.62(m, 1H)



4.04(m, 1H)
4.02(m, 1H)
4.01(m, 1H)
6.85(d, 1H)



3.80(s, 3H)
3.62(m, 2H)
3.60(m, 6H)
6.05(d, 1H)



3.65(m, 2H)
3.02(s, 3H)
2.85(m, 4H)
4.03(m, 1H)



2.00(m, 1H)
2.00(m, 1H)
2.00(m, 1H)
3.56(m, 2H)



0.96(d, 3H)
0.95(d, 3H)
0.95(d, 3H)
1.96(m, 1H)



0.89(d, 3H)
0.89(d, 3H)
0.85(d, 3H)
0.97(d, 3H)






0.90(d, 3H)


Aus-
86%
33%
79%
42%


beute


Schmp.
225
211
232
241


Masse
408(EI)
428(EI)
501(EI)
411(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












150
151
152
153
















11.19(s, 1H)
10.96(s, 1H)
9.50(s, 1H)
12.90(s, 1H)



10.80(s, 1H)
8.35(s, 1H)
8.08(s, 1H)
9.45(s, 1H)



8.30(m, 2H)
7.95(m, 2H)
7.75(m, 5H)
8.52(s, 1H)



7.85(d, 1H)
7.65(m, 3H)
6.17(d, 1H)
8.05(s, 1H)



7.72(d, 1H)
4.04(m, 1H)
4.80(br, 1H)
7.82(d, 1H)



7.20(d, 1H)
3.62(m, 2H)
4.64(br, 2H)
7.50(d, 1H)



4.02(m, 1H)
2.00(m, 1H)
4.05(m, 1H)
7.32(t, 1H)



3.60(m, 2H)
0.90(M, 6H)
3.94(m, 1H)
6.11(d, 1H)



2.00(m, 1H)

3.52(m, 6H)
4.72(s, 1H)



1.01(d, 3H)

2.01(m, 1H)
4.10(s, 1H)



0.90(d, 3H)

0.93(dd, 6H)
3.60(m, 2H)






2.01(m, 1H)






0.99(d, 3H)






0.92(d, 3H)


Aus-
27%
65%
85%
9%


beute


Schmp.



231


Masse
420(ES)
395(ES)
468(ES)
395(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












154
155
156
157
















10.91(s, 1H)
11.05(s, 1H)
10.51(s, 1H)
15.5o(s, 1H)



8.38(s, 1H)
8.34(m, 2H)
8.22(s, 1H)
9.50(s, 1H)



7.90(d, 1H)
7.75(m, 3H)
7.71(d, 1H)
8.40(s, 1H)



7.80(m, 4H)
7.52(t, 1H)
7.27(m, 1H)
8.11(s, 1H)



7.05(d, 1H)
4.04(m, 1H)
6.86(m, 2H)
7.80(d, 1H)



4.50(s, 2H)
3.85(s, 3H)
6.06(s, 2H)
7.53(d, 1H)



4.04(m, 1H)
3.65(m, 2H)
3.96(m, 1H)
6.16(d, 1H)



3.62(m, 2H)
2.00(m, 1H)
3.62(m, 2H)
4.78(br, 1H)



1.96(m, 1H)
0.94(d, 3H)
1.99(m, 1H)
4.03(m, 1H)



0.93(d, 3H)
0.85(d, 3H)
0.90(m, 6H)
3.60(m, 2H)



0.85(d, 3H)


2.01(m, 1H)






0.91(dd, 6H)


Aus-
90%
48%
77%
21%


beute


Schmp.
170
181
177
196


Masse
381(ES)
409(ES)
394(EI)
391(EI)



























embedded image




embedded image

Diastereomere 1/2(ca. 1:3)



embedded image

Diastereomere 1/2(ca. 6:1)



embedded image











Beispiel Nr.












158
159*
160*
161*
















10.80(s, 1H)
9.65
9.65
7.92(s, 1H)



8.31(s, 1H)
(s, 1H, 1 + 2)
(s, 1H, 1 + 2)
7.84(d, 2H)



7.97(d, 2H)
8.08
8.08
7.58(d, 2H)



7.88(m, 3H)
(s, 1H, 1 + 2)
(s, 1H, 1 + 2)
3.72(m, 1H)



7.52(m, 5H)
7.88
7.88
3.35(m, 2H)



4.01(m, 1H)
(d, 2H, 1 + 2)
(d, 2H, 1 + 2)
3.10(m, 1H)



3.62(m, 2H)
7.65
7.65
2.91(m, 2H)



2.00(m, 1H)
(d, 2H, 1 + 2)
(d, 2H, 1 + 2)
2.00(m, 2H)



0.91(m, 6H)
7.15
7.15
1.89(m, 2H)




(s, 1H, 1 + 2)
(s, 1H, 1 + 2)
1.66(m, 4H)




6.62(d, 1H, 2)
6.62(d, 1H, 2)
1.39(m,5H)




6.40(d, 1H, 1)
6.40(d, 1H, 1)




4.05(m, 1H, 1)
4.05(m, 1H, 1)




3.89(m, 1H, 2)
3.89(m, 1H, 2)




2.30-1.20
2.30-1.20




(m, 15H, 1 + 2)
(m, 15H, 1 + 2)


Aus-
37%
21%
14%
8%


beute


Schmp.


199
>300


Masse
469(EI)
468(EI)
468(EI)
508(EI)



























embedded image




embedded image

Diastereomere 1/2(ca. 1:1)



embedded image




embedded image











Bsp.-Nr.












162
163*
164
165
















11.25(s, 1H)
10.95(s, 1H)
9.65(s, 1H)




9.40(s, 1H)
10.72(s, 1H)
8.54(s, 1H)



8.47(s, 1H)
9.47(br, 2H)
8.10(s, 1H)



8.29(s, 1H)
9.30(br, 2H)
7.82(d, 1H)



7.63(s, 1H)
8.32(2xs, 2H)
7.45(m, 2H)



7.43(d, 1H)
8.08(d, 1H)
6.20(d, 1H)



7.07(m, 3H)
7.88(d, 2H)
4.70(t, 1H)



4.06(m, 1H)
7.75(m, 6H)
4.10(m, 1H)



3.63(m, 2H)
7.30(br, 4H)
3.60(m, 2H)



1.98(m, 1H)
6.95(d, 1H)
3.15(s, 3H)



0.95(d, 3H)
4.12(m, 1H)
2.00(m, 1H)



0.85(d, 3H)
3.98(m, 1H)
0.96(d, 3H)




3.30(m, 1H)
0.89(d, 3H)




3.10(m, 1H)




2.69(m, 2H)




2.25(m, 2H)




1.80(m, 18H)




1.01(m, 4H)




0.72(m, 4H)


Aus-
16%
33%
14%
51%


beute


Schmp.
195


162-164


Masse
446(ES)
480(EI)
429(ES)
462(EI)



























embedded image




embedded image




embedded image

Diastereomere 1/2(ca. 1:1)



embedded image











Beispiel Nr.












166
167*
168*
169
















10.90(s, 1H)
11.15(br, 1H)
11.30(br, 2H)
9.05(br, 1H)



8.95(s, 1H)
10.90(s, 1H)
11.08(s, 1H)
8.85(s, 1H)



7.93(m, 2H)
9.75(br, 2H)
10.92(s, 1H)
8.11(d, 1H)



7.25(m, 3H)
8.35(s, 1H)
9.90(s, 1H)
7.97(s, 1H)



6.30(s, 1H)
7.78(m, 4H)
9.70(s, 1H)
7.47(dd, 1H)



6.00(d, 1H)
7.30(br, 2H)
8.36(2xs, 2H)
6.80(d, 1H)



4.75(tr, 1H)
4.15(m, 1H)
8.20(d, 1H)
5.95(d, 1H)



4.05(m, 1H)
3.50(m, 5H)
7.93(d, 2H)
4.80(br, 2H)



3.60(m, 2H)
2.85(s, 6H)
7.75(m, 6H)
3.90(m, 2H)



2.00(m, 1H)
1.90(m, 8H)
7.35(br, 4H)
3.45(m, 6H)



1.00(m, 6H)

7.10(d, 1H)
2.00(m, 1H)





4.15(m, 1H)
0.90(m, 6H)





3.98(m, 1H)





3.64(m, 8H)





3.40(m, 5H)





3.10(m, 5H)





1.95(m, 26H)


Aus-
6%
16%
58%
60%


beute


Schmp.

256
261


Masse
390(ES)
512(ES)
538(ES)
484(ES)



























embedded image

Diastereomere 1/2(ca. 1:1)



embedded image




embedded image




embedded image











Beispiel Nr.












170*
171
172
173
















11.05(s, 1H)
10.45(s, 1H)
11.05(s, 1H)
8.90(s, 1H)



10.90(s, 1H)
8.25(s, 1H)
8.35(m, 2H)
8.72(s, 1H)



10.6(br, 2H)
8.00(br, 1H)
7.82(d, 1H)
7.95(s, 1H)



8.35(2xs, 2H)
7.85(d, 2H)
7.65(d, 2H)
7.18(m, 1H)



8.15(d, 1H)
7.75(d, 2H)
7.50(t, 1H)
7.05(dd, 1H)



7.80(m, 8H)
7.45(br, 1H)
4.05(m, 1H)
6.75(d, 1H)



7.30(br, 4H)
3.60(m, 5H)
3.62(m, 2H)
5.99(d, 1H)



7.05(m, 1H)
3.35(m, 2H)
2.00(m, 1H)
4.74(t, 1H)



4.25(m, 1H)
2.80(m, 2H)
0.96(d, 3H)
4.03(m, 1H)



3.95(m, 2H)
2.41(t, 2H)
0.85(d, 3H)
3.70(s, 3H)



3.65(m, 1H)
1.90(m, 2H)

3.60(m, 2H)



3.20(m, 10H)


2.00(m, 1H)



1.90(m, 24H)


0.90(m, 6H)


Aus-
64%
7%
65%
40%


beute


Schmp.
226
164
206
144


Masse
525(ES)
488(ES)
395(ES)
397(ES)



























embedded image

Diastereomere 1/2(ca. 1:1)



embedded image

Diastereomere 3/4(ca. 1:1)



embedded image




embedded image











Beispiel Nr.












174*
175*
176
177
















11.05(m, 3H)
11.15(br, 1H)
8.00(s, 1H)
9.65(s, 1H)



10.48(s, 1H)
11.05(s, 2H)
7.80(m, 4H)
8.08(s, 1H)



8.38(s, 2H)
10.65(br, 1H)
4.48(m, 1H)
7.85(d, 2H)



7.80(m, 8H)
8.30(s, 2H)
3.65(d, 2H)
7.65(d, 2H)



7.80(br, 4H)
8.13(m, 2H)
1.75(m, 1H)
7.40(br, 1H)



7.10(s, 1H)
7.88(m, 8H)
1.59(m, 2H)
7.15(s, 2H)



6.95(s, 1H)
7.30(br, 4H)
1.01(d, 3H)
3.55(m, 2H)



4.42(m, 2H)
4.40(m, 2H)
0.92(d, 3H)
2.55(m, 2H)



4.18(m, 2H)
4.00(br, 2H)

2.15(m, 2H)



3.70-2.90
3.70-2.90

1.80(m, 3H)



(m, 10H)
(m, 10H)

1.65(m, 1H)



2.40-1.60
2.40-1.40



(m, 20H)
(m, 20H)


Aus-
95%
51%
3%
8%


beute


Schmp.


Masse
511(ES)
511(ES)
443(EI)
456(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












178
179
180
181
















9.49(s, 1H)
9.61(s, 1H)
9.65(s, 1H)
9.71(s, 1H)



8.25(s, 1H)
8.08(s, 1H)
8.11(s, 1H)
8.06(s, 1H)



7.80(m, 4H)
7.88(d, 2H)
7.81(s, 2H)
7.90(d, 2H)



7.32(br, 2H)
7.65(d, 2H)
7.63(d, 2H)
7.61(d, 2H)



4.03(m, 2H)
7.60(t, 1H)
7.15(s, 2H)
7.37(t, 1H)



3.75(m, 1H)
7.15(s, 2H)
6.64(d, 1H)
6.56(d, 1H)



3.35(m, 2H)
3.45(m, 2H)
4.28(m, 3H)
4.66(m, 2H)



1.80(m, 2H)
2.40(t, 2H)
2.00(m, 1H)
3.90(m, 1H)



1.40(m, 2H)
2.20(s, 6H)
1.98(s, 3H)
3.39(m, 3H)




1.75(t, 2H)
0.98(d, 3H)
2.78(q, 2H)





0.93(d, 3H)
1.96(m, 4H)






1.56(m, 2H)






1.29(m, 2H)


Aus-
17%
9%
27%
24%


beute


Schmp.


Masse
427(EI)
428(EI)
472(ES)
486(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












182
183
184
185
















9.68(s, 1H)
10.97(s, 1H)
11.06(s, 1H)
11.01(s, 1H)



9.47(s, 1H)
8.30(s, 1H)
8.04(m, 1H)
8.38(s, 1H)



8.10(s, 1H)
8.02(d, 1H)
7.82(m, 2H)
7.82(s, 4H)



7.81(d, 2H)
7.81(m, 4H)
7.70(m, 2H)
7.40(d, 1H)



7.67(d, 2H)
7.30(s, 2H)
7.30(s, 2H)
7.32(s, 2H)



7.14(s, 2H)
4.14(m, 1H)
6.72(m, 1H)
4.20(m, 1H)



6.76(m, 3H)
1.80(m, 12H)
3.75(m, 5H)
3.70(m, 2H)



4.47(m, 2H)

1.88(m, 2H)
0.97(s, 9H)



4.30(m, 1H)

1.48(m, 2H)



3.65(s, 6H)



3.54(s, 3H)



1.99(m, 1H)



0.98(d, 3H)



0.92(d, 3H)


Aus-
57%
78%
26%
76%


beute


Schmp.


Masse
639(ES)
439(EI)
348(EI)
445(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












186
187
188
189
















9.71(s, 1H)
7.75(s, 1H)
10.60(s, 1H)
11.19(s, 1H)



8.11(s, 1H)
7.65(d, 2H)
8.29(s, 1H)
8.03(d, 1H)



7.90(d, 2H)
7.58(d, 2H)
7.79(d, 2H)
7.88(d, 2H)



7.70(d, 2H)
5.82(s, 1H)
7.71(d, 2H)
7.78(d, 2H)



7.12(s, 2H)
4.25(s, 2H)
7.28(s, 2H)
7.31(s, 2H)



6.75(d, 1H)
3.40(t, 2H)
6.60(s, 1H)
6.58(d, 1H)



4.45(m, 1H)
2.82(t, 2H)
3.58(s, 2H)
3.60(m, 4H)



2.25(m, 6H)
2.06(s, 3H)
2.10(m, 2H)
1.20(m, 6H)



1.90(m, 2H)

1.78(m, 2H)





1.55(m, 4H)


Aus-
16%
7%
61%
35%


beute


Schmp.


Masse
440(ES)
480(ES)
443(EI)
321(EI)



























embedded image




embedded image

Diastereomer 1



embedded image

Diastereomer 2



embedded image











Beispiel Nr.












190
191*
192*
193
















10.61(s, 1H)
9.67(s, 1H)
9.63(s, 1H)
10.61(s, 1H)



8.28(s, 1H)
8.08(s, 1H)
8.06(s, 1H)
8.28(s, 1H)



7.82(d, 2H)
7.88(d, 2H)
7.85(d, 2H)
7.78(m, 4H)



7.73(d, 2H)
7.65(d, 2H)
7.65(d, 2H)
7.45(d, 1H)



7.53(br, 1H)
7.11(s, 2H)
7.15(s, 2H)
7.20(s, 2H)



7.25(s, 2H)
6.35(d, 1H)
6.55(d, 1H)
4.30(br, 2H)



4.25(m, 1H)
4.10(m, 1H)
3.95(m, 1H)
3.53(m, 2H)



2.59(br, 1H)
3.62(m, 4H)
3.58(m, 4H)
1.21(d, 3H)



2.21(br, 1H)
2.45(m, 4H)
2.50(m, 4H)



1.94(m, 1H)
2.19(m, 1H)
1.96(m, 1H)



1.40(m, 7H)
1.88(m, 4H)
1.50(m, 4H)




1.65(m, 4H)
1.30(m, 4H)


Aus-
63%
15%
17%
57%


beute


Schmp.


Masse
437(EI)
511(ES)
511(EI)
403(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












194
195
196
197
















9.89(s, 1H)
10.98(s, 1H)
10.39(s, 1H)
10.85(s, 1H)



8.21(s, 1H)
8.51(br, 1H)
8.30(s, 1H)
8.71(d, 1H)



7.82(d, 2H)
8.29(s, 1H)
8.04(d, 2H)
8.31(s, 1H)



7.65(m, 3H)
7.81(m, 4H)
7.70(d, 2H)
7.72(d, 2H)



7.17(br, 2H)
7.29(br, 2H)
7.21(br, 2H)
7.55(d, 2H)



4.30(m, 2H)
3.45(m, 4H)
6.55(s, 1H)
7.30(m, 6H)




1.68(m, 2H)
3.49(s, 1H)
5.41(m, 1H)




1.45(m, 2H)
2.32(m, 2H)
3.49(m, 2H)





1.85(m, 2H)
2.11(m, 2H)





1.60(m, 5H)





1.29(m, 1H)


Aus-
26%
56%
12%
61%


beute


Schmp.


Masse
476(EI)
417(EI)
450(EI)
479(EI)



























embedded image

(+)- Enantiomer



embedded image

(−)- Enantiomer



embedded image

Diastereomer 1



embedded image

Diastereomer 2










Beispiel Nr.












198
199
200
201
















11.01(s, 1H)
11.01(s, 1H)

9.16(s, 1H)



8.32(s, 1H)
8.32(s, 1H)

8.07(s, 1H)



8.10(d, 1H)
8.10(d, 1H)

7.89(d, 2H)



7.80(m, 4H)
7.80(m, 4H)

7.67(d, 2H)



7.30(br, 2H)
7.30(br, 2H)

7.15(s, 2H)



3.70(m, 1H)
3.70(m, 1H)

6.45(d, 1H)



1.80(m, 5H)
1.80(m, 5H)

4.35(s, 2H)



1.48(m, 1H)
1.48(m, 1H)

3.97(m, 1H)



1.29(m, 2H)
1.29(m, 2H)

3.40(m, 4H)



1.07(m, 1H)
1.07(m, 1H)

2.85(m, 1H)



0.83(d, 3H)
0.83(d, 3H)

2.55(m, 1H)






1.82(m, 2H)






1.61(m, 6H)


Aus-
4%
4%
7%
2%


beute


Schmp.


Masse
439(EI)
439(EI)
515(ES)
515(ES)



























embedded image




embedded image

Diastereomer 1



embedded image

Diastereomer 2



embedded image











Beispiel Nr.












202
203*
204*
205
















10.21(s, 1H)

9.66(s, 1H)
9.73(s, 1H)



8.18(s, 1H)

8.08(s, 1H)
8.11(s, 1H)



8.10(d, 2H)

7.90(d, 2H)
7.82(d, 2H)



7.92(d, 2H)

7.69(d, 2H)
7.65(d, 2H)



6.39(d, 1H)

7.15(s, 2H)
7.12(s, 2H)



4.80(br, 1H)

6.53(d, 1H)
6.80(d, 1H)



4.05(m, 1H)

3.93(m, 1H)
4.67(m, 1H)



3.62(m, 2H)

2.05(m, 5H)
3.13(m, 1H)



2.00(m, 1H)

1.51(m, 2H)
2.86(m, 3H)



0.99(d, 3H)

1.15(m, 2H)
2.18(m, 2H)



0.92(d, 3H)

0.42(m, 2H)





0.25(m, 2H)


Aus-
10%
2%
2%
16%


beute


Schmp.


Masse
483(ES)
480(EI)
480(EI)
430(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












206
207
208
209
















9.75(s, 1H)
10.98(s, 1H)
11.00(s, 1H)
9.55(s, 1H)



8.19(s, 1H)
8.50(d, 2H)
8.31(s, 1H)
8.08(s, 1H)



7.75(d, 2H)
8.31(s, 1H)
7.74(m, 5H)
7.80(d, 2H)



7.18(d, 2H)
7.97(d, 2H)
7.21(d, 1H)
7.60(d, 2H)



7.17(s, 2H)
7.78(d, 2H)
6.80(d, 1H)
6.58(br, 4H)



6.68(d, 1H)
7.57(d, 1H)
4.00(m, 1H)
6.20(d, 1H)



5.35(t, 1H)
7.00(t, 1H)
3.62(m, 2H)
4.80(br, 1H)



4.71(m, 1H)
4.01(m, 1H)
1.95(m, 1H)
4.04(m, 1H)



3.91(m, 2H)
3.62(m, 2H)
0.98(d, 3H)
3.60(m, 2H)



3.65(s, 3H)
1.97(m, 1H)
0.90(d, 3H)
2.00(m, 1H)




0.98(d, 3H)

0.99(d, 3H)




0.92(d, 3H)

0.92(d, 3H)


Aus-
5%
55%
44%
77%


beute


Schmp.
223
248
228
231


Masse
446(ES)
507(EI)
514(EI)



























embedded image




embedded image











Beispiel Nr.










210
211






10.03(s, 1H)
10.90(s, 1H)



8.38(s, 1H)
8.40(m, 1H)



8.14(s, 1H)
8.30(s, 1H)



7.81(d, 2H)
7.88(d, 2H)



7.60(d, 1H)
7.73(d, 2H)



7.30(m, 7H)
7.38(br, 1H)



4.99(s, 2H)
3.45(m, 4H)



3.42(m, 2H)
2.38(s, 3H)



2.97(m, 2H)
1.62(m, 2H)



1.58(m, 2H)
1.45(m, 2H)



1.30(m, 4H)


Aus-
86%
22%


beute


Schmp.


Masse
528(CI)
429(EI)















embedded image




embedded image











Beispiel Nr.












212
71








9.18(s, 1H)
9.66(s, 1H)




9.05(s, 1H)
8.08(s, 1H)




7.98(s, 1H)
7.88(d, 2H)




7.18(m, 2H)
7.63(m, 3H)




6.98(m, 2H)
7.28(t, 1H)




6.31(m, 1H)
7.11(s, 2H)




4.45(t, 1H)
6.88(s, 1H)




3.47(m, 4H)
3.65(m, 2H)




1.63(m, 2H)
2.88(t, 2H)




1.48(m, 2H)



Aus-
41%
77%



beute



Schmp.



Masse
352(EI)
437(EI)




























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












213
61
214
215
















12.40(br, 1H)
12.41(br, 1H)
8.03(s, 1H)
9.55(s, 1H)



11.10(s, 1H)
11.11(s, 1H)
7.76(m, 4h)
8.10(s, 1H)



8.08(d, 2H)
8.10(d, 1H)
3.70(s, 2H)
7.80(d, 2H)



7.79(m, 4H)
7.80(m, 5H)
1.92(m, 4H)
7.68(d, 2H)



7.30(s, 2H)
7.30(s, 2H)
0.92(m, 6H)
7.15(s, 2H)



4.04(m, 1H)
4.08(m, 1H)
(in MeOD)
5.82(s, 1H)



3.60(m, 2H)
3.63(m, 2H)

3.74(d, 1H)



2.07(s, 3H)
2.50(m, 2H)

3.52(d, 1H)



2.00(m, 1H)
2.01(m, 1H)

2.72(m, 1H)



0.97(d, 3H)
1.15(t, 3H)

1.35(s, 3H)



0.90(d, 3H)
0.99(d, 3H)

0.97(d, 3H)




0.92(d, 3H)

0.91(d, 3H)


Aus-
49%
25%
2%
9%


beute


Schmp.


Masse
365(EI)
379(EI)
443(ES)
444(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












216
217
218
219
















10.88(s, 1H)
10.88(s, 1H)
11.01(s, 1H)
11.11(s, 1H)



8.36(s, 1H)
8.36(s, 1H)
8.52(br, 1H)
8.53(m, 1H)



8.03(d, 1H)
8.03(d, 1H)
8.29(s, 1H)
8.36(s, 1H)



7.79(m, 4H)
7.79(m, 4H)
7.78(m, 4H)
7.80(m, 4H)



7.28(br, 2H)
7.28(br, 2H)
7.32(s, 2H)
7.31(s, 2H)



4.65(m, 1H)
4.65(m, 1H)
3.39(m, 2H)
3.71(m, 2H)



3.89(m, 2H)
3.89(m, 2H)
1.70(m, 6H)
2.65(m, 2H)




3.71(m, 2H)
1.15(m, 3H)




2.19(m, 2H)
0.96(m, 2H)


Aus-
65%
34%
58%
88%


beute


Schmp.
239
239
238
280


Masse
439(EI)
413(EI)
439(EI)
416(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












74
56
220
221
















9.67(s, 1H)
9.70(s, 1H)
8.92(m, 1H)
9.66(s, 1H)




8.11(s, 1H)
8.81(m, 1H)
8.08(s, 1H)




7.88(m, 4H)
7.96(s, 1H)
7.83(d, 2H)




6.25(d, 1H)
7.43(d, 2H)
7.68(d, 2H)




4.81(m, 1H)
6.67(d, 2H)
7.22(t, 1H)




4.05(m, 1H)
6.20(m, 1H)
7.11(s, 2H)




3.61(m, 2H)
4.38(m, 1H)
3.95(m, 4H)




2.01(m, 1H)
3.48(m, 1H)
3.48(m, 2H)




0.97(d, 3H)
3.37(m, 1H)
1.79(m, 4H)




0.92(d, 3H)
1.20(d, 3H)
1.18(t, 6H)


Aus-
7%
17%
65%
19%


beute


Schmp.
285
158
166


Masse
457(EI)
392(EI)
354(EI)
522(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












222
223
224
225
















9.81(s, 1H)
9.71(s, 1H)
9.70(s, 1H)
10.29(s, 1H)



9.08(s, 1H)
8.13(s, 1H)
8.08(s, 1H)
8.83.(m, 2H)



8.68(s, 1H)
7.89(d, 2H)
7.88(d, 2H)
8.51(m, 1H)



8.35(m, 1H)
7.66(d, 2H)
7.65(d, 2H)
8.26(s, 1H)



8.20(s, 1H)
7.31(t, 1H)
7.25(m, 3H)
7.93(d, 2H)



8.02(t, 1H)
7.14(s, 2H)
6.11(m, 1H)
7.60(d, 2H)



7.63(m, 5H)
3.98(m, 2H)
3.40(m, 5H)
7.51(d, 2H)



7.17(s, 2H)
3.69(s, 3H)

7.25(br, 2H)



7.03(s, 1H)
3.64(s, 3H)

4.90(d, 2H)



4.82(d, 2H)


Aus-
54%
23%
7%
43


beute


Schmp.
300
300

243


Masse
501(EI)
465(EI)

434(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












226
227
228
229
















10.38(s, 1H)
10.30(s, 1H)
10.52(s, 1H)
10.88(s, 1H)



8.52(br, 1H)
8.78(m, 1H)
8.66(m, 1H)
8.92(m, 1H)



8.23(s, 1H)
8.36(m, 3H)
8.28(s, 1H)
8.33(s, 1H)



7.72(m, 4H)
7.81(m, 2H)
7.63(m, 4H)
7.72(d, 2H)



7.36(m, 1H)
7.60(m, 4H)
7.26(m, 6H)
7.62(d, 2H)



7.22(s, 2H)
7.22(br, 2H)
4.63(d, 2H)
7.30(m, 4H)



7.03(m, 1H)
4.94(d, 2H)

6.89(d, 2H)



6.95(m, 1H)


4.62(d, 2H)



4.80(d, 2H)


3.70(s, 3H)


Aus-
47%
41%
88%
89%


beute


Schmp.
229
1287
259
233


Masse
440(CI)
434(EI)
451(EI)
463(EI)
























embedded image





Beispiel Nr.



230


















10.45(s, 1H)



8.20(s, 1H)



8.05(m, 1H)



7.79(m, 4H)



7.21(s, 2H)



3.50(m, 2H)



1.83(m, 2H)



1.56(m, 2H)


Ausbeute
58%


Schmp.
>300


Masse
466(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel Nr.












231
232
233
234
















10.3(s, 1H)
9.28(s, 1H)
10.48(s, 1H)
9.63(s, 1H)



8.34(tr, 1H)
8.0(s, 1H)
8.25(s, 1H)
8.12(s, 1H)



8.2(s, 1H)
7.73(d, 2H)
7.85(m, 4H)
7.65(m, 4H)



7.9(m, 4H)
7.63(tr, 1H)
7.25(m, 1H)
7.42(d, 2H)



4.3(q, 2H)
7.18(d, 2H)
7.15(s, 1H)
7.35(tr, 2H)



4.2(m, 2H)
5.0(m, 1H)
5.1(m, 1H)
7.21(m, 1H)



3.23(tr, 1H)
4.3(s, 2H)
3.58(m, 4H)
7.16(s, 1H)



1.32(tr, 3H)
4.14(m, 2H)

5.35(m, 1H)




3.11(tr, 1H)

1.55(d, 3H)


Aus-
85%
35%
33%
25%


beute


Schmp.


Masse
330(EI)
288(EI)
389(CI)
448(ESI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












235
236
237
238















Schmp.






[° C.]


Masse
486(ES)
516(ES)
504(ES)
488(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












239
240
241
242















Schmp.






[° C.]


Masse
536(ES)
502(ES)
484(ES)
551(ES)


























embedded image




embedded image




embedded image











Beispiel-Nr.











243
244
245














Schmp.





[° C.]


Masse
516(ES)
514(ES)
433(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












246
247
248
249















Schmp.


205
>300


[° C.]


Masse
446(ES)
415(EI)
504(ES)
 431(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












250
251
252
253















Schmp.
113
231
187



[° C.]


Masse
488(ES)
446(ES)
433(ES)



























embedded image




embedded image




embedded image




embedded image











Nr.












254
255
256
257















Schmp.






[° C.]


Masse
399(ES)
444(ES)
474(ES)
486(ES)









Compounds Nos. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 and 204 that are identified with *) can be produced by the process variants that are described under Example No. 292.


EXAMPLE 258
Production of 4-(5-bromo-4-morpholin-4-yl-pyrimidin-2-ylamino)-phenylsulfonamide



embedded image


202 mg (0.60 mmol) of the compound of Example No. 122 is mixed with 1 ml of water and 0.2 g (1.2 mmol) of bromine and stirred at room temperature. After 24 hours, 0.2 g (1.2 mmol) of bromine is added again, and it is stirred for another 24 hours at room temperature. The solvent is evaporated by means of underpressure, and the remaining residue is purified by chromatography (Flashmaster II, DCM/MeOH 7:3). 17 mg (0.04 mmol, 7%) of the product is obtained as a white solid.




















embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












259
260
261
262















Schmp.

205-207
202-203



[° C.]


Masse
MS(ES) 452,


428(ES)



454(M + H,



100%)





















Beispiel-




Nr.
Verbindung
ESI-MS







263


embedded image


434





264


embedded image


434





265


embedded image


477





266


embedded image


477





267


embedded image


552





268


embedded image


552





269


embedded image











Analogously to the process for the production of the intermediate products described under Example 6.0 (see Production of Intermediate Products, page 186), the following compounds are also produced:















Beispiel-Nr.











270
271
272





embedded image




embedded image




embedded image
















Ausbeute
47%
90%



Masse
ESI:
ESI:
ESI:



MH+ 480(100%)
MH+ 432(100%)
MH+ 446(18%)



478(97%)
430(94%)



115(30%)
157(43%)









Analogously to production example 1, the following compounds are also produced:




















embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












273
274
275
276















Aus-
61%
44%
42%
68%


beute


Masse
EI:
EI:
ESI:
EI:



M+ 463(4%)
M+ 403(24%)
MH+ 418
M+ 401(33%)



277(8%)
358(100%)
100%
372(100%)



105(100%)
277(52%)
416(94%)
344(38%)





346(8%)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












277
278
279
280















Aus-
81%
58%
20%
30%


beute


Masse
EI:
ESI:
ESI:
ESI:



M+ 431(5%)
MH+ 444(100%)
MH+ 494(75%)
MH+ 418(100%)



372(100%)
442(97%)
346(18%)
416(97%)



291(46%)
115(20%)
214(55%)
310(27%)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












281
282
283
284















Aus-
55%
43%
~18%
35%


beute


Masse
ESI:
ESI:
ESI:
ESI:



MH+ 444(100%)
MH+ 446(100%)
MH+ 416(100%)
MH+ 446(100%)



442(97%)
444(95%)
414(96%)
444(90%)



214(12%)
346(5%)
317(4%)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












285
286
287
288















Aus-
51%
46%
47%
61%


beute


Masse
ESI:
ESI:
ESI
ESI



MH+ 520(100%)
MH+ 520(100%)
MH+ 432(100%)
MH+ 446(100%)



518(97%)
518(97%)
430(95%)
444(93%)



115(27%)
115(23%)
346(5%)
115(13%)









According to the production variants below, the following compounds are also synthesized:




embedded image


30 mg (0.0678 mmol) of compound No. 278 is dissolved in 1 ml of methanol/tetrahydrofuran 1:1. After adding ≈10 mg of sodium borohydride, stirring is continued for 2 hours. Then, it is quenched with ≈3-4 drops of glacial acetic acid while being cooled, and it is concentrated by evaporation. Below, the crude product is taken up with a little water, suctioned off, rewashed with acetonitrile and dried in a vacuum at 60° C. Yield: 21 mg (70% of theory) of the desired compound.


















embedded image




embedded image











Beispiel-Nr.










289
290













Aus-
52%
70%


beute


Masse
EI:
ESI:



M+ 465(5%)
MH+ 446(100%)



358(40%)
444(93%)



207(31%)
117(20%)









EXAMPLE 291
Production of the Oxime Ether-Pyrimidine Compounds of General Formula I

The production of the oxime ether is carried out according to the following general reaction diagram:




embedded image


R8 and R9 have the meanings that are indicated in general formula I.


PRODUCTION OF EXAMPLE 291



embedded image


50 mg (0.12 mmol) of compound No. 283, 34 mg of hydroxylammonium chloride and 150 mg of pulverized KOH are refluxed for 2 hours in 2 ml of ethanol. Then, it is poured onto ice water and acidified with glacial acetic acid, extracted 3 times with dichloromethane/isopropanol 4:1, dried with magnesium sulfate and concentrated by evaporation. The residue is suspended with acetonitrile, suctioned off and dried at 60° C. Yield: 28 mg (54% of theory) of the desired compound.


Mass


ESI:


MH+ 429 (29%)


371 (61%)


289 (91%)


Similarly produced are also the following compounds:



















embedded image




embedded image




embedded image











Besispiel-Nr.











292
293
294














Ausbeute
34%
36%
40%


Masse
ESI:
ESI:
ESI:



MH+ 443(95%)
MH+ 485(92%)
MH+ 487(91%)



445(99%)
487(99%)
489(89%)



373(32%)

373(32%)









EXAMPLE 295
Reduced Amination



embedded image


50 mg (0.12 mmol) of compound No. 283 and 7.5 mg (0.132 mmol) of cyclopropylamine are dissolved in 2 ml of 1,2-dichloroethane. After 9.1 mg (0.144 mmol) of sodium cyanoborohydride is added, it is allowed to stir for 12 more hours. Then, it is diluted with dichloromethane/isopropanol 4:1, washed 2× with water, dried with magnesium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel with dichloromethane/methanol 95:5. Yield: 18 mg (33% of theory) of the desired compound.

















embedded image





















Aus-
33%



beute



Masse
ESI:




MH+ 457(98%)




455(93%)




249(55%)










Produced similarly are also compounds Nos. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 and 204.


EXAMPLES 296 AND 297

Produced similarly to Example 1 are also the following two compounds:


















embedded image




embedded image




















Beispiel










296
297













Ausbeute
46%
47%


Masse
ESI:
ESI:



MH+ 432(30%)
MH+ 446(45%)



434(31%)
448(49%)



123(100%)
123(90%)










Production of Sulfonamides of General Formula I




embedded image


0.2 mmol of sulfonic acid fluoride is introduced into the reactor of a synthesizer. 1.0 ml of solvent, preferably 2-butanol, is added. 0.2 ml (0.2 mmol) of DMAP—dissolved in a solvent, for example DMSO or 2-butanol—and 0.2 ml (0.2 mmol) of the amine, dissolved in 2-butanol, are added in succession via a pipette. The reaction mixture is then stirred for 20 hours at 80° C. After the reaction is completed, the crude product is pipetted off, and the reactor is rewashed with 1.0 ml of THF. The solution of the crude product is then concentrated by evaporation and purified by HPLC.


The compounds below were produced:


[Key to Subsequent Tables:]


Beispiel-Nr.=Example No.


Verbindung=Compound


Molgewicht=Molecular Weight


Schmelzpunkt=Melting point


und=and















Beispiel-





Nr.
Verbindung
Molgewicht
ESI-MS







298


embedded image


526.4968
526/528





299


embedded image


562.5298
562/564





300


embedded image


624.6006
624/626





301


embedded image


501.4471
501/503





302


embedded image


538.4682
538/540





303


embedded image


588.4465
588/590





304


embedded image


528.5126
528/530





305


embedded image


542.5394
542/544





306


embedded image


556.5662
556/558





307


embedded image


570.593
570/572





308


embedded image


510.4106
510/512





309


embedded image


588.4465
588/590





310


embedded image


548.503
548/550





311


embedded image


555.4949
555/557





312


embedded image


500.459
500/502





313


embedded image


514.4858
514/516





314


embedded image


515.4739
515/517





315


embedded image


557.5543
557/559





316


embedded image


470.3896
470/472





317


embedded image


551.5069
551/553





318


embedded image


534.4762
534/536





319


embedded image


568.9213
568/570





320


embedded image


524.4374
524/526





321


embedded image


543.4839
543/545





322


embedded image


488.4044
488/490





323


embedded image


526.4776
526/528





324


embedded image


564.502
564/566





325


embedded image


527.4849
527/529





326


embedded image


541.5117
541/543





327


embedded image


538.4395
538/540





328


embedded image


541.5117
541/543





329


embedded image


521.4375
521/523





330


embedded image


538.4395
538/540





331


embedded image


521.4375
521/523





332


embedded image


550.4752
550/552





333


embedded image


550.4752
550/552





334


embedded image


613.5551
613/615





335


embedded image


534.4762
534/536





336


embedded image


512.47
512/514





337


embedded image


548.503
548/550





338


embedded image


610.5738
610/612





339


embedded image


487.4203
487/489





340


embedded image


524.4414
524/526





341


embedded image


574.4197
574/576





342


embedded image


514.4858
516/514





343


embedded image


528.5126
528/530





344


embedded image


542.5394
542/544





345


embedded image


556.5662
556/558





346


embedded image


496.3838
496/498





347


embedded image


574.4197
574/576





348


embedded image


534.4762
534/536





349


embedded image


541.4681
541/543





350


embedded image


486.4322
486/488





351


embedded image


500.459
500/502





352


embedded image


501.4471
501/503





353


embedded image


543.5275
543/545





354


embedded image


456.3628
456/458





355


embedded image


537.4801
537/539





356


embedded image


520.4494
520/522





357


embedded image


554.8945
554/556





358


embedded image


510.4106
510/512





359


embedded image


529.4571
529/531





360


embedded image


474.3776
474/476





361


embedded image


512.4508
541/514





362


embedded image


550.4752
550/552





363


embedded image


513.4581
513/515





364


embedded image


527.4849
527/529





365


embedded image


524.4127
524/526





366


embedded image


527.4849
527/529





367


embedded image


507.4107
507/509





368


embedded image


524.4127
524/526





369


embedded image


507.4107
507/509





370


embedded image


536.4484
536/538





371


embedded image


536.4484
536/538





372


embedded image


599.5283
599/601





373


embedded image


520.4494
520/522





374


embedded image


512.47
512/514





375


embedded image


548.503
548/550





376


embedded image


610.5738
610/612





377


embedded image


524.4414
524/526





378


embedded image


574.4197
574/576





379


embedded image


514.4858
514/516





380


embedded image


528.5126
528/530





381


embedded image


542.5394
542/544





382


embedded image


496.3838
496/498





383


embedded image


574.4197
574/576





384


embedded image


534.4762
534/536





385


embedded image


541.4681
541/543





386


embedded image


486.4322
486/488





387


embedded image


500.459
500/502





388


embedded image


501.4471
501/503





389


embedded image


543.5275
543/545





390


embedded image


537.4801
537/539





391


embedded image


520.4494
520/522





392


embedded image


554.8945
554/556





393


embedded image


510.4106
510/512





394


embedded image


529.4571
529/531





395


embedded image


474.3776
474/476





396


embedded image


512.4508
512/514





397


embedded image


513.4581
513/515





398


embedded image


527.4849
527/529





399


embedded image


524.4127
524/526





400


embedded image


527.4849
527/529





401


embedded image


507.4107
507/509





402


embedded image


524.4127
524/526





403


embedded image


507.4107
507/509





404


embedded image


536.4484
526/538





405


embedded image


536.4484
536/538





406


embedded image


599.5283
599/601





407


embedded image


520.4494
520/522





408


embedded image


529.4419
529/531





409


embedded image


534.4762
534/536





410


embedded image


596.547
596/598





411


embedded image


473.3935
473/475





412


embedded image


510.4146
510/512





413


embedded image


560.3929
560/562





414


embedded image


500.459
500/502





415


embedded image


514.4858
514/516





416


embedded image


528.5126
528/530





417


embedded image


482.357
482/484





418


embedded image


560.3929
560/562





419


embedded image


520.4494
520/522





420


embedded image


527.4413
527/529





421


embedded image


472.4054
472/474





422


embedded image


486.4322
486/488





423


embedded image


487.4203
487/489





424


embedded image


529.5007
529/531





425


embedded image


523.4532
523/525





426


embedded image


506.4226
506/508





427


embedded image


540.8677
540/542





428


embedded image


496.3838
496/498





429


embedded image


515.4303
515/517





430


embedded image


460.3508
460/462





431


embedded image


498.424
498/500





432


embedded image


499.4313
499/501





433


embedded image


513.4581
513/515





434


embedded image


510.3859
510/512





435


embedded image


513.4581
513/515





436


embedded image


493.3839
493/495





437


embedded image


510.3859
510/512





438


embedded image


493.3839
493/495





439


embedded image


522.4216
522/524





440


embedded image


522.4216
522/524





441


embedded image


585.5015
585/587





442


embedded image


506.4226
506/508





443


embedded image


515.4151
515/517





444


embedded image


416.30
416/418










Production of the Pyrimidine-Sulfonyl Fluorides of General Formula I


The production of the pyrimidine-sulfonic acid fluorides is carried out analogously to the production of the sulfonic acid amides.














embedded image















Beispiel-Nr.
Verbindung
Molgewicht
Schmelzpunkt [° C.] und ESI-MS





445


embedded image


405.25
217-220 405/407





446


embedded image


419.27
196-202 419/421





447


embedded image


419.27
165-196 419/421





448


embedded image


433.30
198-204 433/435





449


embedded image


433.30
144-149 433/435





450


embedded image


447.33
219-222 447/449










Similarly produced to the above-described examples were also the following para-compounds:















Beispiel-Nr.
Verbindung
Molekular-gewicht
ESI-MS


















451


embedded image


498.4432
498/500





452


embedded image


534.4762
534/536





453


embedded image


596.547
596/598





454


embedded image


473.3935
473/475





455


embedded image


510.4146
510/512





456


embedded image


560.3929
560/562





457


embedded image


500.459
500/502





458


embedded image


514.4858
514/516





459


embedded image


528.5126
528/530





460


embedded image


542.5394
542/544





461


embedded image


560.3929
560/562





462


embedded image


520.4494
520/522





463


embedded image


527.4413
527/529





464


embedded image


472.4054
472/474





465


embedded image


486.4322
486/488





466


embedded image


529.5007
529/531





467


embedded image


442.336
442/444





468


embedded image


523.4532
523/525





469


embedded image


506.4226
506/508





470


embedded image


540.8677
540/542





471


embedded image


496.3838
496/498





472


embedded image


515.4303
515/517





473


embedded image


460.3508
460/462





474


embedded image


498.424
498/500





475


embedded image


536.4484
536/538





476


embedded image


499.4313
499/501





477


embedded image


513.4581
513/515





478


embedded image


510.3859
510/512





479


embedded image


513.4581
513/515





480


embedded image


493.3839
493/495





481


embedded image


510.3859
510/512





482


embedded image


493.3839
493/495





483


embedded image


522.4216
522/524





484


embedded image


522.4216
522/524





485


embedded image


585.5015
585/587





486


embedded image


506.4226
506/508





487


embedded image


515.4151
515/517





488


embedded image


512.47
512/514





489


embedded image


548.503
548/550





490


embedded image


610.5738
610/612





491


embedded image


487.4203
487/489





492


embedded image


524.4414
524/526





493


embedded image


574.4197
574/576





494


embedded image


514.4858
516/514





495


embedded image


528.5126
528/530





496


embedded image


542.5394
542/544





497


embedded image


556.5662
556/558





498


embedded image


496.3838
496/498





499


embedded image


574.4197
574/576





500


embedded image


543.4762
534/536





501


embedded image


541.4681
541/543





502


embedded image


486.4322
486/488





503


embedded image


500.459
500/502





504


embedded image


501.4471
501/503





505


embedded image


543.5275
543/545





506


embedded image


456.3628
456/458





507


embedded image


537.4801
537/539





508


embedded image


520.4494
520/522





509


embedded image


566.4742





510


embedded image


554.8945
554/556





511


embedded image


510.4106
510/512





512


embedded image


529.4571
529/531





513


embedded image


474.3776
474/476





514


embedded image


512.4508
512/514





515


embedded image


550.4752
550/552





516


embedded image


513.4581
513/515





517


embedded image


527.4849
527/529





518


embedded image


524.4127
524/526





519


embedded image


527.4849
527/529





520


embedded image


507.4107
507/509





521


embedded image


524.4127
524/526





522


embedded image


507.4107
507/509





523


embedded image


536.4484
536/538





524


embedded image


536.4484
536/538





525


embedded image


599.5283
599/601





526


embedded image


520.4494
520/522





527


embedded image


529.4419
529/531










Separation of Diastereomer Mixtures of the Compounds According to the Invention


Separation in the Example of the Diastereomer Mixture of Compound No. 275




embedded image


The diastereomer mixture is separated into the two corresponding racemates (A and B) by means of HPLC. Conditions:


















Column:
Kromasil C18 (5 μm) 150 × 4.6 mm



Eluant:
25% acetonitrile/water with 1 ml of NH3/1;



Flow:
1.0 ml/min



Detection:
PDA 300 nm



Retention times:
Racemate A - 11.6 minutes




Racemate B - 12.4 minutes

























embedded image




embedded image









NMR
DMSO-d6:
DMSO-d6:



9.68, s, 1H
9.68, s, 1H



8.12, s, 1H
8.11, s, 1H



7.87, d, 2H
7.85, d, 2H



7.70, d, 2H
7.69, d, 2H



7.14, s, 2H
7.16, s, 2H



6.15, d, 1H
6.35, d, 1H



5.01, d, 1H
4.90, d, 1H



4.10, m, 1H
4.08, m, 1H



3.80, m, 1H
3.80, m, 1H



1.22, d, 3H
1.18, d, 3H



1.1, d, 3H
1.12, d, 3H









Below, racemates A and B in each case are separated by means of chiral HPLC.












Conditions:


















Column:
Chiralpak AD (10 μm) 250 × 4.6 mm



Eluant:
Hexane/ethanol 80:20



Flow:
1.0 ml/min



Detection:
PDA 300 nm



Retention times:
Enantiomer A1 - 16.6 minutes




Enantiomer A2 - 19.6 minutes




Enantiomer B1 - 16.0 minutes




Enantiomer B2 - 17.8 minutes










Production of the intermediate stages preferably used for the synthesis of the compounds of general formula I according to the invention.


EXAMPLE 1.0
Production of N-(2-chloro-5-fluoro-4-pyrimidinyl)-N-2-propynylamine

11.1 g (66 mmol) of 2,4-dichloro-5-fluoropyrimidine is dissolved in 60 ml of acetonitrile, and 10.2 ml (73 mmol) of triethylamine and 6.0 ml (86 mmol) of propynylamine are added. The reaction mixture is stirred overnight at room temperature and then poured into water. The mixture is extracted by means of ethyl acetate, the combined organic phases are dried on MgSO2, and the solvent is evaporated by means of underpressure. After the remaining material is recrystallized with diisopropyl ether/hexane, the yield is 10.6 g (87% of theory) of the product.














embedded image





















5-H
8.18(3.3Hz, 1H)
Solvent: DMSO



4CH
4.14(dd, 2H)
Yield: 87%




3.20(t, 1H)
Melting point: 96° C.



NH
8.65(tb, 1H)










The 4-(diaminocyclohexyl) derivatives that are described below are synthesized via reductive aminations of the described keto derivative with use of triacetoxy borohydride (Abdel-Magid, Carson, Harris, Maryanoff, Sha, J. Org. Chem. 1996, 61, 3849). The keto derivative is obtained by TPAP oxidation (Griffith, Ley, Aldrichimica Acta 1990, 23, 13) of the corresponding alcohol.


Similarly produced are also the following intermediate compounds:


[Key to Subsequent Tables:]


Beispiel-Nr.=Example No.


Lösemittel=Solvent


Ausbeute=Yield


Schmp.=Melting point


Masse=Mass


Chrom. Ausbeute=Chromatography yield




















embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1.1
1.2
1.3
1.4















Lösemittel
CDCl3
DMSO
DMSO
DMSO


5-H
7.87(s, 1H)
8.34(s, 1H)
8.24(s, 1H)
8.23(s, 1H)


4CH
4.32(dd, 2H)
4.48(q, 1H)
3.59(td, 2H)
3.21(t, 2H)



2.30(t, 1H)
1.93(dq, 2H)
2.78(t, 2H)
1.10(mc, 1H)




0.92(t, 3H)
7.57(s, 1H)
0.42(mc, 2H)


5CH
2.03(s, 3H)
3.66(s, 3H)
6.85(s, 1H)
0.37(mc, 2H)





7.90(tb, 1H)
7.84(t, 1H)


NH
4.91(sb, 1H)
7.69(d, 1H)
11.92(sb, 1H)


Ausbeute
80%
42%
33%
74%


Schmp.
121-121.5° C.
73° C.
90° C.
98° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1.5
1.6
1.7
1.8















Lösemittel
DMSO
DMSO
DMSO
DMSO


6-H
8.26(s, 1H)
8.26(s, 1H)
8.27(s, 1H)
8.37(s, 1H)


4CH
3.59(mc, 2H)
3.58(mc, 2H)
3.58(sb, 4H)
4.40(m, 1H)



3.90(mc, 1H)
3.97(mc, 1H)
4.14(mc, 1H)
3.49(dd, 1H)



1.98(mc, 1H)
1.96(mc, 1H)

3.33(dd, 1H)



0.94(d, 3H)
0.92(d, 3H)

3.26(s, 3H)



0.86(d, 3H)
0.84(d, 3H)

1.15(d, 3H)


OH
4.67(mb, 1H)
4.74(t, 1H)
4.78(sb, 2H)


NH
6.75(sb, 1H)
6.87(d, 1H)
6.73(sb, 1H)
7.29(d, 1H)


Ausbeute
82%
91%
41%
74%


Schmp.
113-114° C.
121-122° C.
155-156° C.
Öl

























embedded image




embedded image











Beispiel-Nr.










1.9
1.10













Lösemittel
DMSO
DMSO


6-H
8.24(s, 1H)
8.36(s, 1H)


4CH
3.49(q, 2H)
4.14(d, 2H)



2.50(t, 2H)
3.18(t, 1H)



2.42(t, 4H)



3.56(t, 4H)


OH


NH
7.57(sb, 1H)
8.40(s, 1H)


Ausbeute
31%
73


Schmp.
118-119° C.
103-104° C.



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1.11
1.12
1.13
1.14















Löse-
DMSO
DMSO
DMSO
DMSO


mittel


6-H
8.30(s, 1H)
8.32(s, 1H)
8.29(s, 1H)
8.24(s, 1H)



4.46(dq, 1H)
5.04(q, 1H)
3.7-3.9(2H)
4.25(m, 1H)



1.38(d, 3H)
2.39(m, 2H)
5.19(m, 1H)
3.48(m, 2H)





7.2-7.4(5H)


NH
7.60(sb, 1H)
4.31(q, 1H)
7.72(d, 1H)
1.86(m, 2H)





5.09(t, 1H)


OH
7.29(sb, 1H)
4.40(t, 1H)

2.43(m, 2H)



7.21(d, 1H)
8.13(d, 1H)

2.03(s, 3H)






7.13(d, 1H)






4.88(t, 1H)


Aus-
87%
63%
99%
78%


beute


Schmp.
234° C. Zers.
210° C. Zers.
152-153° C.
130° C.


























embedded image




embedded image




embedded image











Beispiel-Nr.











1.15
1.16
1.17














Lösemittel
DMSO
DMSO
DMSO


6-H
8.20(s, 1H)
8.21(s, 1H)
8.22(s, 1H)



3.55(m, 2H)
3.33(q, 2H)
3.39(q, 2H)



4.22(m, 1H)
1.53(m, 4H)
2.26(t, 2H)



5.03(m, 2H)
1.28(m, 2H)
1.79(q, 2H)



7.1-7.4(5H)
2.29(t, 2H)


NH
6.53(d, 1H)
7.74(t, 1H)
7.78(t, 1H)



5.93(d, 1H)

12.11(sb, 1H)


Ausbeute
93%
99%
11%


Schmp.
Öl
Öl
Öl


























embedded image




embedded image




embedded image











Beispiel-Nr.











1.18
1.19
1.20














Ausbeute
86%
64%
87%


Masse
ESI:
ESI:
CI:



MH+ 297(2%)
MH+ 311(2%)
M+ 354(100%)



266(22%)
248(20%)
352(72%)



234(30%)
236(18%)
308(54%)


























embedded image




embedded image




embedded image











Beispiel-Nr.











1.21
1.22
1.23














Ausbeute
26%
~20%
89%


Masse
EI:
NMR, CDCl3
EI:



M+ 327(10%)
8.16(s, 1H)
M+ 265(15%)



222(36%)
6.55(s, 1H)
236(100%)



105(100%)
4.43(d, 2H)
209(18%)




1.29(s, 9H)


























embedded image




embedded image




embedded image











Beispiel-Nr.











1.24
1.25
1.26














Ausbeute
75%
70%
83%


Masse
CI:
CI
ESI:



M+ 384(100%)
M+ 384(100%)
319 3%



212(21%)
212(21%)
278 100%



91(7%)
91(7%)
220 68%
























embedded image





Beispiel-Nr.



1.27



















Ausbeute
98%



Masse
ESI:




MH+ 296(90%)




298(100%)




210(12%)










EXAMPLE 2.0
Production of 5-Bromo-2-chloro-4-(4,4,4-trifluorobutoxy)pyrimidine

3.19 g (14 mmol) of 5-bromo-2,4-dichloropyrimidine is mixed with 8.06 g (63 mmol) of 4,4,4-trifluorobutanol, and 0.74 ml (8.4 mmol) of trifluoromethanesulfonic acid is slowly added to it. The reaction mixture is stirred overnight at room temperature and then poured into water. The mixture is extracted by means of ethyl acetate, the combined organic phases are dried on MgSO2, and the solvent is evaporated by means of underpressure. The product is always contaminated with varying amounts of 2,4-bisalkoxypyrimidine. The remaining material is therefore purified by means of gradient chromatography with silica gel as a carrier medium (eluant: hexane and hexane/ethyl acetate at a 9:1 ratio). This process results in a yield of 1.70 g (38%) and also yields 1.93 g (34%) of 5-bromo-2,4-bis-(4,4,4-trifluorobutoxy)pyrimidine (starting compound).














embedded image





















5-H
8.74(s, 1H)
Chromatography: H to H/EA 9:1



4C
4.48(t, 2H)
Yield: 38%



H
2.00(mc, 2H)
Melting point: 66.5-67.5°




2.44(mc, 2H)



5C



H—










Similarly produced are also the following compounds:


















embedded image




embedded image











Beispiel-Nr.










2.1
2.2














CDCl3
DMSO


5-H
8.49(s, 1H)
8.75(s, 1H)


4CH
5.10(d, 2H)
4.05(mc, 2H)




3.79(mc, 2H)




3.60(mc, 2H)


5CH
2.59(t, 1H)
3.48(mc, 2H)




3.40(t, 2H)




1.07(t, 3H)


Chrom.
H to
DCM to DCM/



H/EA 4:1
MeOH 95:5


Ausbeute
78%
11%


Schmp.
55° C.
Öl









Analogously to process examples 1 and 2, the following intermediate products are also produced:




















embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.1
1-2.2
1-2.3
1-2.4















Löse-
DMSO
DMSO
DMSO
DMSO


Mittel



8.26(s, 1H)
8.26(s, 1H)
8.29(s, 1H)
8.28(s, 1H)



6.65(d, 1H)
6.65(d, 1H)
6.32(s, 1H)
7.09(d, 1H)



4.70(t, 1H)
4.70(t, 1H)
4.89(t, 3H)
5.05(d, 1H)



4.10(dt, 1H)
4.10(dt, 1H)
3.74(d, 6H)
3.95(m, 1H)



3.65(at, 2H)
3.65(at, 2H)

3.60(m, 5H)



0.90(s, 9H)
0.90(s, 9H)

1.30(s, 3H)






1.28(s, 3H)


Aus-
49%
70%
16%
92%


beute


Masse
309(EI)
309(EI)
314(EI)
354(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.5
1-2.6
1-2.7
1-2.8















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.15(s, 1H)
8.22(s, 1H)
8.28(s, 1H)
8.22(s, 1H)



7.25(t, 1H)
4.82(t, 1H)
6.29(s, 1H)
7.23(d, 1H)



3.16(s, 2H)
4.49(br, 1H)
5.31(t, 1H)
4.60(d, 1H)



1.90(s, 3H)
3.85(m, 1H)
3.39(d, 2H)
3.85(m, 1H)



1.61(q, 6H)
3.76(m, 1H)
1.39(s, 6H)
3.35(m, 1H)



1.41(s, 6H)
3.54(m, 1H)

1.80(m, 4H)




3.40(m, 1H)

1.53(m, 2H)




1.93(m, 3H)

1.20(m, 2H)




1.80(m, 1H)


Aus-
70%
75%
46%
24%


beute


Masse
357(EI)
293(EI)
281(EI)
305(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.9
1-2.10
1-2.11
1-2.12















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.38(s, 1H)
8.22(s, 1H)
8.21(s, 1H)
8.31(s, 1H)



4.81(br, 1H)
7.05(d, 1H)
7.06(d, 1H)
7.32(d, 1H)



3.96(m, 2H)
4.82(t, 1H)
4.81(t, 1H)
4.35(s, 1H)



3.72(m, 1H)
4.18(m, 1H)
4.22(m, 1H)
3.68(s, 3H)



3.30(m, 2H)
3.42(m, 2H)
3.47(m, 2H)
2.32(m, 1H)



1.81(m, 2H)
1.15(d, 3H)
1.51(m, 2H)
0.90(dd, 6H)



1.48(m, 2H)

1.37(m, 1H)





0.88(m, 6H)


Aus-
19%
71%
99%
77%


beute


Masse
292(EI)
266(EI)
308(EI)
322(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.13
1-2.14
1-2.15
1-2.16















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.41(s, 1H)
8.25(s, 1H)
8.19(s, 1H)
8.19(s, 1H)



8.11(s, 1H)
4.53(m, 1H)
7.65(t, 1H)
7.30(d, 1H)



4.28(t, 2H)
3.88(m, 2H)
3.18(t, 2H)
3.65(m, 1H)




3.70(dd, 1H)
1.62(m, 6H)
1.68(m, 5H)




3.62(dd, 1H)
1.16(m, 3H)
1.25(m, 4H)




2.16(m, 1H)
0.90(m, 2H)
0.78(d, 3H)




2.02(m, 1H)




7.56(d, 1H)


Aus-
46%
72%
68%
31%


beute


Masse
390(FAB)
277(EI)
303(EI)
305(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.17
1-2.18
1-2.19
1-2.20















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.21(s, 1H)
8.35(t, 1H)
8.21(s, 1H)
8.20(s, 1H)



7.22(d, 1H)
8.19(s, 1H)
7.81(t, 1H)
7.71(t, 1H)



3.88(m, 1H)
3.40(m, 2H)
3.41(dd, 2H)
4.45(br, 1H)



1.70(m, 4H)
2.97(p, 1H)
2.31(m, 10H)
3.40(m, 4H)



1.50(m, 2H)
2.22(m, 4H)
2.13(s, 3H)
1.60(m, 2H)



1.28(m, 1H)
2.08(dd, 1H)
1.70(p, 2H)
1.44(m, 2H)



1.01(m, 2H)
1.70(m, 6H)



0.82(d, 3H)


Aus-
22%
32%
28%
98%


beute


Masse
303(EI)
320(EI)
349(EI)
281(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.21
1-2.22
1-2.23
1-2.24















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.25(s, 1H)
8.25(s, 1H)
8.20(s, 1H)
8.21(s, 1H)



8.08(d, 1H)
7.38(d, 1H)
7.28(d, 1H)
7.24(d, 1H)



7.35(m, 5H)
4.44(m, 1H)
4.19(m, 1H)
7.02(t, 1H)



5.30(m, 1H)
2.60(m, 2H)
2.40(m, 6H)
4.40(m, 1H)



4.81(t, 1H)
2.24(m, 2H)
1.50(m, 4H)
3.92(m, 1H)



3.45(m, 2H)
2.07(m, 2H)
1.15(d, 3H)
2.95(q, 2H)



2.05(m, 2H)
1.90(m, 2H)
0.91(t, 6H)
1.95(m, 2H)






1.82(m, 2H)






1.59(m, 2H)






1.3(m, 6H)






0.82(t, 3H)


Aus-
97%
58%
52%
70%


beute


Masse
343(EI)
304(ES)
348(EI)



























embedded image

Diastereomer 1/2



embedded image

Diastereomer 1



embedded image

Diastereomer 2



embedded image

Diastereomer 1










Beispiel-Nr.












1-2.25
1-2.26
1-2.27
1-2.28















Löse-
DMSO
DMSO
DMSO
DMSO


mittel




8.22(s, 1H)
8.25(s, 1H)
8.22(s, 1H)




7.21(d, 1H)
6.87(d, 1H)
7.28(d, 1H)




3.82(m, 1H)
4.02(m, 1H)
3.85(m, 1H)




2.45(m, 4H)
2.45(m, 4H)
2.19(s, 6H)




2.22(m, 1H)
2.22(m, 1H)
2.15(m, 1H)




1.78(m, 8H)
1.78(m, 8H)
1.82(m, 4H)




1.45(m, 6H)
1.45(m, 6H)
1.50(m, 2H)






1.25(m, 2H)


Aus-
n.b.
26%
23%
51%


beute


Masse
344(EI)
374(EI)
374(EI)
334(EI)



























embedded image

Diastereomer 1 + 2(ca. 1:1)



embedded image

Diastereomer 1 + 2(ca. 1:1)



embedded image

Diastereomer 3 + 4(ca. 1:1)



embedded image











Beispiel-Nr.












1-2.29
1-2.30
1-2.31
1-2.32















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.22(s, 2H)
8.21(s, 1H)
8.21(s, 1H)
8.71(s, 1H)



7.28(d, 1H)
7.18(d, 1H)
7.22(d, 1H)
5.32(m, 1H)



7.10(d, 1H)
4.62(s, 1H)
4.65(s, 1H)
3.82(m, 2H)



4.00(m, 1H)
4.20(m, 1H)
4.15(m, 1H)
3.55(m, 2H)



3.85(m, 1H)
3.95(m, 1H)
3.85(m, 1H)
2.00(m, 2H)



2.19(s, 6H)
2.75(dd, 1H)
2.78(m, 1H)
1.70(m, 2H)



2.17(s, 6H)
2.50(m, 2H)
2.60(m, 1H)



2.15(m, 1H)
2.31(dd, 1H)
2.38(dd, 1H)



2.00(m, 1H)
2.15(s, 1H)
1.95(m, 3H)



1.82(m, 8H)
2.00(m, 1H)
1.80(m, 2H)



1.50(m, 6H)
1.82(m, 4H)
1.52(m, 3H)



1.25(m, 2H)
1.55(m, 5H)
1.20(m, 2H)


Aus-
13%
35%
21%
40%


beute


Masse
334(EI)
374(EI)
374(EI)
292(EI)



























embedded image




embedded image











Beispiel-Nr.










1-2.33
1-2.34





Löse-
DMSO
CDCl3


mittel



8.50(s, 1H)
8.08(s, 1H)



4.10(m, 2H)
6.04(m, 1H)



3.72(m, 1H)
5.71(br, 1H)



3.30(m, 2H)
4.48(d, 2H)



1.75(m, 2H)
3.71(s, 3H)



1.35(m, 2H)
2.25(s, 3H)


Aus-
3%
30%


beute


Masse
291(EI)
300(ES)















embedded image




embedded image

Diastereomer 1 + 2(ca. 1:1)










Beispiel-Nr.










1-2.35
1-2.36





Löse-
DMSO
CDCl3


mittel



8.23(s, 1H)
8.11(s, 2H, 1 + 2)



7.27(d, 1H)
5.55(m, 1H, 1)



7.04(t, 1H)
5.29(m, 1H, 2)



4.46(m, 1H)
4.25(m, 1H, 1)



3.95(m, 1H)
3.98(m, 1H, 2)



2.94(m, 2H)
3.72(m, 8H, 1 + 2)



1.92(m, 4H)
2.65(m, 8H, 1 + 2)



1.62(m, 2H)
1.70



1.32(m, 6H)
(m, 18H, 1 + 2)



0.84(t, 3H)


Aus-
70%
66%


beute


Masse
405(ES)
375(ES)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.37
1-2.38
1-2.39
1-2.40















Löse-
CDCl3
CDCl3
DMSO
DMSO


mittel



8.14(s, 1H)
8.20(s, 1H)
8.22(s, 1H)
8.22(s, 1H)



5.41(m, 1H)
7.71(m, 1H)
6.35(s, 1H)
7.12(d, 1H)



4.49(m, 1H)
7.30(m, 6H)
5.19(t, 1H)
4.10(m, 1H)



2.44(m, 6H)
4.97(s, 2H)
3.54(d, 2H)
2.20(m, 1H)



1.79(m, 2H)
3.00(m, 2H)
2.00(m, 2H)
1.89(m, 1H)




1.40(m, 8H)
1.75(m, 4H)
1.35(m, 8H)





1.53(m, 2H)


Aus-
58%
77%
48%
60%


beute


Masse
304(ES)
427(ES)
308(EI)
301(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.41
1-2.42
1-2.43
1-2.44















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.19(s, 1H)
8.21(s, 1H)
8.28(s, 1H)
8.41(s, 1H)



7.21(d, 1H)
7.03(d, 1H)
3.62(q, 4H)
8.15(t, 1H)



4.03(m, 1H)
4.83(t, 1H)
1.18(t, 6H)
4.21(td, 12H)



1.60(m, 12H)
4.13(m, 1H)




3.47(m, 2H)




1.12(d, 3H)


Aus-
73%
61%
13%
21%


beute


Masse
303(EI)
267(EI)
265(EI)
339(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.45
1-2.46
1-2.47
1-2.48















Löse-
DMSO
DMSO
DMSO
DMSO


mittel



8.36(s, 1H)
8.26(s, 1H)
8.32(t, 1H)
8.15(s, 1H)



6.56(s, 1H)
8.06(d, 1H)
8.15(s, 1H)
7.06(d, 1H)



3.81(s, 1H)
7.30(m, 5H)
3.40(m, 2H)
4.65(br, 1H)



2.28(m, 2H)
5.29(m, 1H)
2.34(m, 2H)
3.79(m, 1H)



1.83(m, 2H)
4.81(t, 1H)
2.18(s, 6H)
3.52(m, 1H)



1.58(m, 6H)
3.42(m, 2H)
1.69(m, 2H)
1.86(m, 2H)




2.10(m, 2H)

1.61(m, 2H)






1.25(m, 4H)


Aus-
84%
97%
22%
53%


beute


Masse
314(EI)
343(EI)
294(EI)
307(EI)



























embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












1-2.49
1-2.50
1-2.51
1-2.52















Löse-
DMSO
DMSO
DMSO



mittel



8.29(s, 1H)
8.18(s, 1H)
8.29(s, 1H)
8.38(s, 1H)



6.05(s, 1H)
7.25(d, 1H)
6.18(s, 1H)
7.28(d, 1H)



5.18(m, 1H)
4.15(m, 1H)
5.15(t, 1H)
5.28(t, 1H)



3.54(s, 2H)
2.40(m, 6H)
3.70(m, 1H)
4.65(m, 1H)



1.92(m, 2H)
1.50(m, 4H)
3.49(m, 1H)
3.86(m, 2H)



1.70(m, 2H)
1.17(d, 3H)
2.60(m, 1H)
3.65(s,3H)




0.90(dd, 6H)
0.92(d, 3H)





0.83(d, 3H)


Aus-
16%
52%
27%
63%


beute


Masse
308(EI)
350(EI)
308(EI)
309(EI)


























embedded image




embedded image




embedded image











Beispiel-Nr.











1-2.53
1-2.54
1-2.55














Löse-
DMSO
DMSO
DMSO


mittel



8.22(s, 1H)
7.75(s, 1H)
8.18(s, 1H)



7.65(t, 1H)
6.55(d, 1H)
7.69(t, 1H)



7.30(m, 6H)
4.54(m, 1
4.32(br, 1H)



5.01(s, 2H)

3.35(m, 4H)



3.38(m, 2H)

1.40(m, 6H)



3.04(m, 2H)



1.68(m, 2H)


Aus-
77%
50%
43%


beute


Masse
398(EI)
229(EI)
295(EI)









EXAMPLE 3.0
Production of Amines



embedded image


4.5 g (20 mmol) of 2-bromobutyraldehyde diethyl acetyl (Pfaltz-Bauer Company) and 5.2 g (80 mmol) of sodium azide are stirred for 5 days in 15 ml of DMF at 100° C. Then, it is poured onto cold dilute sodium bicarbonate solution, and extracted 3× with ether. The organic phase is dried with magnesium sulfate and concentrated by evaporation: raw yield 1.87 g (50% of theory).


936 mg of the crude product is dissolved in 50 ml of methanol, mixed with palladium on carbon (10%) and stirred for 12 hours under H2 atmosphere. After the catalyst is filtered off and after concentration by evaporation, 457 mg (57% of theory) of the desired amine remains.




















embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












3.0
3.1
3.2
3.3















Ausbeute
50%
57%
50%
71%


NMR
4.38(d, 1H)
4.19(d, 1H)
4.38(d, 1H)
4.25(d, 1H)


CDCl3
3.72(m, 2H)
3.68(m, 2H)
3.58(m, 2H)
3.5(m, 1H)



3.6(m, 2H)
3.52(m, 2H)
3.5(m, 1H)
3.42(s, 3H)



3.25(m 1H)
2.7(m, 1H)
3.49(s, 3H)
3.41(s, 3H)



1.7(m, 1H)
1.60(m, 1H)
3.43(s, 3H)
3.40(m, 1H)



1.46(m, 1H)
1.25(m, 1H)
3.39(s, 3H)
3.08(m, 1H)



1.25(trtr, 6H)
1.2(trtr, 6H)



1.0(tr, 3H)
0.95(tr, 3H)









EXAMPLE 4.0
Production of the Free Aldehydes



embedded image


148 mg (0.5 mmol) of intermediate product compound 1.18 is dissolved in 1 ml of glacial acetic acid. At room temperature, 0.5 ml of 1N hydrochloric acid is added, and it is stirred for 12 hours. For working-up, it is poured onto ice water and carefully neutralized with pulverized sodium bicarbonate. Then, it is extracted 3× with ethyl acetate, the organic phase is dried with magnesium sulfate and concentrated by evaporation. Crude product 104 mg (83% of theory) of the aldehyde of compound 4.0 is obtained. The crude product can be used without further purification.




















embedded image




embedded image




embedded image




embedded image











Beispiel-Nr.












4.1
4.0
4.2
4.3















Aus-
82%
83%
89%
79%


beute


Masse
ESI:
ESI:
ESI:
ESI:



MH+ 278(39%)
MH+ 250(9%)
MH+ 266(8%)
MH+ 294(10%)



210(100%)









EXAMPLE 5.0
Production of Ketones



embedded image


100 mg (0.356 mmol) of compound 6.0 and 126 mg of N-methylmorpholine-N-oxide are dissolved in 5 ml of dichloromethane and stirred for 10 minutes with pulverized molecular sieve (4 A). Then, 6 mg of tetrapropylammonium perruthenate is added, and it is stirred for 4 more hours at room temperature. After concentration by evaporation, it is chromatographed on silica gel (hexane/ethyl acetate 4:1>2:1). Yield: 75 mg (76% of theory) of the ketone of compound 5.0.

















embedded image





Beispiel-Nr.



5.0



















Aus-
76%



beute



Masse
ESI:




MH+ 280(100%)




200(37%)




156(30%)










EXAMPLE 6.0
Production of Alcohols



embedded image


265 mg (1 mmol) of compound 4.2 is dissolved in 20 ml of tetrahydrofuran. While being cooled in an ice bath, 5 equivalents of methylmagnesium bromide (3 molar solution in ether) is added in portions. Then, it is stirred for 3 more hours at room temperature and then quenched with water while being cooled. Then, it is mixed with ammonium chloride solution, extracted 3× with ethyl acetate, the organic phase is dried with magnesium sulfate and concentrated by evaporation. Flash chromatography (hexane/ethyl acetate 2:1) yields 213 mg (76% of theory) of the alcohol of compound 6.0.




embedded image


ESI: MH+ 282 (100%) 276 (5%)


Similarly produced are also the following intermediate products:



















embedded image




embedded image




embedded image











Beispiel-Nr.











6.1
6.2
6.3














Aus-
46%
32%
39%


beute


Masse
EI:
ESI:
ESI:



M+ 267(3%)
MH+ 308(100%)
MH+ 296(100%)



223(100%)
306(71%)
294(73%)



132(27%)
268(31%)
217(4%)

























embedded image




embedded image











Beispiel-Nr.










6.4
6.5













Aus-
36%
50%


beute


Masse
EI:
ESI:



M+ 281(3%)
MH+ 310(100%)



223(100%)
308(87%)



114(38%)
298(9%)


























embedded image




embedded image




embedded image











Beispiel-Nr.











6.6
6.7
6.8














Aus-
40%
~20%
35%


beute


Masse
EI:
CI:
ESI:



M+ 358(100%)
M+ 310(100%)
MH+ 294(28%)



356(97%)
308(84%)
296(36%)



277(29%)
130(54%)
210(100%)

























embedded image




embedded image











Beispiel-Nr.










6.9
6.10













Aus-
29%
67%


beute


Masse
ESI:
ESI:



MH+ 308(28%)
MH+ 310(87%)



310(38%)
312(100%)



210(100%)
123(24%)









Subjects of this invention are thus also compounds of general formula Ia




embedded image



in which


D stands for halogen, and X, R1, and R2 have the meanings that are indicated in general formula (I).


Those intermediate products of general formula Ia, in which D stands for chlorine and X, R1 and R2 have the meanings that are indicated in the general formula, are especially valuable.


Another subject of this invention are also those compounds that fall under industrial property right DE 4029650, whose action is in the fungicide range and which are not described as CDK inhibitors, however, and also their use for treating cancer is not described.














No.
Structure
Name

















5


embedded image


4-[[5-Bromo-4-(2-propynylamino)-2- pyrimidinyl]amino]-phenol





6


embedded image


4-[[5-Bromo-4-(2-propynyloxy)-2- pyrimidinyl]amino]-phenol





16


embedded image


5-Bromo-N2-(4-methylthiophenyl)-N4-2- propynyl-2,4-pyrimidine diamine





22


embedded image


1-[4-[(5-Bromo-4-(2-propynyloxy)-2- pyrimidinyl)amino]phenyl]-ethanone





23


embedded image


5-Bromo-N2-(4-difluoromethylthiophenyl)-N4-2- propynyl-2,4-pyrimidine diamine





24


embedded image


5-Bromo-N4-2-propynyl-N2-(4- trifluoromethylthiophenyl)-2,4-pyrimidine diamine





35


embedded image


5-Bromo-N4-2-propynyl-N2-(3- trifluoromethylthiophenyl)-2,4-pyrimidine diamine





37


embedded image


N-[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]- indazol-5-amine





38


embedded image


N-[5-Bromo-4-(2-propynylamino)-2-pyrimidinyl]- benzothiazole-5-amine





42


embedded image


4-[[5-Fluoro-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol





43


embedded image


4-[[5-Chloro-4-(2-propynyloxy)-2-pyrimidinyl]amino]- phenol





50


embedded image


1-[4-[(5-Bromo-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanone





54


embedded image


1-[4-[(5-Iodo-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanone





70


embedded image


1-[4-[(5-Ethyl-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanone





81


embedded image


1-[4-[(5-Bromo-4-(2-propynylamino)-2- pyrimidinyl)amino]phenyl]-ethanol





82


embedded image


1-[4-[(5-Bromo-4-(2-propynyloxy)-2- pyrimidinyl)amino]phenyl]-ethanol









The invention thus relates in addition to pharmaceutical agents that comprise a compound of general formula I


in which






    • R1 stands for halogen or C1-C3-alkyl

    • X stands for oxygen or —NH,

    • A stands for hydrogen

    • B stands for hydroxy, —CO-alkyl-R7, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —S—CF3, or —CH—(OH)—CH3, or

    • A and B, independently of one another, can form a group







embedded image


R2, R3, R4, R7 and R8 have the meanings that are indicated in general formula I, as well as isomers, diastereomers, enantiomers and salts thereof.


The agents according to the invention can also be used for treating cancer, auto-immune diseases, cardiovascular diseases, chemotherapy agent-induced alopecia and mucositis, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases and viral infections, whereby cancer is defined as solid tumors and leukemia; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; cardiovascular diseases are defined as stenoses, arterioscleroses and restenoses; infectious diseases are defined as diseases that are caused by unicellular parasites; nephrological diseases are defined as glomerulonephritis; chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas; and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.


The following examples describe the biological action of the compounds according to the invention without limiting the invention to these examples.


EXAMPLE 1
CDK2/CycE Kinase Assay

Recombinant CDK2- and CycE-GST-fusion proteins, purified from baculovirus-infected insect cells (Sf9), are obtained by Dr. Dieter Marmé, Klinik für Tumorbiologie [Clinic for Tumor Biology], Freiburg. Histone IIIS, which is used as a kinase substrate, is purchased by the Sigma Company.


CDK2/CycE (50 ng/measuring point) is incubated for 15 minutes at 22° C. in the presence of various concentrations of test substances (0 μm, as well as within the range of 0.01-100 μm) in assay buffer [50 mmol of tris/HCl pH 8.0, 10 mmol of MgCl2, 0.1 mmol of Na orthovanadate, 1.0 mmol of dithiothreitol, 0.5 gm of adenosine triphosphate (ATP), 10 μg/measuring point of histone IIIS, 0.2 μCi/measuring point of 33P-gamma ATP, 0.05% NP40, 12.5% dimethyl sulfoxide]. The reaction was is stopped by adding EDTA solution (250 mmol, pH 8.0, 14 μl/measuring point).


From each reaction batch, 10 μl applied to P30 filter strips (Wallac Company), and non-incorporated 33P-ATP is removed by subjecting the filter strips to three washing cycles for 10 minutes each in 0.5% phosphoric acid. After the filter strips are dried for one hour at 70° C., the filter were are covered with scintillator strips (MeltiLex™ A, Wallac Company) and baked for one hour at 90° C. The amount of incorporated 33P (substrate phosphorylation) is determined by scintillation measurement in a gamma-radiation measuring device (Wallac).


EXAMPLE 2
Proliferation Assay

Cultivated human tumor cells (as indicated) are flattened out at a density of 5000 cells/measuring point in a 96-hole multititer plate in 200 μl of the corresponding growth medium. After 24 hours, the cells of one plate (zero-point plate) are colored with crystal violet (see below), while the medium of the other plates is replaced by fresh culture medium (200 μl), to which the test substances are added at various concentrations (0 μm, as well as in the range of 0.01-30 μm; the final concentration of the solvent dimethyl sulfoxide is 0.5%). The cells are incubated for 4 days in the presence of test substances. The cell proliferation is determined by coloring the cells with crystal violet: the cells are fixed by adding 20 μl/measuring point of a 11% glutaric aldehyde solution for 15 minutes at room temperature. After three washing cycles of the fixed cells with water, the plates are dried at room temperature. The cells are colored by adding 100 μl/measuring point of a 0.1% crystal violet solution (pH is set at 3 by adding acetic acid). After three washing cycles of the colored cells with water, the plates are dried at room temperature. The dye is dissolved by adding 100 μl/measuring point of a 10% acetic acid solution. The extinction is determined by photometry at a wavelength of 595 nm. The change of cell growth, in percent, is calculated by standardization of the measured values to the extinction values of the zero-point plate (=0%) and the extinction of the untreated (0 μm) cells (=100%).


The results of Examples 1 and 2 are cited in the following tables.


[Key to Subsequent Tables:]


Beispiel Nummer=Example Number
















Inhibition




Beispiel
IC50 [nM]
Proliferation IC50 [μM]
Sw













Nummer
CDK2/CycE
MCF7
H460
HCT116
DU145
(g/l)
















22
40
1.2
1.5
1.5
1.5
0.003


37
70
4



0.006


6
70
4
6


0.008


40
20
1
3
3
9
0.002


51
70
8


20
60
4


21
400
2


1
300
8


2
700


16
300
3


24
400
5


26
300
3


35
120
>10


23
180
3


11
6
0.2
0.5
0.3
0.2


38
80
>10


34
1800


10
4
0.2
0.5
0.5
0.5


12
400
4


25
70
1.2
1.5
1.1
1.2
0.017


9
7
0.9

3
3


7
6
0.7
1.5
1.2
0.5
0.028


31
800
7



0.0023


14
200
3



0.013


18
2000




0.039


3
200
8



0.039


19
800
>10



0.041


13
2000
>10























Inhibition




Beispiel
IC50 [nM]
Proliferation IC50 [μM]
Sw













Nummer
CDK2/CycE
MCF7
H460
HCT116
DU145
(g/l)
















17
1000
>10



0.04


4
40
8



0.042


15
300
>10



0.024


8
<10
4



0.007


43
200
6



0.04


36
30
0.4
0.6
0.5
0.6
0.018


27
>10000


42
2000




0.043


39
300




0.0016


44
8
1.2
0.4
0.4
0.3
0.005


45
10
2
1.7
1.2
0.5
0.0094


50
150


5
90
10



0.043


46
7
2



0.0069


52
200
0.2
1.6
1.2
2
0.0005


53
300
1.6



0.026


54
100
1.1



0.0015


47
12
0.7
1.8
1.3
0.9


56
80
4



0.023


49
50
>10



0.044


48
4
0.2
1
0.4
0.3
0.042


96
400




0.0005


98
2000


85
2000




0.001


84
400




0.0005


86
3000


87
250
0.8



0.003


22
40
1.2
1.5
1.5
1.5
0.003























Inhibition




Beispiel
IC50 [nM]
Proliferation IC50 [μM]
Sw













Nummer
CDK2/CycE
MCF7
H460
HCT116
DU145
(g/l)















37
70
4


0.006


6
70
4
6

0.008


16
300
3


24
400
5


35
120
>10


23
180
3


38
80
>10


43
200
6


0.04


42
2000



0.043


50
150


5
90
10


0.043


54
100
1.1


0.0015










Proof of Superiority of the Compounds According to the Invention Compared to the Known Compounds


To prove the superiority of the compounds according to the invention compared to the known compounds, the compounds according to the invention are compared to known reference compounds and structurally-similar known compounds in the enzyme test. The result is cited in the following table:


[Key to the Following Tables:]


Beispiel-Nr.=Example No.


Löslichkeit (g/l)=Solubility (g/l)


Beispiel 11 aus WO01/14375 (Seite 38)=Example 11 from WO01/14375 (page 38)




















CDK2/

Löslich-





CycE
MCF-7
keit


Beispiel-Nr.
R2
A
IC50 [nM]
IC50 [μM]
(g/l)









embedded image

Nr. 48

CH(C3H7)—CH2—OH—
—SO2—N—(CH2)2—OH
4
0.2
0.042







embedded image

Nr. 9

CH(CH2OH)2
SO2NH2
7
0.9
0.009







embedded image

Nr. 11

Propargyl-NH—
SO2NH2
6
0.2



























CDK2/

Löslich-





CycE
MCF-7
keit


Beispiel-Nr.
R2
A
IC50 [nM]
IC50 [μM]
(g/l)






















embedded image

Olomoucine



7000
30







embedded image

Roscovitine



1500
8







embedded image

Kenpaullone



1800
6







embedded image

Alsterpaullone



90
1.2







embedded image

Purvalanol A



10
2



























CDK2/

Löslich-





CycE
MCF-7
keit


Beispiel-Nr.
R2
A
IC50 [nM]
IC50 [μM]
(g/l)







Beispiel 11 aus WO01/14375 (Seite 38) embedded image


190









It can be seen from the results of the table that both in the enzyme test and in the cell test, the compounds according to the invention have significantly higher activities in the enzyme and in the MCF-7 cells than the compounds that are known from the prior art. The compounds according to the invention are thus far superior to the known compounds.

Claims
  • 1. A compound of formula I
  • 2. A compound of claim 1 in which R1 stands For halogen or C1-C3-alkylX stands for oxygen or —NH,A stands for hydrogen, andB stands for hydroxy, —CO-alkyl-R7, —S—CHF2, —S—(CH2)nCH(OH)CH2N—R3R4, —S—CF3, or —CH—(OH)—CH3.
  • 3. A method of inhibiting a cyclin-dependent kinase comprising administering a compound of claim 1.
  • 4. A method according to claim 3, wherein the kinase is CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 or CDK9.
  • 5. A method of inhibiting glycogen-synthase-kinase (GSK-3β), comprising administering a compound of claim 1.
  • 6. A compound of claim 1 in the form of a diastereomer or enantiomer.
  • 7. A compound of claim 1 wherein A is S(O)R7 or SO2R7 and X is O or —NH.
  • 8. A compound according to claim 1, wherein R7 is a C1-C6-alkyl or a C1-C10-alkyl substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkoxy, halogen, —NR3R4 or phenyl.
  • 9. A compound according to claim 1, wherein X is O.
  • 10. A compound according to claim 8, wherein X is O.
  • 11. A compound according to claim 1, wherein R1 is halogen.
  • 12. A compound according to claim 8, wherein R1 is halogen.
  • 13. A compound according to claim 9, wherein R1 is halogen.
  • 14. A compound according to claim 10, wherein R1 is halogen.
  • 15. A compound according to claim 9, wherein R2 is C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkynyl, or C3-C10-cycloalkyl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, —(CH2)n-aryl, phenyl-(CH2)n—R5, (CH2)nPO3(R5)2 or with the group —R6 or —NR3R4.
  • 16. A compound according to claim 8, wherein R2 is C1-C10-alkyl, C1-C10-alkenyl, C2-C10-alkynyl, or C3-C10-cycloalkyl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH3)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, —(CH2)n-aryl, phenyl-(CH2)n—R5, —(CH2)PO3(R5)2 or with the group —R6 or —NR3R4.
  • 17. A compound according to claim 15, wherein R2 is C1-C10-alkyl optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, —(CH2)n-aryl, phenyl-(CH2)n—R5, —(CH2)PO3(R5)2 or with the group —R6 or —NR3R4.
  • 18. A compound according to claim 15, wherein R2 is C1-C10-alkyl substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, —(CH2)n-aryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4.
  • 19. A compound according to claim 15, wherein R2 is C1-C10-alkyl substituted with hydroxy.
  • 20. A compound according to claim 16, wherein R2 is C1-C10-alkyl optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, —NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, —(CH2)n-aryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4.
  • 21. A compound according to claim 16, wherein R2 is C1-C10-alkyl substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6-alkylthio, amino, cyano, C1-C6-alkyl, —NH—(CH2)n—C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, NHC1—C6-alkyl, —N(C1-C6-alkyl)2, —SO(C1-C6-alkyl), —SO2(C1-C6-alkyl), C1-C6-alkanoyl, —CONR3R4, —COR5, C1-C6-alkylOAc, carboxy, aryl, —(CH2)n-aryl, phenyl-(CH2)n—R5, —(CH2)nPO3(R5)2 or with the group —R6 or —NR3R4.
  • 22. A compound according to claim 16, wherein R2 is C1-C10-alkyl substituted with hydroxy.
  • 23. A compound according to claim 1, wherein one or A or B is —SO2R7 and the other is hydrogen.
  • 24. A compound according to claim 1, wherein one of A or B is —SO2R7 in a meta or para position.
  • 25. A pharmaceutical composition comprising an effective amount of a compound according to claim 1, and a pharmaceutically acceptable carrier.
  • 26. A pharmaceutical composition according to claim 25, in the form of a preparation for enteral, parenteral and oral administration.
  • 27. A compound of claim 1 wherein R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, C2H4OH, or —NR3R4,R8, R9 and R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C6-alkyl, C3-C6-cycloalkyl or for the group
  • 28. A compound according to claim 1, wherein R1 stands for hydrogen, halogen, C1-C3-alkyl, or for the group —(CH2)nR5,R2 for stands —CH(CH3)—(CH2)n—R5, —CH—(CH2OH)2, —(CH2)nR7, —CH(C3H7)—(CH2)n—R5, —CH(C2H5)—(CH2)n—R5, —CH2—CN, —CH(CH3)COCH3, —CH(CH3)—C(OH)(CH3)2, —CH(CH(OH)CH3)OCH3, —CH(C2H5)CO—R5, C2-C4-alkynyl, (CH2)n—COR5, —(CH2)n—CO—C1-C6-alkyl, —(CH2)n—C(OH)(CH3)-phenyl, —CH(CH3)—C(CH3)—R5, —CH(CH3)—C(CH3)(C2H5)—R5, —CH(OCH3)—CH2—R5, —CH2—CH(OH)—R5, —CH(OCH3)—CHR5—CH3, —CH(CH3)—CH(OH)—CH2—CH═CH2, —CH(C2H5)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—(CH2)n—CH3, —CH(CH3)—R5)2, —CH(CH3)—CO—NH2, —CH(CH2OH)-phenyl, —CH(CH2OH)—CH(OH)—(CH2)nR5, —CH(CH2OH)—CH(OH)-phenyl, —CH(CH2OH)—C2H4—R5, —(CH2)n—C≡C—C(CH3)═CH—COR5, —CH(Ph)—(CH2)n—R5, —(CH2)nPO3(R5)2, —CH((CH2)nOR5)CO—R5, —(CH2)nCONHCH((CH2)nR5, —(CH2)nNH—COR5, —CH(CH2)nR5—(CH2)nC3-C10-cycloalkyl, —(CH2)n—C3-C10-cycloalkyl or, C3-C10-cycloalkyl, C1-C6-alkyl, C3-C10-cycloalkyl, —(CH2)n—O—(CH2)n—R5, or —(CH2)n—NR3R4, —CH(C3H7)—(CH2)n—OC(O)—(CH2)n—CH3, —(CH2)n—R5, —C(CH3)2—(CH2)n—R5, —C(CH2)n(CH3)—(CH2)nR5, —C(CH2)n—(CH2)nR5, —CH(t-butyl)-(CH2)nR5, —CCH3(C3H7)—(CH2)nR5, —CH(C3H7)—(CH2)n—R5, —CH(C3H7)—COR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph, —CH((CH2)n(C3H7))—(CH2)nR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph(OR5)3, R5—(CH2)n—C*H—CH(R5)—(CH2)n—R5, —(CH2)n—CO—NH—(CH2)n—CO—R5, or —(CH2)n—CO—NH—(CH2)n—CH—((CH2)nR5)2, each of which is optionally substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkyl or the group —NR3R4, or for C3-C10-cycloalkyl, which is substituted with the group
  • 29. A compound according to claim 1, wherein B is H, OH, or CH3; and X is O, —NH— or —N(C1-C3-alkyl).
  • 30. A compound according to claim 1, wherein B is H and X is —NH—.
  • 31. A compound according to claim 1, wherein B is CH3 and X is —NH—.
  • 32. A compound according to claim 1, wherein X is O.
  • 33. A compound according to claim 32, wherein one of R3 and R4 is H or methyl and the other is hydrogen, hydroxy, methyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxymethyl-2-hydroxyethyl, ethoxy, 2-methoxyethyl, prop-2-eneoxy, benzyloxy, 3-hydroxypropyl, 3-hydroxybutyl, 5-hydroxypentyl, cyclopropylmethyl, 4-cyanocyclohexylmethyl, cyclohexylmethyl, 2-methoxyphenylmethyl, 4-methylphenylmethyl, 2-fluorophenylmethyl, 3-fluorophenylmethyl, 4-fluorophenylmethyl, 2-methoxyphenylmethyl, 3,4-dimethoxyphenylmethyl, 2-phenyloxyethyl, 3,3-diphenylpropyl, phenylmethyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 2-phenoxyethyl, 4-chloro-2-phenyethyl, 4-methoxyphenylethyl, 3-methylbutyl, cyclopropyl, or 4-sulfoaminophenylethyl.
  • 34. A compound according to claim 33, wherein one of R3 and R4 is H or methyl and the other is hydrogen, methyl, hexyl, heptyl, octyl, nonyl, 2-hydroxyethyl, 2-methoxyethyl, 4-cyanocyclohexylmethyl, cyclohexylmethyl, 4-methylphenylmethyl, 2-methoxyphenylmethyl, 3,3-diphenylpropyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 4-chloro-2-phenylethyl, or 3-methylbutyl.
  • 35. A compound according to claim 34, wherein both R3 and R4 are hydrogen.
  • 36. A compound according to claim 32, 33, 34 or 35, wherein B is H or methyl.
  • 37. A compound according to claim 36, wherein B is H.
  • 38. A compound according to claim 32, 33, 34 or 35, wherein R1 is fluorine, bromine, chlorine, iodine, hydrogen, methyl, or ethyl.
  • 39. A compound according to claim 36, wherein R1 is fluorine, bromine, chlorine, iodine, hydrogen, methyl, or ethyl.
  • 40. A compound according to claim 37, wherein R1 is fluorine, bromine, chlorine, iodine, hydrogen, methyl, or ethyl.
  • 41. A compound according to claim 38, wherein R1 is bromine, chlorine, iodine, or methyl.
  • 42. A compound according to claim 39, wherein R1 is bromine, chlorine, iodine, or methyl.
  • 43. A compound according to claim 40, wherein R1 is bromine, chlorine, iodine, or methyl.
  • 44. A compound according to claim 41, wherein R1 is bromine.
  • 45. A compound according to claim 42, wherein R1 is bromine.
  • 46. A compound according to claim 43, wherein R1 is bromine.
  • 47. A compound according to claim 32, 33, 34 or 35, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 48. A compound according to claim 36, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 49. A compound according to claim 37, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 50. A compound according to claim 38, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 51. A compound according to claim 39, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 52. A compound according to claim 40, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 53. A compound according to claim 41, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 54. A compound according to claim 42, wherein R2 is (2R)-1-hydroxy-1-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 55. A compound according to claim 43, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 56. A compound according to claim 44, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 57. A compound according to claim 45, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-2-yl ether.
  • 58. A compound according to claim 46, wherein R2 is (2R)-1-hydroxy-3-methylbut-2-yl, 2-propynyl, 1-hydroxybut-2-yl, 2-hydroxybut-3-yl, 1-hydroxyprop-2-yl, or methyl prop-9-yl ether.
  • 59. A compound according to claim 47, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 60. A compound according to claim 48, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 61. A compound according to claim 49, wherein R2 is 1-hydroxybut-2-yl or -hydroxyprop-2-yl.
  • 62. A compound according to claim 50, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 63. A compound according to claim 51, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 64. A compound according to claim 52, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 65. A compound according to claim 53, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 66. A compound according to claim 54, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 67. A compound according to claim 55, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 68. A compound according to claim 53, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 69. A compound according to claim 57, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 70. A compound according to claim 58, wherein R2 is 1-hydroxybut-2-yl or 1-hydroxyprop-2-yl.
  • 71. A compound according to claim 1, wherein one of R3 and R4 is H or methyl and the other is hydrogen, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C3-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy, wherein the phenyl groups can be substituted in one or more places in the same way or differently with halogen, C1-C6-alkyl, C1-C6-alkoxy or with the group —SO2NR3R4.
  • 72. A compound according to claim 32, wherein one of R3 and R4 is H.
  • 73. A compound according to claim 33, wherein one of R3 and R4 is H.
  • 74. A composition comprising a compound of claim 36 and a pharmaceutically acceptable carrier.
  • 75. A composition comprising a compound of claim 38 and a pharmaceutically acceptable carrier.
  • 76. A composition comprising a compound of claim 47 and a pharmaceutically acceptable carrier.
  • 77. A compound of formula I
  • 78. A compound according to claim 1, wherein R1 stands for hydrogen, halogen, C1-C3-alkyl, or for the group —(CH2)nR5,R2 stands for —CH(CH3)—(CH2)n—R5, —CH—(CH2OH)2, (CH2)mR7, CH(C3H7)—(CH2)n—R5, —CH(C2H5)—(CH2)n—R5, —CH2—CN, —CH(CH3)COCH3, —CH(CH3)—C(OH)(CH3)2, —CH(CH(OH)CH3)OCH3, —CH(C2H5)CO—R5, C2-C4-alkynyl, —(CH2)m—COR5, —(CH2)m—CO—C1-C6-alkyl, —(CH2)n—C(OH)(CH3)-phenyl, —CH(CH3)—C(CH3)—R5, —CH(CH3)—C(CH3(C2H5)—R5, —CH(OCH3)—CH2—R5, —CH2—CH(OH)—R5, —CH(OCH3)—CHR5—CH3, —CH(CH3)—CH(OH)—CH2—CH═CH2, —CH(C2H5)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—(CH2)n—CH3, —CH(CH3)—CH(OH)—CH(CH3)2, (CH2OAc)2, —(CH2)n—R6, —(CH2)n—(CF2)n—(CF2)n—CF3, —CH((CH2)n—R5)2, —CH(CH3)—CO—NH2, —CH(CH2OH)-phenyl, CH(CH2OH)—CH(OH)—(CH2)nR5, CH(CH2OH)—CH(OH)-phenyl, —CH(CH2OH)—C2H4—R5, —(CH2)n—C≡C—C(CH3)═CH—COR5, —CH(Ph)—(CH2)n—R5, —(CH2)mPO3(R5)2, —CH((CH2)nOR5)CO—R5, —(CH2)mCONHCH((CH2)nR5)2, —(CH2)mNH—COR5, —CH(CH2)nR5—(CH2)nC3-C10-cycloalkyl, —(CH2)n—C3-C10-cycloalkyl or, C3-C10-cycloalky, C1-C6-alkyl, C3-C10-cycloalkyl, —(CH2)m—O—(CH2)n—R5, or —(CH2)m—NR3R4, —CH(C3H7)—(CH2)n—OC(O)—(CH2)n—CH3, —(CH2)m—R5, —C(CH3)2—(CH2)n—R5, —C(CH2)n(CH3)—(CH2)nR5, —C(CH2)n—(CH2)nR5, —CH(t-butyl)-(CH2)n—R5, —CCH3(C3H7)—(CH2)nR5, —CH(C3H7)—(CH2)n—R5, —CH(C3H7)—COR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph, —CH((CH2)n(C3H7))—(CH2)nR5, —CH(C3H7)—(CH2)n—OC(O)—NH-Ph(OR5)3, R5—(CH2)n—C*H—CH(R5)—(CH2)n—R5, —(CH2)mCO—NH—(CH2)n—CO—R5, or —(CH2)m—CO—NH—(CH2)n—CH—((CH2)nR5)2, each of which is optionally substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkyl or the group —NR3R4, or for C3-C10-cycloalkyl, which is substituted with the group
  • 79. A compound of formula I
Priority Claims (2)
Number Date Country Kind
101 27 581 May 2001 DE national
102 12 098 Mar 2002 DE national
Parent Case Info

This application is a continuation of U.S. application Ser. No. 10/156,759 filed May 29, 2002 now U.S. Pat. No. 7,235,561 and a continuation of U.S. application Ser. No. 10/842,419 filed May 11, 2004, now U.S. Pat. No. 7,291,624, whose disclosures are incorporated by reference herein.

US Referenced Citations (3)
Number Name Date Kind
5958935 Davis et al. Sep 1999 A
7235561 Brumby et al. Jun 2007 B2
7291624 Brumby et al. Nov 2007 B2
Related Publications (1)
Number Date Country
20080039447 A1 Feb 2008 US
Continuations (2)
Number Date Country
Parent 10842419 May 2004 US
Child 11819307 US
Parent 10156759 May 2002 US
Child 10842419 US