The present invention generally relates to DC/DC converters. More particularly the present invention relates to DC/DC converters employing controlled voltage sources made up of cells.
Cascaded converter cells, often denoted multilevel converter cells, are of interest in many power transmission applications, for instance in voltage source converters.
These cells provide discrete voltage levels that can be combined for conversion between AC and DC. Each cell is here made up of an energy storage element, typically a capacitor, being connected in series with two switching elements for forming a half-bridge converter cell. These cells typically have two connection terminals, where a first is provided in the junction between the two switching elements and a second in the junction between one of the switching elements and the energy storage element. The placing of the second terminal in the half-bridge cell defines the cell type, where it may be placed at the junction between one of the switching elements and the energy storage element. The placing of the second terminal at a first such junction therefore defines a first type of half-bridge cell, while the placing of the second connection terminal at a second junction defines a second type of cell.
These types of cells are generally described in relation to a voltage source converter in DE 10103031.
The use of such cells in a DC/DC converter is described by Colin Oates in “A methodology for developing ‘Chainlink’ converters”, 13th European Conference on Power Electronics and Applications, 2009. EPE 9, Sep. 2009, page 1-10. In this type of converter, strings of cells are configured so as to provide a DC voltage towards a pair of DC terminals. They are also configured so as to provide an AC voltage towards a transformer. At the other side of the transformer, a corresponding conversion is made between an AC voltage and another DC voltage of another pair of DC terminals. Thanks to this transformer a voltage adjustment is possible where the two DC voltages may be of different magnitude. In addition, the two pairs of DC terminals may be galvanically separated from each other. However, the converter described by Oates requires two groups of converter cells on both sides of the transformer, each string being capable of providing the DC voltage and also producing the mentioned AC voltage. This solution may therefore be expensive.
Various DC/DC converter structures that are based on other types of conversion elements than cells are described in for instance U.S. Pat. Nos. 6,349,044, U.S. Pat. No. 7,061,777 and U.S. Pat. No. 6,771,518.
In view of what has been described above, there is therefore a need for a cell based DC/DC converter, which is more cost efficient than the previously known cell-based DC/DC converter.
One object of the present invention is to provide a more cost-efficient cell based DC/DC converter.
This object is according to one aspect of the present invention solved through a DC/DC converter comprising
The present invention has a number of advantages. It is economical and cost-efficient. This is combined with the output of the converter having a reduced amount of harmonic distortion while also allowing different magnitudes and galvanic separation of the DC voltages.
The present invention will in the following be described with reference being made to the accompanying drawings, where
In the following, a detailed description of preferred embodiments of a device and a method according to the present invention will be given.
In
In the converter 10 there is a first conversion unit 12 arranged to convert between AC and DC connected to a second conversion unit via a transformer 16. Also the second conversion unit 14 is arranged to convert between AC and DC. These two conversion units both have an AC side facing the transformer 16 and a DC side facing a corresponding DC system. The DC side of the first conversion unit 12 here has a first and a second DC terminal 18 and 20 for connection to two power lines of the first DC system S1, while the DC side of the second conversion unit 14 has a third and fourth DC terminal 22 and 24 for connection to two power lines of the second DC system S2. The first and second DC terminals here form a first DC terminal pair, while the third and fourth DC terminals form a second DC terminal pair.
One or both of the DC systems shown in
In the first conversion unit 12A there is furthermore a first capacitor bank, exemplified by a first and a second capacitor C1, C2 connected in series between the first and the second terminals 18 and 20, and in parallel with the first conversion branch. A second end of the primary winding of the transformer 16 is connected to the midpoint of this capacitor bank, i.e. to the junction between the two capacitors C1 and C2. As can be seen in
The second conversion unit 14B is in this first embodiment also a voltage source conversion unit. Therefore it comprises a second conversion branch connected in series between the third and fourth DC terminal 22 and 24. Also this second conversion branch includes a first positive and a second negative arm connected to each other, and at the junction where the arms meet, which is the midpoint of the branch, one end of a secondary winding of the transformer 16 is connected. The positive arm is here a first half of the second conversion branch, while the negative arm is a second half of the second conversion branch. Each arm of the conversion branch furthermore includes one reactor, Lb2p of the positive arm and Lb2n of the negative arm. In this embodiment these reactors are connected to the DC terminals 22 and 24, respectively. Each arm furthermore includes a variable voltage source, Ub2p of the positive arm and Ub2n of the negative arm, both being connected to the control unit 26 for being controlled.
There is also a second capacitor bank, with a third and a fourth capacitor C3, C4 connected in series between the third and the fourth DC terminals 22 and 24, and in parallel with the second conversion branch. A second end of the secondary winding of the transformer 16 is connected to the midpoint of this capacitor bank, i.e. to the junction between the two capacitors C3 and C4. As can be seen in
As can be seen in
The control of voltage sources is in
The variable voltage sources are according to the present invention furthermore realized in the form of voltage source converter cells or cells being connected to each other, for instance in series.
The cells of the first and second types do always provide a DC component and may therefore be used for conversion between AC and DC. These cells therefore both have unipolar voltage contribution capability, where the actual voltage contribution depends on how the switches are operated and how the cells are oriented in a phase leg. In these cells only one switching element should be turned on at a time and when this happens a cell of a specific type provides a positive or no contribution, i.e. a zero voltage contribution, when being connected with one orientation and a negative contribution when being connected with an opposite orientation. A contribution is here the voltage across the capacitor.
The controllable voltage sources of the first conversion unit are according to the invention made up of a series-connection of a number of such cells. These series-connections or strings can be provided in different ways.
A first type of a voltage source Ub1p-1 is shown in
A second type of voltage source Ub1p-2 is shown in
A third type of voltage source Ub1p-3 is shown in
Above, the structure of a voltage source in a positive arm was described. Typically the voltage source of the negative arm will have the same type of cells and structure as the voltage source in the corresponding positive arm. However there may be differences between the types of voltage sources in the first and second conversion units. The voltage sources are furthermore unipolar, which is indicated in
The functioning of the converter will now be described with reference being made to
These voltages are applicable for both conversion branches, i.e. they appear on both sides of the transformer, however with different magnitudes.
The control unit 28 controls the voltage sources of a conversion branch through controlling the cells of these voltage sources to provide voltage contributions over time forming the time varying voltages shown in the upper half of
A time-varying voltage can generally be divided into various components, like a DC component and an AC component. An AC component can here include a fundamental AC component as well as harmonic AC components. It is possible to provide such voltage components in a conversion branch using the controllable voltage sources.
If the DC terminals are to have the potentials +Ud and −Ud then the voltage source in the negative arm of the corresponding conversion branch is controlled to provide a voltage
Ubn=Ud+½Ut,
where ½ Ut is the AC voltage contribution.
In the same manner the voltage source in the positive arm of the branch is controlled to provide a voltage
Ubp=Ud−½Ut
This leads to the forming of a differential mode AC voltage Ubn Ubp=Ut, which is also the voltage at the corresponding transformer winding. This also leads to the forming of a common mode DC voltage Ubn+Ubp=2Ud, which is the difference in potential between the two DC terminals. These voltages are shown in the lower half of
As can be seen one of the conversion units thus provides a differential AC voltage to one side of the transformer based on the DC voltages on two terminals of a DC terminal pair, which AC voltage is transformed for providing a corresponding AC voltage on the other side of the transformer. This is then used by the other conversion unit in the same way for providing DC voltages on the DC terminals of the other DC terminal pair.
As can be understood there is thus formed a first differential AC voltage Ut1 at the primary winding of the transformer and a second differential AC voltage Ut2 at the secondary winding of the transformer. The difference Ut1−Ut2 between these AC voltages will appear across the reactance formed by the sum of the parallel connected branch reactors of both conversion branches and the transformer leakage reactance. By controlling this difference voltage Ut1−Ut2 the current flowing through the transformer can be controlled. Hence both the voltage applied to the transformer and the current through the transformer can be controlled. This allows for control of the active power flow through the converter. In practice, since both Ut1 and Ut2 will be AC voltages, the power can be controlled by the phase shift between them.
Through this control the equipment on one side of the transformer therefore acts as an inverter feeding the transformer with an AC voltage whereas the equipment on the other side of the transformer acts as a rectifier turning the transformed AC voltage into a DC voltage again. The capacitors of the capacitor banks should here be sufficiently large to keep the transformer winding connected to the capacitor bank midpoint approximately right between the two DC poles in terms of potential.
The converter according to the first embodiment of the invention has the advantage of being economical and cost-efficient. This is combined with the output of the converter having a reduced amount of harmonic distortion while also allowing different magnitudes and galvanic separation of the DC voltages.
The AC voltage may here have an ordinary AC voltage frequency of 50 or 60 Hz. However, it should here be realized that the converter is not limited to this, but that other frequencies can be employed, for instance higher frequencies such as 100, 200 or even 1000 Hz. One advantage of having a high frequency is that the size and thereby also the cost of the transformer can be reduced.
In
This further reactor Lr can be chosen to form a series resonant circuit together with the capacitors of the first capacitor bank. If the resonance frequency of this circuit is chosen to be the same as that used by the conversion units, the impact of the capacitor bank midpoint voltage ripple can be reduced.
The power flow allowed by the converter according to the first and second embodiments is, as was described above, bidirectional. It is possible to transfer power in both directions. This increases the flexibility of the converter. However, such bidirectional power transfer capability is not always necessary. In some instances it may be of interest to only allow power transfer in one direction, for instance from the first DC system to the second DC system. In this case it is not necessary that the second conversion unit is a cell based voltage source conversion unit. The second conversion unit need thus not be cell based or have the same structure as the first conversion unit.
A third embodiment of the invention directed towards such a situation is shown in
There are a number of variations that are possible to be made of the present invention apart from the variations already mentioned. It should for instance be realized that it is possible to omit reactors from conversion branches. The reactors in the conversion branches may also have other positions than the ones shown. They may for instance be connected to the midpoints instead of to the DC terminals.
The semiconductor elements used in the cells have been described as IGBTs. It should be realized that other types of semiconductor elements may be used, such as thyristors, MOSFET transistors, GTOs (Gate Turn-Off Thyristor) and mercury arc valves. The number of cells of different types and their orientations may furthermore be varied in a multitude of ways depending on the desired functionality and voltage levels.
The control unit need not be provided as a part of the DC/DC converter. It can be provided as a separate device that provides control signals to the DC/DC converter. This control unit may furthermore be realized in the form of a processor with accompanying program memory comprising computer program code that performs the desired control functionality when being run on the processor.
From the foregoing discussion it is evident that the present invention can be varied in a multitude of ways. It shall consequently be realized that the present invention is only to be limited by the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/060260 | Jul 2010 | US |
Child | 13714116 | US |