Preferred embodiments of the invention are shown in the drawings, wherein:
The ceiling or wall panel 2 is typically at least one meter square. As the size of the panel increases, the weight of the panel increases and this is normally the prime considerations with respect to size. For example, a 1.2 meter square with a welded wire mesh front face, can weigh in the order of 50 to 55 lbs. As ceiling panels are installed overhead, this is the approximate weight that a workman can install without additional assistance.
Woven metal fabrics are produced in various weights, textures, degrees of transparency and flexibility. They are typically manufactured out of non-corroding high grade AISI type 316 stainless steel (standard) although alternate stainless materials are chosen for specific environments. Woven metal fabrics that can be incorporated into panels as grid inserts include: Capella by GKD and Caspian by Potter and Soar.
The various architectural metal meshes are relatively heavy and come in a variety of patterns and configurations. As evident from
The panel 2 shown in
Each of the frame members 30, shown in the partial perspective view of
Preferably, frame members 30 include spline receiving slot 49 that allows the frame members 30 to also be used in the manufacture of cloth covered panels. The cloth is wrapped around the sides of the frames and a spline is forced into slot 49 to retain the fabric or fine screen material drawn across the panel.
Securing slot 36 is slightly recessed relative to the front face of the panel as shown at 42. This downward recess of the securing slot corresponds generally to the thickness of the wire grid insert. Thus, the wire grid insert is retained within the periphery of the frame and the frame includes a slight side extension shown as 41 such that the edges of the grid member are not exposed. It can also be appreciated that this particular arrangement provides the frameless look where grid insert 10 extends essentially from side to side of the panel and the ends of the grid insert are covered by the side extension 41.
Details of the securing clip 16 are shown in
The securing guide 28 slides over and is retained on an inner edge of the securing slot is exposed within the securing slot 36. In contrast, the securing base 24 and the spring flange 26 are inserted within the slot. The spring flange 26 when inserted into the securing slot, cams past the latch edge 38 of the securing slot 36 and is retained therebehind. The bent bar member 18 with its “U” shaped engaging members 18 and 22, provide at opposite sides of the clip 16, engages the individual bar insert of the grid member 10 and positively secures the periphery of the grid insert to the frame.
In many applications, it is also desirable to have a thin vale substrate between the grid member and the acoustical dampening member. This veil substrate can provide a finished colored surface for the panel that matches the grid insert or complements the grid member.
The architectural metal meshes are often stiff in one direction, and bendable or hingeable in a perpendicular direction. These metal meshes or grid members are not normally rigid in both directions and bow downwardly if the panel is large and intermediate support is not provided.
As previously described, the grid insert can have a tendency, particularly in large panels to bow downwardly. In order to overcome this problem, a number of intermediary supports 52 extend across the rear surface of the panel and have a series of securing positions 54 for engaging the grid insert intermediary the sides of the panel. An adjustment mechanism 60 is shown which includes a collar member 62, a rotatable cap member 64 received within the collar 62, and a wire member 66. The acoustical dampening material 50 can be drilled and the intermediary member 52 can also be drilled to receive the collar 62. The collar 62 is used to define a desired spacing of the grid member 10 from the rear face of the intermediary 52. The wire member 66 is inserted to engage one of the bar members of the grid insert 10 and passes through a port in the acoustical dampening material. The collar 62 includes a series of slots or ports to allow the two segments of the wire member 66 to pass through the collar and be returned to the cavity within the sleeve. Details of this are shown in the partial perspective view of
The collar 66 as shown includes four ports for receiving of the wire member 66. A screw member 68 is inserted into the collar 64 is tightened against the collar to lock the wire segments to the collar. Further rotation of the screw member 68 rotates collar 64 and winds the wire segments within the collar sleeve and draws the grid insert upwardly. The purpose of the collar sleeve is to fix the extent of the adjustment, such that the grid insert is planar within the frame.
This particular arrangement has proven effective in securing heavy gauge meshes and welded wire mesh. The use of the double segment wire member 66 engaging a member of the grid insert provides a simple connection arrangement. The connection of these segments to the rotatable collar supported by an intermediary support also provides a simple adjustment mechanism. The use of the collar sleeve may not be necessary for some applications.
In addition, other methods of intermediate support can be used including a single segment wire member with one end attached to the grid insert. Various arrangements for securing of the single wire segment to the intermediate support can be used.
The architectural mesh finished panel with the acoustical dampening material secured in the frame provides good sound absorbing properties. Depending upon the particular mesh used, a decrease in sound absorption of 10% or less, relative to a cloth faced panel, could be expected. Thus, the acoustical properties of the panel are good for most applications.
For example, this type of panel with a TYPE A mount had a NRC rating of 0.90 and a SAA rating of 0.92. With a TYPE E400 mount, the NRC rating was 0.90 and the SAA rating was 0.94.
The invention has been described and is preferably used with a frameless panel, however, it can be appreciated that it is also suitable for use with frames that are not frameless. In this case, the securing slot would be provided at an inner edge and suitably supported.
Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2556821 | Aug 2006 | CA | national |