The present invention relates to aerosol systems and methods for dispensing texture material and, more specifically, aerosol systems and methods configured to dispense texture material onto ceiling surfaces.
Texture material is applied to interior surfaces of structures, including ceiling surfaces. In new construction, the texture material is applied by a hopper gun. When texture material on a target surface or the target surface itself is damaged, a new coating of texture material is applied. For small repairs, the use of a hopper gun is not practical, and acoustic texture material is applied using an aerosol dispenser.
The need exists for improved aerosol dispensing systems and methods configured to apply texture material to a target surface when the target surface is a ceiling surface.
The present invention may be embodied as an aerosol dispensing system for dispensing texture material onto a ceiling surface comprising a container assembly, an actuator assembly, and a trigger member. The container assembly comprises a valve assembly operable in a closed configuration and a fully open configuration. The actuator assembly comprises an actuator housing defining at least one rail portion, a trigger member pivotably attached to the actuator housing, and an outlet assembly defining an outlet opening, where the outlet assembly is slidably supported relative to the actuator housing by the at least one rail portion. The trigger member engages the outlet assembly such that application of deliberate manual force on the trigger member causes pivoting movement of the trigger member relative to the actuator housing and such that pivoting movement of the trigger member relative to the actuator housing causes linear movement of the outlet assembly relative to the actuator housing. The outlet assembly engages the valve assembly such that linear movement of the outlet assembly alters the valve assembly from the closed configuration to the fully open configuration.
The present invention may also be embodied as a method of dispensing texture material onto a ceiling surface comprising the following steps. A container assembly comprising a valve assembly is provided. The valve assembly is operable in a closed configuration and a fully open configuration. An actuator housing defining at least one rail portion is provided. A trigger member is provided. An outlet assembly defining an outlet opening is provided. An actuator assembly is formed by pivotably attaching the trigger member to the actuator housing, slidably supporting the outlet assembly relative to the actuator housing by the at least one rail portion, and engaging the trigger member with the outlet assembly such that application of deliberate manual force on the trigger member causes pivoting movement of the trigger member relative to the actuator housing and pivoting movement of the trigger member relative to the actuator housing causes linear movement of the outlet assembly relative to the actuator housing. The outlet assembly is engaged with the valve assembly such that linear movement of the outlet assembly alters the valve assembly from the closed configuration to the fully open configuration. Deliberate manual force is applied on the trigger member to open the valve assembly.
The present invention may also be embodied as a method of dispensing texture material onto a ceiling surface comprising the following steps. A container assembly comprising a valve assembly is provided. The valve assembly is operable in a closed configuration and a fully open configuration. An actuator housing defining at least one rail portion is provided. A trigger member is provided. An outlet assembly defining an outlet opening is provided. An actuator assembly is formed by pivotably attaching the trigger member to the actuator housing, slidably supporting the outlet assembly relative to the actuator housing by the at least one rail portion, and engaging the trigger member with the outlet assembly such that application of deliberate manual force on the trigger member causes pivoting movement of the trigger member relative to the actuator housing and pivoting movement of the trigger member relative to the actuator housing causes linear movement of the outlet assembly relative to the actuator housing. The outlet assembly is engaged with the valve assembly such that linear movement of the outlet assembly alters the valve assembly from the closed configuration to the fully open configuration. Deliberate manual force is applied on the trigger member to open the valve assembly.
The first example aerosol dispensing system 20 comprises a container assembly 30 and an actuator assembly 32. Contained within the first example aerosol dispensing system 20 are a texture material 34 and a propellant material 36. The container assembly 30 supports the actuator assembly 32 such that the actuator assembly 32 is operable to dispense the texture material 34 in a spray 38 to form the texture coating 22. Because the example target surface is a ceiling surface, the first example aerosol dispensing system 20 is configured to direct the spray 38 of texture material 34 upwardly when the example aerosol dispensing system 20 is in a generally vertical orientation as shown in
The propellant material 36 may be a compressed inert gas such as air or nitrogen that pressurizes the texture material 34. More commonly, however, the propellant material is formed by a material that exists in both liquid and gas forms within the container assembly 30. The portion of the propellant material 36 in gas state pressurizes the texture material 34 such that at least a portion of the texture material 34 is forced out of the aerosol assembly 20 when the valve assembly 44 is opened as described elsewhere herein. As the volume of texture material 34 within the container assembly 30 decreases, the portion of the propellant material 36 is liquid form gasifies to rebuild pressure within the container assembly 30.
The example container assembly 30 comprises a container 40, a cap assembly 42, a valve assembly 44, a valve stem 46, and a dip tube 48. The example actuator assembly 32 comprises an actuator housing 50, trigger member 52, outlet assembly 54, and lock member 56. The example outlet assembly 54 comprises an outlet member 60, a resilient member 62, and an adjustment member 64.
In general, the valve assembly 44 is operable in a normally closed configuration and an open configuration. In the closed configuration, fluid is substantially prevented from flowing out of the example aerosol dispensing system 20. In the open configuration, the propellant material 36 forces the texture material 34 out of the example aerosol dispensing system 20 through the outlet member 60 and the resilient member 62 in the spray 38.
More specifically, the cap assembly 42 is secured to the container 40 and supports the valve assembly 44 to define a substantially fluid-tight container chamber 30a. The texture material 34 and the propellant material 36 are stored within the container chamber 30a. The valve stem 46 extends from or forms a part of the valve assembly 44 such that displacing the valve stem 46 towards the valve assembly 44 places the valve assembly 44 in the open configuration. The valve stem 46 may be integrally formed with the outlet member 60 in another configuration of the present invention. The example actuator housing 50 is detachably attached to the container assembly 30. The outlet member 60 supports the resilient member 62 and the adjustment member 64 to form the outlet assembly 54.
The valve stem 46 and the actuator housing 50 support the outlet assembly 54 for movement relative to the container assembly 30 and the actuator housing 50 such that outlet assembly 54 moves along a container axis A between a first position as shown in
With the foregoing general discussion of the construction and operation of the first example aerosol dispensing system 20 in mind, the construction and operation of the first example aerosol dispensing system 20, and in particular the actuator assembly 32 thereof, will now be described in detail.
Referring initially to the actuator housing 50,
The skirt portion 70 is sized and dimensioned to be snugly received over a cap rim 42a defined by the cap assembly 42. With the skirt portion 70 extending over the cap rim 42a, the interference portion(s) 76 engage and are arranged on a first side of the cap rim 42a and the skirt rib(s) 78 engage and are arranged on a second side of the cap rim 42a to secure the actuator housing 50 in a desired configuration relative to the container assembly 30. The example actuator housing 50 is made of plastic or other rigid but resiliently deformable material that allows the interference portion(s) 76 to be pressed over the cap rim 42a to detachably attach the actuator housing 50 to the container assembly 30 as shown in
The example handle portion 72 is sized and dimensioned to be gripped by a typical adult human hand. The trigger member 52 is movably supported within the trigger opening 80 relative to the actuator housing 50 as will be described in further detail below. At least one, and typically two or three, of the fingers of a hand gripping the handle portion 72 will be in position to displace the trigger member 52 relative to the actuator housing 50 when that hand is gripping the handle portion 72.
The first and second rail portions 74 extend inwardly from the actuator housing 50 to support the outlet assembly 54 for movement between the first and second positions as will be described in further detail below.
The pivot portions 98 are sized and dimensioned to be received by the pivot openings 82 defined by the actuator housing 50. With the pivot portions 98 received by the pivot openings 82, the spring portion 90 of the trigger member 52 engages the actuator housing 50 to resiliently oppose rotation of the trigger member 52 about a trigger axis B from an unpressed position as depicted in
The ear portions 92 extend from the finger portion 96 towards the outlet assembly 54. As will be described in further detail below, the finger portions 96 engage the outlet member 60 to move the outlet member 60 from the first position to the second position when the trigger member 52 is moved from the unpressed position to the pressed position.
A feed passageway 130 extends through the outlet member 60 between a proximal opening 132 defined by the carriage portion 120 and a distal opening 134 defined by the adjustment portion 122. The feed passageway 130 further defines a proximal chamber portion 136 at the inlet opening 132 and a distal chamber portion 138 at the outlet opening 134. An internal passageway surface 140 of the outlet member 60 defines the feed passageway 130. The proximal chamber portion 136 of the feed passageway 130 is defined by an inlet surface 150, inlet shoulder 152, and an inlet edge 154 of the passageway surface 140.
The adjustment portion 122 of the outlet member 60 defines a threaded outer surface 160, one or more fingers 162, and a nipple 164. At least one finger slit 166 is formed in the example adjustment portion 122, and a mounting groove 168 is formed in the outlet member 60 around the nipple 164.
The example outlet member 60 further defines one or more carriage slots 170 and one or more carriage projections 172. The example carriage slots 170 are formed in opposite sides of the carriage portion 120 of the outlet member 60, and the example carriage projections 172 extend from opposite sides of the carriage portion 120 of the outlet member 60. As perhaps best shown in
Turning now to
To assemble the aerosol dispensing system 20, the outlet member 60, resilient member 62, and adjustment member 64 are initially combined to form the outlet assembly 54. In particular, the resilient member 62 is arranged such that one end thereof is received within the groove 168 in the distal chamber 138 and the nipple 164 is arranged within the outlet member 62. The adjustment member 64 is then displaced such that the threaded inner surface 180 thereof engages the threaded outer surface 160 formed on the adjustment portion 122 of the outlet member 60. Rotating the adjustment member 64 relative to the outlet member causes the threaded surfaces 180 and 160 to engage each other such that the outlet member 60 is displaced along the outlet axis D defined by the adjustment portion 122 of the outlet member 60. As shown by a comparison of
The actuator housing 50, trigger member 52, and outlet assembly 54 are then combined to form the actuator assembly 32. In particular, the trigger member 52 is initially arranged such that the spring portion 90 engages the actuator housing 50 adjacent to the trigger opening 80, the pivot portions 98 are arranged within the pivot openings 82, and the finger portion 96 is arranged within the trigger opening 80. At this point, the outlet assembly 54 is displaced such that the rail portions 74 of the actuator housing are received by the carriage slots 170 in the carriage portion 120 of the outlet member 60. Further displacement of the outlet assembly 54 causes the carriage projections 172 to enter the ear notches 94, the outlet opening 196 to be arranged adjacent to the outlet opening 84, and the handle portion 190 to extend through the adjustment opening 86.
If the optional lock member 56 is used, the lock member 56 is also arranged within the lock opening 88 such that the lock portion 192 is within the actuator housing 50 and the handle portion 190 is outside of the actuator housing 50. When rotated into a locked position as shown in
A typical texture material 34 forming at least a part of the texture coating 22 may comprise a base or carrier, a binder, a filler, and, optionally, one or more additives such as surfactants, biocides and thickeners. Examples of the base or carrier include water, solvent (oil-based texture material) such as xylene, toluene, acetone, methyl ethyl ketone, and combinations of water and water soluble solvents. Examples of binders include starch, polyvinyl alcohol and latex resins (water-based systems) and a wide variety of polymers such as ethylene vinyl acetate, thermoplastic acrylics, styrenated alkyds, etc. (solvent-based systems.). Examples of fillers include calcium carbonate, titanium dioxide, attapulgite clay, talc, magnesium aluminum silicate, etc.
The propellant material 36 may comprise a liquid phase propellant material, and the pressurized material will typically comprise a gas phase propellant material. The following propellant materials are appropriate for use as the propellant material forming the stored material 34 and the pressurized material 36: dimethyl ether, propane, butane, isobutene, difluoroethane, and tetrafluoroethane.
The following Tables A-1, A-2, and A-3 and Tables A-4 and A-5 attached hereto as Exhibit A contain example formulations of the texture material 34 that may be used to form part of the texture coating of the first example aerosol dispensing system 20.
To the example texture material described in Table A-1 is added propellant material 36 in the form of a propane/butane/isobutane blend. A first range of approximately 10-20% by weight of the propellant material is added to the example texture material of Table A-1, but the propellant material should in any event be within a second range of approximately 5-25% by weight of the propellant material.
To the example texture material described in Table A-2 is added propellant material in the form of DME. A first range of approximately 7-15% by weight of the propellant material is added to the example texture material of Table A-2, but the propellant material should in any event be within a second range of approximately 5-25% by weight of the propellant material.
To the example texture material described in Table A-3 is added propellant material in the form of DME. A first range of approximately 10-15% by weight of the propellant material is added to the example texture material of Table A-3, but the propellant material should in any event be within a second range of approximately 5-25% by weight of the propellant material.
With reference to Tables A-4 and A-5 in Exhibit A, those tables contain examples of texture material composition adapted to be combined with an aerosol and dispensed using an aerosol dispensing system in accordance with the principles of the present invention. Each value or range of values in Tables A-4 and A-5 represents the percentage of the overall weight of the example texture material composition formed by each material of the texture material composition for a specific example, a first example range, and a second example range. The composition described in Table A-5 is similar to that of Table A-4, but Table A-5 contains a number of additional materials that may optionally be added to the example texture material composition of Table A-4.
One example of a method of combining the materials set forth in Table A-4 is as follows. Materials A, B, C, and D are combined to form a first sub-composition. The first sub-composition is mixed until material D is dissolved (e.g., 30-40 minutes). Materials E and F are then added to the first sub-composition to form a second sub-composition. The second sub-composition is mixed until materials E and F are well-dispersed (e.g., at high speed for 15-20 minutes). Material G is then added to the second sub-composition to form a third sub-composition. The third sub-composition is mixed well (e.g., 10 minutes). Typically, the speed at which the third sub-composition is mixed is reduced relative to the speed at which the second sub-composition is mixed. Next, materials H, I, and J are added to the third sub-composition to form the example texture material composition of the present invention. The example texture material composition is agitated. Material K may be added as necessary to adjust (e.g., reduce) the viscosity of the example texture material composition.
The example texture material composition of the present invention may be combined with an aerosol propellant in any of the aerosol dispensing systems described herein to facilitate application of the example texture material composition to a surface to be textured.
From the foregoing, it should be apparent that the present invention may be embodied in forms other than those specifically discussed above. The scope of the present invention should thus be determined by the claims appended hereto and not the foregoing detailed description of examples of the invention.
This application (Attorney's Ref. No. P218003) claims benefit of U.S. Provisional Application Ser. No. 61/867,524 filed Aug. 19, 2013, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61867524 | Aug 2013 | US |