This disclosure relates to the field of ceiling fans, and more specifically, to vibration dampening in ceiling fans. The disclosure is directed to a grommet utilized in a ceiling fan blade to dampen vibrations, as well as a design for the grommet that improves ease of installation.
Ceiling fans often include a set of blades rotatably coupled to a motor assembly to rotate the set of blades. Rotation of the set of blades drives a volume of fluid, typically ambient air within a room, space, or area. Ceiling fan blades include a traditional aesthetic, commonly having a flat bottom on the blade which provides consumers with a traditional ceiling fan style and look.
Traditional style blades can use a grommet element when coupling the blade to the blade iron to dampen any vibration at the connection, reducing the instance of noise or blade imbalance. However, these grommets include an annular lip at either end to secure the grommet within the mounting hole on the blade. As blade shapes change in order to improve efficiency, blade thickness and geometry changes as well, requiring larger or longer grommets. These larger or longer grommets are often difficult for the user to install due to the annular lip, as compression of the grommet for installation can be challenging.
In one aspect, the disclosure relates to a ceiling fan assembly comprising: a motor including a rotor rotatably driven by the motor; a blade including a top surface and a bottom surface, with a mount hole extending between the top surface and the bottom surface; a blade iron connecting the blade to the rotor; and a grommet provided in the mount hole and including a first end and a second end, with a set of flanges including multiple discrete flanges extending from at least one of the first end or the second end.
In another aspect, the disclosure relates to a grommet for a ceiling fan blade, the grommet comprising: a cylindrical body extending between a first end and a second end, the cylindrical body including an exterior surface and an interior surface, with the interior surface defining an interior extending between the first end and the second end; and a set of flanges including multiple discrete flanges extending radially from the first end, relative to the cylindrical body.
In yet another aspect, the disclosure relates to a method of installing a ceiling fan with a grommet having a first end and a second end, with multiple discrete flanges extending from the first end and the second end, the method comprising: inserting a grommet into a mount hole of a ceiling fan blade, until the multiple discrete flanges at the first end abut a first surface of the blade and the multiple discrete flanges at the second end abut a second surface of the blade.
In the drawings:
The disclosure provided herein relates to blades for a ceiling fan, and more specifically, to a grommet used with ceiling fan blades where the blades mount to a blade iron. This disclosure also relates to the use of a grommet at the mechanical connection between a ceiling fan blade and a ceiling fan blade iron that dampens vibration from the blades as well as provides for simplified user installation of the grommet, as well as the blades and blade irons, providing for an improved overall installation experience.
All directional references (e.g., radial, axial, proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, counterclockwise, upstream, downstream, forward, aft, etc.) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of aspects of the disclosure described herein. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and can include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to one another. The exemplary drawings are for purposes of illustration only and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto can vary. As used herein, the term “set” or a “set” of elements can be any number of elements, including only one. For example, a set of grommets or a set of blades as used herein can include one or more grommets, or one or more blades.
Referring to
The ceiling fan 10 includes a mount 16 suspending the ceiling fan 10 from and coupling the ceiling fan 10 to the ceiling 12. A canopy 18 covers the mount 16. A downrod 20 is suspended from the mount 16 by a ball 22. A motor adapter 24 secure the downrod 20 to a motor 26 via a motor shaft 28 extending from the motor 26. The motor 26 can include a stator 30 mounted to the motor shaft 28, as well as a rotor 32 rotatably driven about the stator 30. The motor adapter 24 can further couple to a motor housing 34 at least partially encasing the motor 26. A set of blade irons 36 couples a complementary set of blades 38 to the rotor 32 for rotating the blades 38 and driving a volume of fluid, such as air, about the structure 14 or a local room therein. A switch housing 48 can mount below the motor housing 34 and electrically couple to the motor 26. A light kit 46 can electrically and mechanically couple to the switch housing 48.
It should be understood that the ceiling fan 10 as depicted in
The ceiling fan 10 can be coupled to a power supply 40, such as a building electrical supply. The power supply 40 may be connected to one or more controllers 42 or switches 44. The controllers 42 can be used to receive or send information related to the control and operation of the ceiling fan 10, such as over a wired or wireless signal. The switches 44, can be operated to control the ceiling fan 10, such as a wall-mounted switch, for example. While the controller 42 and the switch 44 are schematically shown exterior of the ceiling 12, it should be appreciated that the controller 42 and the switch 44 may be optional, or may be provided in other positions, such as on the wall or ceiling, or within portions of the ceiling fan 10 itself.
Turning to
The blade 38 can couple to the blade iron 36 by a set of fasteners 80, which can pass through the set of fastener openings 72 and the grommets 82. The set of grommets 82 can be included with the set of fasteners 80, such that one grommet 82 of the set of grommets 82 can be paired with one fastener 80 of the set of fasteners 80. Thus, the number of fasteners 80 can be complementary to the number of grommets 82. The grommets 82 can be provided between the fasteners 80 and the body of the blade 38, while positioned within the set of fastener openings 72. Additionally, it is contemplated that at least a portion of the grommets 82 can be provided between the blade 38 and the blade iron 36, to reduce or minimize vibration at the junction between the blade 38 and the blade iron 36, along with reducing or minimizing damage or stress to the blade 38 resultant from lengthy use of the ceiling fan. The grommets 82 can be made of a rubber, plastic, or polymeric material, in non-limiting examples. Preferably, the grommets 82 are made of a material that is wear resistant, while providing for dampening any vibrational forces at the junction between the blade 38 and the blade iron 36. One example material can include polyether ether ketone (PEEK), while any suitable material may be utilized.
Referring to
Referring briefly to
Referring to
The grommets 82 as described herein provide for improved dampening at the fasteners which couple the blade to the blade iron. Traditional grommets have an annular lip, as opposed to the flanges 92, 94 as described herein. The annular lip on other grommets generates a cylinder stress, not only on the grommet body, but also on the annular lip. The cylinder stress is a stress distribution resultant of the rotational symmetry of the grommet as well as with the annular lip for grommets that have an annular lip, and is often referred to as a circumferential stress or a hoop stress, which is defined as a normal stress in the tangential direction, relative to the cylindrical annular lip and the cylindrical body. Thus, it should be appreciated that a grommet 82 using the flanges 92, 94 provides for a reduced hoop stress at the flanges (where other grommets can include the annular lip), which provides for improved compressibility and ease for installing the grommet to a fan blade.
However, a blade that does not have flat top and bottom surfaces requires an increased height for the grommet, resulting in more required material for the grommet. The greater material provides a greater cylinder stress when installing the grommet, which makes installation of the grommet difficult. The flanges 92, 94 provide for improved or increased compressibility of the whole grommet, as compared to a grommet having a full annular lip, which results in a decreased cylinder stress or hoop stress, facilitating and easing installation by the user. This is particularly advantageous with aerodynamically shaped or aerodynamically efficient blades, where larger or longer grommets are required. Such larger or longer grommets are difficult to compress for installation, particularly with an annular lip. Utilizing the grommet with the flanges 92, 94 as described herein reduces the hoop stress to improve compressibility and ease of installation. Additionally, use of the flanges as opposed to an annular lip can provide for reduced overall material as compared with that of a grommet using an annular lip, also decreasing cost of the material. Such an overall reduction in material can even be seen when the grommet 82 is lengthened, as compared to a shorter grommet with an annular lip. In one example, use of the flanges as opposed to annular lips can provide a 6.41% decrease in overall material, while as much as a 10% decrease or more is contemplated.
The use of flanges as described herein provides for improved compressibility of the grommet 82, which provides for easier installation into mount holes of the ceiling fan blade 38 by compressing the grommet 82 and inserting it into the mount holes. Thus, installation becomes easier for the user or installer, as the use of flanges permits easy compression of the grommet and insertion into the holes on the blades. Thus, the grommet as described herein provides for easier installation, decreased material usage, and decreased costs, while still providing all of the benefits of a traditional grommet in such a position.
Referring now to
After the grommets 110 are inserted, one or more fasteners 118 can be inserted through the grommets 110 and can fasten to a blade iron 120 via a threaded connection, for example. The grommets 110 help to dampen the connection between the blade 114 and the blade iron 120, which reduces vibrations and noise, as well as improves operational lifetime.
The blade iron 120 can then be fastened to a rotor 122 via additional fasteners 124, while any suitable connection of the blade iron 120 to the rotor 122 is contemplated, and may vary depending on the particular ceiling fan or blade iron style. Additionally, rotor 122 can be any rotational portion of the motor for the ceiling fan, and need not by a traditional rotor 122 directly driven by a stator, but can be a rotating portion of the motor housing or a mount hub, for example.
It should be appreciated that the method as described herein is non-limiting, and the order as discussed in regards to
Additionally, it should be contemplated that a method of installing a ceiling fan with a grommet 82 having a first end 86 and a second end 88, with multiple flanges 92, 94 extending from the first end 86 and the second end 88. The method can include inserting a grommet into a mount hole of a ceiling fan blade, until the flanges at the first end abut a first surface of the blade and the multiple flanges at the second end abut a second surface of the blade. The method can further include wherein inserting the grommet includes compressing the grommet. The method can also further include inserting a fastener through the grommet and coupling the fastener to a blade iron to couple the ceiling fan blade to the ceiling fan. The method can also further include fastening the blade iron to the ceiling fan.
To the extent not already described, the different features and structures of the various aspects can be used in combination, or in substitution with each other as desired. That one feature is not illustrated in all of the examples is not meant to be construed that it cannot be so illustrated, but is done for brevity of description. Thus, the various features of the different aspects can be mixed and matched as desired to form new aspects, whether or not the new aspects are expressly described. All combinations or permutations of features described herein are covered by this disclosure. Therefore, it should be understood that it is contemplated that features of one embodiment may be applied to another embodiment, and interchanged, added, or removed to form additional embodiments not explicitly shown, but still within the scope of the disclosure.
Although the embodiment of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/952,763, filed on Dec. 23, 2019, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62952763 | Dec 2019 | US |