The present invention relates generally to robotic systems and, more specifically, to navigational systems for autonomous robots.
Automated robots and robotic devices are becoming more prevalent today and are used to perform tasks traditionally considered mundane, time-consuming, or dangerous. As the programming technology increases, so too does the demand for robotic devices that can navigate around a complex environment or working space with little or no assistance from a human operator.
Robotic devices and associated controls, navigational systems, and other related systems are being developed. For example, U.S. Pat. No. 6,594,844 discloses a Robot Obstacle Detection System, the disclosure of which is hereby incorporated by reference in its entirety. Additional robot control and navigation systems, and other related systems, are disclosed in PCT Published Patent Application No. WO 2004/025947, and in U.S. patent application Ser. Nos. 10/167,851, 10/056,804, 10/696,456, 10/661,835, 10/320,729, and 10/762,219, the disclosures of which are hereby incorporated by reference in their entireties.
Many autonomous robots navigate a working space by simply moving randomly until an obstacle is encountered. Generally, these types of robots have on-board obstacle detectors, such as bump sensors or similar devices, that register contact with an obstacle. Once contact is made, command routines typically direct the robot to move in a direction away from the obstacle. These types of systems, which are useful for obstacle avoidance, are limited in their ability to allow a robot to track its location within a room or other working environment. Other systems, often used in conjunction with the bump sensors described above, use an infrared or other detector to sense the presence of nearby walls, obstacles, or other objects, and either follow the obstacle or direct the robot away from it. These systems, however, are also limited in their ability to allow a robot to navigate effectively in a complex environment, as they allow the robot to only recognize when objects are in its immediate vicinity.
In more advanced navigational systems, a robot incorporates an infrared or other type of transmitter. This transmitter directs a series of infrared patterns in horizontal directions around the robot. These patterns are, in turn, detected by a stationary receiver, generally placed at or near a boundary of the working space, on a wall, for example. A microprocessor uses the information from the signals to calculate where in the working space the robot is located at all times; thus, the robot can truly navigate around an entire area. These types of systems, however, are best employed in working spaces where few objects are present that may interfere with the dispersed patterns of infrared signals.
These limitations of the above types of navigational systems are, at present, a hurdle to creating a highly independent autonomous robot, which can navigate in a complex environment. There is, therefore, a need for a navigational system for a robot that can allow the robot to operate autonomously within an environment that may be cluttered with a number of obstacles at or near the operational or ground level. Moreover, a navigational system that can be integrated with some or all of the above systems (the bump sensors, for example) is desirable. Such a navigational system should allow a robot to recognize where it is at all times within a working area, and learn the locations of obstacles therein.
In one aspect, the invention relates to a navigational system for an autonomous robot that includes a stationary transmitter for emitting at least two signals, the signals directed toward a surface remote from a working area, such as a wall bordering a floor (upon which a robot operates), or a ceiling located above the floor. The system also includes a receiver mounted to an autonomous robot containing various power, motive, and task-related components. The receiver detects the two signals emitted by the emitter, and a processor determines the location of the robot within the working area based upon the received signals. Generally, the signals directed to the remote surface are infrared signals, but other embodiments are also possible. The robot detects the signal energy reflected from the ceiling and, by calculating the azimuth and elevation of the signals relative to the robot, can determine its location.
In another aspect, the invention relates to a method of control for an autonomous robot including the steps of: transmitting a signal from a stationary emitter to a surface remote from a working area; detecting the signal using a receiver integral with an autonomous robot; and directing a movement of the autonomous robot within the working area, the movement based at least in part upon detection of the signal.
In yet another aspect, the invention relates to a method of control for an autonomous robot including the steps of: transmitting at least two signals from a stationary emitter to a surface remote from a working area; detecting the signals using a receiver integral with an autonomous robot; and determining a location of the autonomous robot within the working area, the location based at least in part upon detection of the signal.
In still another aspect, the invention relates to a signal transmitter for providing navigational markings for use by an autonomous robot including: a power source; and a modulated signal emitter, wherein the signal emitter sequentially emits a first coded signal and a second coded signal, the first signal and the second signal directed to a surface remote from a working area of the robot.
In still another aspect, the invention relates to a receiver for detecting emitted navigational markings, the receiver mountable to an autonomous robot, the receiver including: a lens including a plurality of photodiodes, each photodiode oriented orthogonally to each adjacent photodiode, each photodiode adapted to detect a signal reflected from a remote surface; and a processor for processing the signals received from the plurality of photodiodes, the processor including a plurality of data outputs.
In another aspect, the invention relates to a navigational control system for an autonomous robot including a transmitter subsystem having a stationary emitter for emitting at least one signal, and an autonomous robot operating within a working area, the autonomous robot having a receiving subsystem. The receiving subsystem has a receiver for detecting the signal emitted by the emitter and a processor for determining a relative location of the robot within the working area upon the receiver detecting the signal. In certain embodiments of the above aspect, the emitter includes a modulated signal emitter and may sequentially emit a first coded signal and a second coded signal. In other embodiments of this aspect, the receiver includes a plurality of photodiodes, and may include four or five photodiodes. In some embodiments, at least four photodiodes are arranged in a substantially planar orientation, and may be oriented orthogonally to each adjacent photodiode. In certain embodiments, the fifth photodiode is oriented substantially orthogonally to each of the four photodiodes. Some embodiments orient at least one of the photodiodes in a direction corresponding to a reference direction of travel of the robot.
In other embodiments of the above aspect, the processor further includes a navigational control algorithm, and may direct a movement of the robot within the working area upon the receiver detecting the signal. In certain embodiments, the emitter emits at least two signals, and may be located on a robot docking station. In certain embodiments, the signal includes light having at least one of a visible wavelength and an infrared wavelength. Alternative embodiments direct at least one signal at a surface remote from the working area.
In another aspect, the invention relates to a method of control for an autonomous robot, including the steps of transmitting a signal from a stationary emitter, detecting the signal using a receiver integral with the robot operating within a working area, and determining a relative position of the robot in the working area based at least in part on the detected signal. The method may include the step of directing a movement of the robot within the working area, the movement based at least in part upon the position of the robot. Certain embodiments may include the step of storing a position of the robot and/or the step of comparing the position of the robot to a stored position.
Other embodiments of the above aspect include the step of directing a movement of the robot within the working area, the movement based at least in part on the stored position. In certain embodiments, the relative position of the robot is based at least in part on at least one of an elevation and an azimuth of the detected signal. In other embodiments, the transmitted signal is directed to a surface remote from the working area.
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
The transmitter 20 directs at least two infrared signals 22a, 24a from emitters 22, 24 to a surface remote from the working area 14 upon which the robot 12 operates. The depicted embodiment directs the signals 22a, 24a to the ceiling 18, but it may also direct the signals 22a, 24a to a portion of a wall 16, or both. The signals 22a, 24a may be directed to any point on the remote surface, but directing the signals as high as possible above the working area 14 is generally desirable. Directing the signals to a high point allows them to be more easily detected by the robot 12, as the field of view of the robot receiver 28 is less likely to be blocked by a tall obstacle (such as a high-backed chair or tall plant). In this disclosure, the regions of contact 22b, 24b of the signals 22a, 24a on the remote surface will be referred to as “points,” regardless of the size of the intersection. For example, by using a collimator in conjunction with the emitters (described below), the points of intersection 22b, 24b of the signals 22a, 22b can be a finite area with the signal strongest at approximately central points 22c, 24c. In alternative embodiments, central points 22c, 24c represent focused laser or other signals that may be used for navigation.
In one embodiment of the transmitter, the signals 22a, 24a are directed towards a ceiling 18, at two points 22c, 24c, forming a line proximate and parallel to the wall 16 upon which the transmitter 20 is located. Alternatively, and as depicted in
In the embodiment depicted in
As the robot 12 moves within a working area 14, it detects the signals 22a, 24a emitted by the transmitter 20 as energy bouncing or reflecting off the diffuse ceiling surface 18. In an alternative embodiment, visible points may be used in place of infrared points. An on-board camera may replace the infrared receiver in detecting either infrared or visible points. The robot's microprocessor converts the signals 22b, 24b sensed by the receiver 28 into bearings from the robot 12 to the signals 22b, 24b. The microprocessor calculates the representative elevation angles ε1, ε2 and the azimuths α1, α2 of the signals to determine the location of the robot 12 within the working area 14. In this embodiment, the azimuths α1, α2 are measured utilizing the “forward” direction of movement M of the robot 12 as a datum, but any suitable datum can be used. By calculating the elevation angle and azimuth from the robot 12 to the two signals 22b, 24b, the robot 12 is able to locate itself within a room with accuracy.
The transmitter 120 emits two signals 122a, 124a (depicted graphically by a plurality of arrows) into the two rooms 136, 138. The signals 122a, 124a may be configured to not overlap each other, therefore providing a distinct signal on each side of the door centerline 130. In other embodiments, overlap of the signals 122a, 124a may be desired. The robot 112 includes a receiver 128 that has a field of vision 134. The emitted signals 122a, 124a are detected by the receiver 128 when the robot's field of vision 134 intersects the signals 122a, 124a. Similar to the embodiment in
The transmitter 20 in
Turning back to
In one embodiment of the invention, each signal (regardless of emitter location or number of signals) is modulated at 10 kHz, and is coded with an 8-bit code to serve as a unique identifier of the signal, thus preventing the robot from confusing one point with another. Accordingly, more than two signals may be employed to increase the accuracy of the robot's calculations regarding its location within a working area. As noted above, using only one emitter allows the robot to take a heading base on that signal. Using more than two points enables the robot to continue navigating, if fewer than all of the points are detected (either due to failure of a signal transmission or if the robot moves to a location where fewer than all the points are visible).
In one embodiment, the transmitter pulses the coded signals as follows. After an initial synchronization pulse, the first signal at 10 kHz is emitted for 100 ms. This provides a sufficient time period for the receiver and the processor in the robot to calculate azimuth and elevation angles, as discussed in detail hereinbelow. So that the robot can also determine which signal is being received, the transmitter next pulses a series of five bits, each for 10 ms. The five bits include two start bits, for example a zero and a one, followed by a unique three bit identifier to identify that particular signal or point. After a 100 ms delay, the transmitter repeats the sequence for the second signal or point. By changing the modulation frequency and/or the identifier, the second signal or point can be uniquely distinguished from the first. Any number of unique signals can be transmitted and identified, in this manner. After the series of signals are transmitted, the transmitter waits a substantially longer period of time, for example on the order of a random one to two second interval, before repeating the transmitting sequence, starting again with the first signal. The length of time for each transmission is merely exemplary, and may be varied based upon user preference, application, or other needs. Additionally, the signals may be modulated at the same or different frequencies.
As apparent from
The construction of this receiver 328 is similar to that of
One embodiment of the control schematic 560 for the receiver 528 is depicted in
In operation, the receiver first measures the “noise floor,” the amount of infrared energy present in the space in which the robot is located, which it sets as the threshold value. Generally, this value is the average of the values for each photodiode. Any subsequent measurement above this threshold value triggers an event (e.g., a calculation of point azimuth and elevation). The receiver then measures the modulation frequency again, searching for an expected increase at 10 kHz (i.e., the frequency of the initial synchronization signal transmitted by the transmitter). If a 10 kHz frequency increase is detected, the robot recognizes this as an emitted navigational signal. The robot then measures the amplitude of the reflected point on all five photodiodes to determine an average value. This value is then compared to a list of signal frequencies to determine which of the signals has been detected. Alternatively, any detected identity sequence associated with the signal can be compared to a list of transmitter codes or signal IDs stored in a lookup table in the robot processor memory.
The on-board microprocessor uses the amplitude value to determine the azimuth and elevation of the received signals, that it then uses to determine its location within a working area. To determine the azimuth, the microprocessor enters the values of the two strongest readings from the four side photodiodes into an algorithm. The algorithm takes the ratio of these two readings to determine the azimuth angle. For example, if the two strongest readings from two photodiodes are equal, the algorithm recognizes that the point is located at an azimuth angle that is directly between the two photodiodes (i.e., at 45 degrees). In a similar algorithm, the amplitude value measured from the strongest side photodiode and the amplitude value measured from the top-facing photodiode value are used to determine the elevation of the signal. These values are then stored in the robot's memory for future reference.
Once the receiver has detected at least two points, and determines the azimuth and elevation of each point, it determines its location within the working space. A triangulation algorithm based on the known ceiling height and the azimuth and elevation of the two detected points allows the processor to determine where in the working space the robot is located. Over time, the values of elevation and azimuth between each coded point and specific locations of the robot within the workspace are stored in the robot's memory, creating a map of the environment in which the robot operates.
In a specific embodiment, the navigation system 200 depicted in
In the embodiment depicted in
Of the four detectors that reside in a single plane, the values of the two strongest signals detected are used to form a ratio to determine the azimuth angle (Step 735). The ratio of second-strongest signal over the strongest signal is either compared to a look-up table or inserted into a mathematical equation to determine an azimuth angle output. Both the look-up table and the equation represent the overlap of the received sensitivity patterns of two orthogonal detectors with known sensor responses. In this embodiment, the photodetector output is modeled as a fourth-order Gaussian response to angle off of “boresight,” a term that generally refers to a vector that is orthogonal to the semiconductor die in the detector package.
To calculate elevation, the strongest signal from azimuth calculation (i.e., the denominator of the ratio) must first be normalized, as if it were on boresight of the respective detector (Step 740). For example, if the azimuth has been determined to be 10° off of boresight from a given detector, that 10° angle is entered into a look-up table or equation that describes the sensor response of any single photodetector. At zero degrees, the output of this look-up table/equation would be 1.00000. As the angle deviates from zero degrees, the output drops to some fraction of 1.00000 (the normalized value at boresight). For example, if a value of 10° is entered into said equation, the output of this operation may be 0.99000. The denominator of the azimuth ratio is then divided by this fractional value in order to scale up, or “normalize,” that value to what it would be if the azimuth were actually zero degrees. This normalized value is then stored in memory, and elevation may be determined.
To calculate elevation, the normalized output from the previous step is used to produce a new ratio with the output from the upward-looking (fifth) detector, such that the numerator is the second-strongest of the two values and the denominator is the strongest of the two values (Step 745). This ratio is then entered into the same look-up table or equation from the step above (used to calculate azimuth), thus outputting an elevation angle.
Benefits of this type of navigation system are numerous. As the robot moves about a working area, measuring the azimuth and elevation of the various points detected, the robot can create a map of the area, thus determining its location within a given space. With this information, the robot can fuse data from all of its on-board sensors and improve cleaning or other task efficiency. One way it can do this is to create a map where the high-traffic areas in a house or other building are located (as indicated by readings from the dirt sensor, for example). The robot would then clean the areas it identified as high traffic (and therefore, often dirty) each time it passes over that area, whether directed to or not. The robot may also improve its cleaning function by merging the output from the wheel drop, stasis, bumper, and wall-following sensors to roughly mark areas of entrapment, or where large obstacles exist, so that those areas can potentially be avoided in future runs.
Another method of improving cleaning efficiency involves selectively programming the robot to clean particular areas, as detailed below. For example, a personal computer or remote control may be used to control the autonomous robot. Although the robot can operate without operator intervention, an operator would first set up the robot, or may wish to direct the robot to operate in particular areas or at particular times. For example, by using a number of transmitters in various rooms on one floor of a house, an operator may be able to direct the robot to clean a number of specific rooms at a certain time. The operator could select, in the control program field of the computer program, the living room, family room, bathroom, and kitchen areas for selected cleaning. Once commanded (either immediately or on a predefined schedule), the robot would be signaled to begin its cleaning cycle. The robot undocks from its base/charging station and begins cleaning the closest room on the programmed list. It recognizes this room and can differentiate it by the coded group of infrared points on the ceiling or the coded signal emitted in the room. After the first room is cleaned, the robot checks its level of power, and if needed, returns to its charger for additional charging. In order to return to the charger, in one embodiment the robot can follow the point or points on the ceiling back to the base station. After charging is complete, the robot traverses the area roughly back to the place it left off and resumes cleaning. This sequence of events continues until all of the programmed rooms have been cleaned. Alternatively, the selection of particular areas to clean could be made by remote control or by pressing buttons on a control panel located on the base station. By using a personal computer, however, multiple transmitters could communicate with each other and with the base station via power lines using HOME GENIE®, ECHELON®, or equivalent technology.
An alternative embodiment is depicted in
Alternatively, the robot 612 may emit its own coded pulse, to determine if any transmitters are in the area. This coded pulse could “awaken” sleeping or otherwise dormant transmitters, which would then begin their own emission cycle. Alternatively, the pulse may be some audible or visual signal such as a distinct beep, buzz, or visual strobe. Note that this pulse need not be within the field of view of the transmitter.
The robot 612 will continue to move toward signal 622a until one of several events happens at or near doorway 632a. In the first event, the robot may determine, based on readings from its photodiodes, that it is directly under the transmitter 620a. In the second event, the robot 612 may sense a second signal 624a, that may overlap the first detected signal 622a. This event would occur if the configuration of the emitters, collimators, etc., as described in more detail above, provided overlapping signal patterns between signals 622a and 624a. In a third event, robot 612 may sense a signal from an entirely different transmitter, in this case signal 622b from transmitter 620b. Other events are also contemplated, as suitable for the particular application. The occurrence of the event presents the robot 612 with any number of behavioral, functional, or other options. For example, each coded signal may serve as a unique marker for a different working space. Upon detecting the unique signal associated with a particular working space, the robot may alter its cleaning function. If room A is carpeted but room B is uncarpeted, the robot may adjust its cleaning as it moves from room A to room B. Alternatively, if room B is a known high traffic area and the robot has sufficient power available, the robot 612 may spend a period of time cleaning room B before continuing its return to base 622. Upon detecting a second signal (in this case, signal 622b) the robot may completely disregard the first signal 622a received when the return to the base station 622 began. Using new signal 622b as a heading, it begins moving toward that signal 622b. The robot 612 may also check its battery level at each event, storing that value in its microprocessor. Over time, the robot will have created a table of battery levels at each event (and battery level change from event to event), and be able to accurately determine precise battery power remaining at each transmitter location.
Once the robot has been moving in room B (shown as 612′ in phantom), it will eventually determine, based on battery level, time, or other factors, to follow the heading provided by signal 622b, and continue its return to its base station 622. The robot 612 will follow the heading until an event occurs at or near doorway 632b. Again, the event may be detecting a strength of signal 622b, indicating that the robot is directly below the transmitter, detecting an overlap signal from 624b, or detecting a new signal 622c. The robot 612 may again perform any of the behaviors described above, check and store its battery level, change cleaning characteristics, etc.
Once in room C, the robot 612″ may again, as required, begin to follow the heading provided by signal 622c. Again, at or near doorway 632c to room D, an event may direct the robot to perform any number of behaviors. Alternatively, the robot may move directly to charging station 622, guided by emitted signal 626 or some other signal or program.
During its return to base station, as the robot 612 moves from room A to room B to room C and so on, it detects and stores the information about each coded signal that it detects along its route. By storing this information, the robot creates a map, using the coded signals as guideposts, allowing it to return to its starting location in the future. After charging, the robot can return to the room it was working in prior to returning to its base, by comparing the detected signals to those stored in its memory.
Lastly,
Accordingly, the navigational system is operationally very robust and is adapted to compensate for substantial variances in infrared energy. For example, if the robot is operating in an environment with high base infrared readings (such as a space with a large number of fluorescent lighting fixtures or windows that allow entry of sunlight), the robot distinguishes the infrared signals generated by the transmitter from the infrared noise present in the space. Similarly, the receiver distinguishes between other off-band signals, such as infrared remote controls. In such cases, establishing an initial threshold value of infrared energy and emitting a predefined, known, modulating infrared signal from the transmitter overcomes these disturbances. Additionally, the transmitter can be tuned to emit a sufficiently strong infrared signal to accommodate surfaces with varied reflectivities.
While there have been described herein what are to be considered exemplary and preferred embodiments of the present invention, other modifications of the invention will become apparent to those skilled in the art from the teachings herein. The particular methods, configurations, and geometries disclosed herein are exemplary in nature and are not to be considered limiting.
This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. §120 from, U.S. patent application Ser. No. 12/415,512, filed on Mar. 31, 2009, which claims priority under 35 U.S.C. §120 from U.S. patent application Ser. No. 11/176,048, filed on Jul. 7, 2005, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application 60/586,046, filed on Jul. 7, 2004. The disclosures of these prior applications are considered part of the disclosure of this application and are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1755054 | Darst | Apr 1930 | A |
1780221 | Buchmann | Nov 1930 | A |
1970302 | Gerhardt | Aug 1934 | A |
2136324 | John | Nov 1938 | A |
2302111 | Dow et al. | Nov 1942 | A |
2353621 | Sav et al. | Jul 1944 | A |
2770825 | Pullen | Nov 1956 | A |
3119369 | Harland et al. | Jan 1964 | A |
3166138 | Dunn | Jan 1965 | A |
3333564 | Waters | Aug 1967 | A |
3375375 | Abbey et al. | Mar 1968 | A |
3381652 | Schaefer et al. | May 1968 | A |
3457575 | Bienek | Jul 1969 | A |
3550714 | Bellinger | Dec 1970 | A |
3569727 | Aggarwal et al. | Mar 1971 | A |
3674316 | De Brey | Jul 1972 | A |
3678882 | Kinsella | Jul 1972 | A |
3744586 | Leinauer | Jul 1973 | A |
3756667 | Bombardier et al. | Sep 1973 | A |
3809004 | Leonheart | May 1974 | A |
3816004 | Bignardi | Jun 1974 | A |
3845831 | James | Nov 1974 | A |
RE28268 | Autrand | Dec 1974 | E |
3853086 | Asplund | Dec 1974 | A |
3863285 | Hukuba | Feb 1975 | A |
3888181 | Kups | Jun 1975 | A |
3937174 | Haaga | Feb 1976 | A |
3952361 | Wilkins | Apr 1976 | A |
3989311 | Debrey | Nov 1976 | A |
3989931 | Phillips | Nov 1976 | A |
4004313 | Capra | Jan 1977 | A |
4012681 | Finger et al. | Mar 1977 | A |
4070170 | Leinfelt | Jan 1978 | A |
4099284 | Shinozaki et al. | Jul 1978 | A |
4119900 | Kremnitz | Oct 1978 | A |
4175589 | Nakamura et al. | Nov 1979 | A |
4175892 | De | Nov 1979 | A |
4196727 | Verkaart et al. | Apr 1980 | A |
4198727 | Farmer | Apr 1980 | A |
4199838 | Simonsson | Apr 1980 | A |
4209254 | Reymond et al. | Jun 1980 | A |
D258901 | Keyworth | Apr 1981 | S |
4297578 | Carter | Oct 1981 | A |
4306329 | Yokoi | Dec 1981 | A |
4309758 | Halsall et al. | Jan 1982 | A |
4328545 | Halsall et al. | May 1982 | A |
4367403 | Miller | Jan 1983 | A |
4369543 | Chen et al. | Jan 1983 | A |
4401909 | Gorsek | Aug 1983 | A |
4416033 | Specht | Nov 1983 | A |
4445245 | Lu | May 1984 | A |
4465370 | Yuasa et al. | Aug 1984 | A |
4477998 | You | Oct 1984 | A |
4481692 | Kurz | Nov 1984 | A |
4482960 | Pryor | Nov 1984 | A |
4492058 | Goldfarb et al. | Jan 1985 | A |
4513469 | Godfrey et al. | Apr 1985 | A |
D278732 | Ohkado | May 1985 | S |
4518437 | Sommer | May 1985 | A |
4534637 | Suzuki et al. | Aug 1985 | A |
4556313 | Miller et al. | Dec 1985 | A |
4575211 | Matsumura et al. | Mar 1986 | A |
4580311 | Kurz | Apr 1986 | A |
4584704 | Ferren | Apr 1986 | A |
4601082 | Kurz | Jul 1986 | A |
4618213 | Chen | Oct 1986 | A |
4620285 | Perdue | Oct 1986 | A |
4624026 | Olson et al. | Nov 1986 | A |
4626995 | Lofgren et al. | Dec 1986 | A |
4628453 | Kamejima et al. | Dec 1986 | A |
4628454 | Ito | Dec 1986 | A |
4638445 | Mattaboni | Jan 1987 | A |
4644156 | Takahashi et al. | Feb 1987 | A |
4649504 | Krouglicof et al. | Mar 1987 | A |
4652917 | Miller | Mar 1987 | A |
4654492 | Koerner et al. | Mar 1987 | A |
4654924 | Getz et al. | Apr 1987 | A |
4660969 | Sorimachi et al. | Apr 1987 | A |
4662854 | Fang | May 1987 | A |
4674048 | Okumura | Jun 1987 | A |
4679152 | Perdue | Jul 1987 | A |
4680827 | Hummel | Jul 1987 | A |
4696074 | Cavalli | Sep 1987 | A |
D292223 | Trumbull | Oct 1987 | S |
4700301 | Dyke | Oct 1987 | A |
4700427 | Knepper | Oct 1987 | A |
4703820 | Reinaud | Nov 1987 | A |
4710020 | Maddox et al. | Dec 1987 | A |
4716621 | Zoni | Jan 1988 | A |
4728801 | O'Connor | Mar 1988 | A |
4733343 | Yoneda et al. | Mar 1988 | A |
4733430 | Westergren | Mar 1988 | A |
4733431 | Martin | Mar 1988 | A |
4735136 | Lee et al. | Apr 1988 | A |
4735138 | Gawler et al. | Apr 1988 | A |
4748336 | Fujie et al. | May 1988 | A |
4748833 | Nagasawa | Jun 1988 | A |
4756049 | Uehara | Jul 1988 | A |
4767213 | Hummel | Aug 1988 | A |
4769700 | Pryor | Sep 1988 | A |
4777416 | George et al. | Oct 1988 | A |
D298766 | Tanno et al. | Nov 1988 | S |
4782550 | Jacobs | Nov 1988 | A |
4796198 | Boultinghouse et al. | Jan 1989 | A |
4806751 | Abe et al. | Feb 1989 | A |
4811228 | Hyyppa | Mar 1989 | A |
4813906 | Matsuyama et al. | Mar 1989 | A |
4815157 | Tsuchiya | Mar 1989 | A |
4817000 | Eberhardt | Mar 1989 | A |
4818875 | Weiner | Apr 1989 | A |
4829442 | Kadonoff et al. | May 1989 | A |
4829626 | Harkonen et al. | May 1989 | A |
4832098 | Palinkas et al. | May 1989 | A |
4851661 | Everett | Jul 1989 | A |
4854000 | Takimoto | Aug 1989 | A |
4854006 | Nishimura et al. | Aug 1989 | A |
4855915 | Dallaire | Aug 1989 | A |
4857912 | Everett et al. | Aug 1989 | A |
4858132 | Holmquist | Aug 1989 | A |
4862047 | Suzuki et al. | Aug 1989 | A |
4867570 | Sorimachi et al. | Sep 1989 | A |
4868752 | Fujii et al. | Sep 1989 | A |
4880474 | Koharagi et al. | Nov 1989 | A |
4887415 | Martin | Dec 1989 | A |
4891762 | Chotiros | Jan 1990 | A |
4893025 | Lee | Jan 1990 | A |
4901394 | Nakamura et al. | Feb 1990 | A |
4905151 | Weiman et al. | Feb 1990 | A |
4912643 | Beirne | Mar 1990 | A |
4918441 | Bohman | Apr 1990 | A |
4918607 | Wible | Apr 1990 | A |
4919224 | Shyu et al. | Apr 1990 | A |
4919489 | Kopsco | Apr 1990 | A |
4920060 | Parrent et al. | Apr 1990 | A |
4920605 | Takashima | May 1990 | A |
4933864 | Evans et al. | Jun 1990 | A |
4937912 | Kurz | Jul 1990 | A |
4947094 | Dyer et al. | Aug 1990 | A |
4953253 | Fukuda et al. | Sep 1990 | A |
4954962 | Evans, Jr. et al. | Sep 1990 | A |
4955714 | Stotler et al. | Sep 1990 | A |
4956891 | Wulff | Sep 1990 | A |
4961303 | McCarty et al. | Oct 1990 | A |
4961304 | Ovsborn et al. | Oct 1990 | A |
4962453 | Pong et al. | Oct 1990 | A |
4971591 | Raviv et al. | Nov 1990 | A |
4973912 | Kaminski et al. | Nov 1990 | A |
4974283 | Holsten et al. | Dec 1990 | A |
4977618 | Allen | Dec 1990 | A |
4977639 | Takahashi et al. | Dec 1990 | A |
4986663 | Cecchi et al. | Jan 1991 | A |
5001635 | Yasutomi et al. | Mar 1991 | A |
5002145 | Wakaumi et al. | Mar 1991 | A |
5005128 | Robins et al. | Apr 1991 | A |
5012886 | Jonas et al. | May 1991 | A |
5018240 | Holman | May 1991 | A |
5020186 | Lessig et al. | Jun 1991 | A |
5022812 | Coughlan et al. | Jun 1991 | A |
5023788 | Kitazume et al. | Jun 1991 | A |
5024529 | Svetkoff et al. | Jun 1991 | A |
D318500 | Malewicki et al. | Jul 1991 | S |
5032775 | Mizuno et al. | Jul 1991 | A |
5033151 | Kraft et al. | Jul 1991 | A |
5033291 | Podoloff et al. | Jul 1991 | A |
5040116 | Evans et al. | Aug 1991 | A |
5045769 | Everett | Sep 1991 | A |
5049802 | Mintus et al. | Sep 1991 | A |
5051906 | Evans et al. | Sep 1991 | A |
5062819 | Mallory | Nov 1991 | A |
5070567 | Holland | Dec 1991 | A |
5084934 | Lessig et al. | Feb 1992 | A |
5086535 | Grossmeyer et al. | Feb 1992 | A |
5090321 | Abouav | Feb 1992 | A |
5093955 | Blehert et al. | Mar 1992 | A |
5094311 | Akeel | Mar 1992 | A |
5105502 | Takashima | Apr 1992 | A |
5105550 | Shenoha | Apr 1992 | A |
5109566 | Kobayashi et al. | May 1992 | A |
5111401 | Everett, Jr. et al. | May 1992 | A |
5115538 | Cochran et al. | May 1992 | A |
5127128 | Lee | Jul 1992 | A |
5136675 | Hodson | Aug 1992 | A |
5136750 | Takashima et al. | Aug 1992 | A |
5142985 | Stearns et al. | Sep 1992 | A |
5144471 | Takanashi et al. | Sep 1992 | A |
5144714 | Mori et al. | Sep 1992 | A |
5144715 | Matsuyo et al. | Sep 1992 | A |
5152028 | Hirano | Oct 1992 | A |
5152202 | Strauss | Oct 1992 | A |
5155684 | Burke et al. | Oct 1992 | A |
5163202 | Kawakami et al. | Nov 1992 | A |
5163320 | Goshima et al. | Nov 1992 | A |
5164579 | Pryor et al. | Nov 1992 | A |
5165064 | Mattaboni | Nov 1992 | A |
5170352 | McTamaney et al. | Dec 1992 | A |
5173881 | Sindle | Dec 1992 | A |
5182833 | Yamaguchi et al. | Feb 1993 | A |
5187662 | Kamimura et al. | Feb 1993 | A |
5202742 | Frank et al. | Apr 1993 | A |
5204814 | Noonan et al. | Apr 1993 | A |
5206500 | Decker et al. | Apr 1993 | A |
5208521 | Aoyama | May 1993 | A |
5216777 | Moro et al. | Jun 1993 | A |
5227985 | DeMenthon | Jul 1993 | A |
5233682 | Abe et al. | Aug 1993 | A |
5239720 | Wood et al. | Aug 1993 | A |
5251358 | Moro et al. | Oct 1993 | A |
5261139 | Lewis | Nov 1993 | A |
5276618 | Everett | Jan 1994 | A |
5276939 | Uenishi | Jan 1994 | A |
5277064 | Knigga et al. | Jan 1994 | A |
5279672 | Betker et al. | Jan 1994 | A |
5284452 | Corona | Feb 1994 | A |
5284522 | Kobayashi et al. | Feb 1994 | A |
5293955 | Lee | Mar 1994 | A |
D345707 | Alister | Apr 1994 | S |
5303448 | Hennessey et al. | Apr 1994 | A |
5307273 | Oh et al. | Apr 1994 | A |
5309592 | Hiratsuka | May 1994 | A |
5310379 | Hippely et al. | May 1994 | A |
5315227 | Pierson et al. | May 1994 | A |
5319827 | Yang | Jun 1994 | A |
5319828 | Waldhauser et al. | Jun 1994 | A |
5321614 | Ashworth | Jun 1994 | A |
5323483 | Baeg | Jun 1994 | A |
5324948 | Dudar et al. | Jun 1994 | A |
5341186 | Kato | Aug 1994 | A |
5341540 | Soupert et al. | Aug 1994 | A |
5341549 | Wirtz et al. | Aug 1994 | A |
5345649 | Whitlow | Sep 1994 | A |
5353224 | Lee et al. | Oct 1994 | A |
5363305 | Cox et al. | Nov 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5369347 | Yoo | Nov 1994 | A |
5369838 | Wood et al. | Dec 1994 | A |
5386862 | Glover et al. | Feb 1995 | A |
5399951 | Lavallee et al. | Mar 1995 | A |
5400244 | Watanabe et al. | Mar 1995 | A |
5404612 | Ishikawa | Apr 1995 | A |
5410479 | Coker | Apr 1995 | A |
5435405 | Schempf et al. | Jul 1995 | A |
5440216 | Kim | Aug 1995 | A |
5442358 | Keeler et al. | Aug 1995 | A |
5444965 | Colens | Aug 1995 | A |
5446356 | Kim | Aug 1995 | A |
5446445 | Bloomfield et al. | Aug 1995 | A |
5451135 | Schempf et al. | Sep 1995 | A |
5454129 | Kell | Oct 1995 | A |
5455982 | Armstrong et al. | Oct 1995 | A |
5465525 | Mifune et al. | Nov 1995 | A |
5465619 | Sotack et al. | Nov 1995 | A |
5467273 | Faibish et al. | Nov 1995 | A |
5471560 | Allard et al. | Nov 1995 | A |
5491670 | Weber | Feb 1996 | A |
5497529 | Boesi | Mar 1996 | A |
5498948 | Bruni et al. | Mar 1996 | A |
5502638 | Takenaka | Mar 1996 | A |
5505072 | Oreper | Apr 1996 | A |
5507067 | Hoekstra et al. | Apr 1996 | A |
5510893 | Suzuki | Apr 1996 | A |
5511147 | Abdel-Malek | Apr 1996 | A |
5515572 | Hoekstra et al. | May 1996 | A |
5525883 | Avitzour | Jun 1996 | A |
5534762 | Kim | Jul 1996 | A |
5537017 | Feiten et al. | Jul 1996 | A |
5537711 | Tseng | Jul 1996 | A |
5539953 | Kurz | Jul 1996 | A |
5542146 | Hoekstra et al. | Aug 1996 | A |
5542148 | Young | Aug 1996 | A |
5546631 | Chambon | Aug 1996 | A |
5548511 | Bancroft | Aug 1996 | A |
5551525 | Pack et al. | Sep 1996 | A |
5553349 | Kilstrom et al. | Sep 1996 | A |
5555587 | Guha | Sep 1996 | A |
5560077 | Crotchett | Oct 1996 | A |
5568589 | Hwang | Oct 1996 | A |
D375592 | Ljunggren | Nov 1996 | S |
5608306 | Rybeck et al. | Mar 1997 | A |
5608894 | Kawakami et al. | Mar 1997 | A |
5608944 | Gordon | Mar 1997 | A |
5610488 | Miyazawa | Mar 1997 | A |
5611106 | Wulff | Mar 1997 | A |
5611108 | Knowlton et al. | Mar 1997 | A |
5613261 | Kawakami et al. | Mar 1997 | A |
5613269 | Miwa | Mar 1997 | A |
5621291 | Lee | Apr 1997 | A |
5622236 | Azumi et al. | Apr 1997 | A |
5634237 | Paranjpe | Jun 1997 | A |
5634239 | Tuvin et al. | Jun 1997 | A |
5636402 | Kubo et al. | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5646494 | Han | Jul 1997 | A |
5647554 | Ikegami et al. | Jul 1997 | A |
5650702 | Azumi | Jul 1997 | A |
5652489 | Kawakami | Jul 1997 | A |
5682313 | Edlund et al. | Oct 1997 | A |
5682839 | Grimsley et al. | Nov 1997 | A |
5696675 | Nakamura et al. | Dec 1997 | A |
5698861 | Oh | Dec 1997 | A |
5709007 | Chiang | Jan 1998 | A |
5710506 | Broell et al. | Jan 1998 | A |
5714119 | Kawagoe et al. | Feb 1998 | A |
5717169 | Liang et al. | Feb 1998 | A |
5717484 | Hamaguchi et al. | Feb 1998 | A |
5720077 | Nakamura et al. | Feb 1998 | A |
5732401 | Conway | Mar 1998 | A |
5735959 | Kubo et al. | Apr 1998 | A |
5745235 | Vercammen et al. | Apr 1998 | A |
5752871 | Tsuzuki | May 1998 | A |
5756904 | Oreper et al. | May 1998 | A |
5761762 | Kubo | Jun 1998 | A |
5764888 | Bolan et al. | Jun 1998 | A |
5767437 | Rogers | Jun 1998 | A |
5767960 | Orman | Jun 1998 | A |
5777596 | Herbert | Jul 1998 | A |
5778486 | Kim | Jul 1998 | A |
5781697 | Jeong | Jul 1998 | A |
5781960 | Kilstrom et al. | Jul 1998 | A |
5786602 | Pryor et al. | Jul 1998 | A |
5787545 | Colens | Aug 1998 | A |
5793900 | Nourbakhsh et al. | Aug 1998 | A |
5794297 | Muta | Aug 1998 | A |
5812267 | Everett et al. | Sep 1998 | A |
5814808 | Takada et al. | Sep 1998 | A |
5815880 | Nakanishi | Oct 1998 | A |
5815884 | Imamura et al. | Oct 1998 | A |
5819008 | Asama et al. | Oct 1998 | A |
5819360 | Fujii | Oct 1998 | A |
5819936 | Saveliev et al. | Oct 1998 | A |
5820821 | Kawagoe et al. | Oct 1998 | A |
5821730 | Drapkin | Oct 1998 | A |
5825981 | Matsuda | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5831597 | West et al. | Nov 1998 | A |
5839156 | Park et al. | Nov 1998 | A |
5839532 | Yoshiji et al. | Nov 1998 | A |
5841259 | Kim et al. | Nov 1998 | A |
5867800 | Leif | Feb 1999 | A |
5869910 | Colens | Feb 1999 | A |
5896611 | Haaga | Apr 1999 | A |
5903124 | Kawakami | May 1999 | A |
5905209 | Oreper | May 1999 | A |
5907886 | Buscher | Jun 1999 | A |
5910700 | Crotzer | Jun 1999 | A |
5911260 | Suzuki | Jun 1999 | A |
5911767 | Garibotto et al. | Jun 1999 | A |
5916008 | Wong | Jun 1999 | A |
5924167 | Wright et al. | Jul 1999 | A |
5926909 | McGee | Jul 1999 | A |
5933102 | Miller et al. | Aug 1999 | A |
5933913 | Wright et al. | Aug 1999 | A |
5935179 | Kleiner et al. | Aug 1999 | A |
5940346 | Sadowsky et al. | Aug 1999 | A |
5940927 | Haegermarck et al. | Aug 1999 | A |
5940930 | Oh et al. | Aug 1999 | A |
5942869 | Katou et al. | Aug 1999 | A |
5943730 | Boomgaarden | Aug 1999 | A |
5943733 | Tagliaferri | Aug 1999 | A |
5947225 | Kawakami et al. | Sep 1999 | A |
5950408 | Schaedler | Sep 1999 | A |
5959423 | Nakanishi et al. | Sep 1999 | A |
5968281 | Wright et al. | Oct 1999 | A |
5974348 | Rocks | Oct 1999 | A |
5974365 | Mitchell | Oct 1999 | A |
5983448 | Wright et al. | Nov 1999 | A |
5984880 | Lander et al. | Nov 1999 | A |
5989700 | Krivopal | Nov 1999 | A |
5991951 | Kubo et al. | Nov 1999 | A |
5995883 | Nishikado | Nov 1999 | A |
5995884 | Allen et al. | Nov 1999 | A |
5996167 | Close | Dec 1999 | A |
5998953 | Nakamura et al. | Dec 1999 | A |
5998971 | Corbridge | Dec 1999 | A |
6000088 | Wright et al. | Dec 1999 | A |
6009358 | Angott et al. | Dec 1999 | A |
6009359 | El-Hakim et al. | Dec 1999 | A |
6021545 | Delgado et al. | Feb 2000 | A |
6023813 | Thatcher et al. | Feb 2000 | A |
6023814 | Imamura | Feb 2000 | A |
6025687 | Himeda et al. | Feb 2000 | A |
6026539 | Mouw et al. | Feb 2000 | A |
6030464 | Azevedo | Feb 2000 | A |
6030465 | Marcussen et al. | Feb 2000 | A |
6032542 | Warnick et al. | Mar 2000 | A |
6036572 | Sze | Mar 2000 | A |
6038501 | Kawakami | Mar 2000 | A |
6040669 | Hog | Mar 2000 | A |
6041471 | Charky et al. | Mar 2000 | A |
6041472 | Kasen et al. | Mar 2000 | A |
6046800 | Ohtomo et al. | Apr 2000 | A |
6049620 | Dickinson et al. | Apr 2000 | A |
6052821 | Chouly et al. | Apr 2000 | A |
6055042 | Sarangapani | Apr 2000 | A |
6055702 | Imamura et al. | May 2000 | A |
6061868 | Moritsch et al. | May 2000 | A |
6065182 | Wright et al. | May 2000 | A |
6073432 | Schaedler | Jun 2000 | A |
6076025 | Ueno et al. | Jun 2000 | A |
6076026 | Jambhekar et al. | Jun 2000 | A |
6076226 | Reed | Jun 2000 | A |
6076227 | Schallig et al. | Jun 2000 | A |
6081257 | Zeller | Jun 2000 | A |
6088020 | Mor | Jul 2000 | A |
6094775 | Behmer | Aug 2000 | A |
6099091 | Campbell | Aug 2000 | A |
6101671 | Wright et al. | Aug 2000 | A |
6108031 | King et al. | Aug 2000 | A |
6108067 | Okamoto | Aug 2000 | A |
6108076 | Hanseder | Aug 2000 | A |
6108269 | Kabel | Aug 2000 | A |
6108597 | Kirchner et al. | Aug 2000 | A |
6112143 | Allen et al. | Aug 2000 | A |
6112996 | Matsuo | Sep 2000 | A |
6119057 | Kawagoe | Sep 2000 | A |
6122798 | Kobayashi et al. | Sep 2000 | A |
6124694 | Bancroft et al. | Sep 2000 | A |
6125498 | Roberts et al. | Oct 2000 | A |
6131237 | Kasper et al. | Oct 2000 | A |
6138063 | Himeda | Oct 2000 | A |
6142252 | Kinto et al. | Nov 2000 | A |
6146278 | Kobayashi | Nov 2000 | A |
6154279 | Thayer | Nov 2000 | A |
6154694 | Aoki et al. | Nov 2000 | A |
6160479 | Ahlen et al. | Dec 2000 | A |
6167332 | Kurtzberg et al. | Dec 2000 | A |
6167587 | Kasper et al. | Jan 2001 | B1 |
6192548 | Huffman | Feb 2001 | B1 |
6216307 | Kaleta et al. | Apr 2001 | B1 |
6220865 | Macri et al. | Apr 2001 | B1 |
6226830 | Hendriks et al. | May 2001 | B1 |
6230362 | Kasper et al. | May 2001 | B1 |
6237741 | Guidetti | May 2001 | B1 |
6240342 | Fiegert et al. | May 2001 | B1 |
6243913 | Frank et al. | Jun 2001 | B1 |
6255793 | Peless et al. | Jul 2001 | B1 |
6259979 | Holmquist | Jul 2001 | B1 |
6261379 | Conrad et al. | Jul 2001 | B1 |
6263539 | Baig | Jul 2001 | B1 |
6263989 | Won | Jul 2001 | B1 |
6272936 | Oreper et al. | Aug 2001 | B1 |
6276478 | Hopkins et al. | Aug 2001 | B1 |
6278918 | Dickson et al. | Aug 2001 | B1 |
6282526 | Ganesh | Aug 2001 | B1 |
6283034 | Miles | Sep 2001 | B1 |
6285778 | Nakajima et al. | Sep 2001 | B1 |
6285930 | Dickson et al. | Sep 2001 | B1 |
6300737 | Bergvall et al. | Oct 2001 | B1 |
6321337 | Reshef et al. | Nov 2001 | B1 |
6321515 | Colens | Nov 2001 | B1 |
6323570 | Nishimura et al. | Nov 2001 | B1 |
6324714 | Walz et al. | Dec 2001 | B1 |
6327741 | Reed | Dec 2001 | B1 |
6332400 | Meyer | Dec 2001 | B1 |
6339735 | Peless et al. | Jan 2002 | B1 |
6362875 | Burkley | Mar 2002 | B1 |
6370453 | Sommer | Apr 2002 | B2 |
6374155 | Wallach et al. | Apr 2002 | B1 |
6374157 | Takamura | Apr 2002 | B1 |
6381802 | Park | May 2002 | B2 |
6385515 | Dickson et al. | May 2002 | B1 |
6388013 | Saraf et al. | May 2002 | B1 |
6389329 | Colens | May 2002 | B1 |
6400048 | Nishimura et al. | Jun 2002 | B1 |
6401294 | Kasper | Jun 2002 | B2 |
6408226 | Byrne et al. | Jun 2002 | B1 |
6412141 | Kasper et al. | Jul 2002 | B2 |
6415203 | Inoue et al. | Jul 2002 | B1 |
6421870 | Basham et al. | Jul 2002 | B1 |
6427285 | Legatt et al. | Aug 2002 | B1 |
6430471 | Kintou et al. | Aug 2002 | B1 |
6431296 | Won | Aug 2002 | B1 |
6437227 | Theimer | Aug 2002 | B1 |
6437465 | Nishimura et al. | Aug 2002 | B1 |
6438456 | Feddema et al. | Aug 2002 | B1 |
6438793 | Miner et al. | Aug 2002 | B1 |
6442476 | Poropat | Aug 2002 | B1 |
6443509 | Levin et al. | Sep 2002 | B1 |
6444003 | Sutcliffe | Sep 2002 | B1 |
6446302 | Kasper et al. | Sep 2002 | B1 |
6454036 | Airey et al. | Sep 2002 | B1 |
D464091 | Christianson | Oct 2002 | S |
6457206 | Judson | Oct 2002 | B1 |
6459955 | Bartsch et al. | Oct 2002 | B1 |
6463368 | Feiten et al. | Oct 2002 | B1 |
6465982 | Bergvall et al. | Oct 2002 | B1 |
6473167 | Odell | Oct 2002 | B1 |
6480762 | Uchikubo et al. | Nov 2002 | B1 |
6481515 | Kirkpatrick et al. | Nov 2002 | B1 |
6490539 | Dickson et al. | Dec 2002 | B1 |
6491127 | Holmberg et al. | Dec 2002 | B1 |
6493612 | Bisset et al. | Dec 2002 | B1 |
6493613 | Peless et al. | Dec 2002 | B2 |
6496754 | Song et al. | Dec 2002 | B2 |
6496755 | Wallach et al. | Dec 2002 | B2 |
6502657 | Kerrebrock et al. | Jan 2003 | B2 |
6504610 | Bauer et al. | Jan 2003 | B1 |
6507773 | Parker et al. | Jan 2003 | B2 |
6525509 | Petersson et al. | Feb 2003 | B1 |
D471243 | Cioffi et al. | Mar 2003 | S |
6532404 | Colens et al. | Mar 2003 | B2 |
6535793 | Allard | Mar 2003 | B2 |
6540607 | Mokris et al. | Apr 2003 | B2 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6553612 | Dyson et al. | Apr 2003 | B1 |
6556722 | Russell et al. | Apr 2003 | B1 |
6556892 | Kuroki et al. | Apr 2003 | B2 |
6557104 | Vu et al. | Apr 2003 | B2 |
D474312 | Stephens et al. | May 2003 | S |
6563130 | Dworkowski et al. | May 2003 | B2 |
6571415 | Gerber et al. | Jun 2003 | B2 |
6571422 | Gordon et al. | Jun 2003 | B1 |
6572711 | Sclafani et al. | Jun 2003 | B2 |
6574536 | Kawagoe et al. | Jun 2003 | B1 |
6580246 | Jacobs | Jun 2003 | B2 |
6584376 | Van Kommer | Jun 2003 | B1 |
6586908 | Petersson et al. | Jul 2003 | B2 |
6587573 | Stam et al. | Jul 2003 | B1 |
6590222 | Bisset et al. | Jul 2003 | B1 |
6594551 | McKinney et al. | Jul 2003 | B2 |
6594844 | Jones | Jul 2003 | B2 |
D478884 | Slipy et al. | Aug 2003 | S |
6601265 | Burlington | Aug 2003 | B1 |
6604021 | Imai et al. | Aug 2003 | B2 |
6604022 | Parker et al. | Aug 2003 | B2 |
6605156 | Clark et al. | Aug 2003 | B1 |
6611120 | Song et al. | Aug 2003 | B2 |
6611734 | Parker et al. | Aug 2003 | B2 |
6611738 | Ruffner | Aug 2003 | B2 |
6615108 | Peless et al. | Sep 2003 | B1 |
6615885 | Ohm | Sep 2003 | B1 |
6622465 | Jerome et al. | Sep 2003 | B2 |
6624744 | Wilson et al. | Sep 2003 | B1 |
6625843 | Kim et al. | Sep 2003 | B2 |
6629028 | Paromtchik et al. | Sep 2003 | B2 |
6639659 | Granger | Oct 2003 | B2 |
6658325 | Zweig | Dec 2003 | B2 |
6658354 | Lin | Dec 2003 | B2 |
6658692 | Lenkiewicz et al. | Dec 2003 | B2 |
6658693 | Reed | Dec 2003 | B1 |
6661239 | Ozick | Dec 2003 | B1 |
6662889 | De Fazio et al. | Dec 2003 | B2 |
6668951 | Won | Dec 2003 | B2 |
6670817 | Fournier et al. | Dec 2003 | B2 |
6671592 | Bisset et al. | Dec 2003 | B1 |
6677938 | Maynard | Jan 2004 | B1 |
6687571 | Byrne et al. | Feb 2004 | B1 |
6690134 | Jones et al. | Feb 2004 | B1 |
6690993 | Foulke et al. | Feb 2004 | B2 |
6697147 | Ko et al. | Feb 2004 | B2 |
6711280 | Stafsudd et al. | Mar 2004 | B2 |
6732826 | Song et al. | May 2004 | B2 |
6737591 | Lapstun et al. | May 2004 | B1 |
6741054 | Koselka et al. | May 2004 | B2 |
6741364 | Lange et al. | May 2004 | B2 |
6748297 | Song et al. | Jun 2004 | B2 |
6756703 | Chang | Jun 2004 | B2 |
6760647 | Nourbakhsh et al. | Jul 2004 | B2 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6769004 | Barrett | Jul 2004 | B2 |
6774596 | Bisset | Aug 2004 | B1 |
6779380 | Nieuwkamp | Aug 2004 | B1 |
6781338 | Jones et al. | Aug 2004 | B2 |
6809490 | Jones et al. | Oct 2004 | B2 |
6810305 | Kirkpatrick | Oct 2004 | B2 |
6830120 | Yashima et al. | Dec 2004 | B1 |
6832407 | Salem et al. | Dec 2004 | B2 |
6836701 | McKee | Dec 2004 | B2 |
6841963 | Song et al. | Jan 2005 | B2 |
6845297 | Allard | Jan 2005 | B2 |
6856811 | Burdue et al. | Feb 2005 | B2 |
6859010 | Jeon et al. | Feb 2005 | B2 |
6859682 | Naka et al. | Feb 2005 | B2 |
6860206 | Rudakevych et al. | Mar 2005 | B1 |
6865447 | Lau et al. | Mar 2005 | B2 |
6870792 | Chiappetta | Mar 2005 | B2 |
6871115 | Huang et al. | Mar 2005 | B2 |
6883201 | Jones et al. | Apr 2005 | B2 |
6886651 | Slocum et al. | May 2005 | B1 |
6888333 | Laby | May 2005 | B2 |
6901624 | Mori et al. | Jun 2005 | B2 |
6906702 | Tanaka et al. | Jun 2005 | B1 |
6914403 | Tsurumi | Jul 2005 | B2 |
6917854 | Bayer | Jul 2005 | B2 |
6925357 | Wang et al. | Aug 2005 | B2 |
6925679 | Wallach et al. | Aug 2005 | B2 |
6929548 | Wang | Aug 2005 | B2 |
D510066 | Hickey et al. | Sep 2005 | S |
6938298 | Aasen | Sep 2005 | B2 |
6940291 | Ozick | Sep 2005 | B1 |
6941199 | Bottomley et al. | Sep 2005 | B1 |
6956348 | Landry et al. | Oct 2005 | B2 |
6957712 | Song et al. | Oct 2005 | B2 |
6960986 | Asama et al. | Nov 2005 | B2 |
6965209 | Jones et al. | Nov 2005 | B2 |
6965211 | Tsurumi | Nov 2005 | B2 |
6968592 | Takeuchi et al. | Nov 2005 | B2 |
6971140 | Kim | Dec 2005 | B2 |
6975246 | Trudeau | Dec 2005 | B1 |
6980229 | Ebersole et al. | Dec 2005 | B1 |
6985556 | Shanmugavel et al. | Jan 2006 | B2 |
6993954 | George et al. | Feb 2006 | B1 |
6999850 | McDonald | Feb 2006 | B2 |
7013527 | Thomas et al. | Mar 2006 | B2 |
7024278 | Chiappetta et al. | Apr 2006 | B2 |
7024280 | Parker et al. | Apr 2006 | B2 |
7027893 | Perry et al. | Apr 2006 | B2 |
7030768 | Wanie | Apr 2006 | B2 |
7031805 | Lee et al. | Apr 2006 | B2 |
7032469 | Bailey | Apr 2006 | B2 |
7053578 | Diehl et al. | May 2006 | B2 |
7054716 | McKee et al. | May 2006 | B2 |
5987383 | Keller et al. | Jun 2006 | A1 |
7055210 | Keppler et al. | Jun 2006 | B2 |
7057120 | Ma et al. | Jun 2006 | B2 |
7057643 | Iida et al. | Jun 2006 | B2 |
7065430 | Naka et al. | Jun 2006 | B2 |
7066291 | Martins et al. | Jun 2006 | B2 |
7069124 | Whittaker et al. | Jun 2006 | B1 |
7079923 | Abramson et al. | Jul 2006 | B2 |
7085623 | Siegers | Aug 2006 | B2 |
7085624 | Aldred et al. | Aug 2006 | B2 |
7113847 | Chmura et al. | Sep 2006 | B2 |
7133746 | Abramson et al. | Nov 2006 | B2 |
7142198 | Lee | Nov 2006 | B2 |
7148458 | Schell et al. | Dec 2006 | B2 |
7155308 | Jones | Dec 2006 | B2 |
7167775 | Abramson et al. | Jan 2007 | B2 |
7171285 | Kim et al. | Jan 2007 | B2 |
7173391 | Jones et al. | Feb 2007 | B2 |
7174238 | Zweig | Feb 2007 | B1 |
7188000 | Chiappetta et al. | Mar 2007 | B2 |
7193384 | Norman et al. | Mar 2007 | B1 |
7196487 | Jones et al. | Mar 2007 | B2 |
7201786 | Wegelin et al. | Apr 2007 | B2 |
7206677 | Huldén | Apr 2007 | B2 |
7211980 | Bruemmer et al. | May 2007 | B1 |
7225500 | Diehl et al. | Jun 2007 | B2 |
7246405 | Yan | Jul 2007 | B2 |
7248951 | Huldén | Jul 2007 | B2 |
7275280 | Haegermarck et al. | Oct 2007 | B2 |
7283892 | Boillot et al. | Oct 2007 | B1 |
7288912 | Landry et al. | Oct 2007 | B2 |
7318248 | Yan | Jan 2008 | B1 |
7320149 | Huffman et al. | Jan 2008 | B1 |
7324870 | Lee | Jan 2008 | B2 |
7328196 | Peters | Feb 2008 | B2 |
7332890 | Cohen et al. | Feb 2008 | B2 |
7352153 | Yan | Apr 2008 | B2 |
7359766 | Jeon et al. | Apr 2008 | B2 |
7360277 | Moshenrose et al. | Apr 2008 | B2 |
7363108 | Noda et al. | Apr 2008 | B2 |
7388879 | Sabe et al. | Jun 2008 | B2 |
7389166 | Harwig et al. | Jun 2008 | B2 |
7408157 | Yan | Aug 2008 | B2 |
7418762 | Arai et al. | Sep 2008 | B2 |
7430455 | Casey et al. | Sep 2008 | B2 |
7430462 | Chiu et al. | Sep 2008 | B2 |
7441298 | Svendsen et al. | Oct 2008 | B2 |
7444206 | Abramson et al. | Oct 2008 | B2 |
7448113 | Jones et al. | Nov 2008 | B2 |
7459871 | Landry et al. | Dec 2008 | B2 |
7467026 | Sakagami et al. | Dec 2008 | B2 |
7474941 | Kim et al. | Jan 2009 | B2 |
7503096 | Lin | Mar 2009 | B2 |
7515991 | Egawa et al. | Apr 2009 | B2 |
7555363 | Augenbraun et al. | Jun 2009 | B2 |
7557703 | Yamada et al. | Jul 2009 | B2 |
7568259 | Yan | Aug 2009 | B2 |
7571511 | Jones et al. | Aug 2009 | B2 |
7578020 | Jaworski et al. | Aug 2009 | B2 |
7600521 | Woo | Oct 2009 | B2 |
7603744 | Reindle | Oct 2009 | B2 |
7617557 | Reindle | Nov 2009 | B2 |
7620476 | Morse et al. | Nov 2009 | B2 |
7636982 | Jones et al. | Dec 2009 | B2 |
7647144 | Haegermarck | Jan 2010 | B2 |
7650666 | Jang | Jan 2010 | B2 |
7660650 | Kawagoe et al. | Feb 2010 | B2 |
7663333 | Jones et al. | Feb 2010 | B2 |
7693605 | Park | Apr 2010 | B2 |
7706917 | Chiappetta et al. | Apr 2010 | B1 |
7765635 | Park | Aug 2010 | B2 |
7801645 | Taylor et al. | Sep 2010 | B2 |
7805220 | Taylor et al. | Sep 2010 | B2 |
7809944 | Kawamoto | Oct 2010 | B2 |
7849555 | Hahm et al. | Dec 2010 | B2 |
7853645 | Brown et al. | Dec 2010 | B2 |
7920941 | Park et al. | Apr 2011 | B2 |
7937800 | Yan | May 2011 | B2 |
7957836 | Myeong et al. | Jun 2011 | B2 |
20010004719 | Sommer | Jun 2001 | A1 |
20010013929 | Torsten | Aug 2001 | A1 |
20010020200 | Das et al. | Sep 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010037163 | Allard | Nov 2001 | A1 |
20010043509 | Green et al. | Nov 2001 | A1 |
20010045883 | Holdaway et al. | Nov 2001 | A1 |
20010047231 | Peless et al. | Nov 2001 | A1 |
20010047895 | De Fazio et al. | Dec 2001 | A1 |
20020011367 | Kolesnik | Jan 2002 | A1 |
20020011813 | Koselka et al. | Jan 2002 | A1 |
20020016649 | Jones | Feb 2002 | A1 |
20020021219 | Edwards | Feb 2002 | A1 |
20020027652 | Paromtchik et al. | Mar 2002 | A1 |
20020036779 | Kiyoi et al. | Mar 2002 | A1 |
20020081937 | Yamada et al. | Jun 2002 | A1 |
20020095239 | Wallach et al. | Jul 2002 | A1 |
20020097400 | Jung et al. | Jul 2002 | A1 |
20020104963 | Mancevski | Aug 2002 | A1 |
20020108209 | Peterson | Aug 2002 | A1 |
20020112742 | Bredo et al. | Aug 2002 | A1 |
20020113973 | Ge | Aug 2002 | A1 |
20020116089 | Kirkpatrick | Aug 2002 | A1 |
20020120364 | Colens | Aug 2002 | A1 |
20020124343 | Reed | Sep 2002 | A1 |
20020153185 | Song et al. | Oct 2002 | A1 |
20020156556 | Ruffner | Oct 2002 | A1 |
20020159051 | Guo | Oct 2002 | A1 |
20020166193 | Kasper | Nov 2002 | A1 |
20020169521 | Goodman et al. | Nov 2002 | A1 |
20020173877 | Zweig | Nov 2002 | A1 |
20020189871 | Won | Dec 2002 | A1 |
20030009259 | Hattori et al. | Jan 2003 | A1 |
20030019071 | Field et al. | Jan 2003 | A1 |
20030023356 | Keable | Jan 2003 | A1 |
20030024986 | Mazz et al. | Feb 2003 | A1 |
20030025472 | Jones et al. | Feb 2003 | A1 |
20030028286 | Glenn et al. | Feb 2003 | A1 |
20030030399 | Jacobs | Feb 2003 | A1 |
20030058262 | Sato et al. | Mar 2003 | A1 |
20030060928 | Abramson et al. | Mar 2003 | A1 |
20030067451 | Tagg et al. | Apr 2003 | A1 |
20030097875 | Lentz et al. | May 2003 | A1 |
20030120389 | Abramson et al. | Jun 2003 | A1 |
20030124312 | Autumn | Jul 2003 | A1 |
20030126352 | Barrett | Jul 2003 | A1 |
20030137268 | Papanikolopoulos et al. | Jul 2003 | A1 |
20030146384 | Logsdon et al. | Aug 2003 | A1 |
20030192144 | Song et al. | Oct 2003 | A1 |
20030193657 | Uomori et al. | Oct 2003 | A1 |
20030216834 | Allard | Nov 2003 | A1 |
20030221114 | Hino et al. | Nov 2003 | A1 |
20030229421 | Chmura et al. | Dec 2003 | A1 |
20030229474 | Suzuki et al. | Dec 2003 | A1 |
20030233171 | Heiligensetzer | Dec 2003 | A1 |
20030233177 | Johnson et al. | Dec 2003 | A1 |
20030233870 | Mancevski | Dec 2003 | A1 |
20030233930 | Ozick | Dec 2003 | A1 |
20040016077 | Song et al. | Jan 2004 | A1 |
20040020000 | Jones | Feb 2004 | A1 |
20040030448 | Solomon | Feb 2004 | A1 |
20040030449 | Solomon | Feb 2004 | A1 |
20040030450 | Solomon | Feb 2004 | A1 |
20040030451 | Solomon | Feb 2004 | A1 |
20040030570 | Solomon | Feb 2004 | A1 |
20040030571 | Solomon | Feb 2004 | A1 |
20040031113 | Wosewick et al. | Feb 2004 | A1 |
20040049877 | Jones et al. | Mar 2004 | A1 |
20040055163 | McCambridge et al. | Mar 2004 | A1 |
20040068351 | Solomon | Apr 2004 | A1 |
20040068415 | Solomon | Apr 2004 | A1 |
20040068416 | Solomon | Apr 2004 | A1 |
20040074038 | Im et al. | Apr 2004 | A1 |
20040074044 | Diehl et al. | Apr 2004 | A1 |
20040076324 | Burl et al. | Apr 2004 | A1 |
20040083570 | Song et al. | May 2004 | A1 |
20040085037 | Jones et al. | May 2004 | A1 |
20040088079 | Lavarec et al. | May 2004 | A1 |
20040093122 | Galibraith | May 2004 | A1 |
20040098167 | Yi et al. | May 2004 | A1 |
20040111184 | Chiappetta et al. | Jun 2004 | A1 |
20040111821 | Lenkiewicz et al. | Jun 2004 | A1 |
20040113777 | Matsuhira et al. | Jun 2004 | A1 |
20040117064 | McDonald | Jun 2004 | A1 |
20040117846 | Karaoguz et al. | Jun 2004 | A1 |
20040118998 | Wingett et al. | Jun 2004 | A1 |
20040128028 | Miyamoto et al. | Jul 2004 | A1 |
20040133316 | Dean | Jul 2004 | A1 |
20040134336 | Solomon | Jul 2004 | A1 |
20040134337 | Solomon | Jul 2004 | A1 |
20040143919 | Wilder | Jul 2004 | A1 |
20040148419 | Chen et al. | Jul 2004 | A1 |
20040148731 | Damman et al. | Aug 2004 | A1 |
20040153212 | Profio et al. | Aug 2004 | A1 |
20040156541 | Jeon et al. | Aug 2004 | A1 |
20040158357 | Lee et al. | Aug 2004 | A1 |
20040181706 | Chen et al. | Sep 2004 | A1 |
20040187249 | Jones et al. | Sep 2004 | A1 |
20040187457 | Colens | Sep 2004 | A1 |
20040196451 | Aoyama | Oct 2004 | A1 |
20040200505 | Taylor et al. | Oct 2004 | A1 |
20040204792 | Taylor et al. | Oct 2004 | A1 |
20040210345 | Noda et al. | Oct 2004 | A1 |
20040210347 | Sawada et al. | Oct 2004 | A1 |
20040211444 | Taylor et al. | Oct 2004 | A1 |
20040221790 | Sinclair et al. | Nov 2004 | A1 |
20040236468 | Taylor et al. | Nov 2004 | A1 |
20040244138 | Taylor et al. | Dec 2004 | A1 |
20040255425 | Arai et al. | Dec 2004 | A1 |
20050000543 | Taylor et al. | Jan 2005 | A1 |
20050010330 | Abramson et al. | Jan 2005 | A1 |
20050010331 | Taylor et al. | Jan 2005 | A1 |
20050021181 | Kim et al. | Jan 2005 | A1 |
20050067994 | Jones et al. | Mar 2005 | A1 |
20050085947 | Aldred et al. | Apr 2005 | A1 |
20050137749 | Jeon et al. | Jun 2005 | A1 |
20050144751 | Kegg et al. | Jul 2005 | A1 |
20050150074 | Diehl et al. | Jul 2005 | A1 |
20050150519 | Keppler et al. | Jul 2005 | A1 |
20050154795 | Kuz et al. | Jul 2005 | A1 |
20050156562 | Cohen et al. | Jul 2005 | A1 |
20050165508 | Kanda et al. | Jul 2005 | A1 |
20050166354 | Uehigashi | Aug 2005 | A1 |
20050166355 | Tani | Aug 2005 | A1 |
20050172445 | Diehl et al. | Aug 2005 | A1 |
20050183229 | Uehigashi | Aug 2005 | A1 |
20050183230 | Uehigashi | Aug 2005 | A1 |
20050187678 | Myeong et al. | Aug 2005 | A1 |
20050192707 | Park et al. | Sep 2005 | A1 |
20050204717 | Colens | Sep 2005 | A1 |
20050209736 | Kawagoe | Sep 2005 | A1 |
20050211880 | Schell et al. | Sep 2005 | A1 |
20050212929 | Schell et al. | Sep 2005 | A1 |
20050213082 | DiBernardo et al. | Sep 2005 | A1 |
20050213109 | Schell et al. | Sep 2005 | A1 |
20050217042 | Reindle | Oct 2005 | A1 |
20050218852 | Landry et al. | Oct 2005 | A1 |
20050222933 | Wesby | Oct 2005 | A1 |
20050229340 | Sawalski et al. | Oct 2005 | A1 |
20050229355 | Crouch et al. | Oct 2005 | A1 |
20050235451 | Yan | Oct 2005 | A1 |
20050251292 | Casey et al. | Nov 2005 | A1 |
20050255425 | Pierson | Nov 2005 | A1 |
20050258154 | Blankenship et al. | Nov 2005 | A1 |
20050273967 | Taylor et al. | Dec 2005 | A1 |
20050288819 | de Guzman | Dec 2005 | A1 |
20060000050 | Cipolla et al. | Jan 2006 | A1 |
20060010638 | Shimizu et al. | Jan 2006 | A1 |
20060020369 | Taylor et al. | Jan 2006 | A1 |
20060020370 | Abramson | Jan 2006 | A1 |
20060021168 | Nishikawa | Feb 2006 | A1 |
20060025134 | Cho et al. | Feb 2006 | A1 |
20060037170 | Shimizu | Feb 2006 | A1 |
20060042042 | Mertes et al. | Mar 2006 | A1 |
20060044546 | Lewin et al. | Mar 2006 | A1 |
20060060216 | Woo | Mar 2006 | A1 |
20060061657 | Rew et al. | Mar 2006 | A1 |
20060064828 | Stein et al. | Mar 2006 | A1 |
20060087273 | Ko et al. | Apr 2006 | A1 |
20060089765 | Pack et al. | Apr 2006 | A1 |
20060100741 | Jung | May 2006 | A1 |
20060119839 | Bertin et al. | Jun 2006 | A1 |
20060143295 | Costa-Requena et al. | Jun 2006 | A1 |
20060146776 | Kim | Jul 2006 | A1 |
20060190133 | Konandreas et al. | Aug 2006 | A1 |
20060190146 | Morse et al. | Aug 2006 | A1 |
20060196003 | Song et al. | Sep 2006 | A1 |
20060220900 | Ceskutti et al. | Oct 2006 | A1 |
20060259194 | Chiu | Nov 2006 | A1 |
20060259494 | Watson et al. | Nov 2006 | A1 |
20060288519 | Jaworski et al. | Dec 2006 | A1 |
20060293787 | Kanda et al. | Dec 2006 | A1 |
20070006404 | Cheng et al. | Jan 2007 | A1 |
20070017061 | Yan | Jan 2007 | A1 |
20070028574 | Yan | Feb 2007 | A1 |
20070032904 | Kawagoe et al. | Feb 2007 | A1 |
20070042716 | Goodall et al. | Feb 2007 | A1 |
20070043459 | Abbott et al. | Feb 2007 | A1 |
20070061041 | Zweig | Mar 2007 | A1 |
20070114975 | Cohen et al. | May 2007 | A1 |
20070150096 | Yeh et al. | Jun 2007 | A1 |
20070157415 | Lee et al. | Jul 2007 | A1 |
20070157420 | Lee et al. | Jul 2007 | A1 |
20070179670 | Chiappetta et al. | Aug 2007 | A1 |
20070226949 | Hahm et al. | Oct 2007 | A1 |
20070234492 | Svendsen et al. | Oct 2007 | A1 |
20070244610 | Ozick et al. | Oct 2007 | A1 |
20070250212 | Halloran et al. | Oct 2007 | A1 |
20070266508 | Jones et al. | Nov 2007 | A1 |
20080007203 | Cohen et al. | Jan 2008 | A1 |
20080039974 | Sandin et al. | Feb 2008 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20080091304 | Ozick et al. | Apr 2008 | A1 |
20080184518 | Taylor | Aug 2008 | A1 |
20080276407 | Schnittman et al. | Nov 2008 | A1 |
20080281470 | Gilbert et al. | Nov 2008 | A1 |
20080282494 | Won et al. | Nov 2008 | A1 |
20080294288 | Yamauchi | Nov 2008 | A1 |
20080302586 | Yan | Dec 2008 | A1 |
20080307590 | Jones et al. | Dec 2008 | A1 |
20090007366 | Svendsen et al. | Jan 2009 | A1 |
20090038089 | Landry et al. | Feb 2009 | A1 |
20090049640 | Lee et al. | Feb 2009 | A1 |
20090055022 | Casey et al. | Feb 2009 | A1 |
20090102296 | Greene et al. | Apr 2009 | A1 |
20090292393 | Casey et al. | Nov 2009 | A1 |
20100011529 | Won et al. | Jan 2010 | A1 |
20100049365 | Jones et al. | Feb 2010 | A1 |
20100063628 | Landry et al. | Mar 2010 | A1 |
20100107355 | Won et al. | May 2010 | A1 |
20100257690 | Jones et al. | Oct 2010 | A1 |
20100257691 | Jones et al. | Oct 2010 | A1 |
20100263158 | Jones et al. | Oct 2010 | A1 |
20100268384 | Jones et al. | Oct 2010 | A1 |
20100312429 | Jones et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2003275566 | Jun 2004 | AU |
2128842 | Dec 1980 | DE |
3317376 | Nov 1984 | DE |
3536907 | Apr 1986 | DE |
3536907 | Feb 1989 | DE |
3404202 | Dec 1992 | DE |
199311014 | Oct 1993 | DE |
4338841 | May 1995 | DE |
4414683 | Oct 1995 | DE |
4338841 | Aug 1999 | DE |
19849978 | Feb 2001 | DE |
19849978 | Feb 2001 | DE |
10242257 | Apr 2003 | DE |
102004038074.0 | Jun 2005 | DE |
10357636 | Jul 2005 | DE |
102004041021 | Aug 2005 | DE |
102005046813 | Apr 2007 | DE |
198803389 | Dec 1988 | DK |
338988 | Dec 1998 | DK |
0265542 | Oct 1986 | EP |
0281085 | Mar 1988 | EP |
265542 | May 1988 | EP |
281085 | Sep 1988 | EP |
0294101 | Dec 1988 | EP |
0358628 | Sep 1989 | EP |
0358628 | Sep 1989 | EP |
307381 | Jul 1990 | EP |
358628 | May 1991 | EP |
437024 | Jul 1991 | EP |
0479273 | Jan 1992 | EP |
433697 | Dec 1992 | EP |
0554978 | Jan 1993 | EP |
479273 | May 1993 | EP |
294101 | Dec 1993 | EP |
554978 | Mar 1994 | EP |
615719 | Sep 1994 | EP |
861629 | Sep 1998 | EP |
792726 | Jun 1999 | EP |
930040 | Oct 1999 | EP |
845237 | Apr 2000 | EP |
1018315 | Jul 2000 | EP |
1172719 | Jan 2002 | EP |
1228734 | Jun 2003 | EP |
1331537 | Jul 2003 | EP |
1380245 | Jan 2004 | EP |
1380246 | Mar 2005 | EP |
1553472 | Jul 2005 | EP |
1557730 | Jul 2005 | EP |
1331537 | Aug 2005 | EP |
1642522 | Nov 2007 | EP |
2238196 | Nov 2006 | ES |
2601443 | Nov 1991 | FR |
2601443 | Jan 1998 | FR |
2828589 | Dec 2003 | FR |
702426 | Jan 1954 | GB |
2128842 | Apr 1986 | GB |
2213047 | Aug 1989 | GB |
2225221 | May 1990 | GB |
2267360 | Jan 1993 | GB |
2267360 | Dec 1993 | GB |
2284957 | Jun 1995 | GB |
2284957 | Jun 1995 | GB |
2267360 | Dec 1995 | GB |
2300082 | Oct 1996 | GB |
2283838 | Dec 1997 | GB |
2300082 | Sep 1999 | GB |
2404330 | Jul 2005 | GB |
2417354 | Feb 2006 | GB |
53021869 | Feb 1978 | JP |
53110257 | Sep 1978 | JP |
53110257 | Sep 1978 | JP |
57014726 | Jan 1982 | JP |
57064217 | Apr 1982 | JP |
57064217 | Apr 1982 | JP |
59005315 | Feb 1984 | JP |
59033511 | Mar 1984 | JP |
59094005 | May 1984 | JP |
59094005 | May 1984 | JP |
59099308 | Jun 1984 | JP |
59112311 | Jun 1984 | JP |
59120124 | Jul 1984 | JP |
59033511 | Aug 1984 | JP |
59131668 | Sep 1984 | JP |
59164973 | Sep 1984 | JP |
59164973 | Sep 1984 | JP |
59184917 | Oct 1984 | JP |
59184917 | Oct 1984 | JP |
2283343 | Nov 1984 | JP |
59212924 | Dec 1984 | JP |
59212924 | Dec 1984 | JP |
59226909 | Dec 1984 | JP |
59226909 | Dec 1984 | JP |
60089213 | May 1985 | JP |
60089213 | May 1985 | JP |
60211510 | Oct 1985 | JP |
60211510 | Oct 1985 | JP |
60259895 | Dec 1985 | JP |
61023221 | Jan 1986 | JP |
61023221 | Jan 1986 | JP |
61097712 | May 1986 | JP |
61097712 | May 1986 | JP |
61023221 | Jun 1986 | JP |
62070709 | Apr 1987 | JP |
62074018 | Apr 1987 | JP |
62120510 | Jun 1987 | JP |
62154008 | Jul 1987 | JP |
62164431 | Jul 1987 | JP |
62263507 | Nov 1987 | JP |
62263508 | Nov 1987 | JP |
62189057 | Dec 1987 | JP |
63079623 | Apr 1988 | JP |
63158032 | Jul 1988 | JP |
63183032 | Jul 1988 | JP |
63241610 | Oct 1988 | JP |
1162454 | Jun 1989 | JP |
2006312 | Jan 1990 | JP |
2026312 | Jun 1990 | JP |
2283343 | Nov 1990 | JP |
3051023 | Mar 1991 | JP |
3197758 | Aug 1991 | JP |
3197758 | Aug 1991 | JP |
3201903 | Sep 1991 | JP |
3201903 | Sep 1991 | JP |
4019586 | Jan 1992 | JP |
4019586 | Mar 1992 | JP |
4074285 | Mar 1992 | JP |
4084921 | Mar 1992 | JP |
5040519 | Feb 1993 | JP |
5042076 | Feb 1993 | JP |
5046246 | Feb 1993 | JP |
5023269 | Apr 1993 | JP |
5091604 | Apr 1993 | JP |
5150827 | Jun 1993 | JP |
5150827 | Jun 1993 | JP |
5150829 | Jun 1993 | JP |
5150829 | Jun 1993 | JP |
5046239 | Jul 1993 | JP |
5054620 | Jul 1993 | JP |
5257527 | Oct 1993 | JP |
5257527 | Oct 1993 | JP |
05257527 | Oct 1993 | JP |
5257533 | Oct 1993 | JP |
5285861 | Nov 1993 | JP |
05285861 | Nov 1993 | JP |
6003251 | Jan 1994 | JP |
6105781 | Apr 1994 | JP |
6137828 | May 1994 | JP |
6137828 | May 1994 | JP |
6293095 | Oct 1994 | JP |
6327598 | Nov 1994 | JP |
7059702 | Mar 1995 | JP |
7129239 | May 1995 | JP |
7222705 | Aug 1995 | JP |
7222705 | Aug 1995 | JP |
7270518 | Oct 1995 | JP |
7270518 | Oct 1995 | JP |
7281742 | Oct 1995 | JP |
7281752 | Oct 1995 | JP |
7295636 | Nov 1995 | JP |
7311041 | Nov 1995 | JP |
7313417 | Dec 1995 | JP |
7319542 | Dec 1995 | JP |
8000393 | Jan 1996 | JP |
8016241 | Jan 1996 | JP |
8016776 | Feb 1996 | JP |
3197758 | Mar 1996 | JP |
8063229 | Mar 1996 | JP |
8081325 | Mar 1996 | JP |
8083125 | Mar 1996 | JP |
8089449 | Apr 1996 | JP |
8089451 | Apr 1996 | JP |
2520732 | May 1996 | JP |
8123548 | May 1996 | JP |
8152916 | Jun 1996 | JP |
8152916 | Jun 1996 | JP |
8256960 | Oct 1996 | JP |
8263137 | Oct 1996 | JP |
8286741 | Nov 1996 | JP |
8286744 | Nov 1996 | JP |
8322774 | Dec 1996 | JP |
8322774 | Dec 1996 | JP |
8335112 | Dec 1996 | JP |
9043901 | Feb 1997 | JP |
9044240 | Feb 1997 | JP |
9044240 | Feb 1997 | JP |
9047413 | Feb 1997 | JP |
9066855 | Mar 1997 | JP |
9145309 | Jun 1997 | JP |
9145309 | Jun 1997 | JP |
9160644 | Jun 1997 | JP |
9160644 | Jun 1997 | JP |
09-185410 | Jul 1997 | JP |
9179625 | Jul 1997 | JP |
9179625 | Jul 1997 | JP |
9179685 | Jul 1997 | JP |
9185410 | Jul 1997 | JP |
9192069 | Jul 1997 | JP |
2555263 | Aug 1997 | JP |
9204223 | Aug 1997 | JP |
9206258 | Aug 1997 | JP |
9206258 | Aug 1997 | JP |
9233712 | Sep 1997 | JP |
09251318 | Sep 1997 | JP |
9251318 | Sep 1997 | JP |
9265319 | Oct 1997 | JP |
9269807 | Oct 1997 | JP |
9269810 | Oct 1997 | JP |
9319431 | Dec 1997 | JP |
9319432 | Dec 1997 | JP |
9319434 | Dec 1997 | JP |
9325812 | Dec 1997 | JP |
10055215 | Feb 1998 | JP |
10117973 | May 1998 | JP |
10117973 | May 1998 | JP |
10118963 | May 1998 | JP |
10177414 | Jun 1998 | JP |
10177414 | Jun 1998 | JP |
10214114 | Aug 1998 | JP |
10214114 | Aug 1998 | JP |
10228316 | Aug 1998 | JP |
10240342 | Sep 1998 | JP |
10260727 | Sep 1998 | JP |
10295595 | Nov 1998 | JP |
1015941 | Jan 1999 | JP |
11065655 | Mar 1999 | JP |
11085269 | Mar 1999 | JP |
11102219 | Apr 1999 | JP |
11102220 | Apr 1999 | JP |
11162454 | Jun 1999 | JP |
11174145 | Jul 1999 | JP |
11175149 | Jul 1999 | JP |
11178764 | Jul 1999 | JP |
11178765 | Jul 1999 | JP |
11212642 | Aug 1999 | JP |
11212642 | Aug 1999 | JP |
11213157 | Aug 1999 | JP |
11508810 | Aug 1999 | JP |
11248806 | Sep 1999 | JP |
11510935 | Sep 1999 | JP |
11282532 | Oct 1999 | JP |
11282533 | Oct 1999 | JP |
11295412 | Oct 1999 | JP |
11346964 | Dec 1999 | JP |
200004728 | Feb 2000 | JP |
2000056006 | Feb 2000 | JP |
2000056831 | Feb 2000 | JP |
2000066722 | Mar 2000 | JP |
2000075925 | Mar 2000 | JP |
10240343 | May 2000 | JP |
2000275321 | Oct 2000 | JP |
2000353014 | Dec 2000 | JP |
2000353014 | Dec 2000 | JP |
2001022443 | Jan 2001 | JP |
2001067588 | Mar 2001 | JP |
2001087182 | Apr 2001 | JP |
2001087182 | Apr 2001 | JP |
2001121455 | May 2001 | JP |
2001125641 | May 2001 | JP |
2001216482 | Aug 2001 | JP |
2001258807 | Sep 2001 | JP |
2001265437 | Sep 2001 | JP |
2001275908 | Oct 2001 | JP |
2001289939 | Oct 2001 | JP |
2001306170 | Nov 2001 | JP |
2001320781 | Nov 2001 | JP |
2001525567 | Dec 2001 | JP |
2002204768 | Jul 2002 | JP |
2002204769 | Jul 2002 | JP |
2002247510 | Aug 2002 | JP |
2002532178 | Oct 2002 | JP |
2002323925 | Nov 2002 | JP |
2002333920 | Nov 2002 | JP |
03356170 | Dec 2002 | JP |
2002355206 | Dec 2002 | JP |
2002360471 | Dec 2002 | JP |
2002360479 | Dec 2002 | JP |
2002360482 | Dec 2002 | JP |
2002366227 | Dec 2002 | JP |
2002369778 | Dec 2002 | JP |
2002369778 | Dec 2002 | JP |
2003005296 | Jan 2003 | JP |
2003010076 | Jan 2003 | JP |
2003010088 | Jan 2003 | JP |
2003015740 | Jan 2003 | JP |
2003028528 | Jan 2003 | JP |
03375843 | Feb 2003 | JP |
200305296 | Feb 2003 | JP |
2003036116 | Feb 2003 | JP |
2003047579 | Feb 2003 | JP |
2003505127 | Feb 2003 | JP |
2003061882 | Mar 2003 | JP |
2003084994 | Mar 2003 | JP |
2003167628 | Jun 2003 | JP |
2003-180586 | Jul 2003 | JP |
2003180578 | Jul 2003 | JP |
2003180586 | Jul 2003 | JP |
2003186539 | Jul 2003 | JP |
2003190064 | Jul 2003 | JP |
2003190064 | Jul 2003 | JP |
2003-241836 | Aug 2003 | JP |
2003241836 | Aug 2003 | JP |
2003262520 | Sep 2003 | JP |
2003285288 | Oct 2003 | JP |
2003304992 | Oct 2003 | JP |
2003310489 | Nov 2003 | JP |
2003310509 | Nov 2003 | JP |
2003330543 | Nov 2003 | JP |
2004123040 | Apr 2004 | JP |
2004148021 | May 2004 | JP |
2004160102 | Jun 2004 | JP |
2004166968 | Jun 2004 | JP |
2004174228 | Jun 2004 | JP |
2004198330 | Jul 2004 | JP |
2004198330 | Jul 2004 | JP |
2004219185 | Aug 2004 | JP |
2005118354 | May 2005 | JP |
2005135400 | May 2005 | JP |
2005211350 | Aug 2005 | JP |
2005224265 | Aug 2005 | JP |
2005230032 | Sep 2005 | JP |
2005245916 | Sep 2005 | JP |
2005296511 | Oct 2005 | JP |
2005346700 | Dec 2005 | JP |
2005352707 | Dec 2005 | JP |
2006043071 | Feb 2006 | JP |
2006155274 | Jun 2006 | JP |
2006164223 | Jun 2006 | JP |
2006227673 | Aug 2006 | JP |
2006227673 | Aug 2006 | JP |
2006247467 | Sep 2006 | JP |
2006260161 | Sep 2006 | JP |
2006293662 | Oct 2006 | JP |
2006296697 | Nov 2006 | JP |
2007034866 | Feb 2007 | JP |
2007213180 | Aug 2007 | JP |
04074285 | Apr 2008 | JP |
2009015611 | Jan 2009 | JP |
2010198552 | Sep 2010 | JP |
9526512 | Oct 1995 | WO |
WO9526512 | Oct 1995 | WO |
WO9530887 | Nov 1995 | WO |
9617258 | Jun 1996 | WO |
WO 9617258 | Jun 1996 | WO |
WO9617258 | Feb 1997 | WO |
WO9715224 | May 1997 | WO |
9741451 | Nov 1997 | WO |
WO9740734 | Nov 1997 | WO |
WO9741451 | Nov 1997 | WO |
WO9853456 | Nov 1998 | WO |
WO9905580 | Feb 1999 | WO |
WO9916078 | Apr 1999 | WO |
9928800 | Jun 1999 | WO |
WO9928800 | Jun 1999 | WO |
WO9938056 | Jul 1999 | WO |
WO9938237 | Jul 1999 | WO |
WO9943250 | Sep 1999 | WO |
WO9959042 | Nov 1999 | WO |
0004430 | Jan 2000 | WO |
WO0004430 | Apr 2000 | WO |
0038029 | Jun 2000 | WO |
WO0036962 | Jun 2000 | WO |
WO0038026 | Jun 2000 | WO |
WO0038028 | Jun 2000 | WO |
WO0038029 | Jun 2000 | WO |
WO0078410 | Dec 2000 | WO |
WO0106904 | Feb 2001 | WO |
WO0106905 | Jun 2001 | WO |
WO0180703 | Nov 2001 | WO |
WO0191623 | Dec 2001 | WO |
WO0239864 | May 2002 | WO |
WO0239868 | May 2002 | WO |
WO02058527 | Aug 2002 | WO |
WO02062194 | Aug 2002 | WO |
02071175 | Sep 2002 | WO |
02075350 | Sep 2002 | WO |
WO02071175 | Sep 2002 | WO |
WO02075350 | Sep 2002 | WO |
WO02067744 | Sep 2002 | WO |
WO02067745 | Sep 2002 | WO |
WO02067752 | Sep 2002 | WO |
WO02069774 | Sep 2002 | WO |
WO02075350 | Sep 2002 | WO |
WO02075356 | Sep 2002 | WO |
WO02075469 | Sep 2002 | WO |
WO02075470 | Sep 2002 | WO |
WO02081074 | Oct 2002 | WO |
WO03015220 | Feb 2003 | WO |
WO03024292 | Mar 2003 | WO |
WO02069775 | May 2003 | WO |
WO03040546 | May 2003 | WO |
WO03040845 | May 2003 | WO |
WO03040846 | May 2003 | WO |
WO03062850 | Jul 2003 | WO |
WO03062852 | Jul 2003 | WO |
WO02101477 | Oct 2003 | WO |
WO03026474 | Nov 2003 | WO |
2004006034 | Jan 2004 | WO |
WO2004004533 | Jan 2004 | WO |
WO2004004534 | Jan 2004 | WO |
WO2004005956 | Jan 2004 | WO |
WO2004006034 | Jan 2004 | WO |
2004025947 | Mar 2004 | WO |
WO2004025947 | Mar 2004 | WO |
WO2004043215 | May 2004 | WO |
2004058028 | Jul 2004 | WO |
2004059409 | Jul 2004 | WO |
WO2004058028 | Jul 2004 | WO |
WO2004059409 | Jul 2004 | WO |
WO2004058028 | Jul 2004 | WO |
WO2005006935 | Jan 2005 | WO |
WO2005036292 | Apr 2005 | WO |
WO2005055795 | Jun 2005 | WO |
WO2005055796 | Jun 2005 | WO |
WO2005076545 | Aug 2005 | WO |
WO2005077243 | Aug 2005 | WO |
WO2005077244 | Aug 2005 | WO |
WO2005081074 | Sep 2005 | WO |
WO2005082223 | Sep 2005 | WO |
WO2005083541 | Sep 2005 | WO |
2005098475 | Oct 2005 | WO |
2005098476 | Oct 2005 | WO |
WO 2005098475 | Oct 2005 | WO |
WO 2005098476 | Oct 2005 | WO |
WO2005098475 | Oct 2005 | WO |
WO2005098476 | Oct 2005 | WO |
WO2006046400 | May 2006 | WO |
2006061133 | Jun 2006 | WO |
WO2006061133 | Jun 2006 | WO |
WO2006068403 | Jun 2006 | WO |
WO2006073248 | Jul 2006 | WO |
WO2007036490 | May 2007 | WO |
WO2007065033 | Jun 2007 | WO |
WO2007137234 | Nov 2007 | WO |
Entry |
---|
Andersen et al., “Landmark-based Navigation Strategies,” Proceedings of SPIE—vol. 3525, Mobile Robots XII and Intelligent Transportation Systems, pp. 170-181 (1999). |
Becker et al., “Reliable navigation using landmarks,” Proceedings of the Int'l Conf. on Robotics and Automation, New York, IEEE, 1: 401-406 (1995). |
Benayard-Cherif et al., “Mobile Robot Navigation Sensors,” SPIE vol. 1831; Mobile Robots VII, pp. 378-387 (1992). |
Betke and Gurvits, “Mobile Robot Localization using Landmarks,” IEEEXplore, pp. 135-142 (2009). |
Bison et al., “Using a Structured Beacon for Cooperative Position Estimation,” Robotics and Autonomous Systems, 29: 33-40 (1999). |
Blassvr et al., “AMOR—An Autonomous Mobile Robot Navigation System,” Systems, Man and Cybernetics , Humans, Information and Technology, vol. 3, pp. 2266-2271 (1994). |
Borges and Aldon, “Optimal Mobile Robot Pose Estimation Using Geometrical Maps,” IEEE Transactions on Robotics and Automation, 18(1): 87-94 (2002). |
Bulusu et al., “Self-Configuring Localization System: Design and Experimental Evaluation,” ACM Transactions on Embedded Computing Systems, 3(1): 24-60 (2004). |
Caccia et al., “Bottom-Following for Remotely Operated Vehicles,” Proc. 5th IFAC Symp., Manoeuvering and Control of Marine Craft, Aalborg, Denmark, pp. 251-256 (2000). |
Chae et al., “Starlite: a new artificial landmark for the navigation of mobile robots,” Proc. of the 1st Japn-Korea Joint Symposium on Network Robot Systems, Kyoto, Japan, 4 pages (2005). |
Christensen and Pirjanian, “Theoretical Methods for Planning and Control in Mobile Robotics,” First International Conference on Knowledge-Based Intelligent Electronic Systems, 1: 81-86 (1997). |
Clerentin et al., “A localization method based on two omnidirectional perception systems cooperation,” Research Group on Command Systems, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, pp. 1219-1224 (2009). |
Corke, “High-performance visual servoing for robot end-point control,” SPIE vol. 2056, Intelligent Robots and Computer Vision XII, pp. 378-387 (1993). |
Cozman and Krotkov, “Robot Localization Using a Computer Vision Sextant,” IEEE International Conference on Robotics and Automation, 1: 106-111 (1995). |
D'Orazio et al., “Model based vision system for mobile robot position estimation,” SPIE vol. 2058, Mobile Robots VIII, pp. 38-49 (1993). |
De Bakker et al., “Smart PSD-array for sheet of light range imaging,” Proceedings of SPIE vol. 3965, Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, pp. 21-32 (2000). |
Desaulniers and Soumis, “An Efficient Algorithm to Find a Shortest Path for a Car-Like Robot,” IEEE Transactions on Robotics and Automation, 11(6): 819-828 (1995). |
Dorfmüller-Ulhaas, “Optical Tracking from User Motion to 3D Interaction,” Dissertation, Vienna University of Technology, 182 pages (2002). |
Dorsch et al., “Laser Triangulation fundamental uncertainty in distance measurement,” Applied Optics, 33(7): 1307-1314 (1994). |
Dudek et al., “Localizing a Robot with Minimum Travel,” Siam J Comput., 27(2): 583-604 (1998). |
Dulimarta and Jain, “Mobile Robot Localization in Indoor Environment,” Pattern Recognition, Published by Elsevier Science Ltd., 30(1): 99-111 (1997). |
Eren et al., “Accuracy in Position Estimation of Mobile Robots Based on Coded Infrared Signal Transmission,” IEEE, pp. 548-551 (1995). |
Eren et al., “Operation of mobile robots in a structured infrared environment,” IEEE Instrumentation and Measurement Technology Conference, pp. 20-25 (2007). |
Examination report dated Sep. 16, 2010 for corresponding U.S. Appl. No. 11/633,869. |
Facchinetti et al., “Self-Positioning Robot Navigation Using Ceiling Image Sequences,” Proc. 2nd Asian Conf. Computer Vision (ACCV '95), pp. 814-818 (1995). |
Facchinetti et al., “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation,” Proc, 3rd Int. Conf, Automation, Robotics and Computer Vision (ICARCV '94), Singapore, pp. 1694-1698 (1994). |
Fairfield and Maxwell, “Mobile Robot Localization with Sparse Landmarks,” Proceedings of SPIE vol. 4573 (2002), Mobile Robotics XVI, pp. 148-155 (2002). |
Favre-Bulle, “Efficient Tracking of 3 D—Robot Positions by Dynamic Triangulation,” IEEE Instrumentation and Measurement Technology Conference, 1: 446-449 (1998). |
Fayman et al., “Exploiting Process Integration and Composition in the Context of Active Vision,” IEEE Transactions on Systems, Man and Cybernetics, 29(1): 73-86 (1999). |
Fisher et al., “A hand-held optical surface scanner for environmental modeling and virtual reality,” Dept. of Artificial Intelligence University of Edinburgh, pp. 1-16 (1995). |
Franz and Mallot, “Biomimetic Robot Navigation,” Institut for Biological, Robotics and Autonomous Systems, 30: 133-153 (2000). |
Fuentes et al., “Mobile Robotics 1994,” University of Rochester Computer Science Department, Technical Report 588, pp. 1-44 (1995). |
Fukuda et al., “Navigation System based on Ceiling Landmark Recognition for Autonomous Mobile Robot,” Proceedings of the IECON, International Conference on Industrial Electronics, Control and Instrumentation, 3:1466-1471 (1993). |
Gat, “Robust Low-computation Sensor-driven Control for Task-Directed Navigation,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation,pp. 2484-2489 (1991). |
Goncalves et al., “A Visual Front-end for Simultaneous Localization and Mapping,” Robotics and Automation, 2005, ICRA 2005, Proceedings of the 2005 IEEE International Conference, pp. 44-49 (2005). |
Grumet, “Robots Clean House” Popular Mechanics, 4 pages, Nov. 2003. |
Haralick et al., “Pose Estimation from Corresponding Point Data,” IEEE Transactions on Systems, Man, and Cybernetics, 19(6): 1426-1446 (1989). |
Häusler, “About the Scaling Behavior of Optical Range Sensors,” Proc. 3rd Int. Workshop Automatic Processing of Fringe Patterns, Germany, pp. 147-155 (1997). |
Hoag and Wrigley, “Navigation and guidance in interstellar space, ”Acta Astronautica, Pergamon Press, 2: 513-533 (1975). |
Huntsberger et al., “CAMPOUT: A control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration,” Systems, Man and Cybernetics, Part A, IEEE Transactions, 33(5): 550-559 (2003). |
Jensfelt and Kristensen, “Active Global Localization for a Mobile Robot Using Multiple Hypothesis Tracking,” IEEE Transactions on Robotics and Automation, 17(5): 748-760 (2001). |
Jeong and Hyun, “An Intelligent map-building system for indoor mobile robot using low cost photo sensors,” SPIE vol. 6042, Control Systems and Robotics, 6 pages (2005). |
Karlsson et al, “Core Technologies for Service Robotics,” Proceedings of the IEEE, IEEE/RSJ International Conference on Intelligent Robots and Systems, 3: 2979-2984 (2004). |
Karlsson et al., “The vSLAM Algorighm for Robust Localization and Mapping,” Robotics and Automation, 2005, ICRA 2005, Proceedings of the 2005 IEEE International Conference, pp. 24-29 (2005). |
King and Weiman, “HelpMate™ Autonomous Mobile Robot Navigation System,” SPIE vol. 1388, Mobile Robots V, Mar. 1991, pp. 190-198 (1991). |
Kleinberg, “The Localization Problem for Mobile Robots,” IEEE, pp. 521-531 (1994). |
Knights et al., “Localization and Identification of Visual Landmarks,” JCSC, 16(4): 312-313 (2001). |
Kolodko and Vlacic, “Experimental System for Real-Time Motion Estimation,” International Conference on Advanced Intelligent Mechatronics (Jul. 2003), vol. 2, pp. 981-986 (2003). |
Komoriya et al., “Planning of Landmark Measurement for the Navigation of a Mobile Robot,” Intelligent Robots and Systems (Jul. 1992), Proceedings of the IEEE, 2: 1476-1481 (1992). |
Krotkov and Cozman, “Digital Sextant,” 1 page, (1995). |
Krupa et al., “Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoing,” Robotics and Automation, IEEE Transactions, 19(5): 842-838 (2003). |
Kuhl and Sutherland, “Self Localization in Virtual Environments using Visual Angles,” ACM, pp. 472-475 (2004). |
Kurs et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science, 317: 83-86 (2008). |
Lambrinos et al., “A mobile robot employing insect strategies for navigation,” Department of Computer Science, University of Zurich, Department of Zoology, University of Zurich, 38 pages (1999). |
Lang et al., “Visual Measurement of Orientation Using Ceiling Features,” Proceedings in IEEE Instrumentation and Measurement Technology Conference, pp. 552-555 (1994). |
Lapin, “Adaptive position estimation for an automated guided vehicle,” SPIE vol. 1831, Mobile Robots VII, pp. 82-94 (1993). |
Lavalle and Sharma, “Robot Motion Planning in a Changing, Partially Predictable Environment,” IEEE International Symposium on Intelligent Control, pp. 261-266 (1994). |
Lee et al., “Development of Indoor Navigation System for a Humanoid Robot Using Multi-Sensors Integration,” ION NTM, pp. 798-805 (2007). |
Lee et al., “Localization of a Mobile Robot Using the Image of a Moving Object,” IEEE Transactions on Industrial Electronics, 50(3): 612-619 (2003). |
Leonard and Durrant-Whyte, “Mobile Robot Localization by Tracking Geometric Beacons,” IEEE Transactions on Robotics and Automation, 7(3): 376-382 (1991). |
Lin and Tummala, “Mobile Robot Navigation Using Artificial Landmarks,” Journal of Robotic Systems, 14(2): 93-106 (1997). |
Linde, “On Aspects of Indoor Localization,” Dissertation, Bei der Fakultat fur Elektro- und Informationstechnik derUniversitat Dortmund zur Begutachtung eingereichte, Aug. 2006, pp. 1-139 (2006). |
Lumelsky and Tiwari, “An Algorithm for Maze Searching With Azimuth Input,” IEEE, pp. 111-116 (1994). |
Ma, “Documentation on Northstar,” CIT PHD Candidate, 15 pages (2006). |
Madsen and Andersen, “Optimal landmark selection for triangulation of robot position,” Robotics and Autonomous Systems, 23: 277-292 (1998). |
Martishevcky, “The accuracy of point light target coordinate determination by dissectoral tracking system,” SPIE, 2591: 25-30 (1995). |
McGillem and Rappaport, “Infra-red Location System for Navigation of Autonomous Vehicles,” IEEE, pp. 1236-1238 (1988). |
McGillem et al., “A Beacon Navigation Method for Autonomous Vehicles,” IEEE Transactions on Vehicular Technology, 38 (3): 132-139 (1989). |
McLurkin, “Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Library for Programming Swarms of Robots,” Submitted to the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 127 pages (2004). |
McLurkin, “The Ants: A Community of Microrobots,” Submitted to the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 60 pages (1995). |
Michelson, “Autonomous navigation,” AccessScience@McGraw-Hill, http://www.accessscience.com, DOI 10.1036/1097-8542.YB000130, last modified: Dec. 5, 2000. |
Monteiro and Jouvencel, “Visual Servoing for Fast Mobile Robot Adaptive Estimation of Kinematic Parameters,” International Conference on Industrial Electronics, Control and Instrumentation, 3:1588-1593 (1993). |
Moore et al., “A simple map-based localization strategy using range measurements,” Proceedings of SPIE vol. 5804, Unmanned Ground Vehicle Technology VII, pp. 612-620 (2005). |
Munich et al, “ERSP: A Software Platform and Architecture for the Service Robotics Industry,” Intelligent Robots and Systems, 2005 (IROS 2005), 2005 IEEE/RSJ International Conference, pp. 460-467 (2005). |
Munich et al., “SIFT-ing Through Features With ViPR,” Robotics & Automation Magazine, IEEE, 13(3): 72-77 (2006). |
Nam and Oh, “Real-Time Dynamic Visual Tracking Using PSD Sensors and Extended Trapezoidal Motion Planning,” Applied Intelligence, 10: 53-70 (1999). |
Navigation by the Stars, Barker, B.; powerpoint; downloaded on Jan. 24, 2007. |
Nitu et al., “Optomechatronic System for Position Detection of a Mobile Mini-Robot,” IEEE Transactions on Industrial Electronics, 52(4): 969-973 (2005). |
Pagès et al., “A camera-projector system for robot positioning by visual servoing,” Conference on Computer Vision and Pattern Recognition, 8 pages (2006). |
Pagès et al., “Optimizing plane-to-plane positioning tasks by image based visual servoing and structured light,” IEEE Transactions on Robotics, 22(5): 1000-1010 (2006). |
Pagès et al., “Robust decoupled visual servoing based on structured light,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2399-2404 (2005). |
Park and Oh, “A Neural Network Based Real-Time Robot Tracking Controller Using Position Sensitive Detectors,” IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, 5: 2754-2758 (1994). |
Park and Oh, “Dynamic Visual Servo Control of Robot Manipulators Using Neural Networks,” Dept. of Electrical Engineering Pohang Inst. of Science and Technology, Journal of the Korean Institute of Telematics and Electronics, 29B: 37-45 (1992). |
Paromtchick and Asama, “Optical Guidance System for Multiple Mobile Robots,” The Institute of Physical and Chemical Research, Advanced Engineering Center. 2001 IEEE International Conference on Robotics and Automation, pp. 2935-2940 (2001). |
Paromtchick and Asama, “Toward Optical Guidance of Mobile Robots,” Proceedings of the Fourth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 9: 44-49 (2000). |
Penna and Wu, “Models for Map Building and Navigation,” IEEE Transactions on Systems, Man and Cybernetics, 23(5): 1276-1301 (1993). |
Pirjanian and Matarić, “A Decision-Theoretic Approach to Fuzzy Behavior Coordination,” Computational Intelligence in Robotics and Automation, 1999, CIRA '99 Proceedings, 1999 IEEE International Symposium, pp. 101-106 (1999). |
Pirjanian and Matarić, “Multi-Robot Target Acquisition Using Multiple Objective Behavior Coordination,” Robotics and Automation, 2000, Proceedings, IRCA '00, IEEE International Conference, 3: 2696-2702 (2000). |
Pirjanian et al., “Distributed Control for a Modular, Reconfigurable Cliff Robot,” Robotics and Automation, 2002, Proceedings ICRA '02, IEEE International Conference, 4: 4083-4088 (2002). |
Pirjanian et al., “Improving Task Reliability by Fusion of Redundant Homogeneous Modules Using Voting Schemes,” Robotics and Automation, 1997, Proceedings, 1997 IEEE International Conference, 1: 425-430 (1997). |
Pirjanian et al., “Representation and Execution of Plan Sequences for Multi-Agent Systems,” Intelligent Robots and Systems, 2001, Proceedings, 2001 IEEE/RSJ International Conference, 4: 2117-2123 (2001). |
Pirjanian, “Challenges for Standards for Consumer Robotics,” IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 260-264 (2005). |
Pirjanian, “Reliable Reaction,” Multisensor Fusion and Integration for Intelligent Systems, pp. 158-165 (1996). |
Remazeilles et al., “Image based robot navigation in 3D environments,” SPIE vol. 6052, Optomechatronic Systems Control, 14 pages (2005). |
Rives and Michel, “Visual servoing based on ellipse features,” SPIE vol. 2056, Intelligent Robots and Computer Vision XII, pp. 356-367 (1993). |
Rönnbäck, “Methods for Assistive Mobile Robots,” Lulea University of Technology Dept. of Computer Science and Electrical Engineering, PhD Thesis, 218 pages (2006). |
Roth-Tabak and Weymouth, “Environment Model for Mobile Robots Indoor Navigation,” SPIE vol. 1388, Mobile Robots V, pp. 453-463 (1990). |
ahin and Gaudiano, “Development of a Visual Object Localization Module for Mobile Robots,” Third European Workshop on Advanced Mobile Robots, pp. 65-72 (1999). |
Salomon et al., “Low Cost Indoor Localization System for Mobile Objects without Image Processing,” IEEE 1-4244-0681, pp. 629-632 (2006). |
Sato, “Range Imaging Based on Moving Pattern Light and Spatio-Temporal Matched Filter,” International Conference on Image Processing, 1: 33-36 (1996). |
Schenker et al., “Lightweight rovers for Mars Science and Exploration and Sample Return,” Jet Propulsion Laboratory, CIT, pp. 1-11 (1999). |
Si PIN photodiode, S5980, S5981, S5870, Multi-element photodiodes for surface mounting, Hamamatsu, Solid State Division, Cat. No. KPIN1012E02, 2 pages, Apr. 2001. |
Sim and Dudek, “Learning Visual Landmarks for Pose Estimation,” Proceedings of the 1999 IEEE International Conference on Robotics and Automation, pp. 1972-1978 (1999). |
Stella et al., “Self-Location for Indoor Navigation of Autonomous Vehicles,” SPIE Conference on Enhanced and Synthetic Vision, 3364: 298-302 (1998). |
Summet and Sukthankar, “Tracking Locations of Moving Hand-Held Displays Using Projected Light,” GVU Center and College of Computing, Georgia Institute of Technology, PERVASIVE 2005, LNCS 3468, pp. 37-46 (2005). |
Svedman et al., “Structure From Stereo Vision Using Unsynchronized Cameras for Simultaneous Localization and Mapping,” Intelligent Robots and Systems, 2005 (IROS 2005), 2005 IEEE/RSJ International Conference, pp. 3069-3074 (2005). |
Takio et al., “Real Time Position and Pose Tracking Method of Moving Object Using Visual Servo System,” IEEE International Midwest Symposium on Circuits and Systems, pp. 167-170 (2004). |
Teller, “Pervasive Pose-Awareness for People, Objects, and Robots or . . . Empowering Robots to Clear your Dining-Room Table,” LCS/AI, 22 pages (2003). |
U.S. Appl. No. 10/883,319. |
U.S. Appl. No. 11/090,405. |
U.S. Appl. No. 11/090,432. |
U.S. Appl. No. 11/090,621. |
Trebi-Ollennu et al., “Mars Rover Pair Cooperatively Transporting a Long Payload,” Robotics and Automation, 2002, Proceedings ICRA '02, IEEE International Conference, pp. 3136-3141 (2002). |
Watanabe and Yuta, “Position Estimation of Mobile Robots With Internal and External Sensors Using Uncertainty Evolution Technique,” IEEE, pp. 2011-2016 (1990). |
Watts, “Robot boldly goes where no man can,” The Times, Finance and Industry section, p. 18, Jan. 29, 1985. |
Wijk and Christensen, “Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking,” IEEE Transactions on Robotics and Automation, 16(6): 740-752 (2000). |
Wolf et al., “Robust Vision Based Localization by Combining an Image Retrieval System with Monte Carlo Localization,” IEEE Transactions on Robotics, 21(2): 208-216 (2005). |
Wolf et al., “Robust Vision-Based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features,” Proceedings ICRA '02, IEEE International Conference Robotics and Automation, 1: 359-365 (2002). |
Wong, “EiED>> Robot Business,” Electronic Design, http://www.elecdesign.com/Articles/Index.cfm?ArticleID=13114, Jul. 26, 2006. |
Yamamoto et al., “Optical Sensing for Robot Perception and Localization,” IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14-17 (2005). |
Yun et al., “Image Based Absolute Positioning System for Mobile Robot Navigation,” Department of Electronics Engineering, Pusan National University, SSPR&SPR 2006, LNCS 4109, Springer-Verlag Berlin Heidelberg, pp. 261-269 (2006). |
Yun et al., “Robust Positioning a Mobile Robot with Active Beacon Sensors,” Department of Electronics Engineering, Pusan National University, KES 2006, Part I, LNAI 4251, Springer-Verlag Berlin Heidelberg, pp. 890-897 (2006). |
Yuta et al., “Implementation of an Active Optical Range Sensor Using Laser Slit for In-Door Intelligent Mobile Robot,” IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 415-420 (1991). |
Zhang and Luo, “A Novel Mobile Robot Localization Based on Vision,” SPIE vol. 6279, 27th International Congress on High-Speed Photography and Photonics, 6 pages (2007). |
Ascii, Mar. 25, 2002, http://ascii.jp/elem/000/000/330/330024/ accessed Nov. 1, 2011. |
U.S. Appl. No. 60/605,066 as provided to WIPO in PCT/US2005/030422, corresponding to National Stage Entry U.S. Appl. No. 11/574,290, U.S. publication 2008/0184518, filed Aug. 27, 2004. |
U.S. Appl. No. 60/605,181 as provided to WIPO in PCT/US2005/030422, corresponding to National Stage Entry U.S. Appl. No. 11/574,290, U.S. publication 2008/0184518, filed Aug. 27, 2004. |
Derek Kurth, “Range-Only Robot Localization and SLAM with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May 2004, accessed Jul. 27, 2012. |
Electrolux Trilobite, Jan. 12, 2001, http://www.electrolux-ui.com:8080/2002%5C822%5C833102EN.pdf, accessed Jul. 2, 2012, 10 pages. |
Florbot GE Plastics, 1989-1990, 2 pages, available at http://www.fuseid.com/, accessed Sep. 27, 2012. |
Gregg et al., “Autonomous Lawn Care Applications,” 2006 Florida Conference on Recent Advances in Robotics, Miami, Florida, May 25-26, 2006, Florida International University, 5 pages. |
Hitachi ‘Feature’, http://kadenfan.hitachi.co.jp/robot/feature/feature.html, 1 page, Nov. 19, 2008. |
Hitachi, http://www.hitachi.co.jp/New/cnews/hi—030529—hi—030529.pdf , 8 pages, May 29, 2003. |
Home Robot—UBOT; Microbotusa.com, retrieved from the WWW at www.microrobotusa.com, accessed Dec. 2, 2008. |
Li et al. “Robust Statistical Methods for Securing Wireless Localization in Sensor Networks,” Information Procesing in Sensor Networks, 2005, Fourth International Symposium on, pp. 91-98, Apr. 2005. |
Maschinemarkt Würzburg 105, Nr. 27, pp. 3, 30, Jul. 5, 1999. |
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591, pp. 25-30, Oct. 23, 2005. |
Miwako Doi “Using the symbiosis of human and robots from approaching Research and Development Center,” Toshiba Corporation, 16 pages, available at http://warp.ndl.go.jp/info:ndljp/pid/258151/www.soumu.go.jp/joho—tsusin/policyreports/chousa/netrobot/pdf/030214—1—33—a.pdf, Feb. 26, 2003. |
Paromtchik “Toward Optical Guidance of Mobile Robots,” Proceedings of the Fourth World Multiconference on Systemics, Cybermetics and Informatics, Orlando, FL, USA, Jul. 23, 2000, vol. IX, pp. 44-49, available at http://emotion.inrialpes.fr/˜paromt/infos/papers/paromtchik:asama:sci:2000.ps.gz, accessed Jul. 3, 2012. |
Roboking—not just a vacuum cleaner, a robot!, Jan. 21, 2004, infocom.uz/2004/01/21/robokingne-prosto-pyilesos-a-robot/, accessed Oct. 10, 2011, 7 pages. |
Sebastian Thrun, “Learning Occupancy Grid Maps With Forward Sensor Models,” Autonomous Robots 15, 111-127, Sep. 1, 2003. |
SVET Computers—New Technologies—Robot Vacuum Cleaner, Oct. 1999, available at http://www.sk.rs/1999/10/sknt01.html, accessed Nov. 1, 2011. |
Written Opinion of the International Searching Authority, PCT/US2004/001504, Aug. 20, 2012, 9 pages. |
A Beacon Navigation Method for Autonomous Vehicles, McGillem, Clare D.; Rappaport, Theodore S.; IEEE Transactions on Vehicular Technology, vol. 38, No. 3, Aug. 1989, pp. 132-139. |
A camera-projector system for robot positioning by visual servoing, Pages, J.; Collewet, C.; Chaumette, F.; Salvi, J.; Conference on Computer Vision and Pattern Recognition (Jun. 2006); pp. 2-2. |
A Decision-Theoretic Approach to Fuzzy Behavior Coordination, Pirjanian P., et al., Computational Intelligence in Robotics and Automation, 1999, CIRA '99 Proceedings, 1999 IEEE International Symposium, Nov. 1999, pp. 101-106. |
A Neural Network Based Real-Time Robot Tracking Controller Using Position Sensitive Detectors, Park, Hyoung-Gweon; Oh, Se-Young; IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 5; (Jul. 1994), pp. 2754-2758. |
A Novel Mobile Robot Localization Based on Vision, Yi, Zhang; Yuan, Luo; SPIE vol. 6279, 27th International Congress on High-Speed Photography and Photonics (2007). |
A simple map-based localization strategy using range measurements, Moore, Kevin L.; Kutiyanawala, Aliasgar; Chandrasekharan, Madhumita; Proceedings of SPIE vol. 5804, Unmanned Ground Vehicle Technology VII (2005). |
A Visual Front-end for Simultaneous Localization and Mapping, Goncalves L., et al., Robotics and Automation, 2005, ICRA 2005, Proceedings of the 2005 IEEE International Conference, Apr. 2005, pp. 44-49. |
About the Scaling Behavior of Optical Range Sensors, Hausler G., Proc. 3rd Int. Workshop Automatic Processing of Fringe Patterns, Germany (1997), pp. 147-155. |
Accuracy in Position Estimation of Mobile Robots Based on Coded Infrared Signal Transmission, Eren, H.; Fung, Chun Che; Nakazato, Yokihiro; (1995), IEEE, pp. 548-551. |
Active Global Localization for a Mobile Robot Using Multiple Hypothesis Tracking, Jensfelt, P.; Kristensen, S.; IEEE Transactions on Robotics and Automation, vol. 17, No. 5, (Oct. 2001), pp. 748-760. |
Adaptive position estimation for an automated guided vehicle, Lapin, Brett; SPIE vol. 1831, Moblie Robots VII, May 1993, pp. 82-94. |
AMOR—An Autonomous Mobile Robot Navigation System, Blaasvaer, H.; Pirjanian, P.; Chistensen, H.I.; Systems, Man and Cybernetics (Oct. 1994), “Humans, Information and Technology,” vol. 3, pp. 2266-2271. |
An Algorithm for Maze Searching With Azimuth Input, Lumelsky, V.; Tiwari, S.; IEEE (1994); pp. 111-116. |
An Efficient Algorithm to Find a Shortest Path for a Car-Like Robot, Desaulniers, G.; Soumis, F.; IEEE Transactions on Robotics and Automation, Vo. 11, No. 6 (Dec. 1995), pp. 819-828. |
An Intelligent map-building system for indoor mobile robot using low cost photo sensors, Jeong, Tae cheol; Hyun, Woong keun; SPIE vol. 6042 (2005), Control Systems and Robotics. |
Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoing, Krupa, A., et al., Robotics and Automation, IEEE Transactions, Oct. 2003, pp. 842-853, vol. 19, Issue 5. |
Biomimetic Robot Navigation, Franz M., Mallot H.,; Max-Planck—Institut for Biological, Robotics and Autonomous Systems 30 (2000) 133-153. |
Bottom-Following for Remotely Operated Vehicles, Caccia M., Bono R., Bruzzone, G., and Veruggio G., Proc. 5th IFAC Symp., Manoeuvering and Control of Marine Craft, Aalborg, Denmark (2000), pp. 251-256. |
Campout: A control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration, Huntsberger T., et al., Systems, Man and Cybernetics, Part A, IEEE Transactions, vol. 33, Issue 5, Sep. 2003, pp. 550-559. |
Challenges for Standards for Consumer Robotics, Pirjanian, P.; IEEE Workshop on Advanced Robotics and its Social Impacts (Jun. 2005), pp. 260-264. |
Core Technologies for Service Robotics, Karlsson, N.; Munich, M.E.; Goncalves, L.; Ostrowski, J.; DiBernardo, E.; Pirjanian, P.; IEEE/RSJ International Conference on Intelligent Robots and Systems (2004), vol. 3, pp. 2979-2984, Proceedings of the IEEE. |
Development of a Visual Object Localization Module for Mobile Robots, Sahin, E.; Gaudiano, P.; Third European Workshop on Advanced Mobile Robots (Sep. 1999), pp. 65-72. |
Development of Indoor Navigation System for a Humanoid Robot Using Multi-Sensors Integration, Lee C.H., Jeon C.W., Park C.G., Lee J.G., ION NTM 2007, Jan. 2007, pp. 798-805. |
Distributed Control for a Modular, Reconfigurable Cliff Robot, Pirjanian P., et al., Robotics and Automation, 2002, Procedings ICRA '02, IEEE International Conference, May 2002, pp. 4083-4088, vol. 4. |
Dynamic Visual Servo Control of Robot Manipulators Using Neural Networks, Park J.S., Oh S.Y.; Dept. of Electrical Engineering Pohang Inst. of Science and Technology, Journal of the Korean Institute of Telematics and Electronics, 29B (1992). |
Efficient Tracking of 3 D—Robot Positions by Dynamic Triangulation, Favre-Bulle, B.; Prenninger, J.; Eitzinger, C.; IEEE Instrumentation and Measurement Technology Conference (May 1998), vol. 1, pp. 446-449. |
Environment Model for Mobile Robots Indoor Navigation, Roth-Tabak, Yuval; Weymouth, Terry E.; SPIE vol. 1388, Mobile Robots V (1990), pp. 453-463. |
ERSP: A Software Platform and Architecture for the Service Robotics Industry, Munich M.E., et al., Intelligent Robots and Systems, 2005 (IROS 2005), 2005 IEEE/RSJ International Conference, Aug. 2005, pp. 460-467. |
Examination report dated Sep. 16, 2010 for corresponding application U.S. Appl. No. 11/633,869. |
Experimental System for Real-Time Motion Estimation, Kolodko, J.; Vlacic, L.; International Conference on Advanced Intelligent Mechatronics (Jul. 2003), vol. 2, pp. 981-986. |
Exploiting Process Integration and Composition in the Context of Active Vision, Fayman, J.A.; Pirjanian, P.; Christensen, H.I.; Rivlin, E.; IEEE Transactions on Systems, Man and Cybernetics, vol. 29, Issue. 1; (Feb. 1999), pp. 73-86. |
Grumet, Tobey “Robots Clean House” Popular Mechanics, Nov. 2003. |
HelpMate™ Autonomous Mobile Robot Navigation System, King, Steven J.; Weiman, Cark F.R.; SPIE vol. 1388, Mobile Robots V, Mar. 1991, pp. 190-198. |
High-performance visual servoing for robot end-point control, Corke, Peter I.; SPIE vol. 2056, Intelligent Robots and Computer Vision XII (1993), pp. 378-387. |
Image Based Absolute Positioning System for Mobile Robot Navigation, Yun, JaeMu; Lyu, EunTae; Lee JangMyung; Department of Electronics Engineering, Pusan National University, SSPR&SPR 2006, LNCS 4109, p. 261-269, 2006, Springer-Verlag Berlin Heidelberg. |
Image based robot navigation in 3D environments, Remazeilles, Anthony; Chaumette, Francois; Gros, Patrick; SPIE vol. 6052, Optomechatronic Systems Control (2005). |
Implementation of an Active Optical Range Sensor Using Laser Slit for In-Door Intelligent Mobile Robot, Yuta, Shin'ichi; Suzuki, S.; Saito, Y.; Sigeki, I.; IEEE/RSJ International Workshop on Intelligent Robots and Systems (Nov. 1991), pp. 415-420. |
Improving Task Reliability by Fusion of Redundant Homogeneous Modules Using Voting Schemes, Pirjanian P., et al., Robotics and Automation, 1997, Proceedings, 1997 IEEE International Conference, Apr. 1997, pp. 425-430, vol. 1. |
Infra-red Location System for Navigation of Autonomous Vehicles, McGillem, C.; Rappaport, T.; IEEE (1988), pp. 1236-1238. |
Kurs, A. et al “Wireless Power Transfer via Strongly Coupled Magnetic Resonances” Science, vol. 317, pp. 83-86 Jul. 6, 2008. |
Landmark-based Navigation Strategies, Andersen, C.S., et al., Proceedings of SPIE—vol. 3525, Mobile Robots XII and Intelligent Transportation Systems, Jan. 1999, pp. 170-181. |
Laser Triangulation fundamental uncertainty in distance measurement, Dorsch, Rainer G.; Hausler, Gerd; Herrmann, Jurgen M.; Applied Optics, vol. 33, No. 7, Mar. 1, 1994, 1307-1314. |
Learning Visual Landmarks for Pose Estimation, Sim, R.; Dudek, G.; Proceedings of the 1999 IEEE International Conference on Robotics and Automation (May 1999), pp. 1972-1978. |
Localization and Identification of Visual Landmarks, Knights, Dan; Lanza, Jeff; JCSC 16, 4 (May 2001), pp. 312-313. |
Localization of a Mobile Robot Using the Image of a Moving Object, Lee, Jang Myung; Lee, Son K.; Choi, J.W.; Han, S.H.; Lee, Man Hyung; Industrial Electronics, IEEE Transactions on, vol. 50, Issue. 3; (Jun. 2003), pp. 612-619. |
Localizing a Robot with Minimum Travel, Dudek, Gregory; Romanik, Kathleen; Whitesides, Sue; Siam J. Comput., vol. 27, No. 2, pp. 583-604 (Apr. 1998). |
Mars Rover Pair Cooperatively Transporting a Long Payload, Trebi-Ollennu A., et al., Robotics and Automation, 2002, Proceedings ICRA '02, IEEE International Conference, May 2002, pp. 3136-3141. |
McLurkin, James “Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Library for Programming Swarms of Robots” M.S. Electrical Engineering University of California, Berkeley, 1999, M.S. Electrical Engineering Massachusetts Institute of Technology, 1995; Submitted to the department of Electrical Engineering and Computer Science May 2004. |
McLurkin, James “The Ants: A Community of Microrobots” Submitted to the department of Electrical Engineering and Computer Science on May 12, 1995. |
Mobile Robot Localization by Tracking Geometric Beacons, Leonard, J.; Durrant-Whyte, H.; IEEE Transactions on Robotics and Automation, vol. 7, No. 3 (Jun. 1991), pp. 376-382. |
Mobile Robot Localization in Indoor Environment, Dulimarta, Hansye S.; Jain, Anil K.; Pattern Recognition, vol. 30, No. 1, pp. 99-111, 1997, Published by Elsevier Science Ltd. |
Mobile Robot Localization with Sparse Landmarks, Fairfield, Nathaniel; Maxwell, Bruce; Proceedings of SPIE vol. 4573 (2002), Mobile Robotics XVI, pp. 148-155. |
Mobile Robot Navigation Using Artificial Landmarks, Lin, Cheng-Chih; Tummala, R. Lai; Journal of Robotic Systems 14 (2), 93-106 (1997), published by John Wiley & Sons, Inc., pp. 93-106. |
Mobile Robotics 1994, Fuentes O., Karlsson J., Meira W., Rao R., Riopka T., Rosca J., Sarukkai R., Van Wie M., Zaki M., Becker T., Frank R., Miller B., Brown C.M.; University of Rochester Computer Science Department, Technical Report 588, Jun. 1995, pp. 1-44. |
Model based vision system for mobile robot position estimation, D'Orazio, T.; Capozzo, L.; Ianigro, M.; Distante, A.; SPIE vol. 2058, Mobile Robots VIII (1993), pp. 38-49. |
Models for Map Building and Navigation, Penna, M.A.; Wu, J.; IEEE Transactions on Systems, Man and Cybernetics; vol. 23, No. 5; (Sep./Oct. 1993), 1276-1301. |
Multi-Robot Target Acquisition Using Multiple Objective Behavior Coordination, Pirjanian P., et al., Robotics and Automation, 2000, Proceedings, IRCA '00, IEEE International Conference, Apr. 2000, pp. 2696-2702, vol. 3. |
Navigation and guidance in interstellar space, Hoag, David G.; Wrigley, Walter; Acta Astronautica, vol. 2, pp. 513-533, Pergamon Press (1975). |
Navigation System based on Ceiling Landmark Recognition for Autonomous Mobile Robot, Fukuda, T.; Ito, S.; Oota, N.; Arai, F.; Abe, Y.; Tanaka, K.; Tanaka, Y.; Proceedings of the IECON, International Conference on Industrial Electronics, Control and Instrumentation (Nov. 1993), vol. 3, pp. 1466-1471. |
On Aspects of Indoor Localization, Linde H., dissertation, Aug. 2006, pp. 1-139. |
On Methods for Assistive Mobile Robots, Ronnback, S.; Lulea University of Technology Dept. of Computer Science and Electrical Engineering (2006), PhD Thesis. |
Operation of mobile robots in a structured infrared environment, Eren, H.; Fung, C.C.; Newcombe, D.; Goh, J.; IEEE Instrumentation and Measurement Technology Conference (May 1997), pp. 20-25. |
Optical Guidance System for Multiple Mobile Robots, Parmtchik I., Asama H.; The Institute of Physical and Chemical Research, Advanced Engineering Center. 2001 IEEE International Conference on Robotics and Automation. |
Optical Sensing for Robot Perception and Localization, Yamamoto, Y.; Pirjanian, P.; Munich, M.; DiBernardo, E.; Goncalves, L.; Ostrowski, J.; Karlsson, N.; IEEE Workshop on Advanced Robotics and its Social Impacts (Jun. 2005), pp. 14-17. |
Optical Tracking from User Motion to 3D Interaction, Dissertation, Vienna University of Technology, Oct. 2002, Dorfmuller-Ulhaas, K. |
Optimal landmark selection for triangulation of robot position, Madsen, Claus B.; Andersen, Claus S.; Robotics and Autonomous Systems 23 (1998), pp. 277-292, published by Elsevier. |
Optimal Mobile Robot Pose Estimation Using Geometrical Maps, Borges, G.A.; Aldon, M.; IEEE Transactions on Robotics and Automation, vol. 18, No. 1 (Feb. 2002), pp. 87-94. |
Optimizing plane-to-plane positioning tasks by image based visual servoing and structured light, Pages J., Collewet C., Chaumette F., Salvi J.; IEEE Transactions on Robotics, vol. 22, No. 5, Oct. 2006, pp. 1000-1010. |
Optomechatronic System for Position Detection of a Mobile Mini-Robot, Nitu, C.I.; Gramescu, B.S.; Comeaga, C.D.P.; Trufasu, A.O.; IEEE Transactions on Industrial Electronics (Aug. 2005), vol. 52, Issue. 4; pp. 969-973. |
Pervasive Pose-Awareness for People, Objects, and Robots or . . . Empowering Robots to Clear your Dining-Room Table, Teller S., LCS/AI, Apr. 30, 2003, 22 pgs. |
Planning of Landmark Measurement for the Navigation of a Mobile Robot, Komoriya, K; Oyama, E.; Tani, K.; Intelligent Robots and Systems (Jul. 1992), Proceedings of the IEEE, vol. 2, pp. 1476-1481. |
Pose Estimation from Corresponding Point Data, Haralick, R.; Joo, H.; Lee, C.; Zhuang, X.; Vaidya, V.; Kim, Man Bae; IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, No. 6, (Nov./Dec. 1989), pp. 1426-1446. |
Position Estimation of Mobile Robots With Internal and External Sensors Using Uncertainty Evolution Technique, Watanabe, Y.; Yuta, S.; IEEE (1990), pp. 2011-2016. |
Range Imaging Based on Moving Pattern Light and Spatio-Temporal Matched Filter, Sato K., International Conference on Image Processing, vol. 1, pp. 33-36 (1996). |
Real Time Position and Pose Tracking Method of Moving Object Using Visual Servo System, Takio, A.; Kondo, K.; Kobashi, S.; Hata, Y.; IEEE International Midwest Symposium on Circuits and Systems (2004), pp. 167-170. |
Real-Time Dynamic Visual Tracking Using PSD Sensors and Extended Trapezoidal Motion Planning, Nam, Soo-Hyuk; Oh, Se-Young; Applied Intelligence 10, 53-70 (1999), Kluwer Academic Publishers. |
Reliable Reaction, Pirjanian, P.; Multisensor Fusion and Integration for Intelligent Systems (Dec. 1996), pp. 158-165. |
Representation and Execution of Plan Sequences for Multi-Agent Systems, Pirjanian P., et al., Intelligent Robots and Systems, 2001, Proceedings, 2001 IEEE/RSJ International Conference, Oct.-Nov. 2001, pp. 2117-2123, vol. 4. |
Robot boldly goes where no man can, Watts, David; The Times, Tuesday Jan. 29, 1985, p. 18, Finance and Industry section. |
Robot Business, Wong, William; Jul. 26, 2006, http://www.elecdesign.com/Articles/Index.cfm?ArticleID=13114. |
Robot Localization Using a Computer Vision Sextant, Cozman, F.; Krotkov, E.; IEEE International Conference on Robotics and Automation (May 1995), vol. 1, pp. 106-111. |
Robot Motion Planning in a Changing, Partially Predictable Environment, LaValle, S.; Sharma, R.; IEEE International Symposium on Intelligent Control (Aug. 1994), pp. 261-266. |
Robust decoupled visual servoing based on structured light, Pages, J.; Collewet, C.; Chaumette, F.; Salvi, J.; IEEE/RSJ International Conference on Intelligent Robots and Systems (Aug. 2005), pp. 2399-2404. |
Robust Positioning a Mobile Robot with Active Beacon Sensors, Yun, JaeMu; Kim SungBu; Lee JangMyung; Department of Electronics Engineering, Pusan National University, KES 2006, Part I, LNAI 4251, pp. 890-897, 2006, Springer-Verlag Berlin Heidelberg 2006. |
Robust Vision Based Localization by Combining an Image Retrieval System with Monte Carlo Localization Wolf, J.: Burgard, W.; Burkhardt, H.; Robotics, IEEE Transactions on, (Apr. 2005), vol. 21, Issue. 2, pp. 208-216. |
Robust Vision-Based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features, Wolf., Jr., et al., Robotics and Automation, 2002, Proceedings ICRA '02, IEEE International Conference, May 2002, pp. 359-365, vol. 1. |
Self Localization in Virtual Environments using Visual Angles, Kuhl, Scott A.; Sutherland, Karen T.; ACM, 2004, pp. 472-475. |
Self-Configuring Localization System: Design and Experimental Evaluation, Bulusu, Nirupama; Heidemann, John; Estrin, Deborah; Tran, Tommy; ACM Transactions on Embedded Computing Systems, vol. 3, No. 1, Feb. 2004, pp. 24-60. |
Self-Location for Indoor Navigation of Autonomous Vehicles, Stella, E.; Circirelli, G.; Branca, A.; Distante, A., SPIE Conference on Enhanced and Synthetic Vision (Apr. 1998), SPIE vol. 3364, pp. 298-302 |
Self-Positioning Robot Navigation Using Ceiling Image Sequences, Facchinetti C., Tiech F., and Hugli H., Proc. 2nd Asian Conf. Computer Vision (ACCV '95), Singapore, (1995), pp. 814-818. |
Si PIN photodiode, S5980, S5981, S5870, Multi-element photodiodes for surface mounting, Hamamatsu, Solid State Division, Cat. No. KPIN1012E02, Apr. 2001, 2 pgs. |
SIFT-ing Through Features With ViPR, Munich M.E., et al., Robotics & Automation Magazine, IEEE, vol. 13, Issue 3, Sep. 2006, pp. 72-77. |
Smart PSD-array for sheet of light range imaging, de Bakker, Michiel; Verbeek, Piet. W.; Steenvoorden, Gijs K.; Proceedings of SPIE vol. 3965 (2000), Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, pp. 21-32. |
Structure From Stereo Vision Using Unsynchronized Cameras for Simultaneous Localization and Mapping, Svedman M., et al., Intelligent Robots and Systems, 2005 (IROS 2005), 2005 IEEE/RSJ International Conference, Aug. 2005, pp. 3069-3074. |
The accuracy of point light target coordinate determination by dissectoral tracking system, Martishevcky, Yuri V.; SPIE Vo. 2591 (1995), pp. 25-30. |
The Localization Problem for Mobile Robots, Kleinberg, J.M.; IEEE (1994), pp. 521-531. |
The vSLAM Algorighm for Robust Localization and Mapping, Karlsson N., et al., Robotics and Automation, 2005, ICRA 2005, Proceedings of the 2005 IEEE International Conference, Apr. 2005, pp. 24-29. |
Theoretical Methods for Planning and Control in Mobile Robotics, Christensen, H.I.; Pirjanian, P.; First International Conference on Knowledge-Based Intelligent Electronic Systems (May 1997), vol. 1, pp. 81-86. |
Tracking Locations of Moving Hand-Held Displays Using Projected Light, Summet J., Sukthankar R.; GVU Center and College of Computing, Georgia Institute of Technology, PERVASIVE 2005, LNCS 3468, pp. 37-46 (2005). |
Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking, Wijk, O.; Christensen, H.I.; IEEE Transactions on Robotics and Automation, V. 16, No. 6, (Dec. 2000), pp. 740-752. |
Using a Structured Beacon for Cooperative Position Estimation, Bison, P.; Chemello, G.; Sossai, C.; Trainito, G.; Robotics and Autonomous Systems 29 (1999), pp. 33-40, published by Elsevier. |
Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation, Facchinetti C., Tiech F., and Hugli H., Proc, 3rd Int. Conf., Automation, Robotics and Computer Vision (ICARCV '94), Singapore (1994), pp. 1694-1698. |
Visual Measurement of Orientation Using Ceiling Features, Lang, S.; Roth, D.; Green, D.A.; Burhanpurkar, V.; Proceedingins in IEEE Instrumentation and Measurement Technology Conference (May 1994), pp. 552-555. |
Visual servoing based on ellipse features, Rives, P.; Michel, H.; SPIE vol. 2056, Intelligent Robots and Computer Vision XII (1993), pp. 356-367. |
Visual Servoing for Fast Mobile Robot Adaptive Estimation of Kinematic Parameters, Monteiro, D.; Jouvencel, B.; International Conference on Industrial Electronics, Control and Instrumentation (Nov. 1993), vol. 3, pp. 1588-1593. |
Wolf et al. “Robust Vision-based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 359-365, May 2002. |
Wolf et al. “Robust Vision-Based Localization by Combining an Image-Retrieval System with Monte Carol Localization”, IEEE Transactions on Robotics, vol. 21, No. 2, pp. 208-216, Apr. 2005. |
Wong “EIED Online>> Robot Business”, ED Online ID# 13114, 17 pages, Jul. 2006. |
Yamamoto et al. “Optical Sensing for Robot Perception and Localization”, 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14-17, 2005. |
Yata et al. “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer”, Proceedings of the 1998 IEEE, International Conference on Robotics & Automation, Leuven, Belgium, pp. 1590-1596, May 1998. |
Yun, et al. “Image-Based Absolute Positioning System for Mobile Robot Navigation”, IAPR International Workshops SSPR, Hong Kong, pp. 261-269, Aug. 17-19, 2006. |
Yun, et al. “Robust Positioning a Mobile Robot with Active Beacon Sensors”, Lecture Notes in Computer Science, 2006, vol. 4251, pp. 890-897, 2006. |
Yuta, et al. “Implementation of an Active Optical Range sensor Using Laser Slit for In-Door Intelligent Mobile Robot”, IEE/RSJ International workshop on Intelligent Robots and systems (IROS 91) vol. 1, Osaka, Japan, pp. 415-420, Nov. 3-5, 1991. |
Zha et al. “Mobile Robot Localization Using Incomplete Maps for Change Detection in a Dynamic Environment”, Advanced Intelligent Mechatronics '97. Final Program and Abstracts., IEEE/ASME International Conference, pp. 110, Jun. 16-20, 1997. |
Zhang, et al. “A Novel Mobile Robot Localization Based on Vision”, SPIE vol. 6279, 6 pages, Jan. 29, 2007. |
Friendly Robotics, 18 pages http://www.robotsandrelax.com/PDFs/RV400Manual.pdf accessed Dec. 22, 2011. |
Yujin Robotics, an intelligent cleaning robot ‘iclebo Q’ AVING USA http://us.aving.net/news/view.php?articleId=7257, 8 pages accessed Nov. 4, 2011. |
Special Reports, Vacuum Cleaner Robot Operated in Conjunction with 3G Celluar Phone vol. 59, No. 9 (2004) 3 pages http://www.toshiba.co.jp/tech/review/2004/09/59—0. |
McLurkin “The Ants: A community of Microrobots”, Paper submitted for requirements of BSEE at MIT, May 12, 1995. |
Grumet “Robots Clean House”, Popular Mechanics, Nov. 2003. |
McLurkin Stupid Robot Tricks: A Behavior-based Distributed Algorithm Library for Programming Swarms of Robots, Paper submitted for requirements of BSEE at MIT, May 2004. |
Kurs et al, Wireless Power transfer via Strongly Coupled Magnetic Resonances, Downloaded from www.sciencemag.org , Aug. 17, 2007. |
Borges et al. “Optimal Mobile Robot Pose Estimation Using Geometrical Maps”, IEEE Transactions on Robotics and Automation, vol. 18, No. 1, pp. 87-94, Feb. 2002. |
Braunstingl et al. “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception” ICAR '95, 7th International Conference on Advanced Robotics, Sant Feliu De Guixols, Spain, pp. 367-376, Sep. 1995. |
Bulusu, et al. “Self Configuring Localization systems: Design and Experimental Evaluation”, ACM Transactions on Embedded Computing Systems vol. 3 No. 1 pp. 24-60, 2003. |
Caccia, et al. “Bottom-Following for Remotely Operated Vehicles”, 5th IFAC conference, Alaborg, Denmark, pp. 245-250 Aug. 1, 2000. |
Chae, et al. “StarLITE: A new artificial landmark for the navigation of mobile robots”, http://www.irc.atr.jp/jk-nrs2005/pdf/Starlite.pdf, 4 pages, 2005. |
Chamberlin et al. “Team 1: Robot Locator Beacon System” NASA Goddard SFC, Design Proposal, 15 pages, Feb. 17, 2006. |
Champy “Physical management of IT assets in Data Centers using RFID technologies”, RFID 2005 University, Oct. 12-14, 2005 (NPL0126). |
Chiri “Joystick Control for Tiny OS Robot”, http://www.eecs.berkeley.edu/Programs/ugrad/superb/papers2002/chiri.pdf. 12 pages, Aug. 8, 2002. |
Christensen et al. “Theoretical Methods for Planning and Control in Mobile Robotics” 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 81-86, May 21-27, 1997. |
Andersen et al., “Landmark based navigation strategies”, SPIE Conference on Mobile Robots XIII, SPIE vol. 3525, pp. |
Clerentin, et al. “A localization method based on two omnidirectional perception systems cooperation” Proc of IEEE International Conference on Robotics & Automation, San Francisco, CA vol. 2, pp. 1219-1224, Apr. 2000. |
Corke “High Performance Visual serving for robots end-point control”. SPIE vol. 2056 Intelligent robots and computer vision 1993. |
Cozman et al. “Robot Localization using a Computer Vision Sextant”, IEEE International Midwest Conference on Robotics and Automation, pp. 106-111, 1995. |
D'Orazio, et al. “Model based Vision System for mobile robot position estimation”, SPIE vol. 2058 Mobile Robots VIII, pp. 38-49, 1992. |
De Bakker, et al. “Smart PSD—array for sheet of light range imaging”, Proc. Of SPIE vol. 3965, pp. 1-12, May 15, 2000. |
Desaulniers, et al. “An Efficient Algorithm to find a shortest path for a car-like Robot”, IEEE Transactions on robotics and Automation vol. 11 No. 6, pp. 819-828, Dec. 1995. |
Dorfmüller-Ulhaas “Optical Tracking From User Motion to 3D Interaction”, http://www.cg.tuwien.ac.at/research/publications/2002/Dorfmueller-Ulhaas-thesis, 182 pages, 2002. |
Dorsch, et al. “Laser Triangulation: Fundamental uncertainty in distance measurement”, Applied Optics, vol. 33 No. 7, pp. 1306-1314, Mar. 1, 1994. |
Dudek, et al. “Localizing a Robot with Minimum Travel” Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, vol. 27 No. 2 pp. 583-604, Apr. 1998. |
Dulimarta, et al. “Mobile Robot Localization in Indoor Environment”, Pattern Recognition, vol. 30, No. 1, pp. 99-111, 1997. |
Electrolux “Welcome to the Electrolux trilobite” www.electroluxusa.com/node57.asp?currentURL=node142.asp%3F, 2 pages, Mar. 18, 2005. |
Eren, et al. “Accuracy in position estimation of mobile robots based on coded infrared signal transmission”, Proceedings: Integrating Intelligent Instrumentation and Control, Instrumentation and Measurement Technology Conference, 1995. IMTC/95. pp. 548-551, 1995. |
Eren, et al. “Operation of Mobile Robots in a Structured Infrared Environment”, Proceedings. ‘Sensing, Processing, Networking’, IEEE Instrumentation and Measurement Technology Conference, 1997 (IMTC/97), Ottawa, Canada vol. 1, pp. 20-25, May 19-21, 1997. |
Becker, et al. “Reliable Navigation Using Landmarks” IEEE International Conference on Robotics and Automation, 0-7803-1965-6, pp. 401-406, 1995. |
Benayad-Cherif, et al., “Mobile Robot Navigation Sensors” SPIE vol. 1831 Mobile Robots, VII, pp. 378-387, 1992. |
Facchinetti, Claudio et al. “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation”, ICARCV '94, vol. 3 pp. 1694-1698, 1994. |
Betke, et al., “Mobile Robot localization using Landmarks” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems '94 “Advanced Robotic Systems and the Real World” (IROS '94), Vol. |
Facchinetti, Claudio et al. “Self-Positioning Robot Navigation Using Ceiling Images Sequences”, ACCV '95, 5 pages, Dec. 5-8, 1995. |
Fairfield, Nathaniel et al. “Mobile Robot Localization with Sparse Landmarks”, SPIE vol. 4573 pp. 148-155, 2002. |
Favre-Bulle, Bernard “Efficient tracking of 3D—Robot Position by Dynamic Triangulation”, IEEE Instrumentation and Measurement Technology Conference IMTC 98 Session on Instrumentation and Measurement in Robotics, vol. 1, pp. 446-449, May 18-21, 1998. |
Fayman “Exploiting Process Integration and Composition in the context of Active Vision”, IEEE Transactions on Systems, Man, and Cybernetics—Part C: Application and reviews, vol. 29 No. 1, pp. 73-86, Feb. 1999. |
Franz, et al. “Biomimetric robot navigation”, Robotics and Autonomous Systems vol. 30 pp. 133-153, 2000. |
Friendly Robotics “Friendly Robotics—Friendly Vac, Robotic Vacuum Cleaner”, www.friendlyrobotics.com/vac.htm. 5 pages Apr. 20, 2005. |
Fuentes, et al. “Mobile Robotics 1994”, University of Rochester. Computer Science Department, TR 588, 44 pages, Dec. 7, 1994. |
Bison, P et al., “Using a structured beacon for cooperative position estimation” Robotics and Autonomous Systems vol. 29, No. 1, pp. 33-40, Oct. 1999. |
Fukuda, et al. “Navigation System based on Ceiling Landmark Recognition for Autonomous mobile robot”, 1995 IEEE/ RSJ International Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, pp. 1466-1471, Aug. 5-9, 1995. |
Gionis “A hand-held optical surface scanner for environmental Modeling and Virtual Reality”, Virtual Reality World, 16 pages 1996. |
Goncalves et al. “A Visual Front-End for Simultaneous Localization and Mapping”, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 44-49, Apr. 2005. |
Gregg et al. “Autonomous Lawn Care Applications”, 2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006, pp. 1-5, May 25-26, 2006. |
Hamamatsu “SI PIN Diode S5980, S5981 S5870—Multi-element photodiodes for surface mounting”, Hamatsu Photonics, 2 pages Apr. 2004. |
Hammacher Schlemmer “Electrolux Trilobite Robotic Vacuum” www.hammacher.com/publish/71579.asp?promo=xsells, 3 pages, Mar. 18, 2005. |
Haralick et al. “Pose Estimation from Corresponding Point Data”, IEEE Transactions on systems, Man, and Cybernetics, vol. 19, No. 6, pp. 1426-1446, Nov. 1989. |
Hausler “About the Scaling Behaviour of Optical Range Sensors”, Fringe '97, Proceedings of the 3rd International Workshop on Automatic Processing of Fringe Patters, Bremen, Germany, pp. 147-155, Sep. 15-17, 1997. |
Blaasvaer, et al. “AMOR—An Autonomous Mobile Robot Navigation System”, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2266-2271, 1994. |
Hoag, et al. “Navigation and Guidance in interstellar space”, ACTA Astronautica vol. 2, pp. 513-533 , Feb. 14, 1975. |
Huntsberger et al. “CAMPOUT: A Control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration”, IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 33, No. 5, pp. 550-559, Sep. 2003. |
Iirobotics.com “Samsung Unveils Its Multifunction Robot Vacuum”, www.iirobotics.com/webpages/hotstuff.php?ubre=111, 3 pages, Mar. 18, 2005. |
Jarosiewicz et al. “Final Report—Lucid”, University of Florida, Departmetn of Electrical and Computer Engineering, EEL 5666—Intelligent Machine Design Laboratory, 50 pages, Aug. 4, 1999. |
Karcher RC 3000 Cleaning Robot—user manual Manufacturer: Alfred-Karcher GmbH & Co, Cleaning Systems, Alfred Karcher-Str 28-40, PO Box 160, D-71349 Winnenden, Germany, Dec. 2002. |
Cameron Morland, Automatic Lawn Mower Control, Jul. 24, 2002. |
Put Your Roomba . . . On “Automatic” Roomba Timer>Timed Cleaning-Floorvac Robotic Vacuum webpages; http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&category=43575198387&rd=1, accessed Apr. 20, 2005, 5 pages. |
Schofield Monica “Neither Master Nor slave” A Practical Study in the Development and Employment of Cleaning Robots, Emerging Technologies and Factory Automation, 1999 Proceedings ETFA '99 1999 7th IEEE International Conference on Barcelona, Spain, Oct. 18-21, 1999, pp. 1427-1434. |
Sebastian Thrun, Learning Occupancy Grid Maps With Forward Sensor Models, School of Computer Science, Carnegie Mellon University, pp. 1-28. |
Doty et al. “Sweep Strategies for a Sensory-Driven, Behavior-Based Vacuum Cleaning Agent”, AAAI 1993 Fall Symposium Series, Instantiating Real-World Agents, pp. 1-6, Oct. 22-24, 1993 (NPL0129). |
Gat, Erann “Robust Low-Computation Sensor-driven Control for Task-Directed Navigation”, Proc Of IEEE International Conference on robotics and Automation , Sacramento, CA pp. 2484-2489, Apr. 1991. |
Hitachi: News release: “The home cleaning robot of the autonomous movement type (experimental machine)”, www.i4u.com./japanreleases/hitachirobot.htm, 5 pages, Mar. 18, 2005. |
Jeong, et al. “An intelligent map-building system for indoor mobile robot using low cost photo sensors”, SPIE vol. 6042 6 pages, 2005. |
Kahney, “Robot Vacs are in the House,” www.wired.com/news/technology/o,1282,59237,00.html, 6 pages, Jun. 18, 2003. |
Karcher “Karcher RoboCleaner RC 3000”, www.robocleaner.de/english/screen3.html, 4 pages, Dec. 12, 2003. |
Karcher USA “RC 3000 Robotics cleaner”, www.karcher-usa.com, 3 pages, Mar. 18, 2005. |
Leonard, et al. “Mobile Robot Localization by tracking Geometric Beacons”, IEEE Transaction on Robotics and Automation, vol. 7, No. 3 pp. 376-382, Jun. 1991. |
Linde “Dissertation, “On Aspects of Indoor Localization”” https://eldorado.tu-dortmund.de/handle/2003/22854, University of Dortmund, 138 pages, Aug. 28, 2006. |
Microbot “Home Robot—UBOT”, www.micorbotusa.com/product—1—1—.html, 2 pages, Dec. 2, 2008. |
Morland, “Autonomous Lawnmower Control”, Downloaded from the internet at: http://cns.bu.edu/˜cjmorlan/robotics/lawnmower/report.pdf, 10 pages, Jul. 24, 2002. |
Nam, et al. “Real-Time Dynamic Visual Tracking Using PSD Sensors and extended Trapezoidal Motion Planning”, Applied Intelligence 10, pp. 53-70, 1999. |
On Robo “Robot Reviews Samsung Robot Vacuum (VC-RP30W)”, www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm.. 2 pages, 2005. |
OnRobo “Samsung Unveils Its Multifunction Robot Vacuum”, www.onrobo.com/enews/0210/samsung—vacuum.shtml, 3 pages, Mar. 18, 2005. |
Pages et al. “A camera-projector system for robot positioning by visual servoing”, Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW06), 8 pages, Jun. 17-22, 2006. |
Pages, et al. “Robust decoupled visual servoing based on structured light”, 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2676-2681, 2005. |
Park et al. “A Neural Network Based Real-Time Robot Tracking Controller Using Position Sensitive Detectors,” IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on Neutral Networks, Orlando, Florida pp. 2754-2758, Jun. 27-Jul. 2, 1994. |
Pirjanian “Challenges for Standards for consumer Robotics”, IEEE Workshop on Advanced Robotics and its Social impacts, pp. 260-264, Jun. 12-15, 2005. |
Prassler et al., “A Short History of Cleaning Robots”, Autonomous Robots 9, 211-226, 2000, 16 pages. |
Radio Frequency Identification: Tracking ISS Consumables, Author Unknown, 41 pages (NPL0127). |
Shimoga et al. “Touch and Force Reflection for Telepresence Surgery”, Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, Baltimore, MD, pp. 1049-1050, 1994. |
The Sharper Image “E Vac Robotic Vacuum”, www.sharperiamge.com/us/en/templates/products/pipmorework1printable.jhtml, 2 pages, Mar. 18, 2005. |
Office Action for Korean Patent Application No. 10-2010-7025523, mailed on Feb. 15, 2011, 11 pages including English translation. |
Hitachi “Feature”, http://kadenfan.hitachi.co.jp/robot/feature/feature.html , 1 page Nov. 19, 2008. |
Pages et al. “Optimizing Plane-to-Plane Positioning Tasks by Image-Based Visual Servoing and Structured Light”, IEEE Transactions on Robotics, vol. 22, No. 5, pp. 1000-1010, Oct. 2006. |
Park, et al. “Dynamic Visual Servo Control of Robot Manipulators using Neutral Networks”, The Korean Institute Telematics and Electronics, vol. 29-B, No. 10, pp. 771-779, Oct. 1992. |
Paromtchik, et al. “Optical Guidance System for Multiple mobile Robots”, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2935-2940 (May 21-26, 2001). |
Penna, et al. “Models for Map Building and Navigation”, IEEE Transactions on Systems. Man. And Cybernetics. vol. 23 No. 5, pp. 1276-1301, Sep./Oct. 1993. |
Pirjanian “Reliable Reaction”, Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 158-165, 1996. |
Pirjanian et al. “Distributed Control for a Modular, Reconfigurable Cliff Robot”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 4083-4088, May 2002. |
Pirjanian et al. “Representation and Execution of Plan Sequences for Multi-Agent Systems”, Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2117-2123, Oct. 29-Nov. 3, 2001. |
Pirjanian et al. “Multi-Robot Target Acquisition using Multiple Objective Behavior Coordination”, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 2696-2702, Apr. 2000. |
Pirjanian et al. “A decision-theoretic approach to fuzzy behavior coordination”, 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1999. CIRA '99., Monterey, CA, pp. 101-106, Nov. 8-9, 1999. |
Pirjanian et al. “Improving Task Reliability by Fusion of Redundant Homogeneous Modules Using Voting Schemes”, Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM, pp. 425-430, Apr. 1997. |
Remazeilles, et al. “Image based robot navigation in 3D environments”, Proc. of SPIE, vol. 6052, pp. 1-14, Dec. 6, 2005. |
Rives, et al. “Visual servoing based on ellipse features”, SPIE vol. 2056 Intelligent Robots and Computer Vision pp. 356-367, 1993. |
Robotics World Jan. 2001: “A Clean Sweep” (Jan. 2001). |
Ronnback “On Methods for Assistive Mobile Robots”, http://www.openthesis.org/documents/methods-assistive-mobile-robots-595019.html, 218 pages, Jan. 1, 2006. |
Roth-Tabak, et al. “Environment Model for mobile Robots Indoor Navigation”, SPIE vol. 1388 Mobile Robots pp. 453-463, 1990. |
Sadath M Malik et al. “Virtual Prototyping for Conceptual Design of a Tracked Mobile Robot”. Electrical and Computer Engineering, Canadian Conference on, IEEE, PI. May 1, 2006, pp. 2349-2352. |
Sahin, et al. “Development of a Visual Object Localization Module for Mobile Robots”, 1999 Third European Workshop on Advanced Mobile Robots, (Eurobot '99), pp. 65-72, 1999. |
Salomon, et al. “Low-Cost Optical Indoor Localization system for Mobile Objects without Image Processing”, IEEE Conference on Emerging Technologies and Factory Automation, 2006. (ETFA '06), pp. 629-632, Sep. 20-22, 2006. |
Sato “Range Imaging Based on Moving Pattern Light and Spatio-Temporal Matched Filter”, Proceedings International Conference on Image Processing, vol. 1., Lausanne, Switzerland, pp. 33-36, Sep. 16-19, 1996. |
Schenker, et al. “Lightweight rovers for Mars science exploration and sample return”, Intelligent Robots and Computer Vision XVI, SPIE Proc. 3208, pp. 24-36, 1997. |
Sim, et al “Learning Visual Landmarks for Pose Estimation”, IEEE International Conference on Robotics and Automation, vol. 3, Detroit, MI, pp. 1972-1978, May 10-15, 1999. |
Sobh et al. “Case Studies in Web-Controlled Devices and Remote Manipulation”, Automation Congress, 2002 Proceedings of the 5th Biannual World, pp. 435-440, Dec. 10, 2002. |
Stella, et al. “Self-Location for Indoor Navigation of Autonomous Vehicles”, Part of the SPIE conference on Enhanced and Synthetic Vision SPIE vol. 3364 pp. 298-302, 1998. |
Summet “Tracking Locations of Moving Hand-held Displays Using Projected Light”, Pervasive 2005, LNCS 3468 pp. 37-46 (2005). |
Svedman et al. “Structure from Stereo Vision using Unsynchronized Cameras for Simultaneous Localization and Mapping”, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2998, 2005. |
Takio et al. “Real-Time Position and Pose Tracking Method of Moving Object Using Visual Servo System”, 47th IEEE International Symposium on Circuits and Systems, pp. 167-170, 2004. |
Teller “Pervasive pose awareness for people, Objects and Robots”, http://www.ai.mit.edu/lab/dangerous-ideas/Spring2003/teller-pose.pdf, 6 pages, Apr. 30, 2003. |
Terada et al. “An Acquisition of the Relation between Vision and Action using Self-Organizing Map and Reinforcement Learning”, 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australiam pp. 429-434, Apr. 21-23, 1998. |
The Sharper Image “Robotic Vacuum Cleaner—Blue” www.Sharperimage.com, 2 pages, Mar. 18, 2005. |
TheRobotStore.com “Friendly Robotics Robotic Vacuum RV400—The Robot Store”, www.therobotstore.com/s.nl/sc.9/category.-109/it.A/id.43/.f, 1 page, Apr. 20, 2005. |
Trebi-Ollennu et al. “Mars Rover Pair Cooperatively Transporting a Long Payload”, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 3136-3141, May 2002. |
Tribelhorn et al., “Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education,” 2007, IEEE, pp. 1393-1399. |
Tse et al. “Design of a Navigation System for a Household Mobile Robot Using Neural Networks”, Department of Manufacturing Engg. & Engg. Management, City University of Hong Kong, pp. 2151-2156, 1998. |
Watanabe et al. “Position Estimation of Mobile Robots With Internal and External Sensors Using Uncertainty Evolution Technique”, 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 2011-2016, May 13-18, 1990. |
Watts “Robot, boldly goes where no man can”, The Times—pp. 20, Jan. 1985. |
Wijk et al. “Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking”, IEEE Transactions on Robotics and Automation, vol. 16, No. 6, pp. 740-752, Dec. 2000. |
Jensfelt, et al. “Active Global Localization for a mobile robot using multiple hypothesis tracking”, IEEE Transactions on Robots and Automation vol. 17, No. 5, pp. 748-760, Oct. 2001. |
Karcher “Product Manual Download Karch”, www.karcher.com, 17 pages, 2004. |
Karlsson et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 24-29, Apr. 2005. |
Karlsson, et al Core Technologies for service Robotics, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2979-2984, Sep. 28-Oct. 2, 2004. |
King “Heplmate-TM—Autonomous mobile Robots Navigation Systems”, SPIE vol. 1388 Mobile Robots pp. 190-198, 1990. |
Kleinberg, The Localization Problem for Mobile Robots, Laboratory for Computer Science, Massachusetts Institute of Technology, 1994 IEEE, pp. 521-531, 1994. |
Knight, et al., “Localization and Identification of Visual Landmarks”, Journal of Computing Sciences in Colleges, vol. 16 Issue 4, 2001 pp. 312-313, May 2001. |
Kolodko et al. “Experimental System for Real-Time Motion Estimation”, Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp. 981-986, 2003. |
Komoriya et al., Planning of Landmark Measurement for the Navigation of a Mobile Robot, Proceedings of the 1992 IEEE/RSJ International Cofnerence on Intelligent Robots and Systems, Raleigh, NC pp. 1476-1481, Jul. 7-10, 1992. |
Krupa et al. “Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoing”, IEEE Transactions on Robotics and Automation, vol. 19, No. 5, pp. 842-853, Oct. 5, 2003. |
Kuhl, et al. “Self Localization in Environments using Visual Angles”, VRCAI '04 Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum and its applications in industry, pp. 472-475, 2004. |
Kurth, “Range-Only Robot Localization and SLAM with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May 2004. |
Lambrinos, et al. “A mobile robot employing insect strategies for navigation”, http://www8.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment%20Papers/lambrinos-RAS-2000.pdf, 38 pages, Feb. 19, 1999. |
Lang et al. “Visual Measurement of Orientation Using Ceiling Features”, 1994 IEEE, pp. 552-555, 1994. |
Lapin, “Adaptive position estimation for an automated guided vehicle”, SPIE vol. 1831 Mobile Robots VII, pp. 82-94, 1992. |
LaValle et al. “Robot Motion Planning in a Changing, Partially Predictable Environment”, 1994 IEEE International Symposium on Intelligent Control, Columbus, OH, pp. 261-266, Aug. 16-18, 1994. |
Lee, et al. “Localization of a Mobile Robot Using the Image of a Moving Object”, IEEE Transaction on Industrial Electronics, vol. 50, No. 3 pp. 612-619, Jun. 2003. |
Lee, et al. “Development of Indoor Navigation system for Humanoid Robot Using Multi-sensors Integration”, ION NTM, San Diego, CA pp. 798-805, Jan. 22-24, 2007. |
Li et al. “Robost Statistical Methods for Securing Wireless Localization in Sensor Networks”, Wireless Information Network Laboratory, Rutgers University. |
Li et al. “Making a Local Map of Indoor Environments by Swiveling a Camera and a Sonar”, Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 954-959, 1999. |
Lin, et al.. “Mobile Robot Navigation Using Artificial Landmarks”, Journal of robotics System 14(2). pp. 93-106, 1997. |
Lumelsky, et al. “An Algorithm for Maze Searching with Azimuth Input”, 1994 IEEE International Conference on Robotics and Automation, San Diego, CA vol. 1, pp. 111-116, 1994. |
Luo et al., “Real-time Area-Covering Operations with Obstacle Avoidance for Cleaning Robots,” 2002, IEeE, pp. 2359-2364. |
Ma “Thesis: Documentation on Northstar”, California Institute of Technology, 14 pages, May 17, 2006. |
Madsen, et al. “Optimal landmark selection for triangulation of robot position”, Journal of Robotics and Autonomous Systems vol. 13 pp. 277-292, 1998. |
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591 pp. 25-30. |
Matsutek Enterprises Co. Ltd “Automatic Rechargeable Vacuum Cleaner”, http://matsutek.manufacturer.globalsources.com/si/6008801427181/pdtl/Home-vacuum/10 . . . , Apr. 23, 2007. |
McGillem, et al. “Infra-red Lacation System for Navigation and Autonomous Vehicles”, 1988 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1236-1238, Apr. 24-29, 1988. |
McGillem,et al. “A Beacon Navigation Method for Autonomous Vehicles”, IEEE Transactions on Vehicular Technology, vol. 38, No. 3, pp. 132-139, Aug. 1989. |
Michelson “Autonomous Navigation”, 2000 Yearbook of Science & Technology, McGraw-Hill, New York, ISBN 0-07-052771-7, pp. 28-30, 1999. |
Miro, et al. “Towards Vision Based Navigation in Large Indoor Environments”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2096-2102, Oct. 9-15, 2006. |
MobileMag “Samsung Unveils High-tech Robot Vacuum Cleaner”, http://www.mobilemag.com/content/100/102/C2261/, 4 pages, Mar. 18, 2005. |
Monteiro, et al. “Visual Servoing for Fast Mobile Robot: Adaptive Estimation of Kinematic Parameters”, Proceedings of the IECON '93., International Conference on Industrial Electronics, Maui, HI, pp. 1588-1593, Nov. 15-19, 1993. |
Moore, et al. A simple Map-bases Localization strategy using range measurements, SPIE vol. 5804 pp. 612-620, 2005. |
Munich et al. “SIFT-ing Through Features with ViPR”, IEEE Robotics & Automation Magazine, pp. 72-77, Sep. 2006. |
Munich et al. “ERSP: A Software Platform and Architecture for the Service Robotics Industry”, Intelligent Robots and Systems, 2005. (IROS 2005), pp. 460-467, Aug. 2-6, 2005. |
Nitu et al. “Optomechatronic System for Position Detection of a Mobile Mini-Robot”, IEEE Ttransactions on Industrial Electronics, vol. 52, No. 4, pp. 969-973, Aug. 2005. |
On Robo “Robot Reviews Samsung Robot Vacuum (VC-RP30W)”, www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm . . . 2 pages, 2005. |
InMach “Intelligent Machines”, www.inmach.de/inside.html, 1 page , Nov. 19, 2008. |
Innovation First “2004 EDU Robot Controller Reference Guide”, http://www.ifirobotics.com, 13 pgs., Mar. 1, 2004. |
CleanMate 365, Intelligent Automatic Vacuum Cleaner, Model No. QQ-1, User Manual www.metapo.com/support/user—manual.pdf , Dec. 2005, 11 pages. |
Dyson's Robot Vacuum Cleaner—the DC06, May 2004, Retrieved from the Internet: URL<http://www.gizmag.com/go/1282/>. Accessed Nov. 2011, 3 pages. |
EBay, “Roomba Timer -> Timed Cleaning—Floorvac Robotic Vacuum,” Retrieved from the Internet: URL Cgi.ebay.com/ws/eBay|SAP|.dll?viewitem&category=43526&item=4375198387&rd=1, 5 pages, Apr. 2005. |
Euroflex Intelligente Monstre, (English excerpt only), 2006, 15 pages. |
Euroflex, Jan. 2006, Retrieved from the Internet: URL<http://www.euroflex.tv/novita—dett.php?id=15, accessed Nov. 2011, 1 page. |
Evolution Robotics, “NorthStar—Low-cost Indoor Localiztion—How it Works,” E Evolution Robotics , 2 pages, 2005. |
Floorbotics, VR8 Floor Cleaning Robot, Product Description for Manufacturing, URL: <http://www.consensus.sem.au/SoftwareAwards/CSAarchive/CSA2004/CSAart04/FloorBot/F>. Mar. 2004, 11 pages. |
Koolvac Robotic Vacuum Cleaner Owner's Manual, Koolatron, 2004, 13 pages. |
TotalVac.com, RC3000 RoboCleaner website, 2004, Accessed at http://ww.totalvac.com/robot—vacuum.htm (Mar. 2005), 3 pages. |
UAMA (Asia) Industrial Co., Ltd., “RobotFamily,” 2005, 1 page. |
Number | Date | Country | |
---|---|---|---|
Parent | 12415512 | Mar 2009 | US |
Child | 13299982 | US |