This disclosure relates to beamforming microphone arrays. More specifically, this disclosure relates to beamforming microphone array systems with support for interior design elements.
A traditional beamforming microphone array is configured for use with a professionally installed application, such as video conferencing in a conference room. Such microphone array typically has an electro-mechanical design that requires the array to be installed or set-up as a separate device with its own mounting system in addition to other elements (e.g., lighting fixtures, decorative items and motifs, etc.) in the room. For example, a ceiling-mounted beamforming microphone array may be installed as a separate component with a suspended or “drop” ceiling using suspended ceiling tiles in the conference room. In another example, the ceiling-mounted beamforming microphone array may be installed in addition to a lighting fixture in a conference room.
The traditional approach for installing a ceiling-mounted, a wall-mounted, or a table mounted beamforming microphone array results in the array being visible to people in the conference room. Once such approach is disclosed in U.S. Pat. No. 8,229,134 discussing a beamforming microphone array and a camera. However, it is not practical for a video or teleconference conference room since the color scheme, size, and geometric shape of the array might not blend well with the decor of the conference room. Also, the cost of installation of the array involves an additional cost of a ceiling-mount or a wall-mount system for the array.
This disclosure describes a beamforming microphone array integrated into a wall or ceiling tile as a single unit where the beamforming microphone array picks up audio input signals. The beamforming microphone array includes a plurality of microphones that picks up audio input signals. In addition, the wall or ceiling tile includes an outer surface on the front side of the tile where the outer surface is acoustically transparent. The beamforming microphone array is coupled to the tile as a single unit and is integrated into the back side of the tile. Additionally the beamforming microphone array picks up said audio input signals through the outer surface of the tile.
This disclosure further provides that the plurality of microphones are positioned at predetermined locations on the tile. In addition, the disclosure provides that the tile is configured to receive each of the plurality of microphones within one or more contours, corrugations, or depressions of the tile. Further, the disclosure provides that the tile is acoustically transparent. Additionally, the disclosure provides that the tile includes acoustic or damping material.
Other and further aspects and features of the disclosure will be evident from reading the following detailed description of the embodiments, which are intended to illustrate, not limit, the present disclosure.
To further aid in understanding the disclosure, the attached drawings help illustrate specific features of the disclosure and the following is a brief description of the attached drawings:
The disclosed embodiments are intended to describe aspects of the disclosure in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and changes may be made without departing from the scope of the disclosure. The following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined only by the included claims.
Furthermore, specific implementations shown and described are only examples and should not be construed as the only way to implement or partition the present disclosure into functional elements unless specified otherwise herein. It will be readily apparent to one of ordinary skill in the art that the various embodiments of the present disclosure may be practiced by numerous other partitioning solutions.
In the following description, elements, circuits, and functions may be shown in block diagram form in order not to obscure the present disclosure in unnecessary detail. Additionally, block definitions and partitioning of logic between various blocks is exemplary of a specific implementation. It will be readily apparent to one of ordinary skill in the art that the present disclosure may be practiced by numerous other partitioning solutions. Those of ordinary skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof. Some drawings may illustrate signals as a single signal for clarity of presentation and description. It will be understood by a person of ordinary skill in the art that the signal may represent a bus of signals, wherein the bus may have a variety of bit widths and the present disclosure may be implemented on any number of data signals including a single data signal.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a special purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, any conventional processor, controller, microcontroller, or state machine. A general purpose processor may be considered a special purpose processor while the general purpose processor is configured to execute instructions (e.g., software code) stored on a computer readable medium. A processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
In addition, the disclosed embodiments may be described in terms of a process that may be depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram. Although a process may describe operational acts as a sequential process, many of these acts can be performed in another sequence, in parallel, or substantially concurrently. In addition, the order of the acts may be rearranged.
Elements described herein may include multiple instances of the same element. These elements may be generically indicated by a numerical designator (e.g. 110) and specifically indicated by the numerical indicator followed by an alphabetic designator (e.g., 110A) or a numeric indicator preceded by a “dash” (e.g., 110-1). For ease of following the description, for the most part element number indicators begin with the number of the drawing on which the elements are introduced or most fully discussed. For example, where feasible elements in
It should be understood that any reference to an element herein using a designation such as “first,” “second,” and so forth does not limit the quantity or order of those elements, unless such limitation is explicitly stated. Rather, these designations may be used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second element does not mean that only two elements may be employed or that the first element must precede the second element in some manner. In addition, unless stated otherwise, a set of elements may comprise one or more elements.
Embodiments of the present disclosure involve a beamforming microphone array integrated with a wall or ceiling tile into a single unit that picks up audio input signals.
In various embodiments of the present disclosure, definitions of one or more terms that will be used in the document are provided below.
A “beamforming microphone” is used in the present disclosure in the context of its broadest definition. The beamforming microphone may refer to one or more omnidirectional microphones coupled together that are used with a digital signal processing algorithm to form a directional pickup pattern that could be different from the directional pickup pattern of any individual omnidirectional microphone in the array.
A “non-beamforming microphone” is used in the present disclosure in the context of its broadest definition. The non-beamforming microphone may refer to a microphone configured to pick up audio input signals over a broad frequency range received from multiple directions.
The numerous references in the disclosure to a beamforming microphone array are intended to cover any and/or all devices capable of performing respective operations in the applicable context, regardless of whether or not the same are specifically provided.
The disclosed embodiments may involve transfer of data, e.g., audio data, over the network 114. The network 114 may include, for example, one or more of the Internet, Wide Area Networks (WANs), Local Area Networks (LANs), analog or digital wired and wireless telephone networks (e.g., a PSTN, Integrated Services Digital Network (ISDN), a cellular network, and Digital Subscriber Line (xDSL)), radio, television, cable, satellite, and/or any other delivery or tunneling mechanism for carrying data. Network 114 may include multiple networks or sub-networks, each of which may include, for example, a wired or wireless data pathway. The network 114 may include a circuit-switched voice network, a packet-switched data network, or any other network able to carry electronic communications. For example, the network 114 may include networks based on the Internet protocol (IP) or asynchronous transfer mode (ATM), and may support voice using, for example, VoIP, Voice-over-ATM, or other comparable protocols used for voice data communications. Other embodiments may involve the network 114 including a cellular telephone network configured to enable exchange of text or multimedia messages.
The first environment 100 may also include a beamforming microphone array 116 (hereinafter referred to as array 116) interfacing between the first set of users 104 and the first communication device 110 over the network 114. The array 116 may include multiple microphones for converting ambient sounds (such as voices or other sounds) from various sound sources (such as the first set of users 104) at the first location 102 into audio input signals. In an embodiment, the array 116 may include a combination of beamforming microphones as previously defined (BFMs) and non-beamforming microphones (NBFMs). The BFMs may be configured to capture the audio input signals (BFM signals) within a first frequency range, and the NBMs (NBM signals) may be configured to capture the audio input signals within a second frequency range.
Another embodiment of the array 116 may include Acoustic Echo Cancellation (AEC). The AEC processing may occur in the same first device that includes the beamforming microphones. By way of example and not limitation, the AEC may be characterized by a processing time of about 128 ms. In addition, another embodiment of the array 116 includes beamforming and adaptive steering technology. Further, another embodiment of the array 116 may include adaptive acoustic processing, which may automatically adjusts to the room configuration for the best possible audio pickup. Additionally, another embodiment of the array 116 may include a configurable pickup pattern for the beamforming. Further, another embodiment of the array 116 may provide beamforming that includes adjustable noise cancellation. By way of example and not limitation, the noise cancellation may be adjustable within a range such as 6-15 dB, and the overall signal-to-noise ratio may be greater than 70 dB, for example. Moreover, embodiments of the array 116 may work with separate audio mixers. One embodiment of the array 116 may include a microphone array that includes 24 microphone elements. Another embodiment of the array 116 may include 1,024 microphone elements, such as arranged in a 32×32 pattern. One embodiment combines the array 116 with a ceiling tile while distributing the microphones so as to appear almost random. Such an array could be used to design a set of desired pickup patterns. As long as the designer knows the coordinates of the microphones, the spatial filters can be designed to create a desired “direction of look” for multiple beams. For example, a designer chooses the spacing between microphones to enable spatial sampling of a traveling acoustic wave. The closest spacing between microphones restricts the highest frequency that can be resolved by the array, and the largest spacing between microphones restricts the lowest frequency that can be resolved.
Embodiments of the array 116 can be used, for example, in board rooms, conference rooms, training centers, courtrooms, houses of worship, and for telepresence applications. Embodiments of the array 116 can include various electrical ports and connectors, including, for example, IEEE 802.3AF-2003 for power; CAT-6 cabling or higher for power; an expansion bus in/out port, such as RJ-45 cabling; Universal Serial Bus (USB); and RS232. Embodiments of the array 116 may operate over the full range of human hearing, for example, a frequency range with a lower range of 150 Hz or 200 Hz and an upper range of 16 kHz or 20 kHz, or a limited bandpass range therein. Embodiments of the array 116 may be configured and controlled using configuration and administration software, which may execute on a separate device or console interfaced with the array 116.
In some embodiments, the microphone array is designed to utilize a framework that holds the microphone elements in known locations and has a mounting mechanism that allows attachment of the ceiling tile as an outer shell, which might provide some acoustic damping of audio and which also allows the ceiling tile façade to be made with different textures and colors to suit the needs of an interior decorator. In some embodiments, a beamforming microphone array system supports interior design elements and includes the following: (1) a beamforming microphone array; (2) a beamforming algorithm that uses the beamforming microphone array; and (3) a mounting method.
Embodiments of the array 116 can further include audio acoustic characteristics that include: auto voice tracking, adjustable noise cancellation, mono and stereo modes, replaces traditional microphones with expanded pick-up range. Embodiments of the array 116 can include auto mixer parameters that include: Number of Open Microphones (NOM), first mic priority mode, last mic mode, maximum number of mics mode, ambient level, gate threshold adjust, off attenuation, hold time, and decay rate. Embodiments of the array 116 can include beamforming microphone array configurations that include: Echo cancellation on/off, noise cancellation on/off, Filtering (all-pass, low-pass, high-pass, notch, PEQ), ALC on/off, gain adjustment, mute on/off selection, and auto gate/manual gate selection.
The array 116 may transmit the captured audio input signals to the first communication device 110 for processing and transmitting the processed, captured audio input signals to the second communication device 112. In one embodiment, the first communication device 110 may be configured to perform augmented beamforming within an intended bandpass frequency window using a combination of the BFMs and one or more NBFMs. For this, the first communication device 110 may be configured to combine NBFM signals to the BFM signals to generate an audio signal that is sent to communication device 110, discussed later in greater detail, by applying one or more of various beamforming algorithms to the signals captured from the BFMs, such as, the delay and sum algorithm, the filter and sum algorithm, etc. known in the art, related art or developed later and then combining that beamformed signal with the non-beamformed signals from the NBFMs. The frequency range processed by the beamforming microphone array may be a combination of a first frequency range corresponding to the BFMs and a second frequency range corresponding to the NBFMs, discussed below. In another embodiment, the functionality of the communication device 110 may be incorporated into array 116.
The array 116 may be designed to perform better than a conventional beamforming microphone array by augmenting the beamforming microphones with non-beamforming microphones that may have built-in directionality, or that may have additional noise reduction processing to reduce the amount of ambient room noise captured by the array 116. In one embodiment, the first communication device 110 may configure the desired frequency range to the human hearing frequency range (i.e., 20 Hz to 20 kHz); however, one of ordinary skill in the art may predefine the frequency range based on an intended application. In some embodiments, the array 116 in association with the first communication device 110 may be additionally configured with adaptive steering technology known in the art, related art, or developed later for better signal gain in a specific direction towards an intended sound source, e.g., at least one of the first set of users 104.
The first communication device 110 may transmit one or more augmented beamforming signals within the frequency range to the second set of users 108 at the second location 106 via the second communication device 112 over the network 114. In some embodiments, the array 116 may be integrated with the first communication device 110 to form a communication system. Such system or the first communication device 110, which is configured to perform beamforming, may be implemented in hardware or a suitable combination of hardware and software, and may include one or more software systems operating on a digital signal processing platform. The “hardware” may include a combination of discrete components, an integrated circuit, an application-specific integrated circuit, a field programmable gate array, a digital signal processor, or other suitable hardware. The “software” may include one or more objects, agents, threads, lines of code, subroutines, separate software applications, two or more lines of code or other suitable software structures operating in one or more software applications or on one or more processors.
As shown in
In a second example (
The panel 214 may include at least one surface such as a front surface 220 oriented in the direction of an intended entity, e.g., an object, a person, etc., or any combination thereof. The front surface 220 may be substantially flat, though may include other surface configurations such contours, corrugations, depressions, extensions, grilles, and so on, based on intended applications. One skilled in the art will appreciate that the front surface can support a variety of covers, materials, and surfaces. Such surface configurations may provide visible textures that help mask imperfections in the relative flatness or color of the panel 214. The array 116 is in contact or coupled with the front surface 220.
The front surface 220 may be configured to aesthetically support, accommodate, embed, or facilitate a variety of permanent or replaceable lighting devices of different shapes and sizes. For example, (
In yet another example (
Each of the lighting devices such as the CFTs 222, hanging lamps 232, the recessed lamps 242, and the flush-mounted lamps 252 may be arranged in a linear pattern, however, other suitable patterns such as diagonal, random, zigzag, etc. may be implemented based on the intended application. Other examples of lighting devices may include, but not limited to, chandeliers, spotlights, and lighting chains. The lighting devices may be based on various lighting technologies such as halogen, LED, laser, etc. known in the art, related art, and developed later.
The lighting fixtures 210, 230, 240, 250 may be combined with the array 116 in a variety of ways. For example, the panel 214 may include a geometrical socket (not shown) having an appropriate dimension to substantially receive the array 116 configured as a standalone unit. The array 116 may be inserted into the geometrical socket from any side or surface of the panel 214 based on either the panel design or the geometrical socket design. In one instance, the array 116 may be inserted into the geometrical socket from an opposing side, i.e., the back side, (not shown) of the panel 214. Once inserted, the array 116 may have at least one surface including the BFMs 212 and the NBFMs being substantially coplanar with the front surface 220 of the panel 214. The array 116 may be appropriately assembled together with the panel 214 using various fasteners known in the art, related art, or developed later. In another example, the array 116 may be manufactured to be integrated with the lighting fixtures 210, 230, 240, 250 and form a single unit. The array 116 may be appropriately placed with the lighting devices to prevent “shadowing” or occlusion of audio pick-up by the BFM 212 and the NBFMs.
The panel 214 may be made of various materials or combinations of materials known in the art, related art, or developed later that are configured to bear the load of the intended number of lighting devices and the array 116 connected to the panel 214. The lighting fixtures 210, 230, 240, 250 or the panel 214 may be further configured with provisions to guide, support, embed, or connect electrical wires and cables to one or more power supplies to supply power to the lighting devices and the array 116. Such provisions are well known in the art and may be understood by a person having ordinary skill in the art; and hence, these provisions are not discussed in detail herein.
In a third example (
In the illustrated example (
The ceiling tile 264 may be combined with the array 116 in a variety of ways. In one embodiment, the ceiling tile 264 may include a geometrical socket (not shown) having an appropriate dimension to substantially receive the array 116, which integrates the tile and the array as a standalone unit. The array 116 may be introduced into the geometrical socket from any side of the ceiling tile 264 based on the geometrical socket design. In one instance, the array 116 may be introduced into the geometrical socket from an opposing side, i.e., the back side of the ceiling tile 264. The ceiling tile 264 may include a front side 268 (
The reverse side 270 of the ceiling tile 264 may be in contact with a back side of the array 116. The reverse side 270 of the ceiling tile 264 may include hooks 272-1, 272-2, 272-3, 272-4 (collectively, hooks 272) for securing the array 116 to the ceiling tile 264. The hooks 272 may protrude away from an intercepting edge of the back side of the array 116 to meet the edge of the reverse side 270 of the ceiling tile 264, thereby providing a means for securing the array 116 to the ceiling tile 264. In some embodiments, the hooks 272 may be configured to always curve inwardly towards the front side of the ceiling tile 264, unless moved manually or electromechanically in the otherwise direction, such that the inwardly curved hooks limit movement of the array 116 to within the ceiling tile 264. In other embodiments, the hooks 272 may be a combination of multiple locking devices or parts configured to secure the array 116 to the ceiling tile 264. Additionally, the array 116 may be appropriately assembled together with the ceiling tile 264 using various fasteners known in the art, related art, or developed later. The array 116 is in contact or coupled with the front side 268.
In some embodiments, the array 116 may be integrated with the ceiling tile 264 as a single unit. Such construction of the unit may be configured to prevent any damage to the ceiling tile 264 due to the load or weight of the array 116. In some other embodiments, the ceiling tile 264 may be configured to include, guide, support, or connect to various components such as electrical wires, switches, and so on. In further embodiments, ceiling tile 264 may be configured to accommodate multiple arrays. In further embodiments, the array 116 may be combined or integrated with any other tiles, such as wall tiles, in a manner discussed elsewhere in this disclosure.
The surface of the front side 268 of the ceiling tile 264 may be coplanar with the front surface of the array 116 having the microphones of BFM 212 arranged in a linear fashion (as shown in
The temporal delay in receiving audio signals using various non-linearly arranged microphones may be used to determine the direction in which a corresponding sound source is located. For example, a shipping beamformer (not shown) may be configured to include an array of twenty-four microphones in a beamforming microphone array, which may be distributed non-uniformly in a two-dimensional space. The twenty-four microphones may be selectively placed at known locations to design a set of desired audio pick-up patterns. Knowing the configuration of the microphones, such as the configuration shown in BFM 212, may allow for spatial filters being designed to create a desired “direction of look” for multiple audio beams from various sound sources.
Further, the surface of the front side 268 may be modified to include various contours, corrugations, depressions, extensions, color schemes, grilles, and designs. Such surface configurations of the front side 268 provide visible textures that help mask imperfections in the flatness or color of the ceiling tile 264.
In some embodiments, the BFMs 212, the NBFMs, or both may be embedded within contours or corrugations, depressions of the ceiling tile 264 or that of the panel 214 to disguise the array 116 as a standard ceiling tile or a standard panel respectively. In some other embodiments, the BFMs 212 may be implemented as micro electromechanical systems (MEMS) microphones. One skilled in the art will appreciate that the front surface can support a variety of covers, materials, and surfaces. The array 116 is in contact or coupled with the front side 268.
In a fourth example (
The multiple wall panels 294 may have a predetermined spacing 296 between them based on the intended installation or mounting of the devices. In some embodiments, the spacing 296 may be filled with various acoustic or vibration damping materials known in the art, related art, or developed later including mass-loaded vinyl polymers, clear vinyl polymers, K-Foam, and convoluted foam, and other suitable materials known in the art, related art, and developed later. These damping materials may be filled in the form of sprays, sheets, dust, shavings, including others known in the art, related art, or developed later. Such acoustic wall treatment using sound or vibration damping materials may reduce the amount of reverberation in the room, such as the first location 102 of
In one embodiment, the outer surface 284 may be an acoustically transparent wall covering which can be made of a variety of materials known in the art, related art, or developed later that are configured to provide no or minimal resistance to sound. In one embodiment, the array 116 and the speakers 292 may be concealed by the outer surface 284 such that the BFMs 212 and the speakers 292 may be in direct communication with the outer surface 284. One advantage of concealing the speakers may be to improve the room aesthetics.
The materials for the outer surface 284 may include materials that are acoustically transparent to the audio frequencies within the frequency range transmitted by the beamformer, but optically opaque so that room occupants, such as the first set of users 104 of
The combination of wall panels 294 and the outer surface 284 may provide opportunities for third party manufacturers to develop various interior design accessories such as artwork printed on acoustically transparent material with a hidden array 116. Further, since the array 116 may be configured for being combined or integrated with various room elements such as lighting fixtures 210, 230, 240, 250, ceiling tiles 264, and wall panels 294, a separate cost of installing the array 116 in addition to the room elements may be significantly reduced, or completely eliminated. Additionally, the array 116 may blend in with the room decor, thereby being substantially invisible to the naked eye.
The array 302 may be configured to pick up and convert the received sounds into audio input signals within the operating frequency range of the array 302. Beamforming may be used to point one or more beams of the array 302 towards a particular sound source to reduce interference and improve the quality of the received or picked up audio input signals. The array 116 may optionally include a user interface having various elements (e.g., joystick, button pad, group of keyboard arrow keys, a digitizer screen, a touchscreen, and/or similar or equivalent controls) configured to control the operation of the array 116 based on a user input. In some embodiments, the user interface may include buttons 304-1 and 304-2 (collectively, buttons 304), which upon being activated manually or wirelessly may adjust the operation of the BFMs 302 and the NBFMs. For example, the buttons 304-1 and 304-2 may be pressed manually to mute the BFMs 302 and the NBFMs, respectively. The elements such as the buttons 304 may be represented in different shapes or sizes and may be placed at an accessible place on the array 116. For example, as shown, the buttons 304 may be circular in shape and positioned at opposite ends of the linear array 116 on the first side 300.
Some embodiments of the user interface may include different numeric indicators, alphanumeric indicators, or non-alphanumeric indicators, such as different colors, different color luminance, different patterns, different textures, different graphical objects, etc. to indicate different aspects of the array 116. In one embodiment, the buttons 304-1 and 304-2 may be colored red to indicate that the respective BFMs 302 and the NBFMs are muted.
Further, the first communication device 110 may be updated with appropriate firmware to configure the multiple arrays connected to each other or each of the arrays being separately connected to the first communication device 110. The USB input support port 406 may be configured to receive audio signals from any compatible device using a suitable USB cable.
The array 116 may be powered through a standard Power over Ethernet (POE) switch or through an external POE power supply. An appropriate AC cord may be used to connect the POE power supply to the AC power. The POE cable may be plugged into the LAN+DC connection on the power supply and connected to the POE connector 408 on the array 116. After the POE cables and the E-bus(s) are plugged to the array 116, they may be secured under the cable retention clips 410.
The device selector 412 may be configured to interface a communicating array, such as the array 116, to the first communication device 110. For example, the device selector 412 may assign a unique identity (ID) to each of the communicating arrays, such that the ID may be used by the first communication device 110 to interact with or control the corresponding array. The device selector 412 may be modeled in various formats. Examples of these formats include, but are not limited to, an interactive user interface, a rotary switch, etc. In some embodiments, each assigned ID may be represented as any of the indicators such as those mentioned above for communicating to the first communication device or for displaying at the arrays. For example, each ID may be represented as hexadecimal numbers ranging from ‘0’ to ‘F.’
While the present disclosure has been described herein with respect to certain illustrated and described embodiments, those of ordinary skill in the art will recognize and appreciate that the present invention is not so limited. Rather, many additions, deletions, and modifications to the illustrated and described embodiments may be made without departing from the scope of the invention as hereinafter claimed along with their legal equivalents. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventor. The disclosure of the present invention is exemplary only, with the true scope of the present invention being determined by the included claims.
This is a continuation and claims the benefit of U.S. patent application Ser. No. 16/872,557, entitled “Ceiling Tile Microphone System,” filed May 12, 2020, which is a continuation and claims the benefit of U.S. patent application Ser. No. 15/218,297, entitled “Ceiling Tile Microphone,” filed Jul. 25, 2016, now U.S. Pat. No. 10,728,653, which is a continuation and claims the benefit of U.S. patent application Ser. No. 14/475,849, entitled “Integrated Beamforming Microphone Array and Ceiling or Wall Tile,” filed Sep. 3, 2014, now U.S. Pat. No. 9,813,806, which is a continuation and claims the benefit of U.S. patent application Ser. No. 14/276,438, entitled “Augmentation of a Beamforming Microphone Array With Non-Beamforming Microphones,” filed May 13, 2014, now U.S. Pat. No. 9,294,839, which is a continuation and claims the benefit of U.S. patent application Ser. No. 14/191,511, entitled “Augmentation of a Beamforming Microphone Array With Non-Beamforming Microphones With Additional Support for Interior Design Elements,” filed Feb. 27, 2014, now U.S. abandoned, which is a non-provisional of and claims priority to (1) U.S. Prov. Patent Appl. No. 61/771,751, entitled “Augmentation of a Beamforming Microphone Array With Non-Beamforming Microphones,” filed Mar. 1, 2013 and (2) U.S. Prov. Patent Appl. No. 61/828,524, entitled “Beamforming Microphone Array System With Support for Interior Design Elements,” filed May 29, 2013. The entire disclosures of each of the foregoing patents and patent applications are incorporated by reference herein. Other related patents and patent applications include the following: U.S. patent application Ser. No. 15/062,064, entitled “Band-Limited Beamforming Microphone Array,” filed Mar. 5, 2016, now U.S. Pat. No. 10,397,697, which is also a continuation and claims the benefit of U.S. patent application Ser. No. 14/276,438; U.S. patent application Ser. No. 15/536,456, entitled “Band-Limited Beamforming Microphone Array With Acoustic Echo Cancellation,” filed Aug. 9, 2019, now U.S. Pat. No. 11,240,598, which is a continuation and claims the benefit of U.S. patent application Ser. No. 15/062,064; U.S. patent application Ser. No. 15/864,889, entitled “Band-Limited Beamforming Microphone Array With Acoustic Echo Cancellation,” filed Jan. 8, 2018, now abandoned, which is also a continuation and claims the benefit of U.S. patent application Ser. No. 15/218,297; U.S. patent application Ser. No. 15/929,703, entitled “Band-Limited Beamforming Microphone Array With Acoustic Echo Cancellation,” filed May 18, 2020, now U.S. Pat. No. 11,240,597, which is also a continuation and claims the benefit of U.S. patent application Ser. No. 15/218,297; U.S. patent application Ser. No. 17/110,898, entitled “Ceiling Tile Microphone,” filed Dec. 3, 2020, now U.S. Pat. No. 11,303,996, which is also a continuation and claims the benefit of U.S. patent application Ser. No. 16/872,557; and U.S. patent application Ser. No. 17/111,759, entitled “Ceiling Tile Microphone,” filed Dec. 4, 2020, now U.S. Pat. No. 11,297,420, which is also a continuation and claims the benefit of U.S. patent application Ser. No. 16/872,557.
Number | Name | Date | Kind |
---|---|---|---|
4330691 | Gordon | May 1982 | A |
4365449 | Liautaud | Dec 1982 | A |
5008574 | Kitahata | Apr 1991 | A |
6332029 | Azima et al. | Dec 2001 | B1 |
6741720 | Myatt | May 2004 | B1 |
6944312 | Mason et al. | Sep 2005 | B2 |
8061359 | Emanuel | Nov 2011 | B2 |
8229134 | Duraiswami et al. | Jul 2012 | B2 |
8259959 | Marton et al. | Sep 2012 | B2 |
8286749 | Stewart, Jr. et al. | Oct 2012 | B2 |
8297402 | Stewart et al. | Oct 2012 | B2 |
8403107 | Stewart, Jr. et al. | Mar 2013 | B2 |
8472640 | Marton | Jun 2013 | B2 |
8479871 | Stewart et al. | Jul 2013 | B2 |
8515109 | Dittberner et al. | Aug 2013 | B2 |
8631897 | Stewart, Jr. et al. | Jan 2014 | B2 |
8672087 | Stewart, Jr. et al. | Mar 2014 | B2 |
9565493 | Abraham et al. | Feb 2017 | B2 |
9813806 | Graham et al. | Nov 2017 | B2 |
9826211 | Sawa et al. | Nov 2017 | B2 |
10397697 | Lambert et al. | Aug 2019 | B2 |
10728653 | Graham et al. | Jul 2020 | B2 |
11240597 | Graham et al. | Feb 2022 | B1 |
11240598 | Lambert et al. | Feb 2022 | B2 |
11297420 | Graham et al. | Apr 2022 | B1 |
11303996 | Graham et al. | Apr 2022 | B1 |
20020159603 | Hirai et al. | Oct 2002 | A1 |
20030107478 | Hendricks et al. | Jun 2003 | A1 |
20030118200 | Beaucoup et al. | Jun 2003 | A1 |
20030185404 | Milsap | Oct 2003 | A1 |
20060088173 | Rodman et al. | Apr 2006 | A1 |
20080168283 | Penning | Jul 2008 | A1 |
20080253589 | Trahms | Oct 2008 | A1 |
20080260175 | Elko | Oct 2008 | A1 |
20090147967 | Ishibashi et al. | Jun 2009 | A1 |
20090173030 | Gulbrandsen | Jul 2009 | A1 |
20090173570 | Levit et al. | Jul 2009 | A1 |
20100119097 | Ohtsuka | May 2010 | A1 |
20100215189 | Marton | Aug 2010 | A1 |
20110007921 | Stewart, Jr. et al. | Jan 2011 | A1 |
20110096631 | Kondo et al. | Apr 2011 | A1 |
20110268287 | Ishibashi | Nov 2011 | A1 |
20110311085 | Stewart, Jr. et al. | Dec 2011 | A1 |
20120002835 | Stewart, Jr. et al. | Jan 2012 | A1 |
20120076316 | Zhu et al. | Mar 2012 | A1 |
20120080260 | Stewart, Jr. et al. | Apr 2012 | A1 |
20120155688 | Wilson | Jun 2012 | A1 |
20120169826 | Jeong et al. | Jul 2012 | A1 |
20120224709 | Keddem et al. | Sep 2012 | A1 |
20120327115 | Chhetri et al. | Dec 2012 | A1 |
20130004013 | Stewart, Jr. et al. | Jan 2013 | A1 |
20130015014 | Stewart et al. | Jan 2013 | A1 |
20130016847 | Steiner | Jan 2013 | A1 |
20130029684 | Kawaguchi et al. | Jan 2013 | A1 |
20130147835 | Lee et al. | Jun 2013 | A1 |
20130206501 | Yu et al. | Aug 2013 | A1 |
20130251181 | Stewart, Jr. et al. | Sep 2013 | A1 |
20130264144 | Hudson et al. | Oct 2013 | A1 |
20130336516 | Stewart et al. | Dec 2013 | A1 |
20130343549 | Vemireddy et al. | Dec 2013 | A1 |
20140037097 | LaBosco | Feb 2014 | A1 |
20140098964 | Rosea et al. | Apr 2014 | A1 |
20140233778 | Hardiman et al. | Aug 2014 | A1 |
20140265774 | Stewart, Jr. et al. | Sep 2014 | A1 |
20140286518 | Stewart, Jr. et al. | Sep 2014 | A1 |
20140301586 | Stewart, Jr. et al. | Oct 2014 | A1 |
20140341392 | Lambert et al. | Nov 2014 | A1 |
20140357177 | Stewart, Jr. et al. | Dec 2014 | A1 |
20150078582 | Graham et al. | Mar 2015 | A1 |
20160302002 | Lambert et al. | Oct 2016 | A1 |
20170134850 | Graham et al. | May 2017 | A1 |
20180160224 | Graham et al. | Jun 2018 | A1 |
20190371353 | Lambert et al. | Dec 2019 | A1 |
20220353609 | Graham et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
2838856 | Dec 2012 | CA |
2846323 | Sep 2014 | CA |
102821336 | Dec 2012 | CN |
102833664 | Dec 2012 | CN |
104080289 | Oct 2014 | CN |
102821336 | Jan 2015 | CN |
2721837 | Apr 2014 | EP |
2778310 | Sep 2014 | EP |
2007274131 | Oct 2007 | JP |
100901464 | Jun 2009 | KR |
9911184 | Mar 1999 | WO |
2011104501 | Sep 2011 | WO |
2012174159 | Dec 2012 | WO |
Entry |
---|
Advanced Network Devices, “IP Speaker—IPSCM”, Feb. 2011, 2. |
Armstrong, “Excerpts from Armstrong, 2011 2012 Ceiling Wall Systems Catalog”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1019, As early as 2012, 162. |
Audix Microphones, “Audix Introduces Innovative Ceiling Mies”, Jun. 2011, 6. |
Benesty, J., et al., “Microphone Array Signal Processing,” pp. 1-7 & 39-65 Springer (2010). |
Brandstein, et al., “Microphone Arrays: Signal Processing Techniques and Applications”, Digital Signal Processing, Springer-Verlag Berlin Heidelberg, 2001, pp. 1-401, 2001, pp. 1-401. |
ClearOne, Inc., “Beamforming Microphone Array”, Mar. 2012, 6. |
ClearOne, Inc., “Ceiling Microphone Array Installation Manual”, Jan. 9, 2012, 20. |
CTG Audio, “Ceiling Microphone CTG CM-01”, CTG Ceiling Microphone CM-01 data sheet, Jun. 5, 2008, 2. |
CTG Audio, “CTG FS-400 and RS-800 with “Beamforming” Technology Datasheet”, CTG FS-400 and RS-800 with “Beamforming” Technology Datasheet, As early as 2009, 2. |
CTG Audio, “CTG User Manual for the FS- 400/800 Beamforming Mixers”, CTG User Manual for the FS- 400/800 Beamforming Mixers, Nov. 21, 2008, 26. |
CTG Audio, “Installation Manual”, Nov. 21, 2008, 25. |
DCT 1:17-cv-03078 Doc. No. 0279, “Memorandum Opinion and Order”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 0279, Mar. 16, 2018, 50. |
DCT 1:17-cv-03078 Doc. No. 0295, “Motion by Counter Claimant ClearOne Inc. for Preliminary Injunction”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 0295, Apr. 17, 2018, 31. |
DCT 1:17-cv-03078 Doc. No. 0307, “Shure Incorporated's Initial Non-Infringement, Unenforceability, and Invalidity Contentions related to U.S. Pat. No. 9,813,806 Pursuant to Local Patent Rule 2.3”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 0307, Apr. 23, 2018, 116. |
DCT 1:17-cv-03078 Doc. No. 0310, “ClearOne, Inc.'s Response To Shure Incorporated's Initial Invalidity Contentions Related To U.S. Pat. No. 9,813,806 ”, May 9, 2018, 9. |
DCT 1:17-cv-03078 Doc. No. 0350, “Shure Incorporated's Non-Infringement, Unenforceability, and Invalidity Contentions Related To U.S. Pat. No. 9,813,806 For Purposes of the Preliminary Injunction”, Sep. 10, 2018, 37. |
DCT 1:17-cv-03078 Doc. No. 0350-1, “Shure Contentions—Ex. A”, Sep. 10, 2018, 12. |
DCT 1:17-cv-03078 Doc. No. 0350-2, “Shure Contentions—Ex. B”, Sep. 10, 2018, 73. |
DCT 1:17-cv-03078 Doc. No. 0372, “Declaration of Dan Schonfeld”, Sep. 25, 2018, 35. |
DCT 1:17-cv-03078 Doc. No. 0372-1, “Declaration of Dan Schonfeld—Ex. A”, Sep. 25, 2018, 95. |
DCT 1:17-cv-03078 Doc. No. 0372-2, “Declaration of Dan Schonfeld—Ex. B”, Sep. 25, 2018, 6. |
DCT 1:17-cv-03078 Doc. No. 0372-3, “Declaration of Dan Schonfeld—Ex. C”, Sep. 25, 2018, 7. |
DCT 1:17-cv-03078 Doc. No. 0372-4, “Declaration of Dan Schonfeld—Ex. D”, Sep. 25, 2018, 52. |
DCT 1:17-cv-03078 Doc. No. 0393, “Shure Incorporated'S Amended Contentions for Purposes of ClearOne's Motion for Preliminary Injunction Related to U.S. Pat. No. 9,813,806”, Oct. 10, 2018, 22. |
DCT 1:17-CV-03078 Doc. No. 0393-1, “Shure's Amended Contentions for Purposes of ClearOne's Motion for Preliminary Injunction Related To U.S. Pat. No. 9,813,806—Ex. 1”, Oct. 10, 2018, 47. |
DCT 1:17-cv-03078 Doc. No. 0399, “Shure's Amended Final Contentions for Purposes of Clearone's Motion for Preliminary Injunction Related to U.S. Pat. No. 9,813,806”, Oct. 11, 2018, 22. |
DCT 1:17-cv-03078 Doc. No. 0399-1, “Shure's Amended Final Contentions for Purposes of ClearOne's Motion for Preliminary Injunction Related to U.S. Pat. No. 9,813,806—Ex. 1”, Oct. 11, 2018, 47. |
DCT 1:17-CV-03078 Doc. No. 0402, “Shure's Memo in Opposition to Clearone's Motion for Prelim. Injunction ('806 Patent)”, Oct. 24, 2018, 50. |
DCT 1:17-cv-03078 Doc. No. 0403, “Declaration of Brian Donahoe”, Oct. 24, 2018, 5. |
DCT 1:17-cv-03078 Doc. No. 0403-1, “Declaration of Brian Donahoe—Ex. A”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0403-2, “Declaration of Brian Donahoe—Ex. B”, Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0403-3, “Declaration of Brian Donahoe—Ex. C”, Oct. 24, 2018, 8. |
DCT 1:17-cv-03078 Doc. No. 0403-4, “Declaration of Brian Donahoe—Ex. D”, Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0403-5, “Declaration of Brian Donahoe—Ex. E”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0403-6, “Declaration of Brian Donahoe—Ex. F”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0403-7, “Declaration of Brian Donahoe—Ex. G”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0403-8, “Declaration of Brian Donahoe—Ex. H”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0403-9, “Declaration of Brian Donahoe—Ex. I”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0404, “Declaration of Bruce Marlin”, Oct. 24, 2018, 6. |
DCT 1:17-cv-03078 Doc. No. 0404-1, “Declaration of Bruce Marlin—Ex. A”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0404-2, “Declaration of Bruce Marlin—Ex. B”, Oct. 24, 2018, 6. |
DCT 1:17-cv-03078 Doc. No. 0404-3, “Declaration of Bruce Marlin—Ex. C”,Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0404-4, “Declaration of Bruce Marlin—Ex. D”, Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0405-00, “Declaration of Dave Newman”, Oct. 24, 2018, 7. |
DCT 1:17-cv-03078 Doc. No. 0405-01, “Declaration of Dave Newman—Ex. A”, Oct. 24, 2018, 5. |
DCT 1:17-cv-03078 Doc. No. 0405-02, “Declaration of Dave Newman—Ex. B”, Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0405-03, “Declaration of Dave Newman—Ex. C”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0405-04, “Declaration of Dave Newman—Ex. D”, Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0405-05, “Declaration of Dave Newman—Ex. E”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0405-06, “Declaration of Dave Newman—Ex. F”, Oct. 24, 2018, 10. |
DCT 1:17-cv-03078 Doc. No. 0405-07, “Declaration of Dave Newman—Ex. G”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0405-08, “Declaration of Dave Newman—Ex. H”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0405-09, “Declaration of Dave Newman—Ex. I”, Oct. 24, 2018, 28. |
DCT 1:17-cv-03078 Doc. No. 0405-10, “Declaration of Dave Newman—Ex. J”, Oct. 24, 2018, 10. |
DCT 1:17-cv-03078 Doc. No. 0406-0, “Declaration of Dr. Kenneth Roy”, Oct. 24, 2018, 53. |
DCT 1:17-cv-03078 Doc. No. 0406-1, “Declaration of Dr. Kenneth Roy—Ex. A”, Oct. 24, 2018, 16. |
DCT 1:17-cv-03078 Doc. No. 0406-2, “Declaration of Dr. Kenneth Roy—Ex. B”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0407-0, “Declaration of Dr. Wilfrid Leblanc”, Oct. 24, 2018, 25. |
DCT 1:17-cv-03078 Doc. No. 0407-1, “Declaration of Dr. Wilfrid Leblanc—Ex. A”, Oct. 24, 2018, 14. |
DCT 1:17-cv-03078 Doc. No. 0407-2, “Declaration of Dr. Wilfrid Leblanc—Ex. B”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0408-0, “Declaration of Nicholas P. Godici”, Oct. 24, 2018, 36. |
DCT 1:17-cv-03078 Doc. No. 0408-1, “Declaration of Nicholas P. Godici—Ex. A”, Oct. 24, 2018, 4. |
DCT 1:17-cv-03078 Doc. No. 0408-2, “Declaration of Nicholas P. Godici—Ex. B”, Oct. 24, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0408-3, “Declaration of Nicholas P. Godici—Ex. C”, Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0408-4 (part 1), “Declaration of Nicholas P. Godici—Ex. D”, Oct. 24, 2018, 205. |
DCT 1:17-cv-03078 Doc. No. 0408-4 (part 2), “Declaration of Nicholas P. Godici—Ex. D”, Oct. 24, 2018, 205. |
DCT 1:17-cv-03078 Doc. No. 0410 “Declaration of Chad Wiggins for the '806 Preliminary Injunction”, Oct. 24, 2018, 11. |
DCT 1:17-cv-03078 Doc. No. 0411, “Declaration of Tanvi Patel ISO Shure's Reply to ClearOne's Motion for Preliminary Injunction”, Oct. 24, 2018, 12. |
DCT 1:17-cv-03078 Doc. No. 0412-0, “Patel” , Oct. 24, 2018, 147. |
DCT 1:17-cv-03078 Doc. No. 0412-1, “Patel—Ex. 9” , Oct. 24, 2018, 122. |
DCT 1:17-cv-03078 Doc. No. 0412-2, “Patel—Ex. 21”, Oct. 24, 2018, 201. |
DCT 1:17-cv-03078 Doc. No. 0412-3 (part 1), “Patel—Ex. 38”, Oct. 24, 2018, 81. |
DCT 1:17-cv-03078 Doc. No. 0412-3 (part 2), “Patel—Ex. 38”, Oct. 24, 2018, 81. |
DCT 1:17-cv-03078 Doc. No. 0412-4, “Patel—Ex. 60” , Oct. 24, 2018, 63. |
DCT 1:17-cv-03078 Doc. No. 0412-5, “Patel—Ex. 86”, Oct. 24, 2018, 51. |
DCT 1:17-cv-03078 Doc. No. 0419, “Joint Claim Construction Chart” , Oct. 24, 2018, 2. |
DCT 1:17-cv-03078 Doc. No. 0419-1, “Joint Claim Construction Chart—Ex. A” , Oct. 24, 2018, 1. |
DCT 1:17-cv-03078 Doc. No. 0440, “ClearOne's Reply ISO Its Motion for Preliminary Injunction”, Nov. 7, 2018, 29. |
DCT 1:17-cv-03078 Doc. No. 0441-0, “Giza Declaration ISO ClearOne's Reply ISO Its Motion for Preliminary Injunction”, Nov. 7, 2018, 3. |
DCT 1:17-cv-03078 Doc. No. 0441-1, “Giza Declaration ISO ClearOne's Reply ISO Its Motion for Preliminary Ex. 133”, Nov. 7, 2018, 133—Injunction. |
DCT 1:17-cv-03078 Doc. No. 0509-0, “Declaration of Dr. Wildrid Leblanc, Ph. D.”, May 7, 2019, 30. |
DCT 1:17-cv-03078 Doc. No. 0509-1, “Declaration of Dr. Wildrid Leblanc, Ph. D.—Ex. 1”, May 7, 2019, 5. |
DCT 1:17-cv-03078 Doc. No. 0509-2, “Declaration of Dr. Wildrid Leblanc, Ph. D.—Ex. 2” , May 7, 2019, 4. |
DCT 1:17-cv-03078 Doc. No. 0509-3, “Declaration of Dr. Wildrid Leblanc, Ph. D.—Ex. 3”, May 7, 2019, 33. |
DCT 1:17-cv-03078 Doc. No. 0520, “ClearOne's Responsive Claim Construction Brief Pursuant to Local Patent Rule 4.2”, Jun. 4, 2019, 42 . |
DCT 1:17-cv-03078 Doc. No. 0521-0, “Declaration of Dan Schonfeld ISO ClearOne's Claim Construction Brief”, Jun. 4, 2019, 24. |
DCT 1:17-cv-03078 Doc. No. 0521-1, “Declaration of Dan Schonfeld ISO ClearOne's Claim Construction Brief—Ex. A”, Jun. 4, 2019, 97. |
DCT 1:17-cv-03078 Doc. No. 0521-2, “Declaration of Dan Schonfeld ISO ClearOne's Claim Construction Brief—Ex. B”, Jun. 4, 2019, 7. |
DCT 1:17-cv-03078 Doc. No. 0523-0, “Declaration of Rayburn Iso ClearOne's Responsive Claim Construction Brief”, Jun. 4, 2019, 5. |
DCT 1:17-cv-03078 Doc. No. 0523-1, “Declaration of Rayburn ISO ClearOne's Responsive Claim Construction Brief—Ex. C”, Jun. 4, 2019, 399. |
DCT 1:17-cv-03078 Doc. No. 0535, “Shure's Claim Construction Reply Brief”, Jun. 25, 2019, 20. |
DCT 1:17-cv-03078 Doc. No. 0535-1, “Shure's Claim Construction Reply Brief—Ex. D”, Jun. 25, 2019, 109. |
DCT 1:17-cv-03078 Doc. No. 0536, “Joint Claim Construction Chart”, Jul. 2, 2019, 4. |
DCT 1:17-cv-03078 Doc. No. 0536-1, “Joint Claim Construction Chart—Ex. A”, Jul. 2, 2019, 3. |
DCT 1:17-cv-03078 Doc. No. 0551, “Memorandum Opinion and Order for Preliminary Injunction”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 0551, Aug. 5, 2019, 65. |
DCT 1:17-cv-03078 Doc. No. 0613, “Memorandum Opinion and Order on Claim Construction”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 613, Aug. 25, 2019, 20. |
DCT 1:17-cv-03078 Doc. No. 0617-0, “Jt. Motion for Proposed Redactions of the Court's Preliminary Injunction ('806 Order Patent)”, Aug. 26, 2019, 5. |
DCT 1:17-cv-03078 Doc. No. 0617-1, “Jt. Motion for Proposed Redactions of the Court's Preliminary Injunction ('806 Order Patent)—Ex. 1”, Aug. 26, 2019, 66. |
DCT 1:17-cv-03078 Doc. No. 0637, “Memo ISO Shure's Motion for Leave to Amend Final Invalidity and Non-Infringement Contentions”, Sep. 6, 2019, 11. |
DCT 1:17-cv-03078 Doc. No. 0638, “Shure's Suppl. Final Invalidity and Non-Infringement Contentions as to the '186 Pat. and the Final Invalidity Contentions as to the '806 Pat.” , Sep. 6, 2019, 22. |
DCT 1:17-cv-03078 Doc. No. 0651-0, “Jt. Motion and Stipulation Regarding Shure's Pending Motion for Leave to Amend Final Invalidity and Non-Infringement Contentions”, Sep. 16, 2019, 3. |
DCT 1:17-cv-03078 Doc. No. 0651-1, “Jt. Motion and Stipulation Regarding Shure's Pending Motion for Leave to Amend Final Invalidity and Non-Infringement Contentions—Ex. 1” , Sep. 16, 2019, 22. |
DCT 1:17-cv-03078 Doc. No. 0695, “Memorandum in support of Shure Incorporated's Motion to Supplement Final Invalidity Contentions as to the '186 Patent”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 695, Dec. 30, 2019, 116. |
DCT 1:17-cv-03078 Doc. No. 0702, “ClearOne's Opposition to Shure's Motion to Supplement Final Invalidity Contentions As to the '186 Patent”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 702, Jan. 13, 2020, 142. |
DCT 1:17-cv-03078 Doc. No. 0848, “Shure's Motion for Summary Judgment on Invalidity”, Jul. 9, 2020, 3. |
DCT 1:17-cv-03078 Doc. No. 0849, “Shure Incorporated's Memorandum of Law in Support of Its Motion for Summary Judgment on Invalidity”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 849, Jul. 9, 2020, 50. |
DCT 1:17-cv-03078 Doc. No. 0850, “Shure's Statement of Uncontested Material Facts”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 850, Jul. 9, 2020, 22. |
DCT 1:17-cv-03078 Doc. No. 0851-0, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment”, Jul. 9, 2020, 11. |
DCT 1:17-cv-03078 Doc. No. 0851-1, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment—Ex. 1”, Jul. 9, 2020, 22. |
DCT 1:17-cv-03078 Doc. No. 0851-2, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment —Ex. 2”, Jul. 9, 2020, 2. |
DCT 1:17-cv-03078 Doc. No. 0851-3, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment—Ex. 3”, Jul. 9, 2020, 75. |
DCT 1:17-cv-03078 Doc. No. 0851-4, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment—Ex. 4”, Jul. 9, 2020, 1. |
DCT 1:17-cv-03078 Doc. No. 0851-5, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment —Ex. 5”, Jul. 9, 2020, 1. |
DCT 1:17-cv-03078 Doc. No. 0851-6, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment—Ex. 6”, Jul. 9, 2020, 58. |
DCT 1:17-cv-03078 Doc. No. 0851-7, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment—Ex. 7”, Jul. 9, 2020, 87. |
DCT 1:17-cv-03078 Doc. No. 0851-8, “Declaration of Bradley Rademaker ISO Shure's Motions for Summary Judgment Ex. 8”, Jul. 9, 2020, 70. |
DCT 1:17-cv-03078 Doc. No. 0852-05, “ClearOne's Amended Final Patent Enforceability and Validity Contentions for the Graham Patent”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 852-05, Jul. 9, 2020, 74. |
DCT 1:17-cv-03078 Doc. No. 0852-18, “Larry S. Nixon Expert Report”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 852-18, Jul. 9, 2020, 143. |
DCT 1:17-cv-03078 Doc. No. 0852-20, “Deposition Transcript of Larry Nixon”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 852-20, Jul. 9, 2020, 84. |
DCT 1:17-cv-03078 Doc. No. 0880, “Declaration of Dan Schonfeld ISO ClearOne's Motion for Summary Judgement”, Jul. 9, 2020, 167. |
DCT 1:17-cv-03078 Doc. No. 0888-0, “ClearOne's Cross Motion for Summary Judgment of U.S. Pat. Nos. 9,635,186 & 9,813,806”, Aug. 12, 2020, 5. |
DCT 1:17-cv-03078 Doc. No. 0888-1, “[Proposed] Order Granting ClearOne's Cross Motion for Summary Judgement of Validity and Enforceability of U.S. Pat. Nos. 9,635,186 & 9,813,806”, Aug. 12, 2020, 1. |
DCT 1:17-cv-03078 Doc. No. 0896, “ClearOne's Statement of Undisputed Material Facts”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 896, Aug. 12, 2020, 48. |
DCT 1:17-cv-03078 Doc. No. 0897, “ClearOne's Response to Shure's Statement of Uncontested Material Facts”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 897, Aug. 12, 2020, 27. |
DCT 1:17-cv-03078 Doc. No. 0898, “ClearOne's Opposition to Shure's Motion for Summary Judgment on Invalidity and Memorandum in Support of Its Cross Motion for Summary Judgment of Validity and Enforceability of U.S. Pat. No. 9,635,186 and U.S. Pat. No. 9,813,806”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 898, Aug. 12, 2020, 93. |
DCT 1:17-cv-03078 Doc. No. 0899, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment”, Aug. 12, 2020, 13. |
DCT 1:17-cv-03078 Doc. No. 0899-01, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 238” , Aug. 12, 2020, 86. |
DCT 1:17-cv-03078 Doc. No. 0899-08, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 253”, Aug. 12, 2020, 26. |
DCT 1:17-cv-03078 Doc. No. 0899-10, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 256”, Aug. 12, 2020, 36. |
DCT 1:17-cv-03078 Doc. No. 0899-14, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 261” , Aug. 12, 2020, 37. |
DCT 1:17-cv-03078 Doc. No. 0899-15, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 267”, Aug. 12, 2020, 8. |
DCT 1:17-cv-03078 Doc. No. 0899-16, “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 268”, Aug. 12, 2020, 17. |
DCT 1:17-cv-03078 Doc. No. 0899-17 (part 1), “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 272”, Part 1, Aug. 12, 2020, 350. |
DCT 1:17-cv-03078 Doc. No. 0899-17 (part 2), “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 272”, Part 2, Aug. 12, 2020, 309. |
DCT 1:17-cv-03078 Doc. No. 0899-18 (part 1), “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment—Ex. 273”, Aug. 12, 2020, 250. |
DCT 1:17-cv-03078 Doc. No. 0899-18 (part 2), “Rayburn Decl. ISO Memo ISO ClearOne's Opp. to Shure's Mot. for Summary Judgment- Ex. 273”, Aug. 12, 2020, 257. |
DCT 1:17-cv-03078 Doc. No. 0901-1, “Shure's Consolidated Final Unenforceability and Invalidity Contentions Related to U.S. Pat. No. 9,813,806”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 0901-01, Aug. 12, 2020, 44. |
DCT 1:17-cv-03078 Doc. No. 0901-2, “Shure's Supplemental Final Invalidity and Non-Infringement Contentions as to the '186 Patent and Final Invalidity Contentions as to the '806 Patent After Claim Construction”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 901-2, Aug. 12, 2020, 23. |
DCT 1:17-cv-03078 Doc. No. 0901-3 Ex 196, “Opening Expert Report of Dr. Wilfrid Leblanc”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 901-3 (Exhibit 196), Aug. 12, 2020, 609. |
DCT 1:17-cv-03078 Doc. No. 0901-3 Ex 198, “Shure's Consolidated Final Unenforceability and Invalidity Contentions”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 901-3 (Exhibit 198), Aug. 12, 2020, 64. |
DCT 1:17-cv-03078 Doc. No. 0901-3 Ex 199, “Rebuttal Report prepared of Dan Schonfeld”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 0901-3 (Exhibit 199), Aug. 12, 2020, 126. |
DCT 1:17-cv-03078 Doc. No. 0902, “Shure's Response to ClearOne's Statement of Facts”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 902, Aug. 12, 2020, 83. |
DCT 1:17-cv-03078 Doc. No. 0906, “Rademaker Dec.—Ex. 214”, Aug. 13, 2020, 26. |
DCT 1:17-cv-03078 Doc. No. 0912, “Memorandum Opinion and Order”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 912, Sep. 1, 2020, 35. |
DCT 1:17-cv-03078 Doc. No. 0914, “Shure's Combined Reply and Response to ClearOne's Cross-Motion for Summary Judgment on Issues Relating to Invalidity and Unenforceability”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 914, Sep. 11, 2020, 70. |
DCT 1:17-cv-03078 Doc. No. 0915, “Shure's Support of Its Combined Reply and Response to ClearOne's Cross Motion for Summary Judgment on Issues Relating to Invalidity and Unenforceability”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 915, Sep. 11, 2020, 29. |
DCT 1:17-cv-03078 Doc. No. 0916, “Shure's Response to ClearOne's Statement of Fact Nos. 81-200”, Sep. 11, 2020, 81. |
DCT 1:17-cv-03078 Doc. No. 0950, “ClearOne's Reply in Support of its MSJ of Validity and Enforceability of USPN '186 and '806”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 950, Sep. 29, 2020, 27. |
DCT 1:17-cv-03078 Doc. No. 0951, “ClearOne's Responses to Shure's Statement of Uncontested Facts”, Shure, Inc. v. ClearOne, Inc. 1:17-cv-03078 (N.D. III—Eastern Division), Document No. 951, Sep. 29, 2020, 40. |
Fed Cir Appeal 21-1024 Doc No. 17, “Plaintiff-Appellant's Opening Brief”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 17, Dec. 30, 2020, 136. |
Fed Cir Appeal 21-1024 Doc No. 32, “Non-Confidential Response Brief of Defendant-Appellee ClearOne, Inc.”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 32, Mar. 10, 2021, 87. |
Fed Cir Appeal 21-1024 Doc No. 36, “Plaintiff-Appellant's Reply Brief”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 36, Apr. 12, 2021, 45. |
Fed Cir Appeal 21-1024 Doc No. 43-1, “Joint Appendix vol. I”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 43-1, Apr. 23, 2021, 437. |
Fed Cir Appeal 21-1024 Doc No. 43-2-43-4, “Joint Appendix vol. II”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 43-2-43-4, Apr. 23, 2021, 467. |
Fed Cir Appeal 21-1024 Doc No. 62, “ClearOne's Motion for Sanctions”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 62, Jul. 16, 2021, 39. |
Fed Cir Appeal 21-1024 Doc No. 63, “Opinion”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020) (nonprecedential), Document No. 63, Jul. 20, 2021, 3. |
Fed Cir Appeal 21-1024 Doc No. 67, “Plaintiff-Appellant's Reply Brief”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 67, Aug. 3, 2021, 32. |
Fed Cir Appeal 21-1024 Doc No. 68, “ClearOne's Reply in Support of Motion for Sanctions”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020), Document No. 68, Aug. 10, 2021, 85. |
Fed Cir Appeal 21-1024 Doc No. 69, “Order Denying Motion for Sanctions”, Shure, Inc. v. ClearOne, Inc., 21-1024 (Fed. Cir. 2020) (nonprecedential), Document No. 69, Aug. 24, 2021, 2. |
Invensense Inc., “Microphone Array Beamforming”, Dec. 31, 2013, 1-12. |
IPR2019-00683 Ex 1003, “Declaration of Durand R. Begault, Ph.D., in Support of Petition for Inter Partes Review of U.S. Pat. No. 9,565,493”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit No. 1003, Feb. 15, 2019, 139. |
IPR2019-00683 Ex 1043, “Supplemental Declaration of Durand R. Begault, Ph.D.”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit 1043, Jan. 31, 2020, 126. |
IPR2019-00683 Ex 2029, “Supplemental Declaration of Dr Jeffrey S Vipperman”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit 2029, Mar. 13, 2020, 55. |
IPR2019-00683 Ex 2030-1, “File History of U.S. Appl. No. 15/218,297 Part 1 of 4”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit 2030-1, Mar. 13, 2020, 254. |
IPR2019-00683 Ex 2030-2, “File History of U.S. Appl. No. 15/218,297 Part 2 of 4”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit 2030-2, Mar. 13, 2020, 263. |
IPR2019-00683 Ex 2030-3, “File History of U.S. Appl. No. 15/218,297 Part 3 of 4”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit 2030-3, Mar. 13, 2020, 250. |
IPR2019-00683 Ex 2030-4, “File History of U.S. Appl. No. 15/218,297 Part 4 of 4”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Exhibit 2030-4, Mar. 13, 2020, 241. |
IPR2019-00683 Paper No. 01, “Petition for Inter Partes Review of U.S. Pat. No. 9,565,493”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 1, Feb. 15, 2019, 114. |
IPR2019-00683 Paper No. 21, “Decision Granting Institution of Inter Partes Review”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 21, Aug. 16, 2019, 37. |
IPR2019-00683 Paper No. 46, “Opposition to Motion to Amend”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 46, Jan. 31, 2021, 30. |
IPR2019-00683 Paper No. 55, “Preliminary Guidance Patent Owner's Motion to Amend”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 55, Feb. 25, 2020, 18. |
IPR2019-00683 Paper No. 57, “Patent Owners Revised Contingent Motion to Amend”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 57, Mar. 13, 2020, 42. |
IPR2019-00683 Paper No. 58, “Patent Owner Sur Reply”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 58, Mar. 13, 2020, 32. |
IPR2019-00683 Paper No. 68, “Opposition to Revised Motion to Amend”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 68, Apr. 23, 2020, 30. |
IPR2019-00683 Paper No. 91, “Final Written Decision”, ClearOne, Inc. v Shure Acquisition Holdings, Inc., IPR2019-00683 (PTAB), Paper No. 91, Aug. 14, 2020, 118. |
Johnson, D. H. et al, “Array Signal Processing. Concepts and Techniques,” p. 59, Prentice Hall (1993), 3. |
McCowan, I.A., “Microphone Arrays : A Tutorial” excerpt from “Robust Speech Recognition using Microphone Arrays,” Thesis, Queensland University of Technology, Australia (2001), 40 PhD. |
PGR2020-00079 Doc No. 01, “Petition for Post Grant Review”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 1, Jul. 28, 2020, 113. |
PGR2020-00079 Doc No. 10, “Patent Owner Preliminary Response”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 10, Nov. 17, 2020, 92. |
PGR2020-00079 Doc No. 12, “Petitioner's Reply to Patent Owner's Preliminary Response”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 12, Dec. 23, 2020, 12. |
PGR2020-00079 Doc No. 13, “Patent Owner's Preliminary Surreply”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 13, Jan. 6, 2021, 12. |
PGR2020-00079 Doc No. 14, “Granting Institution of Post-Grant Review”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 14, Feb. 16, 2021, 76. |
PGR2020-00079 Doc No. 25, “Patent Owners Contingent Motion to Amend and Request for Preliminary Guidance”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 25, May 11, 2021, 33. |
PGR2020-00079 Doc No. 27, “Response”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 27, May 11, 2021, 97. |
PGR2020-00079 Doc No. 30, “Petitioners Reply to Patent Owner's Response”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 30, Aug. 4, 2021, 34. |
PGR2020-00079 Doc No. 31, “Petitioner's Opposition to Patent Owner's Contingent Motion to Amend and Request for Preliminary Guidance”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 31, Aug. 4, 2021, 30. |
PGR2020-00079 Doc No. 35, “Preliminary Guidance Patent Owner's Motion to Amend”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 35, Aug. 27, 2021, 19. |
PGR2020-00079 Doc No. 37, “Patent Owner's Revised Motion to Amend”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 37, Sep. 14, 2021, 38 . |
PGR2020-00079 Doc No. 39, “Patent Owner's Surreply”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 39, Sep. 14, 2021, 33. |
PGR2020-00079 Doc No. 42, “Petitioners Opposition to Patent Owners Revised Contingent Motion to Amend”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 42, Oct. 26, 2021, 29. |
PGR2020-00079 Doc No. 49, “Reply to Petitioners Opposition to Patent Owners Revised Contingent Motion to Amend”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 49, Nov. 16, 2021, 16. |
PGR2020-00079 Doc No. 53, “Petitioner's Sur-Reply to Opposition to Revised Motion to Amend”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 53, Dec. 7, 2021, 17. |
PGR2020-00079 Doc No. 58, “Record of Oral Hearing”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 58, Dec. 14, 2021, 82. |
PGR2020-00079 Doc No. 59, “Final Written Decision”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 59, Feb. 14, 2022, 77. |
PGR2020-00079 Doc No. 60, “Petitioner's Notice of Appeal”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Document No. 60, Feb. 24, 2022, 82. |
PGR2020-00079 Exhibit 1002, “Declaration of Jeffrey S. Vipperman”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1002, Jul. 28, 2020, 159. |
PGR2020-00079 Exhibit 1014, “Meeting the Demand for Ceiling Mics in the Enterprise 5 Best Practices”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1014, At least as early as 2012, 9. |
PGR2020-00079 Exhibit 1015, “Frequently Asked Questions”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1015, As early as 2009, 2. |
PGR2020-00079 Exhibit 1023, “Specification Comparison Redline”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1023, Jul. 28, 2020, 52. |
PGR2020-00079 Exhibit 1024, “Specification Comparison Redline”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1024, Jul. 28, 2020, 52. |
PGR2020-00079 Exhibit 1026, “Installation Manual and User Guidelines for the Soundman SM 02 System”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1026, As early as 2001, 29. |
PGR2020-00079 Exhibit 1027, “Introducing the CTG FS-400 and FS-800 with Beamforming Technology”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1027, As early as 2008, 2. |
PGR2020-00079 Exhibit 1036, “Diethorn, Eric J. “Chapter 4: Subband Noise Reduction Methods for Speech Enhancement.” Audio Signal Processing for Next-Generation Multimedia Communication Systems, edited by Yiteng Huang and Jacob Benesty, Kluwer Academic Publishers, 2004”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1036, Aug. 3, 2021, 22. |
PGR2020-00079 Exhibit 1036, “Second Declaration of Dr Jeffrey S Vipperman”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1029, Aug. 3, 2021, 60. |
PGR2020-00079 Exhibit 1037, “Warsitz, Ernst, and Haeb-Umbach, Reinhold. “Blind Acoustic Beamforming Based on Generalized Eigenvalue Decomposition.” IEEE Transactions on Audio, Speech and Language Processing, vol. 15, No. 5, 2007, pp. 1529-1539”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1037, Aug. 3, 2021, 11. |
PGR2020-00079 Exhibit 1038, “Transcript of the deposition of Dr. Durand Begault, taken on Jul. 1, 2021”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1038, Aug. 3, 2021, 262. |
PGR2020-00079 Exhibit 1039, “Third Declaration of Dr Jeffrey S Vipperman”, Shure, Inc. v. ClearOne, Inc., (P.T.A.B.), Exhibit 1039, Oct. 26, 2021, 46. |
PGR2020-00079 Exhibit 1040, “Shure's Oral Argument Demonstratives”, Shure, Inc. v. ClearOne, Inc., (P.T.A.B.), Exhibit 1040, Dec. 9, 2021, 115. |
PGR2020-00079 Exhibit 2038, “Third Declaration of Durand Begault in Support of the Reply to the Opposition to the Revised Motion to Amend”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2038, Nov. 16, 2021, 27. |
PGR2020-00079 Exhibit 2039, “Second Deposition of Jeffery Vipperman”, Shure, Inc. v. ClearOne, Inc., (P.T.A.B.), Exhibit 2039, Nov. 16, 2021, 37. |
PGR2020-00079 Exhibit 2042, “Selected Definitions from McGraw Hill Telecom Dictionary”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2042, Nov. 16, 2021, 4. |
PGR2020-00079 Exhibit 2044, “DCT 1:17-cv-03078 Doc. No. 367”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2044, Nov. 16, 2021, 15. |
PGR2020-00079 Exhibit 2045, “DCT 1:17-cv-03078 Doc. No. 367-1 Selected pp.”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2045, Nov. 16, 2021, 8. |
PGR2020-00079 Exhibit 2049, “Toroidal Microphones by Sessler, West, and Schroeder”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2049, Nov. 16, 2021, 10. |
PGR2020-00079 Exhibit 2050, “DCT 1:17-cv-03078 Doc. No. 360”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2050, Nov. 16, 2021, 6. |
PGR2020-00079 Exhibit 2051, “Patent Owner's Demonstrative Exhibits”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2051, Dec. 9, 2021, 76. |
PGR2020-00079 Exhibit 2178, “Federal Circuit Appeal 21-1517 Doc 14”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2178, Nov. 16, 2021, 99. |
PGR2020-00079 Exhibit 2179, “Federal Circuit Appeal 21/1517 Doc 18”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2179, Nov. 16, 2021, 84. |
PGR2020-00079 Exhibit 2180, “Federal Circuit Appeal 21/1517 Doc 22”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 2180, Nov. 16, 2021, 53. |
Sasaki, et al., “A Predefined Command Recognition System Using a Ceiling Microphone Array in Noisy Housing Environments”, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 22-26, 2008, 7. |
Soda, et al., “Introducing Multiple Microphone Arrays for Enhancing Smart Home Voice Control”, The Institute of Electronics, Information and Communication Engineers, Technical Report of IEICE., Jan. 23-25, 2013, 7. |
The Enright Company, “Scanlines (Jun. 2009)”, Shure, Inc. v. ClearOne, Inc., PGR2020-00079 (P.T.A.B.), Exhibit 1028, Jun. 2009, 9. |
U.S. Appl. No. 16/872,557, filed May 12, 2020, currently pending. |
U.S. Appl. No. 15/218,297, filed Jul. 25, 2016, now issued as U.S. Pat. No. 10,728,653. |
U.S. Appl. No. 14/475,849, filed Sep. 3, 2014, now issued as U.S. Pat. No. 9,813,806. |
U.S. Appl. No. 14/276,438, filed May 13, 2014, now issued as U.S. Pat. No. 9,294,839. |
U.S. Appl. No. 14/191,511, filed Feb. 27, 2014, since abandoned. |
Number | Date | Country | |
---|---|---|---|
20220353610 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
61828524 | May 2013 | US | |
61771751 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16872557 | May 2020 | US |
Child | 17865086 | US | |
Parent | 15218297 | Jul 2016 | US |
Child | 16872557 | US | |
Parent | 14475849 | Sep 2014 | US |
Child | 15218297 | US | |
Parent | 14276438 | May 2014 | US |
Child | 14475849 | US | |
Parent | 14191511 | Feb 2014 | US |
Child | 14276438 | US |