The present disclosure is generally directed to isolating and expanding living cells, in particular, toward isolating target cells using a membrane and expanding the isolated cells.
Cell processing systems include Cell Collection Systems and Cell Expansion Systems (CES's). Cell Collection Systems collect cells from a supply source and CES's may be used to expand and differentiate a variety of cell types. Expanded and/or differentiated cells may be used for both research and/or therapeutic purposes. As one example, hematopoietic stem cells (HSC) possess multipotentiality, enabling them to self-renew and to produce mature blood cells, such as erythrocytes, leukocytes, platelets, and lymphocytes. CD34 is a marker of human HSC, and all colony-forming activity of human bone marrow (BM) cells is found in the fraction of cells expressing CD34 (i.e., “CD34+ HSCs” or “CD34+ cells” or “the CD34+ fraction”). HSC's may be collected from bone marrow, cord blood, or peripheral blood, and CD34+ HSCs have been identified as possible treatments for diseases such as hematological cancers (e.g., lymphoma, leukemia, myeloma). Umbilical cord blood (CB) is increasingly being used as an alternative to bone marrow (BM) as a source of transplantable CD34+ HSCs. Effective treatment with, or transplantation of, CD34+ HSCs requires the administration of a minimum number of HSC's. Accordingly, following isolation of CD34+ HSCs from a suitable source, such as CB, the CD34+ HSCs must be grown (i.e., “expanded”) from an initial amount to at least an amount that may be considered effective for treatment or transplantation.
This disclosure provides procedures, devices, and compositions useful in the isolation, expansion, and administration of CD34+ HSCs.
This summary is provided to introduce aspects of this disclosure in a simplified form, and is not intended to identify key or essential elements, nor is it intended to limit the scope of the claims.
This disclosure provides cell capture and expansion systems and methods of expanding target cells that may be collected from a mixed cell population. Examples include a membrane useful for trapping, collecting, and/or otherwise holding target cells, in particular CD34+ HSCs. Using the methods of this disclosure, the HSCs may be collected and significantly expanded quickly and efficiently while minimizing or eliminating differentiation of the HSCs. In the systems and methods of this disclosure, the HSCs may be expanded at least 50-fold. The cells may be target cells collected from a donor fluid (e.g., one or more blood components). These target cells may include, but are not limited to, stem cells, CD34+ HSCs, T-cells, natural killer (NK) cells, monocytes, or the like. The membrane may comprise one or more layers or coatings (i.e., a membrane) that are configured to attract and collect target cells. The membrane may comprise a substrate that promotes cellular adhesion to at least one surface of the substrate. The substrate may have a first surface and a second surface and at least one coating on the first surface and/or the second surface. The at least one coating may correspond to any molecule or material that promotes cellular adhesion to the first surface and/or the second surface of the substrate. The at least one coating may include a first coating material and a second coating material. The first coating material may be fibronectin, or a fibronectin equivalent, and the second coating material may be a soluble protein moiety. The second coating material may target specific target cells from a mixed cell population. For instance, the second coating material may be a chemokine, such as stromal cell-derived factor-1 (SDF-1), which may be used to enhance collection of CD34+ HSCs. Additional coating materials may be used to collect the same or different cells from a mixed cell population. The membrane may be arranged in any form, such as a flat sheet, a filter matrix, a hollow fiber, any combination thereof, and/or any plurality thereof.
This disclosure also provides methods for expanding cells, in particular CD34+ HSCs, in a bioreactor, such as a hollow fiber bioreactor. These methods provide for introducing cells (e.g., hematopoietic stem cells (HSC's), including, for example, CD34+ HSCs) into a bioreactor, and exposing the cells to growth conditions that expand the number of cells in the bioreactor. The growth conditions may include the introduction of one or a combination of growth factors into bioreactor. Alternatively or additionally, the growth conditions may include the presence of co-cultured cells in the bioreactor. After expanding the cells in the bioreactor, a plurality of expanded cells may then be removed from the bioreactor for storage, transplantation, or use in therapies such as cancer therapies.
This disclosure provides methods of expanding cells that include introducing a plurality of cells comprising CD34+ Hematopoietic stem cells (HSCs) into hollow fibers of a hollow fiber bioreactor. The hollow fibers of the bioreactor each comprise an interior lumen and an extracapillary side. Additionally, the hollow fibers comprise a coating on at least one of the lumen surface and the extracapillary surface. The coating on the surface(s) includes stromal cell-derived factor-1 (SDF-1) and fibronectin or isoforms, or functional equivalents thereof. In these methods, the plurality of cells in the hollow fibers are exposed to growth conditions and at least a portion of the plurality of cells is expanded in the hollow fibers of the bioreactor to generate a plurality of expanded CD34+ HSCs. Using these methods, the plurality of cells introduced into the hollow fibers of the bioreactor may be expanded at least 50-fold.
This disclosure also provides methods of expanding cells by perfusion in a cell expansion system. These methods include coating a hollow fiber bioreactor with a first fluid, which may include a signaling factor and/or a coating factor. In these methods, a plurality of cells is introduced into a hollow fiber membrane of a hollow fiber bioreactor. In these methods, the plurality of cells in the hollow fiber membrane may be exposed to a second fluid, which includes a plurality of growth factors. In these methods, the plurality of cells in the hollow fiber bioreactor may be grown in monoculture or in coculture.
This disclosure also provides methods of capturing cells that includes introducing a mixture of target cells and non-target cells into hollow fibers of a hollow fiber bioreactor. These hollow fibers each comprise an interior lumen and an extracapillary side, and a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. The coating on the surface(s) includes stromal cell-derived factor-1 (SDF-1) and fibronectin or isoforms, or functional equivalents thereof. In these methods, the mixture of target and non-target cells in the hollow fibers may be exposed to capture conditions to capture at least a portion of the target cells on at least one of the lumen and the extracapillary surface of the hollow fibers. At least a portion of the non-target cells may be flushed from the hollow fibers, leaving target cells associated with a surface of the hollow fibers.
This disclosure also provides methods of capturing target species. In these methods, a mixture of target species and non-target species are introduced into hollow fibers, which have an interior lumen and an extracapillary side. These hollow fibers may include a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. The coating may include at least one of streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. In these methods, the mixture of target species and non-target species in the hollow fibers may be exposed to capture conditions to capture at least a portion of the target species on at least one of the lumen and the extracapillary surface(s) of the hollow fibers. In these methods, at least a portion of the non-target species may be flushed from the hollow fibers.
This disclosure also provides coated hollow fiber membranes. These membranes are hollow fiber membranes having a lumen surface and an extracapillary surface. These membranes may include a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. The coating may include stromal cell-derived factor-1 (SDF-1) and fibronectin or isoforms, or functional equivalents thereof.
This disclosure also provides methods of forming a coated hollow fiber membrane that include providing a hollow fiber membrane having a lumen surface and an extracapillary surface and applying a first coating onto the lumen surface of the hollow fiber membrane. In these methods, the first coating comprises a material that promotes cellular adhesion to at least one of the lumen of the hollow fiber membrane and the extracapillary surface of the hollow fiber membrane. In these methods, a second coating may be applied onto the lumen surface of the hollow fiber membrane. The second coating may include a soluble protein moiety.
This disclosure also provides compositions useful for expanding CD34+ HSCs. These compositions include glial cell-derived neurotrophic factor (GDNF) and an aryl hydrocarbon receptor (AHR) antagonist.
The preceding is intended to provide a simplified summary of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, implementations, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, implementations, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below, and will be apparent to those skilled in the art upon consideration of the following Detailed Description and in view of the Figures.
The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples.
The principles of the present disclosure may be further understood by reference to the following detailed description and the implementations depicted in the accompanying drawings. It should be understood that although specific features are shown and described below with respect to detailed implementations, the present disclosure is not limited to the implementations described below.
Reference will now be made in detail to the implementations illustrated in the accompanying drawings and described below. Wherever possible, the same reference numerals are used in the drawings and the description to refer to the same or like parts.
Referring to
According to implementations of the present disclosure, fluid in a first circulation path enters hollow fiber bioreactor 100 through IC inlet port 108 at a first longitudinal end 112 of the hollow fiber bioreactor 100, passes into and through the intracapillary side (referred to in various implementations as the lumen, intracapillary (“IC”) side, or “IC space” of a hollow fiber membrane) of a plurality of hollow fibers 116, and out of hollow fiber bioreactor 100 through IC outlet port 120 located at a second longitudinal end 124 of the hollow fiber bioreactor 100. The fluid path between the IC inlet port 108 and the IC outlet port 120 defines the IC portion 126 of the hollow fiber bioreactor 100. Fluid in a second circulation path flows in the hollow fiber bioreactor 100 through EC inlet port 128, comes in contact with the extracapillary side or outside (referred to as the “EC side” or “EC space” of the membrane) of the hollow fibers 116, and exits hollow fiber bioreactor 100 via EC outlet port 132. The fluid path between the EC inlet port 128 and the EC outlet port 132 comprises the EC portion 136 of the hollow fiber bioreactor 100. Fluid entering hollow fiber bioreactor 100 via the EC inlet port 128 may be in contact with the outside of the hollow fibers 116. Small molecules (e.g., ions, water, oxygen, lactate) may diffuse through the hollow fibers 116 from the interior or IC space of the hollow fiber to the exterior or EC space, or from the EC space to the IC space. Large molecular weight molecules, such as growth factors, may be too large to pass through the hollow fiber membrane, and remain in the IC space of the hollow fibers 116. The media may be replaced as needed, in implementations. Media may also be circulated through an oxygenator or gas transfer module to exchange gasses as needed (see e.g., cell expansion systems 500 (
The material used to make the hollow fiber membrane may be any biocompatible polymeric material which is capable of being made into hollow fibers and which possesses suitable permeability to small molecules such as, for example, ions, water, oxygen, glucose and lactate. One material which may be used is a synthetic polysulfone-based material, according to an implementation of the present disclosure. For the cells to adhere to the surface of the hollow fibers, the surface may be modified in some way, either by coating at least the cell growth surface with a protein, e.g., a glycoprotein such as fibronectin or collagen, or by exposing the surface to radiation. Gamma treating the membrane surface may allow for attachment of adherent cells without additionally coating the membrane with fibronectin or the like. Other coatings and/or treatments for cell attachment may be used in accordance with implementations of the present disclosure.
Turning to
Next,
In accordance with implementations, a shaft or rocker control 258 for rotating the bioreactor 100 is shown in
Turning to
In implementations, the shaft fitting 402 and the spring member 404 connect to mechanisms of a cell expansion system that rotate the bioreactor 100. For example, in some implementations, the cell expansion system may be part of a QUANTUM® Cell Expansion System (CES), manufactured by Terumo BCT, Inc. of Lakewood, Colo., which provides for rotation of a bioreactor. Examples of cell expansion systems that provide for rotation of the bioreactor are described in at least: U.S. Pat. No. 8,399,245, issued Mar. 19, 2013, entitled “ROTATION SYSTEM FOR CELL GROWTH CHAMBER OF A CELL EXPANSION SYSTEM AND METHOD OF USE THEREFOR;” U.S. Pat. No. 8,809,043, issued Feb. 13, 2013, entitled “ROTATION SYSTEM FOR CELL GROWTH CHAMBER OF A CELL EXPANSION SYSTEM AND METHOD OF USE THEREFOR;” and U.S. Pat. No. 9,057,045, issued Jun. 16, 2015, entitled “METHOD OF LOADING AND DISTRIBUTING CELLS IN A BIOREACTOR OF A CELL EXPANSION SYSTEM;” all three of which are hereby incorporated by reference in their entirety as if set forth herein in full.
According to implementations, the premounted fluid conveyance assembly 400 includes tubing 408A, 408B, 408C, 408D, 408E, and various tubing fittings to provide the fluid paths shown in
With regard to the IC loop 502, samples of media may be obtained from sample port 516 or sample coil 518 during operation. Pressure/temperature gauge 520 disposed in first fluid circulation path 502 allows detection of media pressure and temperature during operation. Media then returns to IC inlet port 501A to complete fluid circulation path 502. Cells grown/expanded in hollow fiber bioreactor 501 may be flushed out of hollow fiber bioreactor 501 into harvest bag 599 through valve 598 or redistributed within the hollow fibers for further growth.
Fluid in second fluid circulation path 504 enters hollow fiber bioreactor 501 via EC inlet port 501C, and leaves hollow fiber bioreactor 501 via EC outlet port 501D. Media in the EC loop 504 may be in contact with the outside of the hollow fibers in the hollow fiber bioreactor 501, thereby allowing diffusion of small molecules into and out of the hollow fibers.
Pressure/temperature gauge 524 disposed in the second fluid circulation path 504 allows the pressure and temperature of media to be measured before the media enters the EC space of hollow fiber bioreactor 501. Pressure gauge 526 allows the pressure of media in the second fluid circulation path 504 to be measured after it leaves hollow fiber bioreactor 501. With regard to the EC loop, samples of media may be obtained from sample port 530 or a sample coil during operation.
In implementations, after leaving EC outlet port 501D of hollow fiber bioreactor 501, fluid in second fluid circulation path 504 passes through EC circulation pump 528 to oxygenator or gas transfer module 532. EC circulation pump 528 may also pump the fluid in opposing directions. Second fluid flow path 522 may be fluidly associated with oxygenator or gas transfer module 532 via oxygenator inlet port 534 and oxygenator outlet port 536. In operation, fluid media flows into oxygenator or gas transfer module 532 via oxygenator inlet port 534, and exits oxygenator or gas transfer module 532 via oxygenator outlet port 536. Oxygenator or gas transfer module 532 adds oxygen to and removes both carbon dioxide and bubbles from media in the CES 500. In various implementations, media in second fluid circulation path 504 may be in equilibrium with gas entering oxygenator or gas transfer module 532. The oxygenator or gas transfer module 532 may be any appropriately sized oxygenator or gas transfer device. Air or gas flows into oxygenator or gas transfer module 532 via filter 538 and out of oxygenator or gas transfer device 532 through filter 540. Filters 538 and 540 reduce or prevent contamination of oxygenator or gas transfer module 532 and associated media. Air or gas purged from the CES 500 during portions of a priming sequence may vent to the atmosphere via the oxygenator or gas transfer module 532.
In the configuration depicted for CES 500, fluid media in first fluid circulation path 502 and second fluid circulation path 504 flows through hollow fiber bioreactor 501 in the same direction (a co-current configuration). The CES 500 may also be configured to flow in a counter-current configuration.
In accordance with at least one implementation, media, including cells (from bag 562), and fluid media from bag 546 may be introduced to first fluid circulation path 502 via first fluid flow path 506. Fluid container 562 (e.g., Cell Inlet Bag or Saline Priming Fluid for priming air out of the system) may be fluidly associated with the first fluid flow path 506 and the first fluid circulation path 502 via valve 564.
Fluid containers, or media bags, 544 (e.g., Reagent) and 546 (e.g., IC Media) may be fluidly associated with either first fluid inlet path 542 via valves 548 and 550, respectively, or second fluid inlet path 574 via valves 548, 550, and 570. First and second sterile sealable input priming paths 508 and 509 are also provided. An air removal chamber (ARC) 556 may be fluidly associated with first circulation path 502. The air removal chamber 556 may include one or more ultrasonic sensors including an upper sensor and lower sensor to detect air, a lack of fluid, and/or a gas/fluid interface, e.g., an air/fluid interface, at certain measuring positions within the air removal chamber 556. For example, ultrasonic sensors may be used near the bottom and/or near the top of the air removal chamber 556 to detect air, fluid, and/or an air/fluid interface at these locations. Implementations provide for the use of numerous other types of sensors without departing from the spirit and scope of the present disclosure. For example, optical sensors may be used in accordance with implementations of the present disclosure. Air or gas purged from the CES 500 during portions of the priming sequence or other protocols may vent to the atmosphere out air valve 560 via line 558 that may be fluidly associated with air removal chamber 556.
EC media (from bag 568) or wash solution (from bag 566) may be added to either the first or second fluid flow paths. Fluid container 566 may be fluidly associated with valve 570 that may be fluidly associated with first fluid circulation path 502 via distribution valve 572 and first fluid inlet path 542. Alternatively, fluid container 566 may be fluidly associated with second fluid circulation path 504 via second fluid inlet path 574 and EC inlet path 584 by opening valve 570 and closing distribution valve 572. Likewise, fluid container 568 may be fluidly associated with valve 576 that may be fluidly associated with first fluid circulation path 502 via first fluid inlet path 542 and distribution valve 572. Alternatively, fluid container 568 may be fluidly associated with second fluid inlet path 574 by opening valve 576 and closing valve distribution 572. An optional heat exchanger 552 may be provided for media reagent or wash solution introduction.
In the IC loop, fluid may be initially advanced by the IC inlet pump 554. In the EC loop, fluid may be initially advanced by the EC inlet pump 578. An air detector 580, such as an ultrasonic sensor, may also be associated with the EC inlet path 584.
In at least one implementation, first and second fluid circulation paths 502 and 504 are connected to waste line 588. When valve 590 is opened, IC media may flow through waste line 588 and to waste or outlet bag 586. Likewise, when valve 582 is opened, EC media may flow through waste line 588 to waste or outlet bag 586.
In implementations, cells may be harvested via cell harvest path 596. Here, cells from hollow fiber bioreactor 501 may be harvested by pumping the IC media containing the cells through cell harvest path 596 and valve 598 to cell harvest bag 599.
Various components of the CES 500 may be contained or housed within a machine or housing, such as cell expansion machine 202 (
Turning to
Media flows through IC circulation pump 612 which may be used to control the rate of media flow or rate of circulation. IC circulation pump 612 may pump the fluid in a first direction (e.g. counter clockwise) or second direction opposite the first direction (e.g., clockwise). Exit port 601B may be used as an inlet in the reverse direction. Media entering the IC loop may flow through valve 614. As those skilled in the art will appreciate, additional valves and/or other devices may be placed at various locations to isolate and/or measure characteristics of the media along portions of the fluid paths. Samples of media may be obtained from sample coil 618 during operation. Media then returns to IC inlet port 601A to complete fluid circulation path 602.
Cells grown/expanded in hollow fiber bioreactor 601 may be flushed out of hollow fiber bioreactor 601 into harvest bag 699 through valve 698 and line 697. Alternatively, when valve 698 is closed, the cells may be redistributed within hollow fiber bioreactor 601 for further growth. It is to be understood that the schematic shown represents one possible configuration for various elements of the CES 600, and modifications to the schematic shown are within the scope of the one or more present implementations.
Fluid in second fluid circulation path 604 enters hollow fiber bioreactor 601 via EC inlet port 601C and leaves hollow fiber bioreactor 601 via EC outlet port 601D. Media in the EC loop may be in contact with the outside of the hollow fibers in the hollow fiber bioreactor 601, thereby allowing diffusion of small molecules into and out of the hollow fibers that may be within chamber 601, according to an implementation.
Pressure/temperature sensor 624 disposed in the second fluid circulation path 604 allows the pressure and temperature of media to be measured before the media enters the EC space of the hollow fiber bioreactor 601. Sensor 626 allows the pressure and/or temperature of media in the second fluid circulation path 604 to be measured after it leaves the hollow fiber bioreactor 601. With regard to the EC loop, samples of media may be obtained from sample port 630 or a sample coil during operation.
After leaving EC outlet port 601D of hollow fiber bioreactor 601, fluid in second fluid circulation path 604 passes through EC circulation pump 628 to oxygenator or gas transfer module 632. EC circulation pump 628 may also pump the fluid in opposing directions, according to implementations. Second fluid flow path 622 may be fluidly associated with oxygenator or gas transfer module 632 via an inlet port 632A and an outlet port 632B of oxygenator or gas transfer module 632. In operation, fluid media flows into oxygenator or gas transfer module 632 via inlet port 632A, and exits oxygenator or gas transfer module 632 via outlet port 632B. Oxygenator or gas transfer module 632 adds oxygen to and removes both carbon dioxide and bubbles from media in the CES 600.
In various implementations, media in second fluid circulation path 604 may be in equilibrium with gas entering oxygenator or gas transfer module 632. The oxygenator or gas transfer module 632 may be any appropriately sized device useful for oxygenation or gas transfer. Air or gas flows into oxygenator or gas transfer module 632 via filter 638 and out of oxygenator or gas transfer device 632 through filter 640. Filters 638 and 640 reduce or prevent contamination of oxygenator or gas transfer module 632 and associated media. Air or gas purged from the CES 600 during portions of a priming sequence may vent to the atmosphere via the oxygenator or gas transfer module 632.
In the configuration depicted for CES 600, fluid media in first fluid circulation path 602 and second fluid circulation path 604 flows through hollow fiber bioreactor 601 in the same direction (a co-current configuration). The CES 600 may also be configured to flow in a counter-current configuration.
In accordance with at least one implementation, media, including cells (from a source such as a cell container, e.g. a bag) may be attached at attachment point 662, and fluid media from a media source may be attached at attachment point 646. The cells and media may be introduced into first fluid circulation path 602 via first fluid flow path 606. Attachment point 662 may be fluidly associated with the first fluid flow path 606 via valve 664, and attachment point 646 may be fluidly associated with the first fluid flow path 606 via valve 650. A reagent source may be fluidly connected to point 644 and be associated with fluid inlet path 642 via valve 648, or second fluid inlet path 674 via valves 648 and 672.
Air removal chamber (ARC) 656 may be fluidly associated with first circulation path 602. The air removal chamber 656 may include one or more sensors including an upper sensor and lower sensor to detect air, a lack of fluid, and/or a gas/fluid interface, e.g., an air/fluid interface, at certain measuring positions within the air removal chamber 656. For example, ultrasonic sensors may be used near the bottom and/or near the top of the air removal chamber 656 to detect air, fluid, and/or an air/fluid interface at these locations. Implementations provide for the use of numerous other types of sensors without departing from the spirit and scope of the present disclosure. For example, optical sensors may be used in accordance with implementations of the present disclosure. Air or gas purged from the CES 600 during portions of a priming sequence or other protocol(s) may vent to the atmosphere out air valve 660 via line 658 that may be fluidly associated with air removal chamber 656.
An EC media source may be attached to EC media attachment point 668 and a wash solution source may be attached to wash solution attachment point 666, to add EC media and/or wash solution to either the first or second fluid flow path. Attachment point 666 may be fluidly associated with valve 670 that may be fluidly associated with first fluid circulation path 602 via valve 672 and first fluid inlet path 642. Alternatively, attachment point 666 may be fluidly associated with second fluid circulation path 604 via second fluid inlet path 674 and second fluid flow path 684 by opening valve 670 and closing valve 672. Likewise, attachment point 668 may be fluidly associated with valve 676 that may be fluidly associated with first fluid circulation path 602 via first fluid inlet path 642 and valve 672. Alternatively, fluid container 668 may be fluidly associated with second fluid inlet path 674 by opening valve 676 and closing valve distribution 672.
In the IC loop, fluid may be initially advanced by the IC inlet pump 654. In the EC loop, fluid may be initially advanced by the EC inlet pump 678. An air detector 680, such as an ultrasonic sensor, may also be associated with the EC inlet path 684.
In at least one implementation, first and second fluid circulation paths 602 and 604 are connected to waste line 688. When valve 690 is opened, IC media may flow through waste line 688 and to waste or outlet bag 686. Likewise, when valve 692 is opened, EC media may flow to waste or outlet bag 686.
After cells have been grown in hollow fiber bioreactor 601, they may be harvested via cell harvest path 697. Here, cells from hollow fiber bioreactor 601 may be harvested by pumping the IC media containing the cells through cell harvest path 697, with valve 698 open, into cell harvest bag 699.
Various components of the CES 600 may be contained or housed within a machine or housing, such as cell expansion machine 202 (
In one specific implementation of using CES 600, hematopoietic stem cells (HSC's), e.g., CD34+ HSCs, may be expanded in an implementation of CES 600. In this implementation, HSC's (including CD34+ HSCs), which may be collected using a leukapheresis process or a manual process (e.g., umbilical cords), may be introduced into the bioreactor 601. The HSC's (including CD34+ HSCs) may be introduced into the bioreactor 601 through path 602.
In some implementations, the HSC's (including CD34+ HSCs) may be subjected to a selection process (e.g., a purification process) before introduction into bioreactor 601. The process may involve the use of a centrifuge, purification column, magnetic selection, or chemical selection. Some examples of cell selection/purification procedures include use of isolation columns from, for example, Miltenyi Biotec of Bergisch Gladbach, Germany. In one example, cord blood is first subjected to a cell selection process that selects for HSC's (including CD34+ HSCs) before the cells are introduced into the bioreactor 601. Other examples may utilize apheresis machines to deplete other cells that may be included with the HSC's (including CD34+ HSCs) when originally collected. For example, the HSC's may be sourced from cord blood, bone marrow, or peripheral blood. After initial collection, but before being introduced into the bioreactor 601, a volume of HSC's including CD34+ HSCs may be processed to deplete red blood cells, specific leukocytes, granulocytes, and/or other cells from the volume. These are merely some examples, and implementations of the present invention are not limited thereto.
In other implementations, the HSC's (including CD34+ HSCs) may be added directly to the bioreactor 601 after collection without any additional purification. For example, cord blood (with HSC's) may be added to the bioreactor. In addition to a number of proteins and other bioactive molecules, the cord blood may include HSC's (including CD34+ HSCs), red blood cells, platelets, granulocytes, and/or leukocytes.
It is noted that in some implementations, the HSC's may be added to bioreactor 601, after a priming step. As may be appreciated, the cells being expanded may not be adherent and therefore it may not be required that they adhere to the hollow fiber walls of bioreactor 601 for expansion/proliferation. In these implementations, it may be unnecessary to coat the inside of the hollow fibers with a coating to promote adhesion, e.g., fibronectin. In these implementations, the HSC's (including CD34+ HSCs) (purified or unpurified) may be introduced into the bioreactor 601 after a priming step and without a bioreactor coating step. If the cells were adherent cells, a coating step may be performed after the priming step and before introduction of the HSC's.
Once in the bioreactor 601, the cells may be exposed to growth factors, activators, hormones, reagents, proteins, and/or other bioactive molecules that may aid in the expansion of the cells. In one example, a co-culture cell line may have been previously grown/introduced, in the bioreactor 601, to optimize the conditions for growing the HSC's (including CD34+ HSCs). In one specific implementation, human mesenchymal stem cells (hMSC's) may be co-cultured with the HSC's (including CD34+ HSCs) to promote growth of CD34+ HSCs. Without being bound by theory, it is believed that MSC's may emit factors (e.g., SDF-1 factors) that interact with HSC's (e.g., CD34+ HSCs) and promote proliferation of these cells. In some implementations, use of the co-cultured hMSC's may involve a growing process that is performed initially, under conditions optimized for proliferating the hMSC's, before the HSC's (including CD34+ HSCs) are introduced into the bioreactor 601. The hMSC's may be derived in implementations from bone marrow, peripheral blood, cord cells, adipose tissue, and/or molar tissue.
In addition to co-culture cells, a supplement including one or more growth factors, activators, hormones, reagents, proteins, and/or other bioactive molecules may be added to bioreactor 601 to grow and expand the HSC's. The supplement may be added as a single volume addition or over a period of time (e.g., continuously, intermittently, or on a regular schedule). In one implementation, a combination of cytokines and/or other proteins, e.g., recombinant cytokines, hormones, may be included as part of the supplement. As one example, a supplement may include one or more of: recombinant human Flt3 ligand (rhFlt-3L), recombinant human stem cell factor (rhSCF), recombinant human thrombopoietin (rhTPO), recombinant human (rh) Glial-derived neurotrophic factors and/or combinations thereof. One example of a supplement that may be used with implementations is STEMCELL2MAX™ supplement (stemcell2MAX, Cantanhede, Portugal).
It is noted that in some implementations, the combination of factors may be included in the media in which the cells are suspended. For example, the HSC's may be suspended in media and introduced 1406 into the bioreactor in the media. In implementations, the media may include a combination of growth factors that aid in proliferation of the HSC's.
After the cells have been introduced into the bioreactor with the supplement, co-culture cells, and/or other material for expanding the cells, the cells are allowed to expand in bioreactor 1410. During the expansion, there may be materials that may be added or removed from bioreactor. As one example, additional proteins (e.g., cytokines) may be added to bioreactor 601. In some implementations, more than one protein or other bioactive agent may be used. The additional material may be added individually, at the same time, at different times, or may be combined and added in combination.
It is noted that some implementations may provide for adding material more directly into the bioreactor 501, such as through port 516 (
In addition to materials for aiding in growing the HSC's (including CD34+ HSCs), the HSC's may also be fed, such as by addition of a media that may include a number of nutrients. In some implementations, the media may be commercially available media that may include serum. In other implementations, the media may be serum free and include other additives. The media may be modified by the addition of other materials, some non-limiting examples including salts, serum, proteins, reagents, bioactive molecules, nutrients. One example of media that may be used to feed the HSC's (including CD34+ HSCs) includes CELLGRO® serum free media (CellGenix, Freiburg, Germany).
In some implementations, while the co-culture cells are located in the IC space, feeding may occur in the EC space. Feeding through the EC space may, in implementations, reduce the amount of force that may be felt by the cells from circulating fluid in the IC space. Circulation of media in the EC space may, in implementations, provide sufficient nutrients for the expansion of the HSC's (including CD34+ HSCs).
As part of the expansion of the HSC's (including CD34+ HSCs), other conditions such as temperature, pH, oxygen concentration, carbon dioxide concentration, waste concentration, metabolite concentration may also be controlled in bioreactor 601. In some implementations, the flow rates of the EC side, e.g., path 604 may be used to control various parameters. For example, if it is desired to reduce waste or metabolite concentrations on the IC side, where the cells are growing, flow rate on the EC side may be increased to ensure that the waste and/or metabolites are removed from the IC side by migration through the hollow fibers from the IC side to the EC side.
After the CD34+ HSCs have been expanded, the cells may be removed from the bioreactor 601. The CD34+ HSCs may be collected in container 699. In implementations, the collected CD34+ HSCs may be administered to a patient to reestablish hematopoiesis. Some non-limiting examples including patients undergoing treatment for various cancers, e.g., leukemia, myelodysplasia, non-Hodgkin lymphoma, which may effect hematopoiesis. The cells may be administered with other compounds or molecules.
In some implementations, use of CES 600 may provide advantages in growing HSC's (including CD34+ HSCs) over conventional processes. For example, the use of hollow fibers allows close cell to cell communication, which may enhance the growth of the CD34+ HSCs to start and continue to proliferate. Also, the use of a hollow fiber bioreactor, such as bioreactor 601, may provide a large surface area for cell growth, which may yield a higher concentration or higher volume of CD34+ HSCs.
Further, the conditions in bioreactor 601 may be controlled using a number of different components of the CES 600, including IC flow rates and EC flow rates. Also, CES 600 provides various locations for the addition of materials, which allows more direct, or indirect, e.g., perfusion, of cytokines into bioreactor 601.
Additionally, CES 600 provides a closed system. That is, the steps for growing the CD34+ HSCs may be performed without direct exposure to the ambient environment, which may contaminate the cells, or be contaminated by the cells or materials used in growing the cells. It is also believed that some implementations may provide for using a smaller starting concentration of CD34+ HSCs for expansion, compared to other methods/systems. In these implementations, CD34+ HSCs may also be expanded to yield larger amounts than from other methods/systems. It is also believed that some implementations may provide for shortening the time for growing an effective dose of CD34+ HSCs.
The computing system 1100 may include a user interface 1102, a processing system 1104, and/or storage 1106. The user interface 1102 may include output device(s) 1108, and/or input device(s) 1110 as understood by a person of skill in the art. Output device(s) 1108 may include one or more touch screens, in which the touch screen may comprise a display area for providing one or more application windows. The touch screen may also be an input device 1110 that may receive and/or capture physical touch events from a user or operator, for example. The touch screen may comprise a liquid crystal display (LCD) having a capacitance structure that allows the processing system 1104 to deduce the location(s) of touch event(s), as understood by those of skill in the art. The processing system 1104 may then map the location of touch events to user interface (UI) elements rendered in predetermined locations of an application window. The touch screen may also receive touch events through one or more other electronic structures, according to implementations. Other output devices 1108 may include a printer, speaker. Other input devices 1110 may include a keyboard, other touch input devices, mouse, voice input device, as understood by a person of skill in the art.
Processing system 1104 may include a processing unit 1112 and/or a memory 1114, according to implementations of the present disclosure. The processing unit 1112 may be a general purpose processor operable to execute instructions stored in memory 1114. Processing unit 1112 may include a single processor or multiple processors, according to implementations. Further, in implementations, each processor may be a multi-core processor having one or more cores to read and execute separate instructions. The processors may include general purpose processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), other integrated circuits, as understood by a person of skill in the art.
The memory 1114 may include any short-term or long-term storage for data and/or processor executable instructions, according to implementations. The memory 1114 may include, for example, Random Access Memory (RAM), Read-Only Memory (ROM), or Electrically Erasable Programmable Read-Only Memory (EEPROM), as understood by a person of skill in the art. Other storage media may include, for example, CD-ROM, tape, digital versatile disks (DVD) or other optical storage, tape, magnetic disk storage, magnetic tape, other magnetic storage devices, as understood by a person of skill in the art.
Storage 1106 may be any long-term data storage device or component. Storage 1106 may include one or more of the systems described in conjunction with the memory 1114, according to implementations. The storage 1106 may be permanent or removable. In implementations, storage 806 stores data generated or provided by the processing system 104.
This disclosure provides methods of expanding cells (i.e., increasing the number of cells grown in culture). In particular, these methods are useful in the expansion of human hematopoietic stem cells (HSCs), including HSCs that express CD34 protein (CD34-positive HSCs, or CD34+ HSCs). In these methods, the CD34+ HSCs may be CD45+/CD34+ HSCs and/or CD133+CD38− progenitor cells. These methods advantageously expand HSCs many fold (for example, at least 50-fold) quickly and efficiently, while minimizing the differentiation of these HSCs.
Flow 1400 may be performed in embodiments to expand target cells, such as CD34+ HSCs in monoculture or co-culture. Flow 1400 starts at step 1404 and proceeds to step 1412 where expanded cells (e.g., CD34+ HSC's)) may be removed from a bioreactor.
Similarly, the cells to be expanded in these methods may be cells collected from a donor fluid (e.g., one or more blood components) that may include stem cells, CD34+ HSCs, T-cells, monocytes, and/or natural killer (NK) cells. In these methods, specific “target” cells within the donor fluids (e.g. CD34+ HSCs) may be expanded while other cells present in the donor fluid are removed or reduced in number.
These methods may include expanding the cells in culture on a membrane. Within these methods of cell expansion, the membrane may be useful in trapping, collecting, and/or otherwise holding cells. The membrane may be arranged in any form, such as a flat sheet, a filter matrix, a hollow fiber, any combination thereof, and/or any plurality thereof. In these methods, the membranes may comprise a coating on at least one surface of the membrane, wherein the coating comprises stromal cell-derived factor-1 (SDF-1), and fibronectin or isoforms, or functional equivalents thereof. A particularly useful membrane within the methods of this disclosure is a hollow fiber or a plurality of hollow fibers, as they appear within a hollow fiber bioreactor. Such hollow fibers contain an interior portion or surface within the lumen of the hollow fiber, and an exterior surface (“extracapillary” side or surface). The hollow fiber membrane may comprise a plurality of hollow fibers. An example of a hollow fiber may be as shown in the schematic representation of
In some examples of these methods, the membrane may be used in conjunction with a cell processing device. In one example, the cell processing device may be the SPECTRA OPTIA® apheresis system, COBE® spectra apheresis system, and the TRIMA ACCEL® automated blood collection system, all manufactured by Terumo BCT, of Lakewood, Colo. After the cells are collected from a donor, the cells may be passed through the membrane to isolate target cells therefrom.
In some examples of these methods, the membrane may be used in conjunction with a cell expansion device. In one example, the cell expansion device may correspond to the Quantum® Cell Expansion System manufactured by Terumo BCT, of Lakewood, Colo. After the target cells are isolated (e.g., as described above), the target cells may be expanded in the membrane to, for example, increase a number of the target cells contained therein.
Capture of small sized species, such as proteins or exosomes may be conducted on a continuous flow basis over the membrane. Diffusion dynamics may be effective in helping to transport these species to the membrane where they can be captured by their conjugate chemistry which has been deposited on the membrane. Transport to fiber walls may be further assisted by moderate ultrafiltration from the lumen side 906 to the extracapillary side of the hollow fiber 900 as illustrated in the schematic representation of
The membrane may comprise one or more coatings that are configured to attract, collect, and/or hold target cells, which may then be expanded. In the instance when the membrane is the hollow fibers of a hollow fiber bioreactor, the hollow fibers may comprise a coating on one or both of the lumen surface and the extracapillary surface of the hollow fibers. The coating provided in this disclosure may be a coating that is chemically linked to the membrane (e.g., through hydrophobic and hydrophilic interaction). In some examples, a base coating material may serve as a first coating layer, and a secondary coating material may serve as a secondary coating layer. These coating materials may be applied to a membrane sequentially or together. Examples of a first coating material may include fibronectin, vitronectin, any extracellular matrix (ECM) glycoprotein, collagen, enzyme, equivalents and/or combinations thereof, and/or any molecule or material that is capable of providing cellular adhesion to a membrane or other surface. Examples of a secondary coating material may include a soluble protein moiety, biotinylated molecules, an anti-biotin antibody, a biotin-binding and/or streptavidin-binding peptide, a streptavidin, an avidin, monoclonal antibodies, aptamers (e.g., aptamers targeted toward specific cell surface markers), cytokines (e.g., Interleukin (IL)-6, IL-21), chemokines (e.g., stromal cell-derived factor (SDF)-1), equivalents and/or combinations thereof.
The coating may be applied in a single chemical operation. For instance, a first molecule (e.g., the first-part coating material) and a second molecule (e.g., the second-part coating material) may be conjugated outside of the membrane and then coated onto the membrane at the same time. When formed by coating membranes of this disclosure may be used to (1) make a selective bioreactor to expand cells; and/or (2) create a filter that can capture a specific target cell or molecule (such as any biotinylated molecule or cell).
In one example, the membrane may comprise one or more materials that promote cellular adhesion to at least one surface of the substrate. For example, the coating may comprise the dimeric glycoprotein fibronectin, or a functional equivalent of fibronectin, such as the many known isoforms of fibronectin created through alternative splicing of its pre-mRNA, or other proteins that contain the integrin-binding sequence, Arg-Gly-Asp (RGD) of fibronectin proteins that provides the primary cell adhesive activity of fibronectin.
Additional useful coatings may include one or more protein moieties. Such protein moieties may be selected to target specific target cells present within a donor fluid. For example, the protein moiety may be a chemokine, such as stromal cell-derived factor-1 (SDF-1), which may be used to enhance collection of CD34+ HSCs from a donor fluid (e.g., when compared to an uncoated membrane or a membrane coated only with fibronectin). Another useful protein moiety in these coatings may be interleukin-21 (IL-21). Another useful protein moiety in these coatings may be the combination of SDF-1 and IL-21. Another useful protein moiety in these coatings may be the combination of fibronectin and SDF-1, as depicted in
In these methods, the membrane may be coated with a mixture of fibronectin and a soluble protein moiety as illustrated in the schematic representation of
As depicted in
In some implementations, the coated membrane may be coated with a mixture of fibronectin and a soluble protein moiety to capture biotinylated molecules, such as streptavidin, avidin, and/or anti-biotin antibodies and/or functional equivalents thereof.
As illustrated in the schematic representation of
In these methods, a plurality of cells are directed into contact with a membrane, which may be a coated membrane of this disclosure, and expanded while in contact with the membrane. In the instance which a hollow fiber membrane is used in these methods, the plurality of cells may be introduced 1406 into hollow fibers of a hollow fiber bioreactor, wherein the hollow fibers each comprise an interior lumen and an extracapillary side, as described above. The plurality of cells may be first purified by various means prior to being directed into contact with the membrane. Alternatively, the plurality of cells may be directed into contact with the membrane without any initial purification, such as direct from collection from a donor source of cells (e.g. a collection of peripheral blood, or bone marrow, or cord blood (CB)), which may include introducing the plurality of cells into a plurality of hollow fibers without any prior purification. The cells may be directed into contact with the membrane and then left in that position to associate with the membrane, before additional circulation or movement against the membrane to “seed” additional cells on the membrane or remove residual cells or cellular debris from the membrane. When the membrane includes the hollow fibers of a hollow fiber bioreactor, this procedure may advantageously include circulating, with a pump, the plurality of cells within the lumen of the hollow fibers, and then stopping the pump to allow a portion of the plurality of cells to attach to a first portion of the lumen of the hollow fibers, and then rotating the hollow fiber bioreactor 180 degrees from an initial position before again circulating, with the pump, the plurality of cells within the lumen of the hollow fibers, and then stopping the pump to allow a portion of the plurality of cells to attach to a second portion of the lumen of the hollow fibers.
The cells may be expanded 1410 by exposing 1408 the cells in the hollow fibers to growth conditions. The growth conditions may include exposing the cells to one or more of a cell growth media, for example, by circulating a cell growth media through the lumen of hollow fibers of a hollow fiber bioreactor and/or through the extracapillary side of the hollow fibers. Alternatively or additionally, the growth conditions may comprise exposing the cells to one or more growth factors. Useful growth factors may include FMS-like Tyrosine Kinase 3 Ligand (Flt-3L), Stem Cell Factor (SCF), thrombopoietin (TPO), glial cell-derived neurotrophic factor (GDNF), interleukin-3 (IL-3), interleukin-6 (IL-6), IL-21, SDF-1, or combinations thereof. In the instance GDNF is present in the growth media, it may be particularly useful at a concentration of 0.5% to 2% weight per volume, such as at a concentration of about 10 ng/mL in the growth media.
Within these methods that use the membrane of hollow fibers of a hollow fiber bioreactor, a first media may be used in the lumen of the hollow fibers and a second media may be used in contact with the extracapillary side of the hollow fibers. In these methods, the media in the lumen may be concentrated in at least one component relative to the concentration of the same component on the extracapillary side of the hollow fibers. In these methods, the concentrated component may be GDNF, SR-1, SCF, TPO, Flt-3L, IL-3, IL-6, SDF-1, fibronectin, or combinations thereof. In these methods, the concentrated component may be concentrated at least five-fold, or at least ten-fold.
Another useful factor for expanding the cells may include an aryl hydrocarbon receptor antagonist, such as StemRegenin 1 (SR1) or UM171, which was developed at the University of Montreal and which is in clinical development for cell therapy by ExcellThera, Inc.
The coating may be used to provide a specialized environment for cell culture (e.g., when the coating comprises a base coating material, such as fibronectin, and a secondary coating material comprising a soluble protein moiety, such as SDF-1, IL-21). Accordingly, this disclosure provides compositions useful for expanding CD34+ HSCs. These compositions may comprise at least one of glial cell line-derived neurotrophic factor (GDNF), and an aryl hydrocarbon receptor (AHR) antagonist (such as SR-1). These compositions may also include at least one of SCF, TPO, Flt-3L, IL-3, IL-6, SDF-1, and fibronectin. In these compositions, GDNF may be is present at a concentration of 0.5% to 2% weight per volume, or at a concentration of at least 10 ng/mL. In these compositions, fibronectin and SDF-1 may be immobilized on a cell culture surface, such as a semi-permeable membrane. These compositions may increase levels of BCL2 and inhibit HSC differentiation.
The coated membranes of this disclosure may be used to provide a specialized environment to capture biotinylated molecules, such as streptavidin, avidin, anti-biotin, (e.g., when the coating comprises a first coating material, such as fibronectin, and a secondary coating material comprising a biotin capture moiety, such as biotinylated molecules, aptamers targeted toward specific cell surface markers, or soluble moieties such as a cytokine (e.g., IL-6)).
At least one benefit to the chemical coating described herein is the ability to manufacture membranes (e.g., hollow fiber membranes) having the coating in a sterile environment. A sterile package including the chemically coated, and sterilized, coated membrane may be opened and ready to use after removing the membrane from the package (e.g., without requiring further processing).
In one example, the Quantum® Cell Expansion System bioreactor hollow fiber membrane (HFM) may be coated with a coating material comprising streptavidin-fibronectin. This coating material may be used, for example, to select or isolate specific cell types when subsequently coupled with biotinylated cell-specific monoclonal antibodies (mAbs).
In some examples, a fibronectin-streptavidin foundation may be used as the coating material for the attachment of biotinylated molecules to functionalize the surface of a polyethersulfone HFM bioreactor, or preparatory columns, for cell selection. Fibronectin may bind to the polyethersulfone HFM in the Quantum® Cell Expansion System bioreactor through the adherence and expansion of adherent cells such as mesenchymal stromal/stem cells (MSCs), fibroblasts and aortic endothelial cells. This fibronectin-streptavidin conjugation may take advantage of a high affinity of streptavidin binding for biotin. While considering available protein coupling biochemistries, it may be important to keep the protocols direct and efficient with minimal residue or reactants to accommodate their adaption in the manufacturing of cell therapy products. In one example, fibronectin-streptavidin mixture or conjugate may be mixed and/or linked, which will allow the HFM bioreactor or column with biotinylated cytokines, chemokines, and/or other ligands to facilitate cell selection and/or expansion. Other affinity separations of biomolecules may also be used. In any case, this protein-protein conjugation can be viewed as a platform for affinity processes associated with cell therapy which uses available technology.
In these methods, a mixture of fibronectin and streptavidin may be used as the coating material for the coated membrane. This process may include reconstitution of lyophilized fibronectin and streptavidin (e.g., in a ratio of 1:3.3 by mass) in water at ambient temperature for approximately 30 minutes. After the conjugation of fibronectin-streptavidin, the mixture volume may be brought up to 100 mL with phosphate buffered saline w/o Ca2+-Mg2+ and introduced into the Quantum® Cell Expansion System using the “Coat Bioreactor” task for a sufficient period of time (e.g., 8 hours). After the bioreactor coating, excess unbound conjugated protein may be washed out and a selected biotinylated molecule, for example, cytokine (interleukin or growth factor), epitope, ligand, monoclonal antibody, stains, or aptamer, may be introduced into the Quantum® Cell Expansion System bioreactor using the “Coat Bioreactor” task for coupling to the fibronectin-streptavidin coating. Once complete, the resulting fibronectin-streptavidin-bioconjugate protein may be ready for use in cell selection or cell signaling (including differentiation) applications. Other applications may include the coating of preparatory HFM columns or matrixes which could be used for cell selection or differentiation prior to the introduction of cells into the Quantum® Cell Expansion System.
In these methods, recombinant or semi-synthetic fibronectin or fibrinogen may be substituted for plasma-derived fibronectin. Extracellular matrix proteins such as fibronectin may bind to the polyethersulfone hollow fiber membrane by virtue of polarity and hydrogen bonding. Fibronectin has a naturally adhesive nature due to its glycoprotein structure and specific domains which may allow fibronectin to bind to both polyethersulfone and cell membrane integrins.
In one example, the covalent coupling of fibronectin to streptavidin, using a similar mass ratio as outlined above, may be achieved using a streptavidin conjugation kit. This kit may make use of a specific linkage modifier and quencher chemistry to generate a covalent linkage between fibronectin and streptavidin in a time period of 30 minutes to 24 hours, and in some implementations in a time period of 3 hours to 15 hours. In some examples, the time to generate a covalent linkage between fibronectin and streptavidin may be approximately 4 hours, plus or minus 30 minutes. The affinity of the chosen biotinylated molecule to streptavidin, in the covalent coating method, may be similar to the affinity of the biotinylated molecule in the fibronectin-streptavidin mixture coating method. One advantage of the covalent approach may include an improved stability of the fibronectin-streptavidin coupling.
The coupling of streptavidin-biotinylated molecules to fibronectin using a molar ratio, for example, of 1:3 (fibronectin:streptavidin) may be useful. In some examples, the coupling of the fibronectin-streptavidin biotinylated molecules to the HFM bioreactor may be a two-step process. This conjugation coating chemistry may be a platform for binding an array of biotinylated molecules for cell selection, stimulation, expansion, or differentiation.
Fibronectin-streptavidin protein conjugate may be selected as an adhesion molecule for the Quantum® Cell Expansion System bioreactor. Coupling biotinylated cell-specific mAbs or protein epitopes to the fibronectin-streptavidin conjugate may exploit the high affinity of streptavidin for biotin at a specific ratio of up to and including 1:4 with an approximate disassociation constant of Kd=10−14 to 10−15 M. Examples of biotinylated antibodies or epitopes which are cell-specific may include anti-CD3 mAb for parent T cells, anti-CD4/CD25 mAb for human T-reg cells, anti-CD8 mAb for human T-effector cells, anti-CD34 mAb for hematopoietic stem cells, or anti-CD56 mAb for NK cells. The streptavidin-biotin linkage may comprise a strong non-covalent linkage and, as such, this functional specificity can be used to select for virtually any cell type by simply changing the specificity of the biotinylated mAb conjugate. In addition, it is also possible that the reverse approach could be utilized where biotinylated-fibronectin would couple with streptavidin-cell specific mAb, which could be used to select cells of interest. If the first approach were used, then the biotinylation of mAbs, with the small biotin molecule (m.w. 244.3 Daltons), is less likely to affect mAb binding or cell antigen recognition. Secondly, the net negative charge and lack of glycosylation streptavidin may serve to minimize the non-specific binding of cells. This concept can leverage the highly specific interaction and versatility of the streptavidin-biotin interaction to provide a better adhesion system. In some examples, cells may be enzymatically separated from the streptavidin-fibronectin-biotin-mAb-cell complex by enzymatically cleaving the DNase-sensitive linker.
Accordingly, this disclosure also provides a coated membrane, and methods of making and using the same. These coated membranes may be hollow fibers, including those hollow fibers used in hollow fiber bioreactors. These coated hollow fiber membranes may include lumen surface and an extracapillary surface and have a first coating on at least one of the lumen surface and an extracapillary surface. The first coating may comprise a material that promotes cellular adhesion to at least one of the lumen surface and an extracapillary surface. The second coating on at least one of the lumen surface and an extracapillary surface, may comprise a soluble protein moiety. In these coated hollow fiber membranes, the first coating may comprise fibronectin. In these coatings, the second coating may comprise at least one of a cytokine, an aptamer, a chemokine (for example, SDF-1 or IL-21), a monoclonal antibody, streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. These membranes may be composed of a material comprising polysulfone or polyethersulfone.
In these coated hollow fiber membranes, the amount of the fibronectin coating the hollow fiber may be 0.001 μg/cm2 to 2 μg/cm2, or may be 0.01 μg/cm2 to 1.0 μg/cm2, or may be 0.10 μg/cm2 to 0.50 μg/cm2, or may be 0.20 μg/cm2 to 0.40 μg/cm2, or may be 0.23 μg/cm2 to 0.24 μg/cm2. In these coated hollow fiber membranes, the amount of the SDF-1 coating the hollow fiber may be 0.001 ng/cm2 to 0.30 ng/cm2, or may be 0.01 ng/cm2 to 0.10 ng/cm2, or may be 0.05 ng/cm2 to 0.09 ng/cm2, or may be 0.075 ng/cm2.
This disclosure also provides methods of forming a coated hollow fiber membrane. These methods include providing a hollow fiber membrane having a lumen surface and an extracapillary surface, and applying a first coating onto the lumen surface of the hollow fiber membrane, and applying a second coating onto the lumen surface of the hollow fiber membrane. In these methods, the first coating may comprise a material that promotes cellular adhesion to at least one of the lumen of the hollow fiber membrane and the extracapillary surface of the hollow fiber membrane (such as fibronectin) and the second coating may comprise a soluble protein moiety, such as one or more of one of a cytokine, an aptamer, a chemokine, a monoclonal antibody, streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. In these methods, applying the first coating and the second coating material may comprise conjugating a first coating material and a second coating material into a conjugate apart from the hollow fiber membrane and coating the conjugate onto the lumen surface of the hollow fiber membrane. These methods may include applying the first coating onto the extracapillary surface of the hollow fiber membrane and/or applying the second coating onto the extracapillary surface of the hollow fiber membrane. In these methods, the first coating may be fibronectin, and the second coating may be SDF-1 or interleukin-21 IL-21.
As described herein, the bioreactor (e.g., the HFM, the hollow fiber device, and/or the hollow fibers) may be coated sequentially. Sequentially coating the bioreactor may provide enhanced exposure to the SDF-1 moiety over time. For instance, in accordance with an example protocol, on Day −2 (e.g., two days before seeding): the bioreactor HFM may be coated with fibronectin (e.g., using the “Coat Bioreactor” task described above), on Day −1 (e.g., one day before seeding): the bioreactor HFM may be coated with SDF-1 (e.g., using the “Coat Bioreactor” task described above), and on Day 0 (e.g., the day of seeding): the bioreactor may be seeded with CB-derived CD34+ HSCs. In some examples, each coating may take between 8 hours and 24 hours to complete.
In these methods, the cells in contact with the membrane (such as cells within the lumen of a plurality of hollow fibers) may be expanded by growing in a monoculture (i.e., substantially in the absence of other cell types) or in a co-culture (i.e., in the presence of other cell types). For example, in these methods, CD34+ HSCs expanded in hollow fibers may be expanded in monoculture, wherein no additional cell type is co-cultured with the CD34+ HSCs in the hollow fibers. In these methods in which CD34+ HSCs are expanded in hollow fibers in monoculture, the hollow fibers may comprise a coating comprising SDF-1 and fibronectin on at least one of the lumen surface and the extracapillary surface of the hollow fibers. In these methods, CD34+ HSCs are advantageously expanded in the presence of SDF-1 and fibronectin without the need for other cells in co-culture.
In these methods, the plurality of cells (such as CD34+ HSCs) may be expanded by growing in co-culture. CD34+ HSCs may be expanded in co-culture with mesenchymal stem cells. In these methods, cells to be grown in co-culture (such as mesenchymal stem cells) may be introduced into the hollow fibers before introducing the plurality of cells for expansion into the hollow fibers. The cells to be grown in co-culture (such as mesenchymal stem cells) may be grown in monoculture in the hollow fibers (such as by exposing the mesenchymal stem cells in the hollow fibers to growth conditions) before introducing the plurality of cells (such as CD34+ HSCs) to be expanded. Alternatively or additionally, the plurality of cells (such as CD34+ HSCs) to be expanded may first be grown in co-culture (such as in co-culture with mesenchymal stem cells) in a static growth chamber (such as traditional cell culture wells or flasks) before removing all or a portion of the plurality of cells (such as CD34+ HSCs) to be expanded from the static growth chamber and introducing the plurality of cells from the static growth chamber into the hollow fibers.
In these methods, the expansion of the cells may be advantageously sufficient to expand a plurality of cells comprising CD34+ HSCs obtained from a single unit of blood or tissue to a plurality of expanded cells sufficient for at least one engraftment procedure for a human recipient. In these instances, the single unit of blood may be cord blood, or the single unit of tissue may be bone marrow.
In these methods, the expanded cells comprising CD34+ HSCs may have at least 90% viability after expansion. In these methods, the expanded cells comprising CD34+ HSCs may be expanded at least 50-fold.
In some examples, this disclosure provides a method and device for the isolation of a target species, for example a target cell or a target molecule, from a mixed population of non-target species. Isolation of a target cell from a mixed population of cells may be used to describe the method and device. A hollow fiber device similar to a hemodialyzer may be used in the cell isolation procedures. As described above, the intracapillary (lumen) walls of hollow fibers may be coated such that a specific binding reagent (e.g., coating materials) is uniformly attached to the intracapillary surface of the hollow fiber device. Additionally or alternatively, the extracapillary walls of the hollow fibers may be treated with a binding reagent, increasing a surface area (e.g., for molecular capture).
The binding reagent may, for example, correspond to a monoclonal antibody (mAb) or a sequenced aptamer. The binding reagent may be selected such that the binding reagent has a specificity for a receptor molecule on the surface of the target cell to be isolated. For instance, if T-cells are to be separated from a mononuclear cell (MNC) collection, a binding reagent with specificity for the CD3, CD4, CD8, and/or a combination of T-cell markers may be affixed (e.g., applied, coated, deposited) to the intracapillary surface and/or the extracapillary surface of a hollow fiber forming the membrane. One example of a method of isolating T-cells from the mixed cell population may include attaching antibodies or aptamers to a cell prior to introduction to the membrane and then passed over a streptavidin-coated membrane, such as a streptavidin-coated hollow fiber. In another example, a counter-flow confinement (CFC) approach is used, wherein a collection of cells may be flowed into the lumen side of the hollow fiber membrane. Once the cells are contained within the lumen side of the membrane, counterflow may be minimized to a level sufficient to retain the cells within the fibers. Once target cells are bound to the lumen surface, both longitudinal flow (lumen inlet header to lumen outlet header) and ultrafiltration flow may be used to remove unbound cells from the lumen of the hollow fiber.
In some examples, a release agent may be used to facilitate detachment of target cells from their binding sites (e.g., facilitating target cell harvest). The release agent may be flowed either longitudinally or with ultrafiltration or with both.
Although examples may be described herein in conjunction with a hollow fiber device (e.g., a bioreactor or other device comprising coated membranes arranged as hollow fibers), it should be appreciated that any membrane capable of receiving a coating can be used. For instance, any one or more of the following devices may be used to receive the various coatings and/or perform the methods described herein: large surface area hollow fiber device, a dialyzer (e.g., hemodialyzer), a cell-capture column (e.g., magnetic cell sorting, a magnetic column apparatus), a polysulfone membrane filter device, a cell processing system, and the like.
In these methods, at least a portion of the plurality of expanded cells may be removed 1412 from the membrane (such as the hollow fibers of a hollow fiber bioreactor). The expanded cells may then be stored, or used for transplantation or administration within other therapeutic procedures for a patient, such as a cancer treatment protocol. In these methods, administering the plurality of expanded cells to a patient may reconstitute hematopoiesis in the patient.
Human leukocyte antigen (HLA)-8-allele matched cord blood (CB) transplantation is an allogeneic procedure for the treatment of certain hematological malignancies, hemoglobinopathies, and autoimmune disorders. CB-derived CD34+ stem cells and progenitor cells may be selected for hematopoietic reconstitution because of their increased capacity for self-renewal and proliferation, longer telomeres, and lower incidence of graft vs. host disease (GVHD) through a lower frequency of alloreactive T cells along with their ability to achieve rapid engraftment in hematological transplant recipients. However, one of the challenges in this setting, is to provide a sufficient number of T cell-depleted hematopoietic stem and progenitor cells which may be necessary to support mixed allogeneic hematopoietic stem cell transplantation (HSCT). Only about 4%-5% of the cord blood units stored in CB banks contain a sufficient number of CD34+ HSCs for single unit grafts (≥1.05×107 CD34+ HSCs) or for double unit grafts (≥1.40×107 CD34+ HSCs) for 70 kg patients.
Methods to expand cord blood-derived CD34+ HSCs, in either co-culture with mesenchymal stromal cells or with small molecules in combination with various cytokine supplements, frequently rely on inoculums of 4-6×106 or more CD34+ HSCs from cord blood units (CBUs). In some implementations (e.g., to extend the range of stored CBUs), a monoculture expansion protocol is provided for low initial seeding of 2×106 preselected cord blood-derived CD34+ HSCs in a cell processing system (e.g., the Quantum® cell expansion system's perfusion-based, 2-chambered, semi-permeable hollow fiber membrane (HFM) bioreactor) using a primary cytokine cocktail comprised of recombinant human-stem cell factor (SCF), -thrombopoietin (TPO), -fms-like tyrosine kinase 3 ligand (Flt3L), -interleukin 3 (IL-3), and 13 interleukin 6 (IL-6) at one-tenth of the manufacturer's recommended concentration. This cytokine cocktail may be further supplemented with recombinant human glial cell-derived neurotrophic factor (rhGDNF) to, for instance, maintain cell viability and combined with the aryl hydrocarbon receptor (AHR) antagonist SR-1. GDNF may upregulate the expression of the anti-apoptotic gene BCL2 in human CB-CD34+ cell progenitors and SR-1 may limit HSC differentiation during CD34+ HSC expansion when implemented with other HSC cytokines. The proximity of mesenchymal stromal cells (MSCs) and hematopoietic stem and progenitor (HSPCs) in the bone marrow sinusoids, coupled with the perivascular support of HSPCs by SCF from CD146+ MSCs, may contribute to their inclusion in hematopoietic co-culture processes. However attractive, the co-culture of MSCs and HSPCs adds complexity, time, and potential variability to the stem cell and progenitor expansion process. Even so, MSC/HSPC co-culture may provide alternative production strategies in CB-derived CD34+ HSCs. Automating the hematopoietic cell and progenitor expansion process may provide a dependable quantity of selected cells for therapeutic indications.
Moreover, the Quantum® System may support the expansion of both adherent MSCs as well as suspension CD3+ T cells and Regulatory T cells with a perfusion-based HFM bioreactor. In the CB-derived CD34+ cell expansion method described herein, the intercapillary (IC) HFM lumen of the bioreactor may be coated with a mixture of human fibronectin (Fn) and the chemokine stromal derived factor 1 (SDF-1) prior to cell seeding in order to mimic the stimulatory and homing effects of bone marrow-derived or Wharton's Jelly-derived mesenchymal stromal cells. The preselected CB-derived CD34+ HSCs may be subsequently propagated under suspension culture conditions, and allowed to adhere to the coated-HFM IC-surface during this process, for example, to engage with the Fn-SDF-1 modified surface. In some cases, immobilized SDF-1 may be required to develop integrin-mediated cell adhesion of CD34+ HSCs by VLA-4 integrin to murine endothelial cells. In this context, hydrogel immobilization of SCF and SDF1α along with the incorporation of the PEG-RGD integrin recognition sequence onto the cell culture surface recapitulates certain aspects of the bone marrow microenvironment. The implementations and examples described herein provide expanding CB-derived CD34+ HSCs with a modified extracellular matrix protein.
In one example, a method and/or system for the automated monoculture expansion of CB-derived HSCs and progenitor cells beginning with mixed, positively selected CB-derived CD34+ HSCs is provided. These cells may be resuspended in serum-free medium and supplemented with a defined hematopoietic cytokine cocktail and expanded under a programmed, but modifiable, perfusion protocol for a period of 8 days, for example, to minimize T cell differentiation in the Fn-SDF-1 coated HFM bioreactor system. Quantum® System-expanded CB-derived CD34+ HSCs may generate a sufficient quantity of cells to support both single and double unit minimal CD34+ dose equivalency while conserving the CD34+ phenotype and with a minimal frequency of lymphocytes. Furthermore, these CB-derived expanded progenitor cells may demonstrate their ability to differentiate into mature hematopoietic colony forming units (CFUs) under methylcellulose assay conditions.
In an example implementation, three master lots of cord blood derived, preselected, mixed CD34+ HSCs may be expanded in an about 2.1 m2 HFM bioreactor with an about 124 mL perfusion-culture volume and harvested using an automated suspension cell protocol. Cells may be introduced into the intracapillary loop (e.g., the IC loop) of the HFM bioreactor through a defined perfusion protocol and maintained within the lumen of the bioreactor with a custom counter-flow fluidics program.
As noted above, the membranes of this disclosure may be used to effectively create a membrane that can capture a specific target cell or molecule. Thus, this disclosure also provides methods of capturing cells. Flow 2400 may be performed in embodiments to capture cells, such as CD34+ HSCs. Flow 2400 starts at step 2404 and proceeds to step 2414 where captured target cells (e.g., HSC's) may be removed from a bioreactor. These methods include introducing 2406 a mixture of target species, such as cells or molecules, and non-target species onto a membrane of this disclosure (such as into hollow fibers of a hollow fiber bioreactor wherein the hollow fibers each comprise an interior lumen and an extracapillary side). As described in detail above, these membranes comprise a coating on at least one surface of the membrane comprising at least one of a material that promotes cellular adhesion, and a protein moiety. In the instance of using a hollow fiber membrane, one or both of the lumen surface and the extracapillary surface of the hollow fibers may be coated with the material that promotes cellular adhesion and/or a protein moiety.
The mixture of species in contact with the membrane may be exposed 2408 to conditions that enhance the association of the target species with the membrane (i.e., “capture conditions”) 2410. Examples of capture conditions may include changes in pH, temperature, tonicity, and/or the addition or subtraction of compounds that enhance the association of the target species with the membrane. The implementation of the capture conditions may effectively capture at least a portion of the target cells on a surface of the membrane (such as at least one of the lumen and the extracapillary surface of hollow fibers). Thereafter, at least a portion of the non-target species may be flushed 2412 from the membrane (such as from the lumen of hollow fibers). In these capture methods, the target species may be, for example, CD34+ HSCs and the non-target species may be, for example, additional cell types or cellular debris or blood proteins.
In these capture methods, the coating material on the membrane that promotes cellular adhesion to a surface of the membrane may comprise fibronectin. In these capture methods, the protein moiety may be at least one of stromal cell-derived factor-1 (SDF-1), interleukin-21 (IL-21), streptavidin, avidin, and anti-biotin antibodies or functional fragments thereof. In these capture methods, the coating may comprise fibronectin and SDF-1. In these methods of capturing target cell species (such as CD34+ HSCs), after flushing at least a portion of the non-target cells from the membrane, the captured target cells may then be expanded, for example, by changing the media and/or other conditions at the membrane to enhance growth and expansion of the captured cells, such as CD34+ HSCs. These capture methods may include removing at least a portion of the captured target species (such as CD34+ HSCs) from the membranes. These captured species may be removed 2414 from the membrane after capture of the target species and flushing to remove non-target species, or after the target cell species have been expanded after capture, as described above.
This disclosure also provides methods of capturing cells, using the interaction of biotin and avidin. These methods include introducing a mixture of target species and non-target species into hollow fibers. In these methods, the hollow fibers each comprise an interior lumen and an extracapillary side, and the hollow fibers may comprise a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. In these methods, the coating may comprise at least one of streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. In these methods, the target and/or non-target species may be cells (e.g., HSCs) or molecules. In these methods, the mixture of target and non-target species may be exposed to capture conditions, to capture at least a portion of the target species on at least one of the lumen and the extracapillary surface of the hollow fibers. At least a portion of the non-target species may then be flushed from the hollow fibers. In these methods, the target cells introduced into the hollow fibers may comprise biotinylated aptamers or biotinylated antibodies that bind to the coating on the at least one of the lumen surface and the extracapillary surface of the hollow fibers.
These methods in which the target species are cells may include, after flushing at least a portion of the non-target cells from the hollow fibers, the portion of the target cells that are captured on a surface of the hollow fibers may be exposed to growth conditions to expand the portion of the target cells captured in the hollow fibers thereby generating a plurality of expanded target cells. In these methods, after capture of the target cells and flushing of the non-target cells, at least a portion of the captured target cells may be removed from the hollow fibers.
This disclosure also provides methods of expanding cells by perfusion in a cell expansion system. These methods may include coating a hollow fiber bioreactor with a first fluid, wherein the first fluid comprises a signaling factor and/or a coating factor. A plurality of cells may be introduced into the hollow fiber bioreactor, wherein the hollow fiber bioreactor comprises a hollow fiber membrane. The plurality of cells may be exposed to a second fluid, wherein the second fluid comprises a plurality of growth factors. The plurality of cells in the hollow fiber bioreactor may be grown in monoculture or in coculture. In these methods, the first fluid may comprise at least one of fibronectin and SDF-1. In these methods, the fibronectin and the SDF-1 may be mixed together prior to coating the hollow fiber bioreactor. In these methods, the hollow fiber bioreactor may be coated sequentially by coating the hollow fiber bioreactor with the fibronectin and then coating the hollow fiber bioreactor with the SDF-1. In these methods, the hollow fiber bioreactor may be coated sequentially by coating the hollow fiber bioreactor with the SDF-1 and then coating the hollow fiber bioreactor with the fibronectin. In these methods, an amount of the fibronectin used to coat the hollow fiber bioreactor may be 0.001 μg/cm2 to 2 μg/cm2, or 0.01 μg/cm2 to 1.0 μg/cm2, or 0.10 μg/cm2 to 0.50 μg/cm2, or 0.20 μg/cm2 to 0.40 μg/cm2, or 0.23 μg/cm2 to 0.24 μg/cm2. In these methods, an amount of the SDF-1 used to coat the hollow fiber bioreactor may be 0.001 ng/cm2 to 0.30 ng/cm2, 0.01 ng/cm2 to 0.10 ng/cm2, or 0.05 ng/cm2 to 0.09 ng/cm2, or 0.075 ng/cm2.
In these methods, the second fluid may comprise GDNF. In these methods, an amount of the GDNF in the second fluid may be 0.001 ng/mL to 40.0 ng/mL, or 0.01 ng/mL to 20 ng/mL, or 0.10 ng/mL to 15 ng/mL, or 1.0 ng/mL to 15 ng/mL, or 5.0 ng/mL to 15 ng/mL, or 10 ng/mL.
In these methods, the plurality of growth factors may comprise at least one of SCF, TPO, Flt-3L, IL-3, and IL-6. In these methods the second fluid may comprise StemRegenin (SR-1). In these methods an amount of the SR-1 in the second fluid may be 0.001 μM to 3.0 μM, or 0.01 μM to 2.0 μM, or 0.10 μM to 1.0 μM, or 0.75 μM.
In these methods, prior to introducing the plurality of cells into the hollow fiber bioreactor, hollow fiber bioreactor may be coated for a predetermined time period with a mixture of 5 mg of human plasma-derived fibronectin or 0.23-0.24 μg/cm2 of fibronectin and recombinant human Stem Cell Derived Factor 1 (SDF-1) at 0.075 ng/cm2. In these methods, the predetermined time period is 4.0 hours to 16.0 hours, or 8.0 hours to 12.0 hours.
Human cord blood-derived CD34+ hematopoietic stem cells (HSCs) expanded for 8 days or less engrafted more successfully in a humanized, immunodeficient murine model than cells expanded for greater than 8 days. Expanding cord blood-derived CD34+ HSCs for 8 days or less resulted in BALB/C-RAG2 null IL-2r-gamma null murine model humanized mice (Clinical Immunology, 140:102-116, 2011) displaying more consistent human hematopoietic and lymphoid engraftment.
Implementations provide for reducing, or shortening, the time period(s) for the expansion of cells, e.g., CD34+ HSCs and/or CB-CD34+ HSCs, while improving, for example, cell yield, phenotype and functionality. An implementation provides for an inoculum expansion and Quantum® system expansion of HSC CB-CD34+ HSCs in co-culture with mesenchymal stem cells (MSCs), an in situ source of SDF-1, for about 14 days. Further implementations provide for improving, for example, yield, phenotype and functionality with a shortened monoculture protocol. Human cord blood-derived CD34+ HSCs may be expanded in two phases, for example: (1) Inoculum prep expansion of about 1 million CB-CD34+ HSCs in a T25 flask for about 3 days, followed by (2) the expansion of viable CD34+ HSCs by perfusion in the Quantum® Cell Expansion System for about 5 days to maintain the HSC phenotype of CD34+CD38-CD133+ and related engraftment function by using a monoculture technique with fibronectin-immobilized SDF-1 and other growth factors/cytokines. For example, implementations provide for: (1) the use of a shortened timeline for cell expansion of about 8 days: in flask for about 3 days and in the Quantum® System for about 5 days using, for example, (1) an immobilized SDF-1 signaling factor coupled with (2) a novel growth factor cocktail utilizing, for example, one or more of: SCF, TPO, Flt-3L, IL-3, IL-6, GNDF±SR-1, and combinations thereof, in monoculture. In an implementation, a monoculture protocol(s), e.g., a shortened monoculture protocol(s), may use a bi-directional cell reseeding task(s) in the Quantum® System, for example.
In an example, a pilot flask study is conducted over seven days. Cord blood-derived CD34+ HSCs were grown at 37° C. with CO2 CD34 complete medium without shaking. Cells were seeded on day 1 at 1×105 cells/mL in 7 mL and harvested at day 7. A yield of 5,700,000 was considered optimal. CD34 medium produces 11,800,000 cells, while CD34 medium at 1:10 dilution in complete medium produced 9,200,000 cells and CD34 medium at 1:20 dilution produced 5,900,000 cells. Cell viability was 86.2%, 90.3%, and 90.1% for undiluted, 1:10 dilution, and 1:20 dilution CD34 medium, respectively (n=2 per arm, with cells counts performed in triplicate).
The feasibility of expanding thawed, mixed cord blood-derived CD34+ HSCs (Stem Cell Technologies, Lot 1907519003, was tested. The cells (1.1×106 and 2. 1×106 CB-derived CD34+ HSCs are seeded in two, separate monoculture Quantum runs, respectively) were cultured in SCGM media (Cat. 20802-0500, CellGenix GmbH, Freiburg, Germany) with a modified supplement cocktail (StemSpan™ CD34+supplement at I % by volume plus GDNF and SR-I) using fibronectin-immobilized SDF-1 coated surfaces in T25 flasks. Both the flasks and the Quantum CESs are coated overnight at 37° C. with the Fibronetin-SDF-1 protein mixture prior to cell seeding. Fluidics-wise, flasks were in a static condition, whereas the Quantum systems were perfused overnight (12-15 hours) using the Quantum CES “Coat Bioreactor” Task (IC Inlet@ 0 mL/min, IC Circ@ 20 mL/min with Fn/SDF-1, EC Inlet@ 0.1 mL/min with PS, and EC Circ@ 30 mL/min, EC outlet). The cells were cultured for 3 days and in the Quantum® System hollow fiber membrane (HFM) bioreactor for a period of 5 days.
In the feasibility study, two media formulations with SCF, TPO, Flt-3L, IL-3, IL-6, and GNDF and with or without SR-1 cocktail are evaluated for their ability to support the expansion of CB-derived CD34+ HSCs in monoculture. Both experimental arms are seeded with 1×106 cells in T25 flasks. On day 3, the Q1893 (without SR-1) Quantum® system and Q1894 (with SR-1) Quantum® system are seeded with cell inoculums from their respective flask cultures.
On day 8, harvest yields are 4.49×107 cells without SR-1 (viability 98.5%) and 5.57×107 (viability 98.8%) cells with SR-1. Flow cytometry analysis of the cryopreserved hematopoietic stem cell Quantum® system harvest phenotype indicated the CD34+ cell fraction was 1.40×107 cells or 31.1% of the total harvest without SR-1 and 2.1×107 or 37.7% of the total harvest with SR-1. The minimum and maximum CD34+ doses are 7,000,000 and 10,500,000 cells, respectively.
An implementation provides an automated expansion protocol for CB-derived CD34+ HSCs in the Quantum® system's dynamic perfusion-based, 2-chambered, semi-permeable hollow fiber membrane (HFM) bioreactor using a novel cytokine cocktail that may be comprised of, for example, SCF, TPO, Flt-3L, IL-3, IL-6, and Fibronectin-SDF-1 coated membrane, and the cocktail can be supplemented with GDNF and SR-1. In addition, the intracapillary (IC) HFM lumen may be coated with a mixture of human fibronectin and the chemokine SDF-1 to mimic the stimulatory and homing effects of bone marrow-derived mesenchymal stromal cells.
In a series of tests of this automated expansion protocol, three master lots of thawed cord blood (CB) derived, preselected, mixed CD34+ HSCs are expanded in an about 2. 1m2 HFM bioreactor with an about 124 mL IC volume with an initial cell seeding of 2.0×106 of the CD34+ HSCs. First, cells are resuspended in SCGM base medium supplemented with the growth factor cocktail. The cells are thawed at 37° C. in a water bath, washed in 23 mL of complete medium, and resuspended in 50 mL of complete serum-free GMP SCGM medium (Cat. 20802-0500, CellGenix GmbH, Freiburg, Germany) supplemented with StemSpan™ CD34 Supplement 10X (Cat. 2691, Stem Cell Technologies, Vancouver, BC, Canada), which contains recombinant human FMS-like tyrosine kinase 3 ligand (F1t31), stem cell factor (SCF), thrombopoietin (TPO), interleukin 3 (IL-3), and interleukin 6 (IL-6) at a concentration of 1% by volume, Glial cell-derived neurotrophic factor (GDNF) at 10 ng/mL (Cat. 212-GD-050, R&D Systems, Minneapolis, MN, USA), StemRegenin I (SR-1) at 0.75 1.1M (Cat. 72342, Stem Cell Technologies, Vancouver, Canada), and Penicillin-Streptomycin-Neomycin (PSN) antibiotic mixture 100X at I % by volume (Cat. 15640-055, ThermoFisher Scientific, Waltham, MA, USA). Base medium may be formulated with serum-free GMP SCGM supplemented with SR-I and PSN antibiotic mixture.
Prior to seeding the CD34+ HSC inoculum, the Quantum® System HFM bioreactor (S. A. of 21,000 cm2) is coated overnight with a mixture of 5 mg of human plasma-derived fibronectin (or 0.23-0.24 μg/cm2, Cat. 356008, Corning Life Sciences, Corning, N.Y., USA) and recombinant human Stem Cell Derived Factor 1 (SDF-1) at 0.075 ng/cm2 (Cat. 6448-SD, R&D Systems, Minneapolis, Minn., USA) in 100 mL of PBS w/o Ca2+—Mg2+ (Cat. 17-516Q, Lonza Group, Walkersville, Md., USA) at a temperature of 37° C. and mixed gas (5% CO2, 20% O2, balance N2).
The cells were then introduced into the intracapillary loop (e.g., the IC loop) of the HFM bioreactor through a defined perfusion protocol and maintained within the lumen of the bioreactor with a custom counter-flow fluidics program. CB-derived CD34+ HSCs were seeded in suspension into the coated HFM bioreactor in 50 mL of complete medium (serum-free GMP SCGM base medium with the following cytokine cocktail: SCF, TPO, Flt-3L, IL-3, IL-6, GDNF, and SR-1) after lumen and extracapillary medium exchange and conditioning (cell expansion medium is conditioned in the Quantum CES by circulating the medium by perfusion through the IE/EC loops of Quantum system bioreactor for at least 10 minutes using the Quantum embedded task entitled “Condition Media” with the following circulation rates: IC Circ @ 100 mL/min, EC Circ @ 250 mL/min, and EC Inlet @ 0.1 mL/min. This equilibrates the mixed gas (20% O2, 5% CO2, and balance N2) in the bioreactor medium by gas exchange in the EC Loop via gas transfer module), expanded in monoculture, and harvested on day 8 of cell culture using Quantum® System automated tasks, as outlined in the automated task settings shown in following Tables 1-3:
Default tasks are used for Quantum® System priming, IC media/EC media exchange, and media conditioning tasks. In the process, glucose and lactate levels were monitored by i-STAT Analyzer G and CG4+ cartridges (Abbott Point-of-Care, Princeton, N.J.). During cell expansion, the Quantum® System IC and EC inlet flow rates were adjusted in response to the glucose consumption and lactate generation rates and the nature of the automated task. The program uses a gas mixture of about 5% CO2, about 20% O2, and balance N2 at about 37° C. for a period of only about 8 days, to reduce (i.e., to minimize) T cell differentiation during cell culture. Cells are harvested using an automated suspension cell protocol.
For example, Quantum System inlet flow rate(s) may range from about +0.1 to about 100 mL/min, and IC circulation flow rate(s) may range from about −40 to about 300 mL/min. Corresponding Quantum System EC inlet flow rate(s) may range from about Oto about 148 mL/min, and EC circulation rate(s) may range from about −1.7 mL/min to about 300 mL/min during the cell culture process. During expansion, glucose and/or lactate levels may be analyzed by i-STAT analyzers (e.g., Abbott Point-of-Care, Princeton, NJ, USA) using G and CG4+ cartridges, for example. At harvest, cells were counted (e.g., with a Vi-CELL™ XR cell analyzer, Beckman Coulter, Indianapolis, IN, USA) (
The mean harvest yield, was about 1.02×108 cells (ranging about 4.02×107 to about 1.61×108 cells) with a mean cell viability by trypan blue of about 95.5% (ranging about 93.3% to about 96.8%) and determined by a cell viability counter (Vi-CELL™ XR, Beckman Coulter). The cell expansion yield of 4.0×107-1.6×108 cells exceeded a minimum CD34+ cell dose of 1.5×105 cells/kg for a single-unit graft and a minimum CD34+ cell dose of 1.0×105 cells/kg for a double-unit graft. This equates to minimum doses of 1.1×107 CD34+ HSCs and 1.4×107 CD34+ HSCs for a single- and a double-unit graft, respectively, for a 70 kg patient.
The mean cell population doubling is about 5.4, the mean cell population doubling time is about 34.9 hours and the mean-fold increase may be 51.0-fold (ranging from about 20.1-fold to about 80.5-fold) over the course of the expansion period. IC medium input perfusion flow rates were adjusted in response to glucose and lactate metabolites and range from about 0.1 to about 0.2 mL/min.
A median cord blood unit (CBU) may contain about 4.4×106 CD34+ HSCs up to a maximum of about 2.0×107 CD34+ HSCs. Using the methods and systems described herein the average expansion yields from a single CBU, may be on the order of 2.2×108 to 1.0×109 CB-derived stem or progenitor cells, for example, with an automated 8 day monoculture cell expansion protocol by simply increasing the cell inoculum from 2.0×106 cells up to 4.4×106-2.0×107 cells with a full CBU CD34+ cell fraction. This approach, among other things, can increase the cell seeding density from, for example, 1.6×104 cells/mL to 3.6×104-1.6×105 cells/mL in the perfusion bioreactor, and result in a shorter expansion timeframe that can reduce the potential for cell differentiation.
Comparing such CD34+ HSC harvests to the pre-cryopreservation viability across various UCB donors revealed a relationship between expansion yields and pre-cryopreservation cell viability (
Monitoring the glycolytic metabolism shows that the glucose consumption rate may range from 0 to a high of 0.596 on day 5 and the lactate generate rate may range from 0 to a high of 0.650 mmol/day on day 8 (
Thawed cell harvest samples at 1×106 cells from each of the three (3) automated CB-derived CD34+ cell expansions are resuspended and washed in complete media, centrifuged at 500 g for 5 minutes, resuspended in 100 μL of BD Flow Stain Buffer, blocked with 5 μL of human BD Fe for 10 minutes prior to staining with, the following conjugated stains: BD Pharmingen anti-human CD45-APC-H7 (Cat. 560178), anti-human CD34-APC (Cat. 560940), anti-human CD133-PE (Cat. 566593), anti-human CD38-BB515 (Cat. 564499), anti-human CD41a-APC-H7 (Cat. 561422), anti-human CD3-PE (Cat. 555333), anti-human CD19-PE (Cat. 555413), anti-human CD56 (555516), anti-human CD15-BB515 (Cat. 565236), and 7-AAD (Cat. 559925). The ISHAGE-gating guidelines for enumerating CD34+ HSCs by flow cytometry may be consulted for the immunophenotyping of expanded cells and the CD34+ HSC populations may be subordinated to the CD45+ parent cell populations (Cytometry, 34:61-70, 1998). In addition, the CD34+ gating strategy was verified with a CD-Chex CD34 peripheral blood control (Streck, CD-Chex CD34, Level 3). Cell sample data were acquired on a BD FACSCanto II flow cytometer with BD FACSDiva™ v9.0 software (10,00 events/sample) and subsequently analyzed with FlowJo™ v10.7 software.
As shown in Table 1 and
The MethoCult™ CD34+ cell differentiation hematopoietic colony-forming-unit (CFU) assay is performed with MethoCult™ H4034 Optimum medium which may be supplemented with rh-cytokines SCF, GM-CSF, IL-3, G-CSF, and EPO (Stem Cell Technologies, Vancouver, BC, Canada). The cells generated hematopoietic progenitor lineages of GEMM, GM, BFU-E CFUs.
Briefly, Quantum-harvested UCB-derived CD34+ HSCs may be washed, resuspended in IMDM w/2% FBS, diluted in methylcellulose-based medium, vortexed, and seeded at 1.1 mL/35 mm well of medium in multi-well plates using seeding densities of 150, 500, and 1,000 cells/well. The CFU plates may be incubated in a static incubator under 37° C., 5% CO2, humidity conditions for 14 days after which CFUs in each well may be manually counted and scored (n=6) using an Olympus CKX41 inverted microscope at 4× objective magnification with cellSens 2.2 software.
After 14 days of methylcellulose-based cell culture in MethoCult Optimum H4034 cytokine medium, the CB-derived CD34+ cell differentiated CFUs averaged 56% for the GM, 23% for GEMM and 21% for BFU-E progenitor lineages of the total CFUs across the three expanded CB-derived CD34+ cell lines (see, e.g.,
The MethoCult™ differentiation assay of harvested cells may generate hematopoietic progenitor lineages of GEMM, GM, BFU-E CFUs. These results, taken as a whole, demonstrated that the automated Quantum® system monoculture protocol(s) can support the expansion of preselected CB-derived CD34+ HSCs for both single and double CBU dose equivalency with minimal lymphocyte residual.
It will be apparent to those skilled in the art that various modifications and variations can be made to the methods and structure of the present invention without departing from its scope. Thus, it should be understood that the present invention is not limited to the specific examples given. Rather, the present invention is intended to cover modifications and variations within the scope of the following claims and their equivalents.
While example implementations and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise configuration and resources described above. Various modifications, changes, and variations apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present invention disclosed herein without departing from the scope of the present invention.
The present application claims the benefit of and priority, under 35 U.S.C. § 119(e), to the following U.S. Provisional Patent Application Ser. Nos.: 63/165,060, filed on Mar. 23, 2021, entitled “Cell Expansion”; 63/169,173, filed on Mar. 31, 2021, entitled “Cell Expansion”; 63/183,591, filed on May 3, 2021, entitled “Cell Expansion”; 63/227,293, filed on Jul. 29, 2021, entitled “Cell Expansion”; 63/228,561, filed on Aug. 2, 2021, entitled “Cell Expansion”; 63/275,389, filed on Nov. 3, 2021, entitled “Methods and Systems for Isolating Target Cells Using a Multiple Part Membrane Substrate”; 63/275,793, filed on Nov. 4, 2021, entitled “Methods and Systems for Isolating Target Cells Using a Multiple Part Membrane Substrate”; 63/304,467, filed on Jan. 28, 2022, entitled “Methods and Systems for Isolating Target Cells Using a Multiple Part Membrane Substrate”; the entire disclosures of each are incorporated herein by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2997077 | Rodrigues | Aug 1961 | A |
3013435 | Rodrigues | Dec 1961 | A |
3067915 | Shapiro et al. | Dec 1962 | A |
3191807 | Rodrigues | Jun 1965 | A |
3283727 | Rodrigues | Nov 1966 | A |
3701717 | Ingvorsen | Oct 1972 | A |
4173415 | Wyatt | Nov 1979 | A |
4301010 | Eddleman et al. | Nov 1981 | A |
4301118 | Eddleman et al. | Nov 1981 | A |
4412990 | Lundblad et al. | Nov 1983 | A |
4418691 | Yannas et al. | Dec 1983 | A |
4439901 | Eddleman | Apr 1984 | A |
4478829 | Landaburu et al. | Oct 1984 | A |
4486188 | Altshuler et al. | Dec 1984 | A |
4509695 | Bessman | Apr 1985 | A |
4585654 | Landaburu et al. | Apr 1986 | A |
4618586 | Walker | Oct 1986 | A |
4629686 | Gruenberg | Dec 1986 | A |
4670544 | Schwinn et al. | Jun 1987 | A |
4727059 | Binder et al. | Feb 1988 | A |
4828706 | Eddleman | May 1989 | A |
4897358 | Carrasco | Jan 1990 | A |
4960521 | Keller | Oct 1990 | A |
4988623 | Schwarz et al. | Jan 1991 | A |
5015585 | Robinson | May 1991 | A |
5019054 | Clement et al. | May 1991 | A |
5126238 | Gebhard et al. | Jun 1992 | A |
5130141 | Law et al. | Jul 1992 | A |
5149544 | Gentile et al. | Sep 1992 | A |
5169930 | Ruoslahti et al. | Dec 1992 | A |
5192553 | Boyse et al. | Mar 1993 | A |
5197985 | Caplan et al. | Mar 1993 | A |
5202254 | Amiot et al. | Apr 1993 | A |
5225346 | Matsumiya et al. | Jul 1993 | A |
5226914 | Caplan et al. | Jul 1993 | A |
5240614 | Ofsthun et al. | Aug 1993 | A |
5240861 | Bieri | Aug 1993 | A |
5283058 | Faustman | Feb 1994 | A |
5310676 | Johansson et al. | May 1994 | A |
5324428 | Flaherty | Jun 1994 | A |
5342752 | Platz et al. | Aug 1994 | A |
5422197 | Zito | Jun 1995 | A |
5436151 | McGlave et al. | Jul 1995 | A |
5437994 | Emerson et al. | Aug 1995 | A |
5439757 | Zito | Aug 1995 | A |
5459069 | Palsson et al. | Oct 1995 | A |
5460964 | McGlave et al. | Oct 1995 | A |
H1509 | Eran et al. | Dec 1995 | H |
5478739 | Slivka et al. | Dec 1995 | A |
5486359 | Caplan et al. | Jan 1996 | A |
5496659 | Zito | Mar 1996 | A |
5507949 | Ho | Apr 1996 | A |
5512180 | Ho | Apr 1996 | A |
5527467 | Ofsthun et al. | Jun 1996 | A |
5543316 | Zawadzka et al. | Aug 1996 | A |
5545492 | Zito | Aug 1996 | A |
5549674 | Humes et al. | Aug 1996 | A |
5571720 | Grandics et al. | Nov 1996 | A |
5591625 | Gerson et al. | Jan 1997 | A |
5593580 | Kopf | Jan 1997 | A |
5595909 | Hu et al. | Jan 1997 | A |
5599703 | Davis et al. | Feb 1997 | A |
5605822 | Emerson et al. | Feb 1997 | A |
5605829 | McGlave et al. | Feb 1997 | A |
5605835 | Hu et al. | Feb 1997 | A |
5622857 | Goffe | Apr 1997 | A |
5626731 | Cooley et al. | May 1997 | A |
5627070 | Gruenberg | May 1997 | A |
5635386 | Palsson et al. | Jun 1997 | A |
5635387 | Fei et al. | Jun 1997 | A |
5643736 | Bruder et al. | Jul 1997 | A |
5646043 | Emerson et al. | Jul 1997 | A |
5654186 | Cerami et al. | Aug 1997 | A |
5656421 | Gebhard et al. | Aug 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667985 | O'Leary et al. | Sep 1997 | A |
5670147 | Emerson et al. | Sep 1997 | A |
5674750 | Kraus et al. | Oct 1997 | A |
5684712 | Goffe et al. | Nov 1997 | A |
5686289 | Humes et al. | Nov 1997 | A |
5695989 | Kalamasz | Dec 1997 | A |
5700289 | Breitbart et al. | Dec 1997 | A |
5705534 | D'Agostino et al. | Jan 1998 | A |
5707859 | Miller et al. | Jan 1998 | A |
5712163 | Parenteau et al. | Jan 1998 | A |
5728581 | Schwartz et al. | Mar 1998 | A |
5733541 | Taichman et al. | Mar 1998 | A |
5733542 | Haynesworth et al. | Mar 1998 | A |
5736396 | Bruder et al. | Apr 1998 | A |
5744347 | Wagner et al. | Apr 1998 | A |
5750651 | Oppermann et al. | May 1998 | A |
5753506 | Johe | May 1998 | A |
5763197 | Tsukamoto et al. | Jun 1998 | A |
5763266 | Palsson et al. | Jun 1998 | A |
5766944 | Ruiz | Jun 1998 | A |
5772994 | Ildstad et al. | Jun 1998 | A |
5783075 | Eddleman et al. | Jul 1998 | A |
5783216 | Faustman | Jul 1998 | A |
5785912 | Cooley et al. | Jul 1998 | A |
5804446 | Cerami et al. | Sep 1998 | A |
5806529 | Reisner et al. | Sep 1998 | A |
5807686 | Wagner et al. | Sep 1998 | A |
5811094 | Caplan et al. | Sep 1998 | A |
5811397 | Francavilla et al. | Sep 1998 | A |
5817773 | Wilson et al. | Oct 1998 | A |
5821218 | Toback et al. | Oct 1998 | A |
5827735 | Young et al. | Oct 1998 | A |
5827740 | Pittenger | Oct 1998 | A |
5830921 | Cooley et al. | Nov 1998 | A |
5833979 | Schinstine et al. | Nov 1998 | A |
5837258 | Grotendorst | Nov 1998 | A |
5837539 | Caplan et al. | Nov 1998 | A |
5840502 | Van Vlasselaer | Nov 1998 | A |
5840576 | Schinstine et al. | Nov 1998 | A |
5840580 | Terstappen et al. | Nov 1998 | A |
5842477 | Naughton et al. | Dec 1998 | A |
5843633 | Yin et al. | Dec 1998 | A |
5846796 | Cerami et al. | Dec 1998 | A |
5853247 | Shroyer | Dec 1998 | A |
5853717 | Schinstine et al. | Dec 1998 | A |
5855608 | Brekke et al. | Jan 1999 | A |
5855613 | Antanavich et al. | Jan 1999 | A |
5855619 | Caplan et al. | Jan 1999 | A |
5858747 | Schinstine et al. | Jan 1999 | A |
5858782 | Long et al. | Jan 1999 | A |
5861315 | Nakahata | Jan 1999 | A |
5866115 | Kanz et al. | Feb 1999 | A |
5866420 | Talbot et al. | Feb 1999 | A |
5868930 | Kopf | Feb 1999 | A |
5882295 | Kope | Mar 1999 | A |
5882918 | Goffe | Mar 1999 | A |
5882929 | Fofonoff et al. | Mar 1999 | A |
5888807 | Palsson et al. | Mar 1999 | A |
5902741 | Purchio et al. | May 1999 | A |
5906827 | Khouri et al. | May 1999 | A |
5906934 | Grande et al. | May 1999 | A |
5908782 | Marshak et al. | Jun 1999 | A |
5908784 | Johnstone et al. | Jun 1999 | A |
5912177 | Turner et al. | Jun 1999 | A |
5914108 | Tsukamoto et al. | Jun 1999 | A |
5922597 | Verfaillie et al. | Jul 1999 | A |
5922847 | Broudy et al. | Jul 1999 | A |
5925567 | Kraus et al. | Jul 1999 | A |
5928945 | Seliktar et al. | Jul 1999 | A |
5935849 | Schinstine et al. | Aug 1999 | A |
5938929 | Shimagaki et al. | Aug 1999 | A |
5939323 | Valentini et al. | Aug 1999 | A |
5942225 | Bruder et al. | Aug 1999 | A |
5955353 | Amiot | Sep 1999 | A |
5958763 | Goffe | Sep 1999 | A |
5965436 | Thiede et al. | Oct 1999 | A |
5972703 | Long et al. | Oct 1999 | A |
5980795 | Klotzer et al. | Nov 1999 | A |
5981211 | Hu et al. | Nov 1999 | A |
5981708 | Lawman et al. | Nov 1999 | A |
5998184 | Shi | Dec 1999 | A |
6001585 | Gramer | Dec 1999 | A |
6001643 | Spaulding | Dec 1999 | A |
6001647 | Peck et al. | Dec 1999 | A |
6004743 | Kenyon et al. | Dec 1999 | A |
6010696 | Caplan et al. | Jan 2000 | A |
6015554 | Galy | Jan 2000 | A |
6022540 | Bruder et al. | Feb 2000 | A |
6022742 | Kopf | Feb 2000 | A |
6022743 | Naughton et al. | Feb 2000 | A |
6027743 | Khouri et al. | Feb 2000 | A |
6030836 | Thiede et al. | Feb 2000 | A |
6040180 | Johe | Mar 2000 | A |
6045818 | Cima et al. | Apr 2000 | A |
6048721 | Armstrong et al. | Apr 2000 | A |
6048727 | Kopf | Apr 2000 | A |
6049026 | Muschler | Apr 2000 | A |
6054121 | Cerami et al. | Apr 2000 | A |
6060270 | Humes | May 2000 | A |
6066317 | Yang et al. | May 2000 | A |
6071691 | Hoekstra et al. | Jun 2000 | A |
6074366 | Rogers et al. | Jun 2000 | A |
6082364 | Balian et al. | Jul 2000 | A |
6083747 | Wong et al. | Jul 2000 | A |
6086643 | Clark et al. | Jul 2000 | A |
6087113 | Caplan et al. | Jul 2000 | A |
6096537 | Chappel | Aug 2000 | A |
6103117 | Shimagaki et al. | Aug 2000 | A |
6103522 | Torok-Storb et al. | Aug 2000 | A |
6110176 | Shapira | Aug 2000 | A |
6110482 | Khouri et al. | Aug 2000 | A |
6114307 | Jaspers et al. | Sep 2000 | A |
6117985 | Thomas et al. | Sep 2000 | A |
6120491 | Kohn et al. | Sep 2000 | A |
6127141 | Kopf | Oct 2000 | A |
6129911 | Faris | Oct 2000 | A |
6143293 | Weiss et al. | Nov 2000 | A |
6146360 | Rogers et al. | Nov 2000 | A |
6146888 | Smith et al. | Nov 2000 | A |
6149902 | Artavanis-Tsakonas et al. | Nov 2000 | A |
6149906 | Mosca | Nov 2000 | A |
6150164 | Humes | Nov 2000 | A |
6152964 | Van Blitterswijk et al. | Nov 2000 | A |
6162643 | Wille, Jr. | Dec 2000 | A |
6165225 | Antanavich et al. | Dec 2000 | A |
6165785 | Ogle et al. | Dec 2000 | A |
6174333 | Kadiyala et al. | Jan 2001 | B1 |
6174526 | Cerami et al. | Jan 2001 | B1 |
6174666 | Pavlakis et al. | Jan 2001 | B1 |
6179871 | Halpern | Jan 2001 | B1 |
6197325 | MacPhee et al. | Mar 2001 | B1 |
6197575 | Griffith et al. | Mar 2001 | B1 |
6200606 | Peterson et al. | Mar 2001 | B1 |
6214369 | Grande et al. | Apr 2001 | B1 |
6214574 | Kopf | Apr 2001 | B1 |
6224860 | Brown | May 2001 | B1 |
6225119 | Qasba et al. | May 2001 | B1 |
6225368 | D'Agostino et al. | May 2001 | B1 |
6228117 | De Bruijn et al. | May 2001 | B1 |
6228607 | Kersten et al. | May 2001 | B1 |
6238908 | Armstrong et al. | May 2001 | B1 |
6239157 | Mbalaviele | May 2001 | B1 |
6242252 | Reid et al. | Jun 2001 | B1 |
6248319 | Zsebo et al. | Jun 2001 | B1 |
6248587 | Rodgers et al. | Jun 2001 | B1 |
6255112 | Thiede et al. | Jul 2001 | B1 |
6258597 | Bachovchin et al. | Jul 2001 | B1 |
6258778 | Rodgers et al. | Jul 2001 | B1 |
6261549 | Fernandez et al. | Jul 2001 | B1 |
6280718 | Kaufman et al. | Aug 2001 | B1 |
6280724 | Moore | Aug 2001 | B1 |
6281012 | McIntosh et al. | Aug 2001 | B1 |
6281195 | Rueger et al. | Aug 2001 | B1 |
6287864 | Bagnis et al. | Sep 2001 | B1 |
6291249 | Mahant et al. | Sep 2001 | B1 |
6297213 | Oppermann et al. | Oct 2001 | B1 |
6299650 | Van Blitterswijk et al. | Oct 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6306575 | Thomas et al. | Oct 2001 | B1 |
6322784 | Pittenger et al. | Nov 2001 | B1 |
6322786 | Anderson | Nov 2001 | B1 |
6326198 | Emerson et al. | Dec 2001 | B1 |
6326201 | Fung et al. | Dec 2001 | B1 |
6328765 | Hardwick et al. | Dec 2001 | B1 |
6328960 | McIntosh et al. | Dec 2001 | B1 |
6333029 | Vyakarnam et al. | Dec 2001 | B1 |
6335195 | Rodgers et al. | Jan 2002 | B1 |
6338942 | Kraus et al. | Jan 2002 | B2 |
6340592 | Stringer | Jan 2002 | B1 |
6342370 | Connolly et al. | Jan 2002 | B1 |
6355239 | Bruder et al. | Mar 2002 | B1 |
6358252 | Shapira | Mar 2002 | B1 |
6361997 | Huss | Mar 2002 | B1 |
6365149 | Vyakarnam et al. | Apr 2002 | B2 |
6368636 | McIntosh et al. | Apr 2002 | B1 |
6372210 | Brown | Apr 2002 | B2 |
6372244 | Antanavich et al. | Apr 2002 | B1 |
6372494 | Naughton et al. | Apr 2002 | B1 |
6372892 | Ballinger et al. | Apr 2002 | B1 |
6376742 | Zdrahala et al. | Apr 2002 | B1 |
6379953 | Bruder et al. | Apr 2002 | B1 |
6387367 | Davis-Sproul et al. | May 2002 | B1 |
6387369 | Pittenger et al. | May 2002 | B1 |
6387693 | Rieser et al. | May 2002 | B2 |
6387964 | D'Agostino et al. | May 2002 | B1 |
6392118 | Hammang et al. | May 2002 | B1 |
6394812 | Sullivan et al. | May 2002 | B1 |
6399580 | Elias et al. | Jun 2002 | B1 |
6410320 | Humes | Jun 2002 | B1 |
6414219 | Denhardt et al. | Jul 2002 | B1 |
6416496 | Rogers et al. | Jul 2002 | B1 |
6417205 | Cooke et al. | Jul 2002 | B1 |
6419829 | Ho et al. | Jul 2002 | B2 |
6420138 | Gentz et al. | Jul 2002 | B1 |
6423681 | Barasch et al. | Jul 2002 | B1 |
6426332 | Rueger et al. | Jul 2002 | B1 |
6428802 | Atala | Aug 2002 | B1 |
6429012 | Kraus et al. | Aug 2002 | B1 |
6429013 | Halvorsen et al. | Aug 2002 | B1 |
6432653 | Okarma | Aug 2002 | B1 |
6432711 | Dinsmore et al. | Aug 2002 | B1 |
6440407 | Bauer et al. | Aug 2002 | B1 |
6440734 | Pykett et al. | Aug 2002 | B1 |
6451562 | Ruben et al. | Sep 2002 | B1 |
6454811 | Sherwood et al. | Sep 2002 | B1 |
6455678 | Yin et al. | Sep 2002 | B1 |
6458585 | Vachula et al. | Oct 2002 | B1 |
6458589 | Rambhatla et al. | Oct 2002 | B1 |
6461495 | Morrissey et al. | Oct 2002 | B1 |
6461853 | Zhu | Oct 2002 | B1 |
6464983 | Grotendorst | Oct 2002 | B1 |
6465205 | Hicks, Jr. | Oct 2002 | B2 |
6465247 | Weissman et al. | Oct 2002 | B1 |
6465249 | Reya et al. | Oct 2002 | B2 |
6468794 | Uchida et al. | Oct 2002 | B1 |
6472200 | Mitrani | Oct 2002 | B1 |
6475481 | Talmadge | Nov 2002 | B2 |
6479064 | Atala | Nov 2002 | B1 |
6482231 | Abatangelo et al. | Nov 2002 | B1 |
6482411 | Ahuja et al. | Nov 2002 | B1 |
6482645 | Atala | Nov 2002 | B2 |
6482926 | Thomas et al. | Nov 2002 | B1 |
6488925 | Ruben et al. | Dec 2002 | B2 |
6491918 | Thomas et al. | Dec 2002 | B1 |
6495129 | Li et al. | Dec 2002 | B1 |
6495364 | Hammang et al. | Dec 2002 | B2 |
6497875 | Sorrell et al. | Dec 2002 | B1 |
6498034 | Strobl | Dec 2002 | B1 |
6506574 | Rambhatla et al. | Jan 2003 | B1 |
6511510 | de Bruijn et al. | Jan 2003 | B1 |
6511767 | Calver et al. | Jan 2003 | B1 |
6511958 | Atkinson et al. | Jan 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6524452 | Clark et al. | Feb 2003 | B1 |
6528052 | Smith et al. | Mar 2003 | B1 |
6528245 | Sanchez-Ramos et al. | Mar 2003 | B2 |
6531445 | Cohen et al. | Mar 2003 | B1 |
6534084 | Vyakarnam et al. | Mar 2003 | B1 |
6537807 | Smith et al. | Mar 2003 | B1 |
6541024 | Kadiyala et al. | Apr 2003 | B1 |
6541249 | Wager et al. | Apr 2003 | B2 |
6544506 | Reisner | Apr 2003 | B2 |
6548734 | Glimcher et al. | Apr 2003 | B1 |
6555324 | Olweus et al. | Apr 2003 | B1 |
6555374 | Gimble et al. | Apr 2003 | B1 |
6559119 | Burgess et al. | May 2003 | B1 |
6562616 | Toner et al. | May 2003 | B1 |
6565843 | Cohen et al. | May 2003 | B1 |
6569421 | Hodges | May 2003 | B2 |
6569427 | Boyse et al. | May 2003 | B1 |
6569428 | Isner et al. | May 2003 | B1 |
6569654 | Shastri et al. | May 2003 | B2 |
6576188 | Rose et al. | Jun 2003 | B1 |
6576428 | Assenmacher et al. | Jun 2003 | B1 |
6576464 | Gold et al. | Jun 2003 | B2 |
6576465 | Long | Jun 2003 | B1 |
6582471 | Bittmann et al. | Jun 2003 | B1 |
6582955 | Martinez et al. | Jun 2003 | B2 |
6586192 | Peschle et al. | Jul 2003 | B1 |
6589728 | Csete et al. | Jul 2003 | B2 |
6589786 | Mangano et al. | Jul 2003 | B1 |
6596274 | Abatangelo et al. | Jul 2003 | B1 |
6599300 | Vibe-Hansen et al. | Jul 2003 | B2 |
6599520 | Scarborough et al. | Jul 2003 | B2 |
6610535 | Lu et al. | Aug 2003 | B1 |
6613798 | Porter et al. | Sep 2003 | B1 |
6616912 | Eddleman et al. | Sep 2003 | B2 |
6617070 | Morrissey et al. | Sep 2003 | B1 |
6617152 | Bryhan et al. | Sep 2003 | B2 |
6617159 | Cancedda et al. | Sep 2003 | B1 |
6623749 | Williams et al. | Sep 2003 | B2 |
6623942 | Ruben et al. | Sep 2003 | B2 |
6624108 | Clark et al. | Sep 2003 | B1 |
6626950 | Brown et al. | Sep 2003 | B2 |
6627191 | Bartelmez et al. | Sep 2003 | B1 |
6632425 | Li et al. | Oct 2003 | B1 |
6632620 | Makarovskiy | Oct 2003 | B1 |
6632934 | Moreadith et al. | Oct 2003 | B1 |
6638765 | Rosenberg | Oct 2003 | B1 |
6642048 | Xu et al. | Nov 2003 | B2 |
6642049 | Chute et al. | Nov 2003 | B1 |
6642201 | Khavinson et al. | Nov 2003 | B1 |
6645489 | Pykett et al. | Nov 2003 | B2 |
6645727 | Thomas et al. | Nov 2003 | B2 |
6645763 | Kobayashi et al. | Nov 2003 | B2 |
6649189 | Talmadge et al. | Nov 2003 | B2 |
6649595 | Clackson et al. | Nov 2003 | B2 |
6649631 | Orme et al. | Nov 2003 | B1 |
6653105 | Triglia et al. | Nov 2003 | B2 |
6653134 | Prockop et al. | Nov 2003 | B2 |
6660523 | Blom et al. | Dec 2003 | B2 |
6662805 | Frondoza et al. | Dec 2003 | B2 |
6667034 | Palsson et al. | Dec 2003 | B2 |
6667176 | Funk et al. | Dec 2003 | B1 |
6670169 | Schob et al. | Dec 2003 | B1 |
6670175 | Wang et al. | Dec 2003 | B2 |
6673603 | Baetge et al. | Jan 2004 | B2 |
6673606 | Tennekoon et al. | Jan 2004 | B1 |
6677306 | Veis et al. | Jan 2004 | B1 |
6683192 | Baxter et al. | Jan 2004 | B2 |
6685936 | McIntosh et al. | Feb 2004 | B2 |
6685971 | Xu | Feb 2004 | B2 |
6686198 | Melton et al. | Feb 2004 | B1 |
6696575 | Schmidt et al. | Feb 2004 | B2 |
6699716 | Sullivan et al. | Mar 2004 | B2 |
6703017 | Peck et al. | Mar 2004 | B1 |
6703209 | Baetscher et al. | Mar 2004 | B1 |
6706293 | Quintanilla Almagro et al. | Mar 2004 | B1 |
6709864 | Pittenger et al. | Mar 2004 | B1 |
6712850 | Vyakarnam et al. | Mar 2004 | B2 |
6719969 | Hogaboam et al. | Apr 2004 | B1 |
6719970 | Costantino et al. | Apr 2004 | B1 |
6720340 | Cooke et al. | Apr 2004 | B1 |
6730314 | Jeschke et al. | May 2004 | B2 |
6730315 | Usala et al. | May 2004 | B2 |
6730510 | Roos et al. | May 2004 | B2 |
6733746 | Daley et al. | May 2004 | B2 |
6734000 | Chin et al. | May 2004 | B2 |
6740493 | Long et al. | May 2004 | B1 |
6759039 | Tsang et al. | Jul 2004 | B2 |
6759245 | Toner et al. | Jul 2004 | B1 |
6761883 | Weissman et al. | Jul 2004 | B2 |
6761887 | Kavalkovich et al. | Jul 2004 | B1 |
6767699 | Polo et al. | Jul 2004 | B2 |
6767737 | Wilson et al. | Jul 2004 | B1 |
6767738 | Gage et al. | Jul 2004 | B1 |
6767740 | Sramek et al. | Jul 2004 | B2 |
6770478 | Crowe et al. | Aug 2004 | B2 |
6777227 | Ricci et al. | Aug 2004 | B2 |
6777231 | Katz et al. | Aug 2004 | B1 |
6780612 | Ford et al. | Aug 2004 | B1 |
6787355 | Miller et al. | Sep 2004 | B1 |
6790455 | Chu et al. | Sep 2004 | B2 |
6793939 | Badylak | Sep 2004 | B2 |
6797269 | Mosca et al. | Sep 2004 | B2 |
6797514 | Berenson et al. | Sep 2004 | B2 |
6800480 | Bodnar et al. | Oct 2004 | B1 |
6802971 | Gorsuch et al. | Oct 2004 | B2 |
6805860 | Alt | Oct 2004 | B1 |
6809117 | Enikolopov et al. | Oct 2004 | B2 |
6811773 | Gentz et al. | Nov 2004 | B1 |
6811776 | Kale et al. | Nov 2004 | B2 |
6814961 | Jensen et al. | Nov 2004 | B1 |
6821513 | Fleming | Nov 2004 | B1 |
6821790 | Mahant et al. | Nov 2004 | B2 |
6828145 | Avital et al. | Dec 2004 | B2 |
6833269 | Carpenter | Dec 2004 | B2 |
6835377 | Goldberg et al. | Dec 2004 | B2 |
6835566 | Smith et al. | Dec 2004 | B2 |
6838284 | de Bruijn et al. | Jan 2005 | B2 |
6841150 | Halvorsen et al. | Jan 2005 | B2 |
6841151 | Stringer | Jan 2005 | B2 |
6841294 | Morrissey et al. | Jan 2005 | B1 |
6841355 | Livant | Jan 2005 | B2 |
6841386 | Kraus et al. | Jan 2005 | B2 |
6841542 | Bartelmez et al. | Jan 2005 | B2 |
6844011 | Faustman | Jan 2005 | B1 |
6849051 | Sramek et al. | Feb 2005 | B2 |
6849255 | Gazit et al. | Feb 2005 | B2 |
6849454 | Kelly et al. | Feb 2005 | B2 |
6849662 | Enikolopov et al. | Feb 2005 | B2 |
6852308 | Kohn et al. | Feb 2005 | B2 |
6852321 | Colucci et al. | Feb 2005 | B2 |
6852533 | Rafii et al. | Feb 2005 | B1 |
6855242 | Comninellis et al. | Feb 2005 | B1 |
6855542 | DiMilla et al. | Feb 2005 | B2 |
6863900 | Kadiyala et al. | Mar 2005 | B2 |
6866843 | Habener et al. | Mar 2005 | B2 |
6872389 | Faris | Mar 2005 | B1 |
6875430 | McIntosh et al. | Apr 2005 | B2 |
6887600 | Morrissey et al. | May 2005 | B2 |
6887704 | Peled et al. | May 2005 | B2 |
6908763 | Akashi et al. | Jun 2005 | B1 |
6911201 | Merchav et al. | Jun 2005 | B1 |
6914279 | Lu et al. | Jul 2005 | B2 |
6939955 | Rameshwar | Sep 2005 | B2 |
6965018 | Mikesell et al. | Nov 2005 | B2 |
6979321 | Geis et al. | Dec 2005 | B2 |
6988004 | Kanno et al. | Jan 2006 | B2 |
7008394 | Geise et al. | Mar 2006 | B2 |
7015037 | Furcht et al. | Mar 2006 | B1 |
7029666 | Bruder et al. | Apr 2006 | B2 |
7033339 | Lynn | Apr 2006 | B1 |
7045098 | Stephens | May 2006 | B2 |
7052517 | Murphy et al. | May 2006 | B2 |
7056493 | Kohn et al. | Jun 2006 | B2 |
7118672 | Husain et al. | Oct 2006 | B2 |
7122178 | Simmons et al. | Oct 2006 | B1 |
7160719 | Nyberg | Jan 2007 | B2 |
7169295 | Husain et al. | Jan 2007 | B2 |
7172696 | Martinez et al. | Feb 2007 | B1 |
7175763 | Husain et al. | Feb 2007 | B2 |
7192776 | Stephens | Mar 2007 | B2 |
7195711 | Gorsuch et al. | Mar 2007 | B2 |
7250154 | Kohn et al. | Jul 2007 | B2 |
7271234 | Kohn et al. | Sep 2007 | B2 |
7294259 | Cote et al. | Nov 2007 | B2 |
7300571 | Cote et al. | Nov 2007 | B2 |
7303676 | Husain et al. | Dec 2007 | B2 |
7303677 | Cote et al. | Dec 2007 | B2 |
7341062 | Chachques et al. | Mar 2008 | B2 |
7358001 | Morrissey et al. | Apr 2008 | B2 |
7361493 | Hammond et al. | Apr 2008 | B1 |
7368169 | Kohn et al. | May 2008 | B2 |
7378271 | Bader | May 2008 | B2 |
7399872 | Webster et al. | Jul 2008 | B2 |
7416884 | Gemmiti et al. | Aug 2008 | B2 |
7425440 | Malinge et al. | Sep 2008 | B2 |
7435586 | Bartlett et al. | Oct 2008 | B2 |
7438902 | Habener et al. | Oct 2008 | B2 |
7439057 | Frangos et al. | Oct 2008 | B2 |
7452529 | Brown, Jr. et al. | Nov 2008 | B2 |
7491388 | McIntosh et al. | Feb 2009 | B1 |
7494811 | Wolfinbarger, Jr. et al. | Feb 2009 | B2 |
7514074 | Pittenger et al. | Apr 2009 | B2 |
7514075 | Hedrick et al. | Apr 2009 | B2 |
7524676 | Reiter et al. | Apr 2009 | B2 |
7534609 | Merchav et al. | May 2009 | B2 |
7572374 | Gorsuch et al. | Aug 2009 | B2 |
7579179 | Bryhan et al. | Aug 2009 | B2 |
7585412 | Gorsuch et al. | Sep 2009 | B2 |
7588938 | Ma | Sep 2009 | B2 |
7598075 | Smith et al. | Oct 2009 | B2 |
7608447 | Cohen et al. | Oct 2009 | B2 |
7659118 | Furcht et al. | Feb 2010 | B2 |
7678573 | Merchav et al. | Mar 2010 | B2 |
7682823 | Runyon | Mar 2010 | B1 |
7722896 | Kohn et al. | May 2010 | B2 |
D620732 | Andrews | Aug 2010 | S |
7838122 | Kohn et al. | Nov 2010 | B2 |
7838289 | Furcht et al. | Nov 2010 | B2 |
7892829 | Pittenger et al. | Feb 2011 | B2 |
7919307 | Klaus et al. | Apr 2011 | B2 |
7927587 | Blazer et al. | Apr 2011 | B2 |
7989851 | Lu et al. | Aug 2011 | B2 |
8008528 | Kohn et al. | Aug 2011 | B2 |
8034365 | Baluca | Oct 2011 | B2 |
8075881 | Verfaillie et al. | Dec 2011 | B2 |
8147824 | Maziarz et al. | Apr 2012 | B2 |
8147863 | Kohn et al. | Apr 2012 | B2 |
8158120 | Pittenger et al. | Apr 2012 | B2 |
8158121 | Pittenger et al. | Apr 2012 | B2 |
8252280 | Verfaillie et al. | Aug 2012 | B1 |
8252887 | Bolikal et al. | Aug 2012 | B2 |
8288159 | Warren et al. | Oct 2012 | B2 |
8288590 | Kohn et al. | Oct 2012 | B2 |
8298823 | Warren et al. | Oct 2012 | B2 |
8361453 | Uhrich et al. | Jan 2013 | B2 |
8377683 | Lu et al. | Feb 2013 | B2 |
8383397 | Wojciechowski et al. | Feb 2013 | B2 |
8383806 | Rameshwar | Feb 2013 | B2 |
8399245 | Leuthaeuser et al. | Mar 2013 | B2 |
8415449 | Kohn et al. | Apr 2013 | B2 |
8435781 | Kodama | May 2013 | B2 |
8461289 | Kohn et al. | Jun 2013 | B2 |
8476399 | Bolikal et al. | Jul 2013 | B2 |
8486621 | Luo et al. | Jul 2013 | B2 |
8486695 | Danilkovitch et al. | Jul 2013 | B2 |
8492140 | Smith et al. | Jul 2013 | B2 |
8492150 | Parker et al. | Jul 2013 | B2 |
8524496 | Meiron et al. | Sep 2013 | B2 |
8529888 | Meiron et al. | Sep 2013 | B2 |
8540499 | Page et al. | Sep 2013 | B2 |
8551511 | Brandom et al. | Oct 2013 | B2 |
8580249 | Blazar et al. | Nov 2013 | B2 |
8678638 | Wong | Mar 2014 | B2 |
8852570 | Pittenger et al. | Oct 2014 | B2 |
8852571 | Pittenger et al. | Oct 2014 | B2 |
8852572 | Pittenger et al. | Oct 2014 | B2 |
8852573 | Pittenger et al. | Oct 2014 | B2 |
8852574 | Pittenger et al. | Oct 2014 | B2 |
8852575 | Pittenger et al. | Oct 2014 | B2 |
9109193 | Galliher et al. | Aug 2015 | B2 |
9220810 | Ma et al. | Dec 2015 | B2 |
9441195 | Wojciechowski et al. | Sep 2016 | B2 |
9534198 | Page et al. | Jan 2017 | B2 |
9732313 | Hirschel et al. | Aug 2017 | B2 |
10093956 | Hirschel et al. | Oct 2018 | B2 |
10494421 | Castillo | Dec 2019 | B2 |
20010017188 | Cooley et al. | Aug 2001 | A1 |
20010020086 | Hubbell et al. | Sep 2001 | A1 |
20010021516 | Wei et al. | Sep 2001 | A1 |
20010029046 | Beaulieu | Oct 2001 | A1 |
20010033834 | Wilkison et al. | Oct 2001 | A1 |
20010036663 | Kraus et al. | Nov 2001 | A1 |
20010041687 | Mruk | Nov 2001 | A1 |
20010044413 | Pierce et al. | Nov 2001 | A1 |
20010049139 | Lagasse et al. | Dec 2001 | A1 |
20020015724 | Yang et al. | Feb 2002 | A1 |
20020018804 | Austin et al. | Feb 2002 | A1 |
20020028510 | Sanberg et al. | Mar 2002 | A1 |
20020031757 | Ohgushi et al. | Mar 2002 | A1 |
20020037278 | Ueno et al. | Mar 2002 | A1 |
20020045260 | Hung et al. | Apr 2002 | A1 |
20020064869 | Ebner et al. | May 2002 | A1 |
20020076400 | Katz et al. | Jun 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020082698 | Parenteau et al. | Jun 2002 | A1 |
20020116054 | Lundell et al. | Aug 2002 | A1 |
20020128581 | Vishnoi et al. | Sep 2002 | A1 |
20020128582 | Farrell et al. | Sep 2002 | A1 |
20020128583 | Min et al. | Sep 2002 | A1 |
20020128584 | Brown et al. | Sep 2002 | A1 |
20020130100 | Smith | Sep 2002 | A1 |
20020132343 | Lum | Sep 2002 | A1 |
20020139743 | Critz et al. | Oct 2002 | A1 |
20020142457 | Umezawa et al. | Oct 2002 | A1 |
20020146678 | Benvenisty | Oct 2002 | A1 |
20020146817 | Cannon et al. | Oct 2002 | A1 |
20020150989 | Greene et al. | Oct 2002 | A1 |
20020151056 | Sasai et al. | Oct 2002 | A1 |
20020159981 | Peled et al. | Oct 2002 | A1 |
20020160032 | Long et al. | Oct 2002 | A1 |
20020160510 | Hariri | Oct 2002 | A1 |
20020168765 | Prockop et al. | Nov 2002 | A1 |
20020169408 | Beretta et al. | Nov 2002 | A1 |
20020182241 | Borenstein et al. | Dec 2002 | A1 |
20020182664 | Dolecek et al. | Dec 2002 | A1 |
20020188962 | Denhardt et al. | Dec 2002 | A1 |
20020197240 | Chiu | Dec 2002 | A1 |
20030021850 | Xu | Jan 2003 | A1 |
20030022390 | Stephens | Jan 2003 | A1 |
20030027330 | Lanza et al. | Feb 2003 | A1 |
20030027331 | Yan et al. | Feb 2003 | A1 |
20030032143 | Neff et al. | Feb 2003 | A1 |
20030036168 | Ni et al. | Feb 2003 | A1 |
20030040113 | Mizuno et al. | Feb 2003 | A1 |
20030049236 | Kassem et al. | Mar 2003 | A1 |
20030054331 | Fraser et al. | Mar 2003 | A1 |
20030059851 | Smith | Mar 2003 | A1 |
20030059939 | Page et al. | Mar 2003 | A1 |
20030078345 | Morrisey | Apr 2003 | A1 |
20030082795 | Shuler et al. | May 2003 | A1 |
20030086915 | Rader et al. | May 2003 | A1 |
20030089471 | Gehr et al. | May 2003 | A1 |
20030092101 | Ni et al. | May 2003 | A1 |
20030101465 | Lawman et al. | May 2003 | A1 |
20030103957 | McKerracher | Jun 2003 | A1 |
20030104568 | Lee | Jun 2003 | A1 |
20030113813 | Heidaran et al. | Jun 2003 | A1 |
20030113910 | Levanduski | Jun 2003 | A1 |
20030124091 | Tuse et al. | Jul 2003 | A1 |
20030124721 | Cheatham et al. | Jul 2003 | A1 |
20030130593 | Gonzalez | Jul 2003 | A1 |
20030133918 | Sherley | Jul 2003 | A1 |
20030138950 | McAllister et al. | Jul 2003 | A1 |
20030143727 | Chang | Jul 2003 | A1 |
20030148152 | Morrisey | Aug 2003 | A1 |
20030149011 | Ackerman et al. | Aug 2003 | A1 |
20030152558 | Luft et al. | Aug 2003 | A1 |
20030157078 | Hall et al. | Aug 2003 | A1 |
20030157709 | DiMilla et al. | Aug 2003 | A1 |
20030161817 | Young et al. | Aug 2003 | A1 |
20030166272 | Abuljadayel | Sep 2003 | A1 |
20030170214 | Bader | Sep 2003 | A1 |
20030180296 | Salcedo et al. | Sep 2003 | A1 |
20030185817 | Thomas et al. | Oct 2003 | A1 |
20030202938 | Rameshwar | Oct 2003 | A1 |
20030203483 | Seshi | Oct 2003 | A1 |
20030204323 | Morrisey | Oct 2003 | A1 |
20030211602 | Atala | Nov 2003 | A1 |
20030211603 | Earp et al. | Nov 2003 | A1 |
20030216718 | Hamblin et al. | Nov 2003 | A1 |
20030219898 | Sugaya et al. | Nov 2003 | A1 |
20030223968 | Yang | Dec 2003 | A1 |
20030224420 | Hellerstein et al. | Dec 2003 | A1 |
20030224510 | Yamaguchi et al. | Dec 2003 | A1 |
20030225010 | Rameshwar | Dec 2003 | A1 |
20030232432 | Bhat | Dec 2003 | A1 |
20030232752 | Freeman et al. | Dec 2003 | A1 |
20030235909 | Hariri et al. | Dec 2003 | A1 |
20040009158 | Sands et al. | Jan 2004 | A1 |
20040009589 | Levenberg et al. | Jan 2004 | A1 |
20040010231 | Leonhardt et al. | Jan 2004 | A1 |
20040014209 | Lassar et al. | Jan 2004 | A1 |
20040018174 | Palasis | Jan 2004 | A1 |
20040018617 | Hwang | Jan 2004 | A1 |
20040023324 | Sakano et al. | Feb 2004 | A1 |
20040023370 | Yu et al. | Feb 2004 | A1 |
20040033214 | Young et al. | Feb 2004 | A1 |
20040033599 | Rosenberg | Feb 2004 | A1 |
20040037811 | Penn et al. | Feb 2004 | A1 |
20040037815 | Clarke et al. | Feb 2004 | A1 |
20040038316 | Kaiser et al. | Feb 2004 | A1 |
20040053869 | Andrews et al. | Mar 2004 | A1 |
20040062753 | Rezania et al. | Apr 2004 | A1 |
20040063205 | Xu | Apr 2004 | A1 |
20040067585 | Wang et al. | Apr 2004 | A1 |
20040071668 | Bays et al. | Apr 2004 | A1 |
20040072259 | Scadden et al. | Apr 2004 | A1 |
20040077079 | Storgaard et al. | Apr 2004 | A1 |
20040079248 | Mayer et al. | Apr 2004 | A1 |
20040087016 | Keating et al. | May 2004 | A1 |
20040091936 | West | May 2004 | A1 |
20040096476 | Uhrich et al. | May 2004 | A1 |
20040097408 | Leder et al. | May 2004 | A1 |
20040101959 | Marko et al. | May 2004 | A1 |
20040107453 | Furcht et al. | Jun 2004 | A1 |
20040110286 | Bhatia | Jun 2004 | A1 |
20040115804 | Fu et al. | Jun 2004 | A1 |
20040115806 | Fu | Jun 2004 | A1 |
20040120932 | Zahner | Jun 2004 | A1 |
20040121461 | Honmou et al. | Jun 2004 | A1 |
20040121464 | Rathjen et al. | Jun 2004 | A1 |
20040126405 | Sahatjian et al. | Jul 2004 | A1 |
20040128077 | Koebler et al. | Jul 2004 | A1 |
20040131601 | Epstein et al. | Jul 2004 | A1 |
20040132184 | Dennis et al. | Jul 2004 | A1 |
20040136967 | Weiss et al. | Jul 2004 | A1 |
20040137612 | Baksh | Jul 2004 | A1 |
20040137613 | Vacanti et al. | Jul 2004 | A1 |
20040143174 | Brubaker | Jul 2004 | A1 |
20040143863 | Li et al. | Jul 2004 | A1 |
20040151700 | Harlan et al. | Aug 2004 | A1 |
20040151701 | Kim et al. | Aug 2004 | A1 |
20040151706 | Shakhov et al. | Aug 2004 | A1 |
20040151729 | Michalopoulos et al. | Aug 2004 | A1 |
20040152190 | Sumita | Aug 2004 | A1 |
20040161419 | Strom et al. | Aug 2004 | A1 |
20040171533 | Zehentner et al. | Sep 2004 | A1 |
20040180347 | Stanton et al. | Sep 2004 | A1 |
20040191902 | Hambor et al. | Sep 2004 | A1 |
20040197310 | Sanberg et al. | Oct 2004 | A1 |
20040197375 | Rezania et al. | Oct 2004 | A1 |
20040208786 | Kevy et al. | Oct 2004 | A1 |
20040214275 | Soejima et al. | Oct 2004 | A1 |
20040219134 | Naughton et al. | Nov 2004 | A1 |
20040219136 | Hariri | Nov 2004 | A1 |
20040219563 | West et al. | Nov 2004 | A1 |
20040224403 | Bhatia | Nov 2004 | A1 |
20040229351 | Rodriguez et al. | Nov 2004 | A1 |
20040234972 | Owens et al. | Nov 2004 | A1 |
20040235158 | Bartlett et al. | Nov 2004 | A1 |
20040235160 | Nishikawa et al. | Nov 2004 | A1 |
20040235166 | Prockop et al. | Nov 2004 | A1 |
20040242469 | Lee et al. | Dec 2004 | A1 |
20040258669 | Dzau et al. | Dec 2004 | A1 |
20040259242 | Malinge et al. | Dec 2004 | A1 |
20040259254 | Honmou et al. | Dec 2004 | A1 |
20040260058 | Scheek et al. | Dec 2004 | A1 |
20040260318 | Hunter et al. | Dec 2004 | A1 |
20040265996 | Schwarz et al. | Dec 2004 | A1 |
20050002914 | Rosen et al. | Jan 2005 | A1 |
20050003460 | Nilsson et al. | Jan 2005 | A1 |
20050003527 | Lang et al. | Jan 2005 | A1 |
20050003534 | Huberman et al. | Jan 2005 | A1 |
20050008624 | Peled et al. | Jan 2005 | A1 |
20050008626 | Fraser et al. | Jan 2005 | A1 |
20050009178 | Yost et al. | Jan 2005 | A1 |
20050009179 | Gemmiti et al. | Jan 2005 | A1 |
20050009181 | Black et al. | Jan 2005 | A1 |
20050013804 | Kato et al. | Jan 2005 | A1 |
20050014252 | Chu et al. | Jan 2005 | A1 |
20050014253 | Ehmann et al. | Jan 2005 | A1 |
20050014254 | Kruse | Jan 2005 | A1 |
20050014255 | Tang et al. | Jan 2005 | A1 |
20050019801 | Rubin et al. | Jan 2005 | A1 |
20050019908 | Hariri | Jan 2005 | A1 |
20050019910 | Takagi et al. | Jan 2005 | A1 |
20050019911 | Gronthos et al. | Jan 2005 | A1 |
20050026836 | Dack et al. | Feb 2005 | A1 |
20050031587 | Tsutsui et al. | Feb 2005 | A1 |
20050031595 | Peled et al. | Feb 2005 | A1 |
20050031598 | Levenberg et al. | Feb 2005 | A1 |
20050032122 | Hwang et al. | Feb 2005 | A1 |
20050032207 | Wobus et al. | Feb 2005 | A1 |
20050032209 | Messina et al. | Feb 2005 | A1 |
20050032218 | Gerlach | Feb 2005 | A1 |
20050036980 | Chaney et al. | Feb 2005 | A1 |
20050037488 | Mitalipova et al. | Feb 2005 | A1 |
20050037490 | Rosenberg et al. | Feb 2005 | A1 |
20050037492 | Xu et al. | Feb 2005 | A1 |
20050037493 | Mandalam et al. | Feb 2005 | A1 |
20050037949 | O'Brien et al. | Feb 2005 | A1 |
20050106119 | Brandom et al. | May 2005 | A1 |
20050106127 | Kraus et al. | May 2005 | A1 |
20050112447 | Fletcher et al. | May 2005 | A1 |
20050112762 | Hart et al. | May 2005 | A1 |
20050118712 | Tsai et al. | Jun 2005 | A1 |
20050130297 | Sarem et al. | Jun 2005 | A1 |
20050136093 | Denk | Jun 2005 | A1 |
20050137517 | Blickhan et al. | Jun 2005 | A1 |
20050142162 | Hunter et al. | Jun 2005 | A1 |
20050149157 | Hunter et al. | Jul 2005 | A1 |
20050152946 | Hunter et al. | Jul 2005 | A1 |
20050158289 | Simmons et al. | Jul 2005 | A1 |
20050172340 | Logvinov et al. | Aug 2005 | A1 |
20050175665 | Hunter et al. | Aug 2005 | A1 |
20050175703 | Hunter et al. | Aug 2005 | A1 |
20050178395 | Hunter et al. | Aug 2005 | A1 |
20050178396 | Hunter et al. | Aug 2005 | A1 |
20050180957 | Scharp et al. | Aug 2005 | A1 |
20050181502 | Furcht et al. | Aug 2005 | A1 |
20050182463 | Hunter et al. | Aug 2005 | A1 |
20050183731 | Hunter et al. | Aug 2005 | A1 |
20050186244 | Hunter et al. | Aug 2005 | A1 |
20050186671 | Cannon et al. | Aug 2005 | A1 |
20050187140 | Hunter et al. | Aug 2005 | A1 |
20050196421 | Hunter et al. | Sep 2005 | A1 |
20050208095 | Hunter et al. | Sep 2005 | A1 |
20050244963 | Teplyashin | Nov 2005 | A1 |
20050249731 | Aslan et al. | Nov 2005 | A1 |
20050255118 | Wehner | Nov 2005 | A1 |
20050261674 | Nobis et al. | Nov 2005 | A1 |
20050277577 | Hunter et al. | Dec 2005 | A1 |
20050281790 | Simmons et al. | Dec 2005 | A1 |
20050282733 | Prins et al. | Dec 2005 | A1 |
20050283844 | Furcht et al. | Dec 2005 | A1 |
20060002900 | Binder et al. | Jan 2006 | A1 |
20060008452 | Simmons et al. | Jan 2006 | A1 |
20060019389 | Yayon et al. | Jan 2006 | A1 |
20060054941 | Lu et al. | Mar 2006 | A1 |
20060083720 | Fraser et al. | Apr 2006 | A1 |
20060099198 | Thomson et al. | May 2006 | A1 |
20060166364 | Senesac | Jul 2006 | A1 |
20060172008 | Yayon et al. | Aug 2006 | A1 |
20060193840 | Gronthos et al. | Aug 2006 | A1 |
20060228798 | Verfaillie et al. | Oct 2006 | A1 |
20060239909 | Anderson et al. | Oct 2006 | A1 |
20060258586 | Sheppard et al. | Nov 2006 | A1 |
20060258933 | Ellis et al. | Nov 2006 | A1 |
20060259998 | Brumbley et al. | Nov 2006 | A1 |
20060280748 | Buckheit | Dec 2006 | A1 |
20060286077 | Gronthos et al. | Dec 2006 | A1 |
20070005148 | Barofsky et al. | Jan 2007 | A1 |
20070011752 | Paleyanda | Jan 2007 | A1 |
20070042462 | Hildinger | Feb 2007 | A1 |
20070065938 | Gronthos et al. | Mar 2007 | A1 |
20070105222 | Wolfinbarger et al. | May 2007 | A1 |
20070116612 | Williamson | May 2007 | A1 |
20070117180 | Morikawa et al. | May 2007 | A1 |
20070122904 | Nordon | May 2007 | A1 |
20070123996 | Sugaya et al. | May 2007 | A1 |
20070166834 | Williamson et al. | Jul 2007 | A1 |
20070178071 | Westenfelder | Aug 2007 | A1 |
20070196421 | Hunter et al. | Aug 2007 | A1 |
20070197957 | Hunter et al. | Aug 2007 | A1 |
20070198063 | Hunter et al. | Aug 2007 | A1 |
20070202485 | Nees et al. | Aug 2007 | A1 |
20070203330 | Kretschmar et al. | Aug 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070258943 | Penn et al. | Nov 2007 | A1 |
20070274970 | Gordon et al. | Nov 2007 | A1 |
20070275457 | Granchelli et al. | Nov 2007 | A1 |
20070295651 | Martinez et al. | Dec 2007 | A1 |
20070298015 | Beer et al. | Dec 2007 | A1 |
20080003663 | Bryhan et al. | Jan 2008 | A1 |
20080009458 | Dornan et al. | Jan 2008 | A1 |
20080032398 | Cannon et al. | Feb 2008 | A1 |
20080050770 | Zhang et al. | Feb 2008 | A1 |
20080063600 | Aguzzi et al. | Mar 2008 | A1 |
20080064649 | Rameshwar | Mar 2008 | A1 |
20080069807 | Jy et al. | Mar 2008 | A1 |
20080095676 | Andretta | Apr 2008 | A1 |
20080095690 | Liu | Apr 2008 | A1 |
20080103412 | Chin | May 2008 | A1 |
20080110827 | Cote et al. | May 2008 | A1 |
20080113426 | Smith et al. | May 2008 | A1 |
20080113440 | Gurney et al. | May 2008 | A1 |
20080153077 | Henry | Jun 2008 | A1 |
20080160597 | van der Heiden et al. | Jul 2008 | A1 |
20080166808 | Nyberg | Jul 2008 | A1 |
20080181879 | Catelas et al. | Jul 2008 | A1 |
20080190857 | Beretta et al. | Aug 2008 | A1 |
20080194017 | Esser et al. | Aug 2008 | A1 |
20080206831 | Coffey et al. | Aug 2008 | A1 |
20080220524 | Noll et al. | Sep 2008 | A1 |
20080220526 | Ellison et al. | Sep 2008 | A1 |
20080221443 | Ritchie et al. | Sep 2008 | A1 |
20080227189 | Bader | Sep 2008 | A1 |
20080268165 | Fekety et al. | Oct 2008 | A1 |
20080306095 | Crawford | Dec 2008 | A1 |
20090004738 | Merchav et al. | Jan 2009 | A1 |
20090011399 | Fischer | Jan 2009 | A1 |
20090047289 | Denhardt et al. | Feb 2009 | A1 |
20090074728 | Gronthos et al. | Mar 2009 | A1 |
20090075881 | Catelas et al. | Mar 2009 | A1 |
20090076481 | Stegmann et al. | Mar 2009 | A1 |
20090081770 | Srienc et al. | Mar 2009 | A1 |
20090081797 | Fadeev et al. | Mar 2009 | A1 |
20090092608 | Ni et al. | Apr 2009 | A1 |
20090098103 | Madison et al. | Apr 2009 | A1 |
20090098645 | Fang et al. | Apr 2009 | A1 |
20090100944 | Newby | Apr 2009 | A1 |
20090104163 | Deans et al. | Apr 2009 | A1 |
20090104692 | Bartfeld et al. | Apr 2009 | A1 |
20090104699 | Newby et al. | Apr 2009 | A1 |
20090118161 | Cruz | May 2009 | A1 |
20090181087 | Kraus et al. | Jul 2009 | A1 |
20090183581 | Wilkinson et al. | Jul 2009 | A1 |
20090191627 | Fadeev et al. | Jul 2009 | A1 |
20090191632 | Fadeev et al. | Jul 2009 | A1 |
20090191634 | Martin et al. | Jul 2009 | A1 |
20090203065 | Gehman et al. | Aug 2009 | A1 |
20090203129 | Furcht et al. | Aug 2009 | A1 |
20090203130 | Furcht et al. | Aug 2009 | A1 |
20090214382 | Burgess et al. | Aug 2009 | A1 |
20090214481 | Muhs et al. | Aug 2009 | A1 |
20090214652 | Hunter et al. | Aug 2009 | A1 |
20090215022 | Page et al. | Aug 2009 | A1 |
20090227024 | Baker et al. | Sep 2009 | A1 |
20090227027 | Baker et al. | Sep 2009 | A1 |
20090233334 | Hildinger et al. | Sep 2009 | A1 |
20090233353 | Furcht et al. | Sep 2009 | A1 |
20090233354 | Furcht et al. | Sep 2009 | A1 |
20090258379 | Klein et al. | Oct 2009 | A1 |
20090269841 | Wojciechowski et al. | Oct 2009 | A1 |
20090270725 | Leimbach et al. | Oct 2009 | A1 |
20090280153 | Hunter et al. | Nov 2009 | A1 |
20090280565 | Jolicoeur et al. | Nov 2009 | A1 |
20090291890 | Madison et al. | Nov 2009 | A1 |
20100009409 | Hubbell et al. | Jan 2010 | A1 |
20100021954 | Deshayes et al. | Jan 2010 | A1 |
20100021990 | Edwards et al. | Jan 2010 | A1 |
20100028311 | Motlagh et al. | Feb 2010 | A1 |
20100075410 | Desai et al. | Mar 2010 | A1 |
20100086481 | Baird et al. | Apr 2010 | A1 |
20100092536 | Hunter et al. | Apr 2010 | A1 |
20100093607 | Dickneite | Apr 2010 | A1 |
20100111910 | Rakoczy | May 2010 | A1 |
20100129376 | Denhardt et al. | May 2010 | A1 |
20100129912 | Su et al. | May 2010 | A1 |
20100136091 | Moghe et al. | Jun 2010 | A1 |
20100144634 | Zheng et al. | Jun 2010 | A1 |
20100183561 | Sakthivel et al. | Jul 2010 | A1 |
20100183585 | Van Zant et al. | Jul 2010 | A1 |
20100203020 | Ghosh | Aug 2010 | A1 |
20100230203 | Karayianni | Sep 2010 | A1 |
20100248366 | Fadeev et al. | Sep 2010 | A1 |
20100278933 | Sayeski et al. | Nov 2010 | A1 |
20100285453 | Goodrich | Nov 2010 | A1 |
20100285590 | Verfaillie et al. | Nov 2010 | A1 |
20100291180 | Uhrich | Nov 2010 | A1 |
20100291181 | Uhrich et al. | Nov 2010 | A1 |
20100297234 | Sugino et al. | Nov 2010 | A1 |
20100304427 | Faris et al. | Dec 2010 | A1 |
20100304482 | Deshayes et al. | Dec 2010 | A1 |
20100310524 | Bechor et al. | Dec 2010 | A1 |
20100316446 | Runyon | Dec 2010 | A1 |
20110085746 | Wong et al. | Apr 2011 | A1 |
20110111498 | Oh et al. | May 2011 | A1 |
20110129447 | Meretzki et al. | Jun 2011 | A1 |
20110129486 | Meiron | Jun 2011 | A1 |
20110143433 | Oh et al. | Jun 2011 | A1 |
20110159584 | Gibbons et al. | Jun 2011 | A1 |
20110171182 | Abelman | Jul 2011 | A1 |
20110171659 | Furcht et al. | Jul 2011 | A1 |
20110177595 | Furcht et al. | Jul 2011 | A1 |
20110212493 | Hirschel et al. | Sep 2011 | A1 |
20110256108 | Meiron et al. | Oct 2011 | A1 |
20110256160 | Meiron et al. | Oct 2011 | A1 |
20110293583 | Aberman | Dec 2011 | A1 |
20120028352 | Oh et al. | Feb 2012 | A1 |
20120051976 | Lu et al. | Mar 2012 | A1 |
20120058554 | Deshayes et al. | Mar 2012 | A1 |
20120064047 | Verfaillie et al. | Mar 2012 | A1 |
20120064583 | Edwards et al. | Mar 2012 | A1 |
20120118919 | Cianciolo | May 2012 | A1 |
20120122220 | Merchav et al. | May 2012 | A1 |
20120135043 | Maziarz et al. | May 2012 | A1 |
20120145580 | Paruit et al. | Jun 2012 | A1 |
20120156779 | Anneren et al. | Jun 2012 | A1 |
20120178885 | Kohn et al. | Jul 2012 | A1 |
20120189713 | Kohn et al. | Jul 2012 | A1 |
20120208039 | Barbaroux et al. | Aug 2012 | A1 |
20120219531 | Oh et al. | Aug 2012 | A1 |
20120219737 | Sugino et al. | Aug 2012 | A1 |
20120226013 | Kohn et al. | Sep 2012 | A1 |
20120231519 | Bushman et al. | Sep 2012 | A1 |
20120237557 | Lewitus et al. | Sep 2012 | A1 |
20120295352 | Antwiler | Nov 2012 | A1 |
20120308531 | Pinxteren et al. | Dec 2012 | A1 |
20120315696 | Luitjens et al. | Dec 2012 | A1 |
20130004465 | Aberman | Jan 2013 | A1 |
20130039892 | Aberman | Feb 2013 | A1 |
20130058907 | Wojciechowski et al. | Mar 2013 | A1 |
20130059383 | Dijkhuizen Borgart et al. | Mar 2013 | A1 |
20130101561 | Sabaawy | Apr 2013 | A1 |
20130143313 | Niazi | Jun 2013 | A1 |
20130157353 | Dijkhuizen Borgart et al. | Jun 2013 | A1 |
20130259843 | Duda et al. | Oct 2013 | A1 |
20130319575 | Mendyk | Dec 2013 | A1 |
20130323213 | Meiron et al. | Dec 2013 | A1 |
20130337558 | Meiron et al. | Dec 2013 | A1 |
20140004553 | Parker et al. | Jan 2014 | A1 |
20140017209 | Aberman et al. | Jan 2014 | A1 |
20140030805 | Kasuto et al. | Jan 2014 | A1 |
20140051162 | Nankervis | Feb 2014 | A1 |
20140051167 | Nankervis et al. | Feb 2014 | A1 |
20140112893 | Tom et al. | Apr 2014 | A1 |
20140186937 | Smith et al. | Jul 2014 | A1 |
20140193895 | Smith et al. | Jul 2014 | A1 |
20140193911 | Newby et al. | Jul 2014 | A1 |
20140242039 | Meiron et al. | Aug 2014 | A1 |
20140248244 | Danilkovitch et al. | Sep 2014 | A1 |
20140315300 | Oh et al. | Oct 2014 | A1 |
20140342448 | Nagels | Nov 2014 | A1 |
20150004693 | Danilkovitch et al. | Jan 2015 | A1 |
20150104431 | Pittenger et al. | Apr 2015 | A1 |
20150111252 | Hirschel et al. | Apr 2015 | A1 |
20150125138 | Karnieli et al. | May 2015 | A1 |
20150175950 | Hirschel et al. | Jun 2015 | A1 |
20150225685 | Hirschel et al. | Aug 2015 | A1 |
20150247122 | Tom et al. | Sep 2015 | A1 |
20150259749 | Santos et al. | Sep 2015 | A1 |
20160362650 | Wojciechowski et al. | Dec 2016 | A1 |
20160362652 | Page et al. | Dec 2016 | A1 |
20180010082 | Jaques et al. | Jan 2018 | A1 |
20180030398 | Castillo | Feb 2018 | A1 |
20180155668 | Hirschel et al. | Jun 2018 | A1 |
20190194628 | Rao et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
1016332 | Aug 1977 | CA |
4007703 | Sep 1991 | DE |
10244859 | Apr 2004 | DE |
10327988 | Jul 2004 | DE |
102012200939 | Jul 2013 | DE |
750938 | Jan 1997 | EP |
906415 | Apr 1999 | EP |
959980 | Dec 1999 | EP |
1007631 | Jun 2000 | EP |
1028737 | Aug 2000 | EP |
1028991 | Aug 2000 | EP |
1066052 | Jan 2001 | EP |
1066060 | Jan 2001 | EP |
1084230 | Mar 2001 | EP |
1147176 | Oct 2001 | EP |
1220611 | Jul 2002 | EP |
1223956 | Jul 2002 | EP |
1325953 | Jul 2003 | EP |
1437404 | Jul 2004 | EP |
1437406 | Jul 2004 | EP |
1447443 | Aug 2004 | EP |
1452594 | Sep 2004 | EP |
1062321 | Dec 2004 | EP |
1484080 | Dec 2004 | EP |
1498478 | Jan 2005 | EP |
1036057 | Oct 2005 | EP |
1605044 | Dec 2005 | EP |
1756262 | Feb 2007 | EP |
1771737 | Apr 2007 | EP |
1882030 | Jan 2008 | EP |
1908490 | Apr 2008 | EP |
1971679 | Sep 2008 | EP |
1991668 | Nov 2008 | EP |
2027247 | Feb 2009 | EP |
2200622 | Jun 2010 | EP |
2208782 | Jul 2010 | EP |
2264145 | Dec 2010 | EP |
2303293 | Apr 2011 | EP |
2311938 | Apr 2011 | EP |
2331957 | Jun 2011 | EP |
2334310 | Jun 2011 | EP |
2334783 | Jun 2011 | EP |
2361968 | Aug 2011 | EP |
2366775 | Sep 2011 | EP |
2465922 | Jun 2012 | EP |
2548951 | Jan 2013 | EP |
2561066 | Feb 2013 | EP |
2575831 | Apr 2013 | EP |
2591789 | May 2013 | EP |
2624845 | Aug 2013 | EP |
2626417 | Aug 2013 | EP |
2641606 | Sep 2013 | EP |
2689008 | Jan 2014 | EP |
2694639 | Feb 2014 | EP |
2697362 | Feb 2014 | EP |
2739720 | Jun 2014 | EP |
2807246 | Dec 2014 | EP |
1414671 | Nov 1975 | GB |
2297980 | Dec 1999 | GB |
2360789 | Oct 2001 | GB |
3285 | May 2007 | HU |
2003052360 | Feb 2003 | JP |
5548207 | Jul 2014 | JP |
115206 | Apr 2003 | MY |
WO-9013306 | Nov 1990 | WO |
WO-9105238 | Apr 1991 | WO |
WO-9106641 | May 1991 | WO |
WO-9109194 | Jun 1991 | WO |
WO-9425571 | Nov 1994 | WO |
WO-9629395 | Sep 1996 | WO |
WO-9639035 | Dec 1996 | WO |
WO-9705826 | Feb 1997 | WO |
WO-9729792 | Aug 1997 | WO |
WO-9739104 | Oct 1997 | WO |
WO-1997-040137 | Oct 1997 | WO |
WO-9831403 | Jul 1998 | WO |
WO-9851317 | Nov 1998 | WO |
WO-9851785 | Nov 1998 | WO |
WO-9905180 | Feb 1999 | WO |
WO-9924391 | May 1999 | WO |
WO-9924490 | May 1999 | WO |
WO-9927167 | Jun 1999 | WO |
WO-9949015 | Sep 1999 | WO |
WO-0006704 | Feb 2000 | WO |
WO-0009018 | Feb 2000 | WO |
WO-0016420 | Mar 2000 | WO |
WO-0017326 | Mar 2000 | WO |
WO-0029002 | May 2000 | WO |
WO-0032225 | Jun 2000 | WO |
WO-0044058 | Jul 2000 | WO |
WO-0054651 | Sep 2000 | WO |
WO-0056405 | Sep 2000 | WO |
WO-0059933 | Oct 2000 | WO |
WO-0069449 | Nov 2000 | WO |
WO-0075196 | Dec 2000 | WO |
WO-0077236 | Dec 2000 | WO |
WO-2001000783 | Jan 2001 | WO |
WO-2001011011 | Feb 2001 | WO |
WO-2001018174 | Mar 2001 | WO |
WO-2001021766 | Mar 2001 | WO |
WO-2001025402 | Apr 2001 | WO |
WO-2001029189 | Apr 2001 | WO |
WO-0122810 | Apr 2001 | WO |
WO-2001034167 | May 2001 | WO |
WO-2001049851 | Jul 2001 | WO |
WO-2001054706 | Aug 2001 | WO |
WO-2001-094541 | Dec 2001 | WO |
WO-2002042422 | May 2002 | WO |
WO-2002057430 | Jul 2002 | WO |
WO-2002092794 | Nov 2002 | WO |
WO-2002101385 | Dec 2002 | WO |
WO-2003010303 | Feb 2003 | WO |
WO-2003014313 | Feb 2003 | WO |
WO-2003016916 | Feb 2003 | WO |
WO-2003023018 | Mar 2003 | WO |
WO-2003023019 | Mar 2003 | WO |
WO-2003025167 | Mar 2003 | WO |
WO-2003029402 | Apr 2003 | WO |
WO-2003040336 | May 2003 | WO |
WO-2003042405 | May 2003 | WO |
WO-2003046161 | Jun 2003 | WO |
WO-2003055989 | Jul 2003 | WO |
WO-2003061685 | Jul 2003 | WO |
WO-2003061686 | Jul 2003 | WO |
WO-2003068961 | Aug 2003 | WO |
WO-2003072064 | Sep 2003 | WO |
WO-2003078609 | Sep 2003 | WO |
WO-2003078967 | Sep 2003 | WO |
WO-2003080816 | Oct 2003 | WO |
WO-2003082145 | Oct 2003 | WO |
WO-2003085099 | Oct 2003 | WO |
WO-2003089631 | Oct 2003 | WO |
WO-2003091398 | Nov 2003 | WO |
WO-2003095631 | Nov 2003 | WO |
WO-2004001697 | Dec 2003 | WO |
WO-2004012226 | Feb 2004 | WO |
WO-2004016779 | Feb 2004 | WO |
WO-2004018526 | Mar 2004 | WO |
WO-2004018655 | Mar 2004 | WO |
WO-2004026115 | Apr 2004 | WO |
WO-2004029231 | Apr 2004 | WO |
WO-2004042023 | May 2004 | WO |
WO-2004042033 | May 2004 | WO |
WO-2004042040 | May 2004 | WO |
WO-2004044127 | May 2004 | WO |
WO-2004044158 | May 2004 | WO |
WO-2004046304 | Jun 2004 | WO |
WO-2004050826 | Jun 2004 | WO |
WO-2004053096 | Jun 2004 | WO |
WO-2004055155 | Jul 2004 | WO |
WO-2004056186 | Jul 2004 | WO |
WO-2004065616 | Aug 2004 | WO |
WO-2004069172 | Aug 2004 | WO |
WO-2004070013 | Aug 2004 | WO |
WO-2004072264 | Aug 2004 | WO |
WO-2004073633 | Sep 2004 | WO |
WO-2004074464 | Sep 2004 | WO |
WO-2004076642 | Sep 2004 | WO |
WO-2004076653 | Sep 2004 | WO |
WO-2004087870 | Oct 2004 | WO |
WO-2004094588 | Nov 2004 | WO |
WO-2004096975 | Nov 2004 | WO |
WO-2004104166 | Dec 2004 | WO |
WO-2004106499 | Dec 2004 | WO |
WO-2004113513 | Dec 2004 | WO |
WO-2005001033 | Jan 2005 | WO |
WO-2005001081 | Jan 2005 | WO |
WO-2005003320 | Jan 2005 | WO |
WO-2005007799 | Jan 2005 | WO |
WO-2005010172 | Feb 2005 | WO |
WO-2005011524 | Feb 2005 | WO |
WO-2005012480 | Feb 2005 | WO |
WO-2005012510 | Feb 2005 | WO |
WO-2005012512 | Feb 2005 | WO |
WO-05014775 | Feb 2005 | WO |
WO-2005028433 | Mar 2005 | WO |
WO-05044972 | May 2005 | WO |
WO-2005056747 | Jun 2005 | WO |
WO-05051316 | Jun 2005 | WO |
WO-2005063303 | Jul 2005 | WO |
WO-2005075636 | Aug 2005 | WO |
WO-2005107760 | Nov 2005 | WO |
WO-2006009291 | Jan 2006 | WO |
WO-2006032075 | Mar 2006 | WO |
WO-2006032092 | Mar 2006 | WO |
2006-047841 | May 2006 | WO |
WO-2006-047841 | May 2006 | WO |
WO-2006108229 | Oct 2006 | WO |
WO-2006113881 | Oct 2006 | WO |
WO-2006121445 | Nov 2006 | WO |
WO-06124021 | Nov 2006 | WO |
WO-06129312 | Dec 2006 | WO |
WO-2007115367 | Oct 2007 | WO |
WO-2007115368 | Oct 2007 | WO |
WO-2008006168 | Jan 2008 | WO |
WO-2008011664 | Jan 2008 | WO |
WO-2008017128 | Feb 2008 | WO |
WO-2008028241 | Mar 2008 | WO |
WO-08040812 | Apr 2008 | WO |
WO-2008116261 | Oct 2008 | WO |
WO-2008149129 | Dec 2008 | WO |
WO-2009026635 | Mar 2009 | WO |
WO-09058146 | May 2009 | WO |
WO-09080054 | Jul 2009 | WO |
WO-09081408 | Jul 2009 | WO |
WO-2009140452 | Nov 2009 | WO |
WO-09132457 | Nov 2009 | WO |
WO-2009144720 | Dec 2009 | WO |
WO-10005527 | Jan 2010 | WO |
WO-2010019886 | Feb 2010 | WO |
WO-10014253 | Feb 2010 | WO |
WO-10019997 | Feb 2010 | WO |
WO-2010026573 | Mar 2010 | WO |
WO-2010026574 | Mar 2010 | WO |
WO-2010026575 | Mar 2010 | WO |
WO-2010036760 | Apr 2010 | WO |
WO-2010059487 | May 2010 | WO |
WO-10061377 | Jun 2010 | WO |
WO-10068710 | Jun 2010 | WO |
WO-10071826 | Jun 2010 | WO |
WO-10083385 | Jul 2010 | WO |
WO-10111255 | Sep 2010 | WO |
WO-10119036 | Oct 2010 | WO |
WO-10123594 | Oct 2010 | WO |
WO-2011025445 | Mar 2011 | WO |
WO-2011132087 | Oct 2011 | WO |
WO-2011147967 | Dec 2011 | WO |
WO-2012072924 | Jun 2012 | WO |
WO-2012127320 | Sep 2012 | WO |
WO-2012138968 | Oct 2012 | WO |
WO-2012140519 | Oct 2012 | WO |
WO-2012171026 | Dec 2012 | WO |
WO-2012171030 | Dec 2012 | WO |
WO-2013110651 | Aug 2013 | WO |
WO-2014037862 | Mar 2014 | WO |
WO-2014037863 | Mar 2014 | WO |
WO-2014068508 | May 2014 | WO |
WO-2014128306 | Aug 2014 | WO |
WO-2014128634 | Aug 2014 | WO |
WO-2014131846 | Sep 2014 | WO |
WO-2014141111 | Sep 2014 | WO |
WO-2015004609 | Jan 2015 | WO |
WO-2015118148 | Aug 2015 | WO |
WO-2015118149 | Aug 2015 | WO |
WO-2015131143 | Sep 2015 | WO |
WO-2017072201 | May 2017 | WO |
2017-205667 | Nov 2017 | WO |
WO-2017-205667 | Nov 2017 | WO |
Entry |
---|
Cuchiara et al. Covalent immobilization of stem cell factor and stromal derived factor 1a for in vitro culture of hematopoietic progenitor cells (2013) Acta Biomaterialia, 9, pp. 9258-9269. (Year: 2013). |
Nankervis et al. Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor (2018) Current Stem Cell Reports, 4, pp. 46-51 (Year: 2018). |
Fonseca-Pereira et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function (2014) Nature, 514, pp. 98-101 (Year: 2014). |
Boitano et al. Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells (2010) Science, 329, pp. 1345-1348. (Year: 2010). |
Frank, Nathan D. Et Al., “Evaluation of Reagents Used to Coat the Hollow-Fiber Bioreactor Membrane of the Quantum Cell Expansion System for the Culture of Human Mesenchymal Stem Cells”, Materials Science and Engineering C, Elsevier Science S.A., Ch, vol. 96, Oct. 26, 2018, pp. 77-85. |
Abumiya, et al at National Cardiovascular Center Research Institute in Japan, suggest that subjecting human umbilical vein endothelial cells (HUVECs) to laminar shear stress for a period of 8 hours increased the relative expression of VEGFR-2 mRNA (Ateriosclerosis, Thrombosis, and Vascular Biology, 2002). |
Afzali B, Edozie FC, Fazekasova H, Scotta C, Mitchell PJ, Canavan JB, Kordasti SY, Chana PS, Ellis R, Lord GM, John S, Hilton R, Lechler RI, Lombardi G. Comparison of regulatory T cells in hemodialysis patients and healthy controls: implications for cell therapy in transplantation. Clin J Am Soc Nephrol. 2013;8(8):1396-405. |
Akram, Khondoker M., et al. “Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms.” Respiratory research 14.1 (2013): 1-16. |
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Fibroblasts and Their Transformations: The Connective-Tissue Cell Family. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26889. |
Alenazi, Noof A., et al. “Modified polyether-sulfone membrane: A mini review.” Designed monomers and polymers 20.1 (2017): 532-546. |
Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514-524. |
Amy Putnam, Todd M. Brusko, Michael R. Lee, Weihong Liu, Gregory L. Szot, Taumoha Ghosh, Mark A. Atkinson, and Jeffrey A. Bluestone. Expansion of human regulatory T-Cells from patients with Type 1 Diabetes. Diabetes, 58: 652-662, 2009. |
Anamelechi, Charles C., et al. “Streptavidin binding and endothelial cell adhesion to biotinylated fibronectin.” Langmuir 23.25 (2007): 12583-12588. |
Anurathapan et al., “Engineered T cells for cancer treatment,” Cytotherapy, vol. 16, pp. 713-733, 2014. |
Aronowski J, Samways E, Strong R, Rhoades HM, Grotta JC. An alternative method for the quantitation of neuronal damage after experimental middle cerebral artery occlusion in rats: Analysis of behavioral deficit. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1996;16:705-713. |
Arrigoni, Chiara, et al. “Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid.” Biotechnology and bioengineering 100.5 (2008): 988-997. |
Azar, Toni, Jody Sharp, and David Lawson. “Heart rates of male and female Sprague-Dawley and spontaneously hypertensive rats housed singly or in groups.” Journal of the American Association for Laboratory Animal Science 50.2 (2011): 175-184. |
Baecher-Allan, Clare, et al. “CD4+ CD25high regulatory cells in human peripheral blood.” The Journal of Immunology 167.3 (2001): 1245-1253. |
Bai, Tao, et al. “Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel.” Nature medicine 25.10 (2019): 1566-1575. |
Bai/Delaney (Nohla Therapeutics) showed that expanding Cord Blood-derived CD34+CD38-CD45RA-HSPCs in a biodegradable zwitterionic hydrogel with a rNotch ligand cocktail for 24 days mitigated HSPC differentiation and promoted self-renewal of lymphoid and myeloid cell phenotypes in an NSG mouse model (Nature Medicine, 2019). |
Ballas CB, Zielske SP, Gerson SL (2002) Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 38: 20-28. |
Ballke C, Gran E, Baekkevold ES, Jahnsen FL. Characterization of Regulatory T-Cell Markers in CD4+ T Cells of the Upper Airway Mucosa. PLoS One. 2016;11(2):e0148826. |
Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1): 121-143. |
Barckhausen C, Rice B, Baila S, et al. (2016) GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor. Methods Mol Biol 1416: 389-412. |
Barker et al. “CD34+ Cell Content of 126 341 Cord Blood Units in the US Inventory: Implications for Transplantation and Banking,” blood Advances, vol. 3, No. 8, pp. 1267-1271, Apr. 23, 2019. |
Barker, Juliet N., et al. “CD34+ cell content of 126 341 cord blood units in the US inventory: implications for transplantation and banking.” Blood advances 3.8 (2019): 1267-1271. |
Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. The Journal of head trauma rehabilitation. 2009;24:439-451. |
Bending D, Pesenacker AM, Ursu S, Wu Q, Lom H, Thirugnanabalan B, Wedderburn LR. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193(6):2699-708. |
Berendse M, Grounds MD, Lloyd CM (2003) Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res 291(2): 435-450. |
Bernard, A., Payton, Mar. 1995. “Fermentation and Growth of Escherichia coli for Optimal Protein Production”, John Wiley & Sons. Current Protocols in Protein Science (1995) 5.3.1-5.3.18. |
Berney SM, Schaan T, Wolf RE, van der Heyde H, Atkinson TP. CD2 (OKT11) augments CD3-mediated intracellular signaling events in human T lymphocytes. J Investig Med. 2000;48(2):102-9. |
Bioheart Clinical Trial Clinica 1302 Apr. 18, 2008. |
Biomolecular and Cellular Interactions with the Hollow Fiber Membrane Currently Used in the Quantum® Cell Expansion System. 12th NJ Symposium on Biomaterials Science, Oct. 6- 7, 2014, New Brunswick, NJ. |
Blache C, Chauvin JM, Marie-Cardine A, Contentin N, Pommier P, Dedreux I, Francois S, Jacquot S, Bastit D, Boyer O. Reduced frequency of regulatory T cells in peripheral blood stem cell compared to bone marrow transplantations. Biol Blood Marrow Transplant. 2010;16(3):430-4. |
Bluestone et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine 7(315):1-34, 2015. |
Bluestone JA, Tang Q. Treg cells-the next frontier of cell therapy. Science. 2018;362(6411):154-155. |
Bluestone, Jeffrey A., et al. “Type 1 diabetes immunotherapy using polyclonal regulatory T cells.” Science translational medicine 7.315 (2015): 315ra189-315ra189. |
Blum S, Moore AN, Adams F, Dash PK. A mitogen-activated protein kinase cascade in the ca1/ca2 subfield of the dorsal hippocampus is essential for long-term spatial memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999;19:3535-3544. |
Boitano, Anthony E., et al. “Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.” Science 329.5997 (2010): 1345-1348. |
Bojun Li et al. Heparin-induced conformation changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation. Biomaterials Science 3: 73-84, 2015. |
Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of Stromal Stem Cells from Human Adipose Tissue. Methods Mol Biol. 2006;325:35-46. doi: 10.1385/1-59745-005-7:35. PMID: 16761717. |
Borden, M. and Longo, M., “Dissolution Behavior of Lipid Monolayer-Coated, Air-Filled Microbubbles: Effect of Lipid Hydrophobic Chain Length,” Langmuir, vol. 18, pp. 9225-9233, 2002. |
Bourke, Sharon L., and Joachim Kohn. “Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol).” Advanced drug delivery reviews 55.4 (2003): 447-466. |
Brand, K. and Hermfisse, U., “Aerobic Glycolysis by Proliferating Cells: a Protective Strategy against Reactive Oxygen Species,” The FASEB Journal, vol. 11, pp. 388-395, Apr. 1997. |
Brentjens et al., “CD19-Targeted T Cells Rapidly Induce Molecular Remission in Adults with Chemotherapy-Refractory Acute Lympohblastic Leukemia,” Science Translational Medicine, vol. 5, Issue 177, pp. 1-9, Mar. 20, 2013. |
Brentjens et al., “Safety and Persistance of Adoptively Transferred Autologous CD19-Target T Cells in Patients with Relapsed or Chemotherapy Refractory B-Cell Leukemias,” Blood, vol. 118, No. 18, pp. 4817-4828, Nov. 3, 2011. |
Brunstein C, Miller J, Cao Q, McKenna D, Hippen K, Curtsinger J, DeFor T, Levine B, June C, Rubinstein P, McGlave P, Blazar B, Wagner J. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117(3):1061-1070. |
C. H. Weaver, et al. An Analysis of Engraftment Kinetics as a function of the CD34 Content of the Peripheral Blood Progenitor Cell Collections in 692 Patients After the Administration of Myeloblative Chemotherapy. Blood 86(10): 3691-3969, 1995. |
Cano, Àngels, Cristina Minguillón, and Cristina Palet. “Immobilization of endo-1, 4-β-xylanase on polysulfone acrylate membranes: Synthesis and characterization.” Journal of membrane science 280.1-2 (2006): 383-388. |
Carswell, K. and Papoutsakis, E. “Culture of Human T Cells in Stirred Bioreactors for Cellular Immunotherapy Applications: Shear, Proliferation, and the IL-2 Receptor,” Biotechnology and Bioengineering, vol. 68, No. 3, pp. 329-338, May 5, 2000. |
Celeste Nelson et al., Emergent patterns of growth controlled by multicellular form and mechanics, (in Christopher Chen's Lab demonstrated, in separate experiments, that curved surfaces with a radius of curvature (200 ?m) that is greater than the cell diameter and surfaces that have undulating special patterning (depressions) increase the patterned growth of ECs [PNAS 102(33): 11594-11599, 2005]. |
Chapman NM, Chi H. mTOR signaling, Tregs and immune modulation. Immunotherapy. 2014;6(12):1295-311. |
Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566-78. |
Chen, C. and Broden, M., “The Role of Poly(theylene glycol) Brush Architecture in Complement Activation on Targeted Microbubble Surfaces,” Biomaterials, vol. 32, No. 27, pp. 6579-6587, Jun. 17, 2011. |
Choi W, Kwon SJ, Jin HJ, et al. (2017) Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clin Transl Med 6(1): 38. |
Chullikana A, Majumdar AS, Gottipamula S, et al. (2015) Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 17(3): 250-261. |
Claudio G. Brunstein, Jeffrey S. Miller, Qing Cao, Daivd H. McKenna, Keli L. Hippen, Julie Curtsinger, Todd Defor, Bruce L. Levine, Carl H. June, Pablo Rubinstein, Philip B. McGlave, Bruce R. Blazar, and John E. Wagner. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood, 117(3): 1061-1070, 2010. |
Coeshott C, Vang B, Jones M, Nankervis B. Large-scale expansion and characterization of CD3(+) T-cells in the Quantum((R)) Cell Expansion System. J Transl Med. 2019;17(1):258. |
Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T cells and intestinal homeostasis. Immunol Rev. 2005;204:184-94. |
Coquillard C. mTOR Signaling in Regulatory T cell Differentiation and Expansion. SOJ Immunology. 2015;3(1):1-10. |
Creed JA, DiLeonardi AM, Fox DP, Tessler AR, Raghupathi R. Concussive brain trauma in the mouse results in acute cognitive deficits and sustained impairment of axonal function. Journal of neurotrauma. 2011;28:547-563. |
Cuchiara, Maude L. et al., “Covalent Immobilization of Stem Cell Factor and Stromal Derived Factor 1[Alpha] for in Vitro Culture of Hematopoietic Progenitor Cells”, Acta Bio Materials, vol. 9, No. 12, Dec. 1, 2013, pp. 9258-9269, Amsterdam, NL (25 Pages). |
Cuchiara, Maude L., et al. “Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells.” Acta biomaterialia 9.12 (2013): 9258-9269. |
Da Silva, Ricardo MP, Joao F. Mano, and Rui L. Reis. “Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries.” Trends in Biotechnology 25.12 (2007): 577-583. |
Dash PK, Hochner B, Kandel ER. Injection of the camp-responsive element into the nucleus of aplysia sensory neurons blocks long-term facilitation. Nature. 1990;345:718-721. |
Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S. Involvement of the glycogen synthase kinase-3 signaling pathway in tbi pathology and neurocognitive outcome. PloS one. 2011;6:e24648. |
Dash PK, Mach SA, Blum S, Moore AN. Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem. 2002;9:167-177. |
Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PloS one. 2010;5:e11383. |
Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neuroscience letters. 2009;460:103-107. |
Davila et al., “Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B cell Acute Lymphoblastic Leukemia,” Science Translational Medicine, vol. 6, No. 224, pp. 1-10, Feb. 19, 2014. |
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and ve-cadherin in the control of vascular permeability. Journal of cell science. 2008;121:2115-2122. |
Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and haemostasis. 2001;86:308-315. |
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Developmental cell. 2009;16:209-221. |
Del Pino A, Ligero G, Lopez MB, et al. (2015) Morphology, cell viability, karyotype, expression of surface markers and plasticity of three primary cell line cultures before and after the cryostorage in LN2 and GN2. Cryobiology 70(1): 1-8. |
Delaney, Colleen, et al. “Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution.” Nature medicine 16.2 (2010): 232-236. |
Ding, Zhongli, Guohua Chen, and Allan S. Hoffman. “Synthesis and purification of thermally sensitive oligomer? enzyme conjugates of poly (N-isopropylacrylamide)? trypsin.” Bioconjugate chemistry 7.1 (1996): 121-125. |
Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. Journal of neuroscience methods. 1991;39:253-262. |
Dominici M, Le Blanc K, Mueller I, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317. |
Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair. Regen Med 5(6): 919-932. |
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol. 2018;142(6):1710-1718. |
Fakin R, Hamacher J, Gugger M, Gazdhar A, Moser H, Schmid RA. Prolonged amelioration of acute lung allograft rejection by sequential overexpression of human interleukin-10 and hepatocyte growth factor in rats. Exp Lung Res. 2011;37(9):555-62. |
Fedorov et al., “PD-1- and CTLA-4-Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses,” Science Translational Medicine, vol. 5, No. 215, pp. 1-12, Dec. 11, 2013. |
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18(10):749-769. |
Fischbach, Michael A., Jeffrey A. Bluestone, and Wendell A. Lim. “Cell-based therapeutics: the next pillar of medicine.” Science translational medicine 5.179 (2013): 179ps7-179ps7. |
Fisk, Nicholas M., et al. “Can routine commercial cord blood banking be scientifically and ethically justified ?.” PLoS medicine 2.2 (2005): e44. |
Forbes Jun. 23, 2014 article “Will this man cure cancer?” |
Fowler DH. Rapamycin-resistant effector T-cell therapy. Immunol Rev. 2014;257(1):210-25. |
Frank, Nathan D. et al., “Evaluation of Reagents Used to Coat the Holow-Fiber Bioreactor Membrane of the Quantum Cell Expansion System for the Culture of Human Mesenchymal Stem Cells”, Materials Science and Engineering C, Elsevier Sciense S.A., Ch, vol. 96, Oct. 26, 2018, pp. 77-85. |
Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scotta C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G. A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. Mol Ther Methods Clin Dev. 2018;8:198-209. |
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769-77. |
Fuchs A, Gliwinski M, Grageda N, Spiering R, Abbas AK, Appel S, Bacchetta R, Battaglia M, Berglund D, Blazar B, Bluestone JA, Bornhauser M, Ten Brinke A, Brusko TM, Cools N, Cuturi MC, Geissler E, Giannoukakis N, Golab K, Hafler DA, van Ham SM, Hester J et al. Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Front Immunol. 2017;8:1844. |
G0211: Study for Gamma Irradiation of Bioreactor Membranes, undated, author unknown, 3 pages. |
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. J Immunol. 2016;197(7):2567-75. |
Garlie, Nina K., et al. “T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer.” Journal of immunotherapy (Hagerstown, Md.: 1997) 22.4 (1999): 336-345. |
Gedaly R, De Stefano F, Turcios L, Hill M, Hidalgo G, Mitov MI, Alstott MC, Butterfield DA, Mitchell HC, Hart J, Al-Attar A, Jennings CD, Marti F. mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation. 2019;103(4):705-715. |
Gimble, Jeffrey M., Adam J. Katz, and Bruce A. Bunnell. “Adipose-derived stem cells for regenerative medicine.” Circulation research 100.9 (2007): 1249-1260. |
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807-26. |
Godin, Michel, et al. “Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator.” Applied physics letters 91.12 (2007): 123121. |
Goh, Celeste, Sowmya Narayanan, and Young S. Hahn. “Myeloid-derived suppressor cells: the dark knight or the joker in viral infections?.” Immunological reviews 255.1 (2013): 210-221. |
Golab K, Leveson-Gower D, Wang XJ, Grzanka J, Marek-Trzonkowska N, Krzystyniak A, Millis JM, Trzonkowski P, Witkowski P. Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol. 2013;16(3):371-5. |
Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK. Assessing the safety of stem cell therapeutics. Cell stem cell. 2011;8:618-628. |
Griesche, Nadine, et al. “A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells.” cells tissues organs 192.2 (2010): 106-115. |
Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity. 2011;34(3):396-408. |
Haack-Sorensen M, Follin B, Juhl M, et al. (2016) Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med 14(1): 319. |
Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: More than a focal brain injury. Journal of neurotrauma. 2005;22:252-265. |
Hami et al., “GMP Production and Testing of Xcellerated T Cells for the Treatment of Patients with CLL,” Cytotherapy, pp. 554-562, 2004. |
Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. Journal of neurotrauma. 1992;9:11-20. |
Hanley PJ, Mei Z, Durett AG, et al. (2014) Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 16(8): 1048-1058. |
Harimoto, Masami, et al. “Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes.” Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 62.3 (2002): 464-470. |
He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, Zheng Y, Downes M, Evans RM. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci USA. 2017;114(47):12542-12547. |
He X, Landman S, Bauland SC, van den Dolder J, Koenen HJ, Joosten I. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells. PLoS One. 2016;11(5):e0156311. |
Heskins, Michael, and James E. Guillet. “Solution properties of poly (N-isopropylacrylamide).” Journal of Macromolecular Science—Chemistry 2.8 (1968): 1441-1455. |
Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27(5):786-800. |
Högstedt, Benkt, Anita Karlsson, and Anders Holmén. “Frequency and size distribution of micronuclei in lymphocytes stimulated with phytohemagglutinin and pokeweed mitogen in workers exposed to piperazine.” Hereditas 109.(1988): 139-142. |
Hollyman et al., “Manufacturing Validation of Biologicall Functional T Cells Targeted to CD19 Antigen for Autologous Adoptive Cell Therapy,” J Immunother, vol. 32, No. 2, pp. 169-180, Feb.-Mar. 2009. |
Horwitz, Mitchell E., et al. “Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide.” Journal of Clinical Oncology 37.5 (2019): 367-373. |
International Search Report for corresponding International Application No. PCT/US2022/021595 dated Jul. 1, 2022 (4 Pages). |
Itkin, Tomer, and Tsvee Lapidot. “SDF-1 keeps HSC quiescent at home.” Blood, The Journal of the American Society of Hematology 117.2 (2011): 373-374. |
Iwashima, Shigejiro, et al. “Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.” Stem cells and development 18.4 (2009): 533-544. |
Jang, Eugene, et al. “Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle.” Proceedings of the National Academy of Sciences 109.5 (2012): 1679-1684. |
Jarocha D, Stangel-Wojcikiewicz K, Basta A, Majka M (2014) Efficient myoblast expansion for regenerative medicine use. Int J Mol Med 34(1): 83-91. |
Jin, H., and J. Bae. “Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.” 22nd Annual ISCT Meeting (2016): S29. |
Jo CH, Lee YG, Shin WH, et al. (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5): 1254-1266. |
Johansson, Ulrika, et al. “Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices.” PloS one 10.6 (2015): e0130169. |
John Carvell, et al. Monitoring Live Biomass in Disposable Bioreactors, BioProcess International 14(3)s, Mar. 2016. |
John Nicolette, et al (Abbott Laboratories). In Vitro Micronucleus Screening of Pharmaceutical Candidates by Flow Cyto9metry in Chinese Hamster V79 Cells, Environmental and Molecular Mutagenesis 00:000-000, 2010. |
John P. Carvell and Jason E. Dowd. On-line measurements and control of viable cell density in cell culture manufacturing processes using radio frequency impedance. Cytotechnology 50: 35-48, 2006. |
Johnson, Patrick A., et al. “Interplay of anionic charge, poly (ethylene glycol), and iodinated tyrosine incorporation within tyrosine?derived polycarbonates: Effects on vascular smooth muscle cell adhesion, proliferation, and motility.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 93.2 (2010): 505-514. |
Johnston LC, Su X, Maguire-Zeiss K, Horovitz K, Ankoudinova I, Guschin D, Hadaczek P, Federoff HJ, Bankiewicz K, Forsayeth J. Human interleukin-10 gene transfer is protective in a rat model of Parkinson's disease. Mol Ther. 2008;16(8):1392-9. |
Jones M, Varella-Garcia M, Skokan M, et al. (2013) Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System. Cytotherapy 15(11): 1323-1339. |
Jones, M., “The Monoculture of Cord Blood-Derived CD34+ Cells by Perfusion Using a Semi-Permeable Hollow Fiber Membrane Quantum Cell Expansion System With a Novel Growth Factor Cocktail”, Cytotherapy, vol. 23, No. 5, May 25, 2021, p. S84. |
Jones2016ISCT 2016 Poster 69. |
Joy, Abraham, et al. “Control of surface chemistry, substrate stiffness, and cell function in a novel terpolymer methacrylate library.” Langmuir 27.5 (2011): 1891-1899. |
Kalamasz et al., “Optimization of Human T-Cell Expansion Ex Vivo Using Magnetic Beads Conjugated with Anti-CD3 and Anti-CD28 Antibodies,” J Immunother, vol. 27, No. 5, pp. 405-418, Sep.-Oct. 2004. |
Kim, Do-Hyung, et al. “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.” Cell 110.2 (2002): 163-175. |
Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A, Matarese G, Smith DM, Haas R, Mauro C, Wraith DC, Okkenhaug K, Catapano AL, De Rosa V, Norata GD, Marelli-Berg FM. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47(5):875-889 e10. |
Klapper et al., “Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy,” Journal of Immunological Methods, 345, pp. 90-99, Apr. 21, 2009. |
Klein, Elias, Eva Eichholz, and Don H. Yeager. “Affinity membranes prepared from hydrophilic coatings on microporous polysulfone hollow fibers.” Journal of membrane science 90.1-2 (1994): 69-80. |
Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, Yong C, Surh N, Marie JC, Huehn J, Zimmermann V, Kinet S, Dardalhon V, Taylor N. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97. |
Korpanty et al., “Tageting Vascular Enothelium with Avidin Microbubbles,” Ultrasound in Medicine and Biology, vol. 31, No. 9, pp. 1279-1283, May 24, 2005. |
Krauss et al., “Signaling Takes a Breath—New Quantitative Perspectives on Bioenergetics and Signal Transduction,” Immunity, vol. 15, pp. 497-502, Oct. 2001. |
Kulikov, A. V., et al. “Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic acid in rats.” Bulletin of experimental biology and medicine 145.4 (2008): 514-519. |
Kumar P, Marinelarena A, Raghunathan D, Ragothaman VK, Saini S, Bhattacharya P, Fan J, Epstein AL, Maker AV, Prabhakar BS. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation. Cell Mol Immunol. 2019;16(2):138-153. |
Kwan, J. and Borden, M., “Lipid Monolayer Collapse and Microbubble Stability,” Advances in Colloid and Interface Science, vols. 183-184, pp. 82-99, Aug. 21, 2012. |
Lampugnani MG, Caveda L, Breviario F, Del Maschio A, Dejana E. Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Bailliere's clinical haematology. 1993;6:539-558. |
Lang, Julie, et al. “Generation of hematopoietic humanized mice in the newborn BALB/c-Rag2nullll2rγnull mouse model: a multivariable optimization approach.” Clinical Immunology 140.1 (2011): 102-116. |
Lataillade, Jean-Jacques, et al. “Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival.” Blood, The Journal of the American Society of Hematology 95.3 (2000): 756-768. |
Lechanteur, Chantal et al., “Large-Scale Clinical Expansion of Mesenchymal Stem Cells in the GMP-Compliant, Closed Automated Quantum Cell Expansion System: Comparison With Expansion in Traditional T-Flasks”, Journal of Stem Cell Research & Therapy, vol. 4, No. 08, Aug. 7, 2014 (12 Pages). |
Lee et al., “Continued Antigen Stimulation Is Not Required During CD4+ T Cell Clonal Expansion,” The Journal of Immunology, 168, pp. 1682-1689, 2002. |
Lee III, Daniel W., et al. “Long-term outcomes following CD19 CAR T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation.” Blood 128.22 (2016): 218. |
Lee, Jae W., et al. “Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.” Proceedings of the national academy of Sciences 106.38 (2009): 16357-16362. |
Levine, B., “T Lymphocyte Engineering ex vivo for Cancer and Infectious Disease,” Expert Opinion on Biological Therapy, vol. 4, No. 4, pp. 475-489, 2008. |
Lindstein, Tullia, et al. “Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway.” Science 244.4902 (1989): 339-343. |
Liotta, Francesco, et al. “Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma.” BJU international 107.9 (2011): 1500-1506. |
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701-1711. |
Lum et al., “Ultrasound Radiation Force Enables Targeted Deposition of Model Drug Carriers Loaded on Microbubbles,” Journal of Controlled Release, 111, pp. 128-134, 2006. |
M. R. Koller, et al. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplantion 21:653-663, 1998. |
Malin, Stephen F., et al. “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.” (1999): 1651-1658. |
Malone et al., “Characterization of Human Tumor-Infiltrating Lymphocytes Expanded in Hollow-Fiber Bioreactors for Immunotherapy of Cancer,” Cancer Biotherapy & Radiopharmaceuticals, vol. 16, No. 5, pp. 381-390, 2001. |
Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA 112(47): 14452-14459. |
Marek-Trzonkowska, Natalia, et al. “Administration of CD4+ CD25highCD127-regulatory T cells preserves β-cell function in type 1 diabetes in children.” Diabetes care 35.9 (2012): 1817-1820. |
Markgraf CG, Clifton GL, Aguirre M, Chaney SF, Knox-Du Bois C, Kennon K, Verma N. Injury severity and sensitivity to treatment after controlled cortical impact in rats. Journal of neurotrauma. 2001; 18:175-186. |
Mathew et al. A Phase I Clinical Trials I with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Nature, Scientific Reports 8:7428 (1-12), 2018. |
Mathew, James M., et al. “A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants.” Scientific reports 8.1 (2018): 1-12. |
Matthay, Michael A., et al. “Therapeutic potential of mesenchymal stem cells for severe acute lung injury.” Chest 138.4 (2010): 965-972. |
Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, Weaver CT. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3− precursor cells in the absence of interleukin 10. Nat Immunol. 2007;8(9):931-41. |
McKenna DH, Jr., Sumstad D, Kadidlo DM, et al. Optimization of cGMP purification and expansion of umbilical cord blood-derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy 2017;19:250-62. |
McLimans W, Kinetics of Gas Diffusion in Mammalian Cell Culture Systems. Biotechnology and Bioengineering 1968; 10:725-740. |
McMurtrey, Richard J. “Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids.” Tissue Engineering Part C: Methods 22.3 (2016): 221-249. |
Menge, Tyler, et al. “Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury.” Science translational medicine 4.161 (2012): 161ra150-161ra150. |
Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS. HIF-1alpha Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Rep. 2019;27(1):226-237 e4. |
Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899-911. |
Murugappan, G., et al. “Human hematopoietic progenitor cells grow faster under rotational laminar flows.” Biotechnology progress 26.5 (2010): 1465-1473. |
Nankervis B, Jones M, Vang B et al. (2018) Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor. Curr Stem Cell Rep. Advanced online publication. https://doi.org/10.1007/s40778-018-0116-x. |
Nankervis, Brian, et al. “Optimizing T cell expansion in a hollow-fiber bioreactor.” Current Stem Cell Reports 4.1 (2018): 46-51. |
Nedoszytko B, Lange M, Sokolowska-Wojdylo M, Renke J, Trzonkowski P, Sobjanek M, Szczerkowska-Dobosz A, Niedoszytko M, Gorska A, Romantowski J, Czarny J, Skokowski J, Kalinowski L, Nowicki R. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis. Postepy Dermatol Alergol. 2017;34(5):405-417. |
Nehlin JO, Just M, Rustan AC (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12: 349-365. |
New victories for adult Stem Cell Research New York Feb. 6, 2007. |
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17(6):618-25. |
Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129. |
Nikolaychik, V. V., M. M. Samet, and P. I. Lelkes. “A New, Cryoprecipitate Based Coating For Improved Endothelial Cell Attachment And Growth On Medical Grade Artificial Surfaces.” ASAIO Journal (American Society for Artificial Internal Organs: 1992) 40.3 (1994): M846-52. |
Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N, Yu S, Yan X, Lee HK, Pasman L, Brodsky I, Yordy B, Zhao H, Bruning J, Medzhitov R. T cell-intrinsic role of IL-6 signaling in primary and memory responses. Elife. 2014;3:e01949. |
Niwayama, Jun, et al. “Analysis of hemodynamics during blood purification therapy using a newly developed noninvasive continuous monitoring method.” Therapeutic Apheresis and Dialysis 10.4 (2006): 380-386. |
Nugent, Helen M., et al. “Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts.” Journal of vascular surgery 46.3 (2007): 548-556. |
Okano et al (Tokyo Women's Medical College, Japan) demonstrated the recovery of endothelial cells and hepatocytes from plasma-treated polystyrene dishes grafted with PNIAAm (Journal of Biomedical Materials Research, 1993). |
Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008;105(29):10113-8. |
Onyszchuk G, LeVine SM, Brooks WM, Berman NE. Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: A magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neuroscience letters. 2009;452:204-208. |
Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, Severa M, Rizzo F, Coccia EM, Bonacina F, Mitro N, Norata GD, Rossetti G, Ranzani V, Pagani M, Giorda E, Wei Y, Matarese G, Barnaba V, Piconese S. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A. 2018;115(28):E6546-E6555. |
Parhi, Purnendu, Avantika Golas, and Erwin A. Vogler. “Role Of Proteins And Water In The Initial Attachment Of Mammalian Cells To Biomedical Surfaces: A Review.” Journal of Adhesion Science and Technology 24.5 (2010): 853-888. |
Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, Zhao J, Letourneau PA, Huby MP, Baer LA, Salsbury JR, Kozar RA, Wade CE, Walker PA, Dash PK, Cox CS, Jr., Doursout MF, Holcomb JB. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PloS one. 2011;6:e25171. |
Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Reitz MS, Holcomb JB, Dash PK. Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/beta-catenin signaling. Stem cells and development. 2011;20:89-101. |
Pati, Shibani, and Todd E. Rasmussen. “Cellular therapies in trauma and critical care medicine: Looking towards the future.” PLoS Medicine 14.7 (2017): e1002343. |
Pati, Shibani, et al. “Lyophilized plasma attenuates vascular permeability, inflammation and lung injury in hemorrhagic shock.” PloS one 13.2 (2018): e0192363. |
Peters JH, Preijers FW, Woestenenk R, Hilbrands LB, Koenen HJ, Joosten I. Clinical grade Treg: GMP isolation, improvement of purity by CD127 Depletion, Treg expansion, and Treg cryopreservation. PLoS One. 2008;3(9):e3161. |
Peters, R.; Jones, M.; Brecheisen, M.; Startz, T.; Vang, B.; Nankervis, B.; Frank, N.; Nguyen, K. (2012) TerumoBCT. https://www.terumobct.com/location/north-america/products-and-services/Pages/Quantum-Materials.aspx. |
Porter CM, Horvath-Arcidiacono JA, Singh AK, Horvath KA, Bloom ET, Mohiuddin MM. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a non-human primate xenotransplantation model. Xenotransplantation. 2007;14(4):298-308. |
Povsic TJ, O'Connor CM, Henry T, et al. (2011) A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 162(4): 654-662. |
Prockop, Darwin J., Carl A. Gregory, and Jeffery L. Spees. “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues.” Proceedings of the National Academy of Sciences 100.suppl_1 (2003): 11917-11923. |
Q. L. Hao, et al. A functional comparison of CD34+ CD38= cells in cord blood and bone marrow. Blood 86:3745-3753, 1995. |
Rahmahwati, Nurlaela, Deana Wahyuningrum, and Anita Alni. “The Synthesis Of Polyethersulfone (PES) Derivatives For The Immobilization Of Lipase Enzyme.” Key Engineering Materials. vol. 811. Trans Tech Publications Ltd, 2019. |
Rey-Jurado, Emma, et al. “Assessing the importance of domestic vaccine manufacturing centers: an overview of immunization programs, vaccine manufacture, and distribution.” Frontiers in immunology 9 (2018): 26. |
Roballo KC, Dhungana S, Z. J, Oakey J, Bushman J. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials. 2019;209:1-9. |
Rodrigues, C., Fernandes, T., Diogo, M., Lobato da Silva, C., Cabral, J. Stem Cell Cultivation in Bioreactors. 2011. Biotechnology Advances v. 29, pp. 815-829. |
Ronco C1, Levin N, Brendolan A, Nalesso F, Cruz D, Ocampo C, Kuang D, Bonello M, De Cal M, Corradi V, Ricci Z. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Hemodial Int. Oct. 2006; 10(4):380-8. |
Ronco, C., Brendolan, A., Crepaldi, C., Todighiero, M., Scabardi, M. Blood and Dialysate Flow Distributions in Hollow-Fiber Hemodialyzers Analyzed by Computerized Helical Scanning Technique. 2002. Journal of the American Society of Nephrology. V. 13, pp. S53-S61. |
Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16(2):90-101. |
Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR, Jr., Muller W, Rudensky AY. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58. |
Rudensky, Alexander Y. “Regulatory T cells and Foxp3.” Immunological reviews 241.1 (2011): 260-268. |
Ryu, Min-Hyung, and Mark Gomelsky. “Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.” ACS synthetic biology 3.11 (2014): 802-810. |
S. Koestenbauer, et al. Protocols for Hematopoietic Stem Cell Expansion from Umbilical Cord Blood. Cell Transplantation 18: 1059-1068, 2009. |
S. L. Smith, et al. Expansion of neutrophil precursors and progenitors in suspension cultures of CD34+ cells enriched from human bone marrow. Experimental Hematology 21:870-877, 1993. |
Safinia N, Grageda N, Scotta C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol. 2018;9:354. |
Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466-470. |
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64. |
Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18-32. |
Schild, Howard G. “Poly (N-isopropylacrylamide): experiment, theory and application.” Progress in polymer science 17.2 (1992): 163-249. |
Schmitz R, Alessio A, Kina P. The Physics of PET/CT scanners. Imaging Research Laboratory, Department of Radiology, University of Washington http://depts.washington.edu/imreslab/education/Physics%20of%20PET.pdf. |
Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305-34. |
Shevkoplyas et al., “The Force Acting on a Superparamagnetic Bead due to an Applied Magnetic Field,” Lab on a Chip , 7, pp. 1294-1302, 2007. |
Shimazu Y, Shimazu Y, Hishizawa M, Hamaguchi M, Nagai Y, Sugino N, Fujii S, Kawahara M, Kadowaki N, Nishikawa H, Sakaguchi S, Takaori-Kondo A. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia. Cancer Immunol Res. 2016;4(2):136-45. |
Shimizu et all., “Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces,” Circulation Research, vol. 90, Feb. 22, 2022, e40-e48, pp. 1-9. |
Sigma-Aldrich Cheimcals Mitomycin C (M4287) MSDS, v4.4, Jul. 7, 2011. |
Sirsi, S. and Borden, M., “Microbubble Composition, Properties, and Biomedical Applications,” Bubble Science, Engineering & Technolology, vol. 1, No. 1-2, pp. 3-17, 2009. |
Smith C, Okern G, Rehan S, et al. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement. Clinical & Translational Immunology 2015;4:e31. |
Somerville et al., “Clinical Scale Rapid Expansion of Lymphocytes for Adoptive Cell Transfer Therapy in the WAVE® Bioreactor,” Journal of Translational Medicine, vol. 10, No. 69, pp. 1-11, 2012. |
Somerville, R. and Dudley, M., “Bioreactors Get Personal,” Oncolmmunology, vol. 1, No. 8, pp. 1435-1437, Nov. 2012. |
Spectrum Labs KrosFlo Research Ili TFF System, undated, Spectrum Laboratories, Inc., 4 pages. |
Stafano Tiziani, et al. Metabolomic Profiling of Drug Response in Acute Myeloid Leukaemia Cell lines. PLOSone 4(1): e4251 (Jan. 22, 2009). |
StAR_Abstract, undated, author unknown, 1 page. |
Startz et al May 2016 TBCT T-cell White Paper. |
Startz, T., et al. “Maturation of dendritic cells from CD14+ monocytes in an automated functionally closed hollow fiber bioreactor system.” Cytotherapy 16.4 (2014): S29. |
Steven M. Bryce, et al (Litron Laboratories). In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutation Research 630(1-2): 78-91, 2007. |
Steven M. Bryce, et al (Novartis Pharma AG, Johnson & Johnson Pharmaceutical Research, GlaxoSmithKline). Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Genetic Toxicology and Environmental Mutagenesis 650: 181-195, 2008. |
Streltsova et al., “Recurrent Stimulation of Natural Killer Cell Clones with K562 Expressing Membrane-Bound interleukin-21 Affects Their Phenotype, Interferon-y Production, and Lifespan,” International Journal of Molecular Sciences, vol. 20, No. 443, 2019, pp. 1-18. |
Stuart, Martien A. Cohen, et al. “Emerging applications of stimuli-responsive polymer materials.” Nature materials 9.2 (2010): 101-113. |
Su LF, Del Alcazar D, Stelekati E, Wherry EJ, Davis MM. Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proc Natl Acad Sci U S A. 2016;113(41):E6192-E6198. |
Takezawa, Toshiaki, Yuichi Mori, and Katsutoshi Yoshizato. “Cell culture on a thermo-responsive polymer surface.” Bio/technology 8.9 (1990): 854-856. |
The effect of rocking rate and angle on T cell cultures grown in Xuri™ Cell Expansion Systems, Aug. 2014, GE Healthcare UK Limited, 4 pages. |
Trzonkowski et al., “Ex Vivo Expansion of CD4+ CD25+ T Regulatory Cells for Immunosuppressive Therapy,” Cytometry Part A, 75A, pp. 175-188, 2009. |
Trzonkowski, Piotr, et al. “First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127? T regulatory cells.” Clinical immunology 133.1 (2009): 22-26. |
Tsvetkov, Ts, et al. “Isolation and cryopreservation of human peripheral blood monocytes.” Cryobiology 23.6 (1986): 531-536. |
Ueda, Ryosuke, et al. “Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.” Cancer medicine 5.1 (2015): 49-60. |
Underwood, P. Anne, et al. “Effects of base material, plasma proteins and FGF2 on endothelial cell adhesion and growth.” Journal of Biomaterials Science, Polymer Edition 13.8 (2002): 845-862. |
Urbich, et al from the Goethe-Universität, demonstrated that human endothelial cells increased VEGFR-2 mRNA expression when exposed to 5-15 dynes/cm2 of constant shear force for a period of 6-24 hours (FEBS, 2002). |
Van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int. 2016;29(1):3-11. |
Van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev. 2012;249(1):27-42. |
Vera et al., “Accelerated Production of Antigen-Specific T-Cells for Pre-Clinical and Clinical Applications Using Gas-Permeable Rapid Expansion Cultureware (G-Rex),” J Immunother, vol. 33, No. 3, pp. 305-315, Apr. 2010. |
Villa, Alma Y. Camacho, et al. “CD133+ CD34+ and CD133+ CD38+ blood progenitor cells as predictors of platelet engraftment in patients undergoing autologous peripheral blood stem cell transplantation.” Transfusion and Apheresis Science 46.3 (2012): 239-244. |
Visser EP1, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. Jan. 2009;50(1):139-47. |
Von Laer, D., et al. “Loss of CD38 antigen on CD34+ CD38+ cells during short-term culture.” Leukemia 14.5 (2000): 947-948. |
Wagner Jr, John E., et al. “Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft.” Cell stem cell 18.1 (2016): 144-155. |
Walker, Peter A., et al. “Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NF?B-mediated increase in interleukin-6 production.” Stem cells and development 19.6 (2010): 867-876. |
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35(6):871-82. |
Wang, Jiamian, John A. Jansen, and Fang Yang. “Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review.” Frontiers in Chemistry 7 (2019): 258. |
Ward H, Vigues S, Poole S, Bristow AF. The rat interleukin 10 receptor: cloning and sequencing of cDNA coding for the alpha-chain protein sequence, and demonstration by western blotting of expression in the rat brain. Cytokine. 2001;15(5):237-40. |
Wawman, Rebecca Ellen, Helen Bartlett, and Ye Htun Oo. “Regulatory T cell metabolism in the hepatic microenvironment.” Frontiers in immunology 8 (2018): 1889. |
Weber et al., “White Paper on Adoptive Cell Therapy for Cancer with Tumor-Infiltrating Lymphocytes: A Report of the CTEP Subcommittee on Adoptive Cell Therapy,” Clinical Cancer Research, vol. 17, No. 7, pp. 1664-1673, Apr. 1, 2011. |
Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, Phase III clinical trial. Dermatol Surg 33(3): 263-268. |
Widdel, F. 2010. “Theory and measurement of bacterial growth” http://www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf. |
Yamada, Noriko, et al. “Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells.” Die Makromolekulare Chemie, Rapid Communications 11.11 (1990): 571-576. |
Yang, Hee Seok, et al. “Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment.” Cell transplantation 19.9 (2010): 1123-1132. |
Yi, Zhuan, et al. “A readily modified polyethersulfone with amino-substituted groups: its amphiphilic copolymer synthesis and membrane application.” Polymer 53.2 (2012): 350-358. |
Yoshinari, Masao, et al. “Effect of cold plasma-surface modification on surface wettability and initial cell attachment.” International Journal of Biomedical and Biological Engineering 3.10 (2009): 507-511. |
Zappasodi et al., “The Effect Of Artificial Antigen-Presenting Cells with Preclustered Anit-CD28/-CD3/LFA-1 Monoclonal Antibodies on the Induction of ex vivo Expansion of Functional Human Antitumor T Cells,” Haematologica, vol. 93, No. 10, pp. 1523-1534, 2008. |
Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Publisher Correction: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018;19(6):645. |
Zeng B, Kwak-Kim J, Liu Y, Liao AH. Treg cells are negatively correlated with increased memory B cells in pre-eclampsia while maintaining suppressive function on autologous B-cell proliferation. Am J Reprod Immunol. 2013;70(6):454-63. |
Zheng, et al at the University of lowa have shown that the differential effects of pulsatile blood flow and cyclic stretch are an important growth stimulus (American Journal of Physiology—Heart and Circulatory Physiology, 2008). |
Number | Date | Country | |
---|---|---|---|
20220306978 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63304467 | Jan 2022 | US | |
63275793 | Nov 2021 | US | |
63275389 | Nov 2021 | US | |
63228561 | Aug 2021 | US | |
63227293 | Jul 2021 | US | |
63183591 | May 2021 | US | |
63169173 | Mar 2021 | US | |
63165060 | Mar 2021 | US |