1. Field of the Invention
The present invention relates to ceiling tiles, which are made of rigid polyvinyl chloride (PVC). More specifically, the present invention provides a PVC ceiling tile structure with improved acoustic and environmental benefits.
2. Description of Related Art
Ceiling grid systems for supporting tile panels, such as acoustical ceiling tiles, are used extensively in both new and remodeled building and room structures. Grid systems typically consist of main-runners and cross-tees, having lateral supporting shoulders that are arranged perpendicular to each other to form a rectangular pattern. After the grid is installed, the tile panels are placed onto the supporting shoulders of the runners and cross-tees. Such a grid system offers many advantages such as increasing a room's energy efficiency, improving a room's acoustics, enhancing the aesthetic value of a room, lowering a ceiling, and allowing for the installation of electrical fixtures, pipes, sprinklers and duct work.
Ceiling grid systems are relatively inexpensive to install as compared to a plaster ceiling. As a consequence, there is a continuing need to improve on the design and integrity of grid systems, particularly in light of the fact that many such systems are installed in commercial buildings requiring years of service, or installed by the do-it-yourself home owner.
However, conventional ceiling tile systems are difficult to manufacture, difficult to transport and fail to provide desired environmental benefits. The need therefore exists for an environmentally friendly ceiling tile that is aesthetic, easy to manufacture and install. Further, the need exists for a ceiling tile that is fire rated and approved for use under ceiling fire suppression sprinkler systems.
A ceiling tile assembly, comprising a main body portion formed of rigid PVC defining a planar surface with ridges and troughs to define ornamental features on the planar surface, an edge portion around the periphery of said main body portion, and a back panel formed to seat onto the main body portion by nesting within a depression defined by the edge portion.
In the preferred embodiment, the main body portion and the edge portion have a thickness of about 0.13 inches. The back panel is preferably cup-shaped to define an air pocket between the back panel and the main body portion to improve acoustic and insulation properties of the ceiling tile assembly.
The assembly is designed to drop out of the ceiling support grid during a fire because the materials will deform and shrink to fall out of the ceiling grid, so as not to hamper operation of a fire suppression system.
The present invention provides improved lighting, enhanced acoustic and air pocket insulation. Additionally, the invention provides favorable indoor air quality, natural resource, and environmental benefit achieved with rigid PVC without phthalates.
It is an advantage of the present invention to provide improved lighting, enhanced acoustic and air pocket insulation. Specifically, when used in combination with translucent lighting panels, the present invention provides better light diffusion, and eliminates the shadows and dark spots frequently caused by dust and insect accumulation on conventional, single-wall lighting panels. Furthermore, the present invention can increase the NRC (Noise Reduction Coefficient) rating of ceiling tiles by 20% to 25%. Still further, the present invention insulating air impedes thermal transfer and moderates temperature fluctuation.
With reference to
Thermoforming is the preferred method of manufacture for the tile(s) 10 of the present invention. Thermoforming uses heat, vacuum, and pressure to form plastic sheet material into a shape that is determined by a mold. Sheet stock is heated to a temperature at which the plastic softens, but that is below its melting point. Using vacuum and/or pressure, the plastic is then stretched to cover and duplicate the contours of a mold. Then, the plastic is cooled so it retains its shape, thereby providing the molded surface characteristic(s) on the surface 20. Finally it is removed from the mold and trimmed as required to create a finished part. Indeed, the tiles of this invention may be cut using scissors or other common cutting tools to achieve the exact shape desired for a particular application.
Generally, thermoforming can accommodate a wide range of sheet thicknesses and part sizes, from thin-gauge sheet used to form small packaging containers to heavy-gauge sheet used to make items as large as pallets, boat hulls and recreational vehicle tops. Thermoforming is known by those of skill in the art for low tooling costs, short tooling lead times, and great versatility.
According to the present invention, ceiling tiles are preferably made from UV-stabilized, 0.013″ thick vinyl plastic formed with a peripheral edge portion defining a depression or recessed configuration as will be described in more detail with respect to
The ceiling tiles and drop ceiling panels come in any color, including UL-approved white opaque and black opaque vinyl for a traditional ceiling tile look, and UL-approved translucent white vinyl for use under lighting fixtures.
The tiles formed by the method of the present invention also provide reduced maintenance requirements. As the tiles don't crumble or crack like conventional mineral fiber tiles, they don't create dust—and they can be easily removed and replaced from the grid without cracking if access to the space above the grid is required, which it frequently is. Moving conventional tiles in and out of the grid can break them down pretty quickly. And because our tiles do not absorb moisture, they don't take on permanent stains and odors like conventional tiles. The net result is that ongoing maintenance requirements (cleaning, replacement) are greatly reduced.
Further, in the event of an earthquake, because these tiles are so light weight they do not create the potential “falling hazard” of conventional mineral fiber tiles. Because they are so flexible it is probable that they will just ride out a quake instead of cracking, crumbling, and falling. If they do fall, they won't hurt anything or anyone that they might fall on, because they are so light.
Another unique feature of the present invention is the favorable indoor air quality, natural resource, and environmental benefit achieved with rigid PVC, a material not generally associated with those characteristics. The environmental benefits and air quality aspects of the tiles are achieved by use of rigid PVC without phthalates. Phthalates, or phthalate esters, are a group of chemical compounds that are mainly used as plasticizers (substances added to plastics to increase their flexibility). They are chiefly used to turn polyvinyl chloride from a hard plastic into a flexible plastic. However, there is a debate raging about the health effects of and risks caused by phthalates. The present invention eliminates those risks by eliminating phthalates from the rigid PVC.
The vinyl ceiling tiles and drop ceiling panels of the present invention are specifically rated, listed and approved for installation under fire suppression sprinkler systems that activate at 165° F., but they may be designed for installation under fire suppression sprinkler systems with other activation temperatures. Opaque vinyl ceiling tiles, translucent vinyl lighting tiles and clear vinyl back panels install in all standard 1″ T-Bar ceiling systems (but can be made to install into custom systems) and are engineered to drop harmlessly out of the way in the event of a fire, allowing the sprinklers to do their job. Specifically, the tile(s) 10 are designed to deform and shrink when subjected to the heat-rating of the sprinkler system employed in the ceiling grid; therefore, the tiles 10 may be mounted below the sprinklers without the need to cut holes in the tiles for sprinkler exposure. Because the sprinklers are not visible from the ground, the tiles further enhance the aesthetic properties of the ceiling without sacrificing fire safety.
When used under current fire sprinkler systems, transparent and opaque vinyl ceiling tiles and panels, intermediate panels, and clear back covers should not be fastened directly to metal T-bar members. They should be set in place only. No clips, fasteners or impediments of any kind should be used to limit the ceiling panels' ability to drop from the suspension system without restraint in the event of a fire. In areas where there is exposure to drafts and air currents, hold down clips can be used to limit the ceiling panels' upward movement only—clips should not prevent ceiling panels from dropping out in the event of a fire. Of course, the specific support structure and fastening members will be determined by the specific ceiling tile and support structure employed for each application. The important provision of fire safety remains the ability for the novel tiles to shrink and deform so they may drop out of the ceiling so the sprinkler system will work to its optimal performance.
Ceiling tiles and drop ceiling panels may be suspended by means of an approved ceiling suspension system using standard 1″ face T-bar manufacturer's instructions for suspension system installation, but other suspension systems are certainly possible and within the scope of the present invention. Installation is performed by laying the ceiling tiles and ceiling panels in place in the suspension system desired as will be understood by those of skill in the art.
With reference to
For best lighting results and lengthened life of the ceiling tiles and drop ceiling panels, diffusers or back panel 60 used in lighting applications should be positioned 6″ from the lamps. It is also preferable that translucent lighting ceiling tiles and drop ceiling panels be used with the separate clear back panels 60, which nest above the exposed panels. These ceiling tile back panels 60 provide better diffusion of light, hide dust and insect accumulation and increase sound absorption and insulation properties. When installing clear back panels 60 above the ceiling tiles and panels 10, one simply sets the panels 10 into the 1″ T-bar suspension system 50 in pairs: one clear back panel 60, convex side up, in combination with the exposed ceiling panel 10.
From the foregoing description, it is clear that the present invention provides improved lighting, enhanced acoustic and air pocket insulation. Specifically, when used in combination with translucent lighting panels, the present invention provides better light diffusion, and eliminates the shadows and dark spots frequently caused by dust and insect accumulation on conventional, single-wall lighting panels. Furthermore, the present invention can increase the NRC (Noise Reduction Coefficient) rating of ceiling tiles by 20% to 25%. Still further, the present invention insulating air impedes thermal transfer and moderates temperature fluctuation.
Additionally, the present invention provides favorable indoor air quality, natural resource, and environmental benefit achieved with rigid PVC, a material not generally associated with those characteristics. The environmental benefits and air quality aspects of the tiles are achieved by use of rigid PVC without phthalates. Phthalates, or phthalate esters, are a group of chemical compounds that are mainly used as plasticizers (substances added to plastics to increase their flexibility). They are chiefly used to turn polyvinyl chloride from a hard plastic into a flexible plastic. However, there is a debate raging about the health effects of and risks caused by phthalates. The present invention eliminates those risks by eliminating phthalates from the rigid PVC.
While the present invention has been described in terms of specific embodiments, it is to be understood that the invention is not limited to these disclosed embodiments. This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of illustration only and so that this disclosure will be thorough, complete and will fully convey the full scope of the invention to those skilled in the art. Indeed, many modifications and other embodiments of the invention will come to mind of those skilled in the art to which this invention pertains, and which are intended to be and are covered by both this disclosure, the drawings and the claims.
This application is a U.S. Utility patent application based on U.S. Provisional Patent Application No. 60/871,274 filed on Dec. 21, 2006. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60871274 | Dec 2006 | US |