The present invention relates to a ceiling fan, and more particularly to a ceiling fan blade fastening structure.
A ceiling fan is used for regulating air convection in indoor space, which is mounted on the ceiling of a room or space to generate wind by rotation of the blades. The ceiling fan is large in size. In general, the ceiling fan includes multiple parts, such as a blade base and blades. The parts are packaged together for sale. After purchasing the ceiling fan, the consumer takes out the parts to be assembled together, so as to form a finished ceiling fan.
The blades are not integrally formed with the blade base, and they are connected to the blade base with fasteners, such as screws. It is required to use a tool for assembling the ceiling fan, so as to complete the connection between the parts. In this way, for the manufacturer, it is necessary to provide the correct specification and quantity of parts in the product package, so omissions are likely to occur. For consumers, the assembly is difficult and time-consuming, and the ceiling fan may be incorrectly assembled.
In view of the above-mentioned problems, the industry has developed a fastening structure for blades and a blade base. It is very easy to assemble the ceiling fan by simply inserting the blade into the blade base. However, the ceiling fan uses a motor to drive the blades to rotate, so the blades will be affected by centrifugal force in operation. If the connection between the blades and the blade base is not firm enough, the blades may be thrown out, which is a potential safety concern for the user.
The primary object of the present invention is to provide a ceiling fan blade fastening structure. A fan blade is installed to a rotating disk of a ceiling fan without using tools. It has the effect of rapid assembly and improved connection stability.
In order to achieve the object, a ceiling fan blade fastening structure provided by the present invention comprises a base and a fan blade.
The base is fixed to a rotor of a motor of a ceiling fan. The base has a bottom wall and a peripheral wall. The peripheral wall has a slot. The bottom wall is provided with a guide rail portion adjacent to the slot. The bottom wall is provided with a bracket and a positioning block behind the guide rail portion.
The fan blade has an end face whose area is greater than that of the slot. A tongue portion extends from the end face. The tongue portion corresponds in area to the slot. The tongue portion is provided with a stop block. When the tongue portion of the fan blade is inserted into the slot, the end face abuts against the peripheral wall, and the tongue portion abuts against the positioning block, so as to position the fan blade. The stop block is against a rear of the bracket, so that the fan blade is unable to be disengaged from the slot.
Preferably, a periphery of the slot has a recess, and the tongue portion of the fan blade is provided with a protrusion corresponding in position and in shape to the recess for the tongue portion to be inserted into the slot in a specific direction.
Preferably, a pin is inserted through the tongue portion of the fan blade and locked to the guide rail portion.
In an embodiment, the tongue portion has two sides in a height direction. Each side of the tongue portion is provided with the stop block. The stop block is spaced apart from the tongue portion and is connected to the corresponding side through a connecting portion. The connecting portion extends along an insertion direction of the tongue portion.
Furthermore, one side of the stop block, facing away from the corresponding side of the tongue portion, has a wedge-shaped face. The stop block further has an upright face behind the wedge-shaped face. When the tongue portion is to be inserted into the slot, the wedge-shaped face is against the bracket and guides the stop block to pass through the bracket. After the stop block passes through the bracket, the upright face is blocked by the bracket so that the fan blade is unable to be disengaged from the slot.
The bracket includes an upright portion integrally connected to the bottom wall and a horizontal portion integrally connected to a top end of the upright portion. When the tongue portion is inserted into the slot, the horizontal portion is above the tongue portion, and the upright face is blocked by the upright portion so that the fan blade is unable to be disengaged from the slot.
In an embodiment, the tongue portion has a top face in a width direction. The stop block is spaced apart from the tongue portion and is connected to the top face through a connecting portion. The connecting portion extends along an insertion direction of the tongue portion.
Furthermore, one side of the stop block, facing the insertion direction of the tongue portion, has a wedge-shaped face. The stop block further has an upright face behind the wedge-shaped face. When the tongue portion is to be inserted into the slot, the wedge-shaped face is against the bracket and guides the stop block to pass through the bracket. After the stop block passes through the bracket, the upright face is blocked by the bracket so that the fan blade is unable to be disengaged from the slot.
The bracket includes an upright portion integrally connected to the bottom wall and a horizontal portion integrally connected to a top end of the upright portion. When the tongue portion is inserted into the slot, the horizontal portion is above the tongue portion, and the upright face is blocked by the upright portion so that the fan blade is unable to be disengaged from the slot.
In an embodiment, the tongue portion has a top face in a width direction. The stop block is spaced apart from the tongue portion and is connected to the top face through a connecting portion. The connecting portion extends in a direction perpendicular to an insertion direction of the tongue portion.
Furthermore, one side of the stop block, facing the insertion direction of the tongue portion, has a wedge-shaped face. The stop block further has an upright face behind the wedge-shaped face. When the tongue portion is to be inserted into the slot, the wedge-shaped face is against the bracket and guides the stop block to pass through the bracket. After the stop block passes through the bracket, the upright face is blocked by the bracket so that the fan blade is unable to be disengaged from the slot.
The bracket includes an upright portion integrally connected to the bottom wall and a horizontal portion integrally connected to a top end of the upright portion. When the tongue portion is inserted into the slot, the horizontal portion is above the tongue portion, and the upright face is blocked by the upright portion so that the fan blade is unable to be disengaged from the slot.
In an embodiment, the bracket includes two brackets disposed on the bottom wall, and the peripheral wall has the slot for installing the fan blade.
In an embodiment, the base is in the form of a disk. The guide rail portion includes a plurality of guide rail portions disposed on the bottom wall. The bracket includes a plurality of brackets disposed on the bottom wall. The slot includes a plurality of slots disposed on the peripheral wall. The fan blade includes a plurality of fan blades to be inserted in the respective slots. The guide rail portions and the brackets correspond in number to the slots.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings.
Referring to
The base 1 defines a plurality of areas corresponding in number to the fan blades 2. Each area is coupled with one fan blade 2. In this embodiment, the number of fan blades 2 is five, and the base 1 defines five areas. The peripheral wall 12 has a slot 121 in each area for insertion of the fan blade 2. The slot 121 may be arranged horizontally as shown in
The base may have another structural implementation as shown in
As shown in
The tongue portion 21 has two sides 211 in the height direction. Each side 211 is provided with a stop block 23. The stop block 23 is spaced apart from the tongue portion 21 and is connected to the corresponding side 211 through a connecting portion 24. The connecting portion 24 extends along the insertion direction of the tongue portion 21. One side of the stop block 23, facing away from the corresponding side 211, has a wedge-shaped face 231. The wedge-shaped face 231 faces the insertion direction of the tongue portion 21. The stop block 23 further has an upright face 232 behind the wedge-shaped face 231. When the tongue portion 21 of the fan blade 2 is inserted into the slot 121 of the base 1, as shown in
Furthermore, the guide rail portion 13 has a positioning hole 131. The tongue portion 21 of the fan blade 2 has a through hole 25 aligned with the positioning hole 131. A pin 251 passes through the through hole 25 and is locked in the positioning hole 131 to ensure that the fan blade 2 is secured to the base 1 to prevent it from flying out due to centrifugal force during rotation.