1. Technical Field
This invention relates generally to rechargeable battery packs, and more particularly to a circuit for balancing the voltages of serially coupled cells within a rechargeable battery pack.
2. Background Art
Most portable electronic devices today, like cellular telephones, MP3 players, pagers, radios and portable computers, rely on rechargeable batteries for power. While some people may consider these power sources to be just a single cell wrapped in plastic, nothing could be farther from the truth. In practice, rechargeable battery packs are complex devices that include not only electrochemical cells, but control circuitry and intricate mechanical components as well.
The energy source within a rechargeable battery is the electrochemical cell. While some devices, like cellular phones, may use battery packs that have one cell within, other devices, like laptop computers, often use battery packs having 4, 5 or even 6 or more cells.
When multiple cells are employed, they are often connected in series to increase the overall output voltage of the battery pack. Series cells are charged by a single current that flows through both cells. One problem associated with serial cell configurations is known as “cell imbalance”. This occurs when one cell in a series string charges faster or slower than the others. When this happens, faster charging cells reach full charge sooner that the slow cells. Since the only way to stop the charging of the fully charged cells is to stop the single current flowing through the series string of cells, the overall charging process terminates before the slow cells are fully charged. This unbalanced state compromises the performance of the overall battery pack.
One prior art solution to this unbalanced problem is to place a passive, switched bypass path (like a transistor) about each cell in a serial string. When one cell starts charging faster than another, a switch causes the current to bypass the faster cell until the slow cell catches up. In other words, the bypass switch stops the charging of faster cell until the slow cell reaches the same charge, and then allows the faster cell to begin charging again. If the faster cell gets ahead again, the bypass switch re-stops it until the other cells catch up. This start/stop, intermittent process continues until the battery pack is charged.
The problem with this prior art solution is that it is inefficient. Due to the bypass switch action, some cells are taken out of the charge path while others catch up. As a result the overall charging process gets long and slow. There is thus a need for an improved cell-balancing circuit that reduces the overall charge time of rechargeable battery packs.
A preferred embodiment of the invention is now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.”
This invention provides an active cell balancing circuit, that can be employed within a battery pack, which is able to either source or sink current into nodes between serially coupled cells, thereby balancing the charging without removing any of the cells from the overall charging process. In effect, the circuit charges the slower cells faster and the faster cells more slowly, thereby increasing the overall efficiency of the charging process, without removing cells from the system. Since all cells are charging throughout the process, the overall charge time is reduced.
One embodiment of the invention employs an op-amp to perform the fundamental balancing function. The op-amp monitors and compares a voltage between serially coupled cells with an average of the voltage across the serially coupled cells. (The average voltage may be established, for example, by a voltage divider across the serially coupled cells.) The op-amp, set in a unity gain configuration in one preferred embodiment, is then capable of sourcing or sinking current into the midpoint node between the cells to keep the cells balanced during charging.
When the average cell voltage exceeds the voltage at a midpoint node between the cells, current is sourced out of the op-amp into the midpoint node. This sourcing causes the bottom cell to charge more rapidly that the upper cell. When the average cell voltage falls below the voltage between the cells, the op-amp sinks current from the midpoint node, thereby slowing the overall charge rate of the upper cell.
In another embodiment of the invention, a “partial”0 balancing of the cells is provided. Such a partial cell balancing circuit is desirable when the battery pack includes separate terminals for a charger and a load, or when highly efficient energy storage is required. In the partial-balancing configuration, power for the op-amp is the provided by the voltage across the serial cells. An optional blocking diode is then added to prevent discharging the cells into the charger. Transistor switches are included to turn the op-amp off when no charger is coupled to the battery pack. As such, the balancing circuit only operates when a charger is connected. The balancing circuit is turned off when only a load is connected, thereby extending the battery capacity available to the load. It is this turning off that gives rise to the “partial” nature of the balancing. Balancing occurs during charge only.
While some of the discussion herein will be directed to a two-cell battery for simplicity, any of the embodiments may be expanded for use in applications having 3, 4 or more cells. This will be discussed further with respect to
Turning now to
An active circuit 111 having an input 112 and an output 113 ensures that the cells 102,103 stay balanced throughout the charging process. The circuit 111, comprising an operational amplifier or “op-amp” 104 in this embodiment, is capable of sourcing or sinking current, as necessary, to keep the cells 102,103 balanced. The output 113 is coupled to the midpoint node 105 through an optional, serially connected current limiting resistor 108. While an op-amp is preferred due to its low cost and robustness, it will be clear to those of ordinary skill in the art having the benefit of this disclosure that other devices, like comparators and voltage controlled current sources, may also be substituted.
A reference voltage is established at the input 112 by way of a voltage divider 114 coupled across the two cells 102,103. In its simplest form, the voltage divider 114 comprises a resistor-divider having two resistors 106,107 coupled in series. In one preferred embodiment, the voltage divider divides the overall cell voltage generally in half (neglecting tolerances of components) by employing resistors 106,107 having equal impedances. Other reference voltages, of course, may be established by varying the impedances of these resistors 106,107. For example, if cells of different chemistries are used, they may have different termination voltages. In that case, the resistors would have different impedances.
In any event, the reference voltage will be a division of the voltage across the cells. For cells of the same type, the reference will preferably be between 40 and 60 percent of the overall voltage of the series cells. Said differently, to keep the cells charging equally, it is preferable that the resistor 106,107 values are within 10 percent of each other. The reference voltage is proportional to the voltage across the cells 102,103, in that when the voltage across the cell pair increases, the reference voltage increases, and vice versa.
When the reference voltage at node 112 exceeds the voltage at the midpoint node 105, the output 113 sources current into the midpoint node 105. This sourcing of current causes the current flowing through cell 103 to be greater than the current flowing through cell 102, thereby charging cell 103 more rapidly than cell 102. In effect, when the voltage across cell 103 falls below the voltage across cell 102, current is added to cell 103 to help it “catch up” to cell 102.
When the voltage at the midpoint node 105 exceeds the reference voltage at node 112, the output 113 sinks current from the midpoint node 105, thereby causing less current to flow through cell 103 than through cell 102. The net result is that cell 103 still charges, but charges more slowly than cell 102, thereby allowing cell 102 to catch up to cell 103.
Examining the op-amp 104 of
Power is required for the op-amp 104 to function. This power is supplied through the op-amp's power node 117 and return node 118. The power node 117 is coupled to the cathode of cell 102, and the return node 118 is coupled to the negative terminal, or anode, of cell 103. Said differently, for a two cell pair, the return node 118 is coupled to the anode of one of the two cells, and in particular, the anode that is not coupled to the midpoint node 105 (i.e. the anode of cell 103).
As noted in the preceding paragraph, power is required for the op-amp to function. Since it is sometimes not desirable for anything other than the load to draw power from the cells, it may be advantageous to deactivate the cell balancing circuit when a charger is not attached so as to maximize the battery capacity of the overall battery pack. Turning now to
The circuit 200 of
To ensure that the cell balancing circuit 111 is only operational when a charger is connected, two switches 219,220 have been added to the circuit 200. When a power source is connected to the battery pack, switch 219 closes to provide power to the op-amp 104. Switch 220 also closes to allow current to source and sink to and from the midpoint node 105. When the charger is removed, switches 219 and 220 open, thereby disconnecting the cell balancing circuit 111 from the cells 102,103.
While the ideal switches 219,220 of
Turning to
Another difference between the circuit 300 of
Turning now to
A first active circuit 401 monitors the balance of cells 404,405. A second active circuit 402 monitors the balance of cells 405,406. This arrangement of one active circuit to a pair of cells extends on for the desired number of cells. For example, if cell 407 is the Nth cell in a string, then active circuit 403 would monitor the balance of cell 407 and the (N−1)th cell. The operation of the active circuits is the same as with circuit 200 of
Note that the power nodes 412,413,414 of the active circuits 401,402,403 may be all coupled to the cell stack voltage, which is present at node 415. Alternatively, the power nodes 412,413,414 may be coupled across only the cells they balance. For example, since active circuit 402 monitors cells 405 and 406, power node 413 may be coupled to node 416 rather than node 415. The advantage of coupling the power node across only the cells being balanced is that a low-voltage op-amp, which can be less expensive, may be used.
Turning now to
Turning now to
Turning now to
To ensure that the op-amp 704 is disconnected from the cells in the absence of a charger, MOSFET switches 719 and 720 are coupled serially with the power node 717 of the op-amp 704 and the output 713 of the op-amp 704, respectively. To block any leakage currents, blocking diodes 722 and 730 are coupled to switches 719 and 720, respectively. Diode 721 ensures that the cells 702,703 do not discharge through the charger terminals 723,724.
While the preferred embodiments of the invention have been illustrated and described, it is clear that the invention is not so limited. Numerous modifications, changes, variations, substitutions, and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as defined by the following claims.