Cell capture and expansion

Information

  • Patent Grant
  • 12043823
  • Patent Number
    12,043,823
  • Date Filed
    Wednesday, March 23, 2022
    2 years ago
  • Date Issued
    Tuesday, July 23, 2024
    7 months ago
Abstract
Implementations are described that relate to methods and systems for growing cells in a hollow fiber bioreactor. In implementations, the cells may be exposed to a number of growth factors including a combination of recombinant growth factors. In other implementations, the cells may be grown in co-culture with other cells, e.g., hMSC's. In implementations, the cells may include CD34+ cells. A coated membrane includes a membrane having a first coating configured to promote cellular adhesion to the membrane and a second coating that includes a soluble protein moiety.
Description
BACKGROUND

The present disclosure is generally directed to isolating and expanding living cells, in particular, toward isolating target cells using a membrane and expanding the isolated cells.


Cell processing systems include Cell Collection Systems and Cell Expansion Systems (CES's). Cell Collection Systems collect cells from a supply source and CES's may be used to expand and differentiate a variety of cell types. Expanded and/or differentiated cells may be used for both research and/or therapeutic purposes. As one example, hematopoietic stem cells (HSC) possess multipotentiality, enabling them to self-renew and to produce mature blood cells, such as erythrocytes, leukocytes, platelets, and lymphocytes. CD34 is a marker of human HSC, and all colony-forming activity of human bone marrow (BM) cells is found in the fraction of cells expressing CD34 (i.e., “CD34+ HSCs” or “CD34+ cells” or “the CD34+ fraction”). HSC's may be collected from bone marrow, cord blood, or peripheral blood, and CD34+ HSCs have been identified as possible treatments for diseases such as hematological cancers (e.g., lymphoma, leukemia, myeloma). Umbilical cord blood (CB) is increasingly being used as an alternative to bone marrow (BM) as a source of transplantable CD34+ HSCs. Effective treatment with, or transplantation of, CD34+ HSCs requires the administration of a minimum number of HSC's. Accordingly, following isolation of CD34+ HSCs from a suitable source, such as CB, the CD34+ HSCs must be grown (i.e., “expanded”) from an initial amount to at least an amount that may be considered effective for treatment or transplantation.


This disclosure provides procedures, devices, and compositions useful in the isolation, expansion, and administration of CD34+ HSCs.


SUMMARY

This summary is provided to introduce aspects of this disclosure in a simplified form, and is not intended to identify key or essential elements, nor is it intended to limit the scope of the claims.


This disclosure provides cell capture and expansion systems and methods of expanding target cells that may be collected from a mixed cell population. Examples include a membrane useful for trapping, collecting, and/or otherwise holding target cells, in particular CD34+ HSCs. Using the methods of this disclosure, the HSCs may be collected and significantly expanded quickly and efficiently while minimizing or eliminating differentiation of the HSCs. In the systems and methods of this disclosure, the HSCs may be expanded at least 50-fold. The cells may be target cells collected from a donor fluid (e.g., one or more blood components). These target cells may include, but are not limited to, stem cells, CD34+ HSCs, T-cells, natural killer (NK) cells, monocytes, or the like. The membrane may comprise one or more layers or coatings (i.e., a membrane) that are configured to attract and collect target cells. The membrane may comprise a substrate that promotes cellular adhesion to at least one surface of the substrate. The substrate may have a first surface and a second surface and at least one coating on the first surface and/or the second surface. The at least one coating may correspond to any molecule or material that promotes cellular adhesion to the first surface and/or the second surface of the substrate. The at least one coating may include a first coating material and a second coating material. The first coating material may be fibronectin, or a fibronectin equivalent, and the second coating material may be a soluble protein moiety. The second coating material may target specific target cells from a mixed cell population. For instance, the second coating material may be a chemokine, such as stromal cell-derived factor-1 (SDF-1), which may be used to enhance collection of CD34+ HSCs. Additional coating materials may be used to collect the same or different cells from a mixed cell population. The membrane may be arranged in any form, such as a flat sheet, a filter matrix, a hollow fiber, any combination thereof, and/or any plurality thereof.


This disclosure also provides methods for expanding cells, in particular CD34+ HSCs, in a bioreactor, such as a hollow fiber bioreactor. These methods provide for introducing cells (e.g., hematopoietic stem cells (HSC's), including, for example, CD34+ HSCs) into a bioreactor, and exposing the cells to growth conditions that expand the number of cells in the bioreactor. The growth conditions may include the introduction of one or a combination of growth factors into bioreactor. Alternatively or additionally, the growth conditions may include the presence of co-cultured cells in the bioreactor. After expanding the cells in the bioreactor, a plurality of expanded cells may then be removed from the bioreactor for storage, transplantation, or use in therapies such as cancer therapies.


This disclosure provides methods of expanding cells that include introducing a plurality of cells comprising CD34+ Hematopoietic stem cells (HSCs) into hollow fibers of a hollow fiber bioreactor. The hollow fibers of the bioreactor each comprise an interior lumen and an extracapillary side. Additionally, the hollow fibers comprise a coating on at least one of the lumen surface and the extracapillary surface. The coating on the surface(s) includes stromal cell-derived factor-1 (SDF-1) and fibronectin or isoforms, or functional equivalents thereof. In these methods, the plurality of cells in the hollow fibers are exposed to growth conditions and at least a portion of the plurality of cells is expanded in the hollow fibers of the bioreactor to generate a plurality of expanded CD34+ HSCs. Using these methods, the plurality of cells introduced into the hollow fibers of the bioreactor may be expanded at least 50-fold.


This disclosure also provides methods of expanding cells by perfusion in a cell expansion system. These methods include coating a hollow fiber bioreactor with a first fluid, which may include a signaling factor and/or a coating factor. In these methods, a plurality of cells is introduced into a hollow fiber membrane of a hollow fiber bioreactor. In these methods, the plurality of cells in the hollow fiber membrane may be exposed to a second fluid, which includes a plurality of growth factors. In these methods, the plurality of cells in the hollow fiber bioreactor may be grown in monoculture or in coculture.


This disclosure also provides methods of capturing cells that includes introducing a mixture of target cells and non-target cells into hollow fibers of a hollow fiber bioreactor. These hollow fibers each comprise an interior lumen and an extracapillary side, and a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. The coating on the surface(s) includes stromal cell-derived factor-1 (SDF-1) and fibronectin or isoforms, or functional equivalents thereof. In these methods, the mixture of target and non-target cells in the hollow fibers may be exposed to capture conditions to capture at least a portion of the target cells on at least one of the lumen and the extracapillary surface of the hollow fibers. At least a portion of the non-target cells may be flushed from the hollow fibers, leaving target cells associated with a surface of the hollow fibers.


This disclosure also provides methods of capturing target species. In these methods, a mixture of target species and non-target species are introduced into hollow fibers, which have an interior lumen and an extracapillary side. These hollow fibers may include a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. The coating may include at least one of streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. In these methods, the mixture of target species and non-target species in the hollow fibers may be exposed to capture conditions to capture at least a portion of the target species on at least one of the lumen and the extracapillary surface(s) of the hollow fibers. In these methods, at least a portion of the non-target species may be flushed from the hollow fibers.


This disclosure also provides coated hollow fiber membranes. These membranes are hollow fiber membranes having a lumen surface and an extracapillary surface. These membranes may include a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. The coating may include stromal cell-derived factor-1 (SDF-1) and fibronectin or isoforms, or functional equivalents thereof.


This disclosure also provides methods of forming a coated hollow fiber membrane that include providing a hollow fiber membrane having a lumen surface and an extracapillary surface and applying a first coating onto the lumen surface of the hollow fiber membrane. In these methods, the first coating comprises a material that promotes cellular adhesion to at least one of the lumen of the hollow fiber membrane and the extracapillary surface of the hollow fiber membrane. In these methods, a second coating may be applied onto the lumen surface of the hollow fiber membrane. The second coating may include a soluble protein moiety.


This disclosure also provides compositions useful for expanding CD34+ HSCs. These compositions include glial cell-derived neurotrophic factor (GDNF) and an aryl hydrocarbon receptor (AHR) antagonist.


The preceding is intended to provide a simplified summary of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, implementations, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, implementations, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below, and will be apparent to those skilled in the art upon consideration of the following Detailed Description and in view of the Figures.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples.



FIG. 1 depicts a perspective view of a hollow fiber bioreactor, in accordance with implementations.



FIG. 2 illustrates a perspective view of a cell expansion system with a premounted fluid conveyance device, in accordance with implementations.



FIG. 3 depicts a perspective view of a housing of a cell expansion system, in accordance with implementations.



FIG. 4 illustrates a perspective view of a premounted fluid conveyance device, in accordance with implementations.



FIG. 5 depicts a schematic of a cell expansion system, in accordance with implementations.



FIG. 6 illustrates a schematic of another implementation of a cell expansion system, in accordance with implementations.



FIG. 7 illustrates components of a computing system that may be used to implement implementations.



FIG. 8 shows a schematic representation of a hollow fiber in accordance with implementations of the present disclosure.



FIG. 9 shows a schematic representation of ultrafiltration from the lumen side to the extracapillary side of the hollow fiber in accordance with an implementations of the present disclosure.



FIG. 10 shows a schematic representation of flow stopped for segregating mixed cell populations in accordance with implementations of the present disclosure.



FIG. 11 is a schematic representation showing cells falling to the bottom of the hollow fiber in accordance with implementations of the present disclosure.



FIG. 12 is a schematic representation showing a membrane coated with a mixture of fibronectin and SDF-1.



FIG. 13 is a schematic representation showing a cell suspension in a coated membrane.



FIG. 14 illustrates flow 1400 that may be performed in embodiments to expand cells (e.g., HSCs). Although specific devices may be described below for performing steps in flow 1400, embodiments are not limited thereto. For example, some steps may be described as performed by parts of a cell expansion system (e.g., CES's 500 or 600) or a processor (1100 (FIG. 7)), which may execute steps based on software provided as processor executable instructions. This is done merely for illustrative purposes, and flow 1400 is not limited to being performed by any specific device.



FIG. 15 is a schematic representation depicting a suspension of target and non-target species in the lumen of a hollow fiber having a coating on the lumen surface of the hollow fiber.



FIG. 16 is a schematic representation depicting the capture of target cells on the coating material on the lumen of a hollow fiber.



FIG. 17 is a graph showing CD34+ cell harvest yield from three different donor cell lineages after 8 days of monoculture compared to the minimum single and double CBU CD34+ cell dosing guidelines for a 70 kg patient.



FIG. 18 is a graph showing harvest cell viability as determined by trypan blue dye exclusion.



FIG. 19 is a graph showing the correlation of pre-cryopreservation cell viability with cord blood-derived CD34+ cell harvest yield, with Pearson's correlation coefficient of R2=0.8863.



FIG. 20 is a graph showing the mean of CD34+ normalized glucose consumption rate (mmol/day) and lactate generation rate (mmol/day).



FIG. 21A and FIG. 21B show the FMO gating strategy (FSC-A vs SSC-A→singlets FSC-H vs FSC-A→live cells SSC-A vs &-AAD-A→SSC-A vs CD45-APC-H7→SSC-A (FIG. 21A) vs CD34-APC→CD133-PE vs CD38-BB515 (FIG. 21B)) may be verified with Streck CD-Chex-CD34 Level 3 peripheral blood reference standard. 10,000 events were acquired per sample.



FIG. 22 is a graph showing differentiated colony forming units (CFUs) from Quantum-expanded CD34+ HSCs 14 days post-harvest, with 6 replicates per donor cell line.



FIG. 23 shows representative images of CFU-granulocyte, erythroid, macrophage, megakaryocyte, CFU-granulocyte and macrophage, and BFU-erythroid lineages.



FIG. 24 illustrates flow 2400 that may be performed in embodiments to capture cells (e.g., HSCs). Although specific devices may be described below for performing steps in flow 2400, embodiments are not limited thereto. For example, some steps may be described as performed by parts of a cell processing system (e.g., CES's 500 or 600) or a processor (1100 (FIG. 7)), which may execute steps based on software provided as processor executable instructions. This is done merely for illustrative purposes, and flow 2400 is not limited to being performed by any specific device.





DETAILED DESCRIPTION

The principles of the present disclosure may be further understood by reference to the following detailed description and the implementations depicted in the accompanying drawings. It should be understood that although specific features are shown and described below with respect to detailed implementations, the present disclosure is not limited to the implementations described below.


Reference will now be made in detail to the implementations illustrated in the accompanying drawings and described below. Wherever possible, the same reference numerals are used in the drawings and the description to refer to the same or like parts.


Referring to FIG. 1, an example of a hollow fiber bioreactor 100, which may be used with the present disclosure is shown in front side elevation view. Hollow fiber bioreactor 100 has a longitudinal axis LA-LA and includes chamber housing 104. In at least one implementation, chamber housing 104 includes four openings or ports: intracapillary (IC) inlet port 108, IC outlet port 120, extracapillary (EC) inlet port 128, and EC outlet port 132.


According to implementations of the present disclosure, fluid in a first circulation path enters hollow fiber bioreactor 100 through IC inlet port 108 at a first longitudinal end 112 of the hollow fiber bioreactor 100, passes into and through the intracapillary side (referred to in various implementations as the lumen, intracapillary (“IC”) side, or “IC space” of a hollow fiber membrane) of a plurality of hollow fibers 116, and out of hollow fiber bioreactor 100 through IC outlet port 120 located at a second longitudinal end 124 of the hollow fiber bioreactor 100. The fluid path between the IC inlet port 108 and the IC outlet port 120 defines the IC portion 126 of the hollow fiber bioreactor 100. Fluid in a second circulation path flows in the hollow fiber bioreactor 100 through EC inlet port 128, comes in contact with the extracapillary side or outside (referred to as the “EC side” or “EC space” of the membrane) of the hollow fibers 116, and exits hollow fiber bioreactor 100 via EC outlet port 132. The fluid path between the EC inlet port 128 and the EC outlet port 132 comprises the EC portion 136 of the hollow fiber bioreactor 100. Fluid entering hollow fiber bioreactor 100 via the EC inlet port 128 may be in contact with the outside of the hollow fibers 116. Small molecules (e.g., ions, water, oxygen, lactate) may diffuse through the hollow fibers 116 from the interior or IC space of the hollow fiber to the exterior or EC space, or from the EC space to the IC space. Large molecular weight molecules, such as growth factors, may be too large to pass through the hollow fiber membrane, and remain in the IC space of the hollow fibers 116. The media may be replaced as needed, in implementations. Media may also be circulated through an oxygenator or gas transfer module to exchange gasses as needed (see e.g., cell expansion systems 500 (FIG. 5) and 600 (FIG. 6)). Cells may be contained within a first circulation path and/or a second circulation path, as described below, and may be on either the IC side and/or EC side of the membrane, according to implementations.


The material used to make the hollow fiber membrane may be any biocompatible polymeric material which is capable of being made into hollow fibers and which possesses suitable permeability to small molecules such as, for example, ions, water, oxygen, glucose and lactate. One material which may be used is a synthetic polysulfone-based material, according to an implementation of the present disclosure. For the cells to adhere to the surface of the hollow fibers, the surface may be modified in some way, either by coating at least the cell growth surface with a protein, e.g., a glycoprotein such as fibronectin or collagen, or by exposing the surface to radiation. Gamma treating the membrane surface may allow for attachment of adherent cells without additionally coating the membrane with fibronectin or the like. Other coatings and/or treatments for cell attachment may be used in accordance with implementations of the present disclosure.


Turning to FIG. 2, an implementation of a cell expansion system 200 with a premounted fluid conveyance assembly is shown in accordance with implementations of the present disclosure. The CES 200 includes a cell expansion machine 202 that comprises a hatch or closable door 204 for engagement with a back portion 206 of the cell expansion machine 202. An interior space 208 within the cell expansion machine 202 includes features adapted for receiving and engaging a premounted fluid conveyance assembly 210 that includes a bioreactor 100. The premounted fluid conveyance assembly 210 may be detachably-attachable to the cell expansion machine 202 to facilitate relatively quick exchange of a new or unused premounted fluid conveyance assembly 210 at a cell expansion machine 202 for a used premounted fluid conveyance assembly 210 at the same cell expansion machine 202. A single cell expansion machine 202 may be operated to grow or expand a first set of cells using a first premounted fluid conveyance assembly 210 and, thereafter, may be used to grow or expand a second set of cells using a second premounted fluid conveyance assembly 210 without needing to be sanitized between interchanging the first premounted fluid conveyance assembly 210 for the second premounted fluid conveyance assembly 210. The premounted fluid conveyance assembly includes a bioreactor 100 and an oxygenator or gas transfer module 212. Tubing guide slots are shown as 214 for receiving various media tubing connected to premounted fluid conveyance assembly 210, according to implementations.


Next, FIG. 3 illustrates the back portion 206 of cell expansion machine 202 prior to detachably-attaching a premounted fluid conveyance assembly 210 (FIG. 2), in accordance with implementations of the present disclosure. The closable door 204 (shown in FIG. 2) is omitted from FIG. 3. The back portion 206 of the cell expansion machine 202 includes a number of different structures for working in combination with elements of a premounted fluid conveyance assembly 210. More particularly, the back portion 206 of the cell expansion machine 202 includes a plurality of peristaltic pumps for cooperating with pump loops on the premounted fluid conveyance assembly 210, including the IC circulation pump 218, the EC circulation pump 220, the IC inlet pump 222, and the EC inlet pump 224. In addition, the back portion 206 of the cell expansion machine 202 includes a plurality of valves, including the IC circulation valve 226, the reagent valve 228, the IC media valve 230, the air removal valve 232, the cell inlet valve 234, the wash valve 236, the distribution valve 238, the EC media valve 240, the IC waste valve 242, the EC waste valve 244, and the harvest valve 246. Several sensors are also associated with the back portion 206 of the cell expansion machine 202, including the IC outlet pressure sensor 248, the combination IC inlet pressure and temperature sensors 250, the combination EC inlet pressure and temperature sensors 252, and the EC outlet pressure sensor 254. Also shown is an optical sensor 256 for an air removal chamber.


In accordance with implementations, a shaft or rocker control 258 for rotating the bioreactor 100 is shown in FIG. 3. Shaft fitting 260 associated with the shaft or rocker control 258 allows for proper alignment of a shaft access aperture, see e.g., 424 (FIG. 4) of a tubing-organizer, see e.g., 300 (FIG. 4) of a premounted conveyance assembly 210 or 400 with the back portion 206 of the cell expansion machine 202. Rotation of shaft or rocker control 258 imparts rotational movement to shaft fitting 260 and bioreactor 100. Thus, when an operator or user of the CES 200 attaches a new or unused premounted fluid conveyance assembly 400 (FIG. 4) to the cell expansion machine 202, the alignment is a relatively simple matter of properly orienting the shaft access aperture 424 (FIG. 4) of the premounted fluid conveyance assembly 400 with the shaft fitting 260.


Turning to FIG. 4, a perspective view of a detachably-attachable premounted fluid conveyance assembly 400 is shown. The premounted fluid conveyance assembly 400 may be detachably-attachable to the cell expansion machine 202 to facilitate relatively quick exchange of a new or unused premounted fluid conveyance assembly 400 at a cell expansion machine 202 for a used premounted fluid conveyance assembly 400 at the same cell expansion machine 202. As shown in FIG. 4, the bioreactor 100 may be attached to a bioreactor coupling that includes a shaft fitting 402. The shaft fitting 402 includes one or more shaft fastening mechanisms, such as a biased arm or spring member 404 for engaging a shaft, e.g., 258 (shown in FIG. 3), of the cell expansion machine 202.


In implementations, the shaft fitting 402 and the spring member 404 connect to mechanisms of a cell expansion system that rotate the bioreactor 100. For example, in some implementations, the cell expansion system may be part of a QUANTUM® Cell Expansion System (CES), manufactured by Terumo BCT, Inc. of Lakewood, Colo., which provides for rotation of a bioreactor. Examples of cell expansion systems that provide for rotation of the bioreactor are described in at least: U.S. Pat. No. 8,399,245, issued Mar. 19, 2013, entitled “ROTATION SYSTEM FOR CELL GROWTH CHAMBER OF A CELL EXPANSION SYSTEM AND METHOD OF USE THEREFOR;” U.S. Pat. No. 8,809,043, issued Feb. 13, 2013, entitled “ROTATION SYSTEM FOR CELL GROWTH CHAMBER OF A CELL EXPANSION SYSTEM AND METHOD OF USE THEREFOR;” and U.S. Pat. No. 9,057,045, issued Jun. 16, 2015, entitled “METHOD OF LOADING AND DISTRIBUTING CELLS IN A BIOREACTOR OF A CELL EXPANSION SYSTEM;” all three of which are hereby incorporated by reference in their entirety as if set forth herein in full.


According to implementations, the premounted fluid conveyance assembly 400 includes tubing 408A, 408B, 408C, 408D, 408E, and various tubing fittings to provide the fluid paths shown in FIGS. 5 and 6, as discussed below. Pump loops 406A and 406B are also provided for the pump(s). In implementations, although the various media may be provided at the site where the cell expansion machine 202 is located, the premounted fluid conveyance assembly 400 may include sufficient tubing length to extend to the exterior of the cell expansion machine 202 and to enable welded connections to tubing associated with the media bags, according to implementations.



FIG. 5 illustrates a schematic of an implementation of a cell expansion system 500, and FIG. 6 illustrates a schematic of another implementation of a cell expansion system 600. In the implementations shown in FIGS. 5 and 6, and as described below, the cells are grown in the IC space and may in other implementations provide for cells to be grown in the EC space. In yet other implementations, such as when co-culturing cells, first cells may be grown in the EC space, while second cells may be grown in the IC space. Co-culturing of cells may also be performed by growing first cells and second cells in the EC space, or growing first cells and second cells in the IC space.



FIG. 5 illustrates a CES 500, which includes first fluid circulation path 502 (also referred to as the “intracapillary loop” or “IC loop”) and second fluid circulation path 504 (also referred to as the “extracapillary loop” or “EC loop”), according to implementations. First fluid flow path 506 may be fluidly associated with hollow fiber bioreactor 501 to form, at least in part, first fluid circulation path 502. Fluid flows into hollow fiber bioreactor 501 through IC inlet port 501A, through hollow fibers in hollow fiber bioreactor 501, and exits via IC outlet port 501B. Pressure gauge 510 measures the pressure of media leaving hollow fiber bioreactor 501. Media flows through IC circulation pump 512 which may be used to control the rate of media flow/rate of fluid circulation. IC circulation pump 512 may pump the fluid in a first direction (e.g., clockwise) or second direction opposite the first direction (e.g., counter clockwise). Exit port 501B may be used as an inlet in the reverse direction. Media entering the IC loop 502 may then enter through valve 514. As those skilled in the art will appreciate, additional valves and/or other devices may be placed at various locations to isolate and/or measure characteristics of the media along portions of the fluid paths. Accordingly, it is to be understood that the schematic shown represents one possible configuration for various elements of the CES 500, and modifications to the schematic shown are within the scope of the one or more present implementations.


With regard to the IC loop 502, samples of media may be obtained from sample port 516 or sample coil 518 during operation. Pressure/temperature gauge 520 disposed in first fluid circulation path 502 allows detection of media pressure and temperature during operation. Media then returns to IC inlet port 501A to complete fluid circulation path 502. Cells grown/expanded in hollow fiber bioreactor 501 may be flushed out of hollow fiber bioreactor 501 into harvest bag 599 through valve 598 or redistributed within the hollow fibers for further growth.


Fluid in second fluid circulation path 504 enters hollow fiber bioreactor 501 via EC inlet port 501C, and leaves hollow fiber bioreactor 501 via EC outlet port 501D. Media in the EC loop 504 may be in contact with the outside of the hollow fibers in the hollow fiber bioreactor 501, thereby allowing diffusion of small molecules into and out of the hollow fibers.


Pressure/temperature gauge 524 disposed in the second fluid circulation path 504 allows the pressure and temperature of media to be measured before the media enters the EC space of hollow fiber bioreactor 501. Pressure gauge 526 allows the pressure of media in the second fluid circulation path 504 to be measured after it leaves hollow fiber bioreactor 501. With regard to the EC loop, samples of media may be obtained from sample port 530 or a sample coil during operation.


In implementations, after leaving EC outlet port 501D of hollow fiber bioreactor 501, fluid in second fluid circulation path 504 passes through EC circulation pump 528 to oxygenator or gas transfer module 532. EC circulation pump 528 may also pump the fluid in opposing directions. Second fluid flow path 522 may be fluidly associated with oxygenator or gas transfer module 532 via oxygenator inlet port 534 and oxygenator outlet port 536. In operation, fluid media flows into oxygenator or gas transfer module 532 via oxygenator inlet port 534, and exits oxygenator or gas transfer module 532 via oxygenator outlet port 536. Oxygenator or gas transfer module 532 adds oxygen to and removes both carbon dioxide and bubbles from media in the CES 500. In various implementations, media in second fluid circulation path 504 may be in equilibrium with gas entering oxygenator or gas transfer module 532. The oxygenator or gas transfer module 532 may be any appropriately sized oxygenator or gas transfer device. Air or gas flows into oxygenator or gas transfer module 532 via filter 538 and out of oxygenator or gas transfer device 532 through filter 540. Filters 538 and 540 reduce or prevent contamination of oxygenator or gas transfer module 532 and associated media. Air or gas purged from the CES 500 during portions of a priming sequence may vent to the atmosphere via the oxygenator or gas transfer module 532.


In the configuration depicted for CES 500, fluid media in first fluid circulation path 502 and second fluid circulation path 504 flows through hollow fiber bioreactor 501 in the same direction (a co-current configuration). The CES 500 may also be configured to flow in a counter-current configuration.


In accordance with at least one implementation, media, including cells (from bag 562), and fluid media from bag 546 may be introduced to first fluid circulation path 502 via first fluid flow path 506. Fluid container 562 (e.g., Cell Inlet Bag or Saline Priming Fluid for priming air out of the system) may be fluidly associated with the first fluid flow path 506 and the first fluid circulation path 502 via valve 564.


Fluid containers, or media bags, 544 (e.g., Reagent) and 546 (e.g., IC Media) may be fluidly associated with either first fluid inlet path 542 via valves 548 and 550, respectively, or second fluid inlet path 574 via valves 548, 550, and 570. First and second sterile sealable input priming paths 508 and 509 are also provided. An air removal chamber (ARC) 556 may be fluidly associated with first circulation path 502. The air removal chamber 556 may include one or more ultrasonic sensors including an upper sensor and lower sensor to detect air, a lack of fluid, and/or a gas/fluid interface, e.g., an air/fluid interface, at certain measuring positions within the air removal chamber 556. For example, ultrasonic sensors may be used near the bottom and/or near the top of the air removal chamber 556 to detect air, fluid, and/or an air/fluid interface at these locations. Implementations provide for the use of numerous other types of sensors without departing from the spirit and scope of the present disclosure. For example, optical sensors may be used in accordance with implementations of the present disclosure. Air or gas purged from the CES 500 during portions of the priming sequence or other protocols may vent to the atmosphere out air valve 560 via line 558 that may be fluidly associated with air removal chamber 556.


EC media (from bag 568) or wash solution (from bag 566) may be added to either the first or second fluid flow paths. Fluid container 566 may be fluidly associated with valve 570 that may be fluidly associated with first fluid circulation path 502 via distribution valve 572 and first fluid inlet path 542. Alternatively, fluid container 566 may be fluidly associated with second fluid circulation path 504 via second fluid inlet path 574 and EC inlet path 584 by opening valve 570 and closing distribution valve 572. Likewise, fluid container 568 may be fluidly associated with valve 576 that may be fluidly associated with first fluid circulation path 502 via first fluid inlet path 542 and distribution valve 572. Alternatively, fluid container 568 may be fluidly associated with second fluid inlet path 574 by opening valve 576 and closing valve distribution 572. An optional heat exchanger 552 may be provided for media reagent or wash solution introduction.


In the IC loop, fluid may be initially advanced by the IC inlet pump 554. In the EC loop, fluid may be initially advanced by the EC inlet pump 578. An air detector 580, such as an ultrasonic sensor, may also be associated with the EC inlet path 584.


In at least one implementation, first and second fluid circulation paths 502 and 504 are connected to waste line 588. When valve 590 is opened, IC media may flow through waste line 588 and to waste or outlet bag 586. Likewise, when valve 582 is opened, EC media may flow through waste line 588 to waste or outlet bag 586.


In implementations, cells may be harvested via cell harvest path 596. Here, cells from hollow fiber bioreactor 501 may be harvested by pumping the IC media containing the cells through cell harvest path 596 and valve 598 to cell harvest bag 599.


Various components of the CES 500 may be contained or housed within a machine or housing, such as cell expansion machine 202 (FIGS. 2 and 3), wherein the machine maintains cells and media at a predetermined temperature.


Turning to FIG. 6, a schematic of another implementation of a cell expansion system 600 is shown. CES 600 includes a first fluid circulation path 602 (also referred to as the “intracapillary loop” or “IC loop”) and second fluid circulation path 604 (also referred to as the “extracapillary loop” or “EC loop”). First fluid flow path 606 may be fluidly associated with hollow fiber bioreactor 601 to form first fluid circulation path 602. Fluid flows into hollow fiber bioreactor 601 through IC inlet port 601A, through hollow fibers in hollow fiber bioreactor 601, and exits via IC outlet port 601B. Pressure sensor 610 measures the pressure of media leaving hollow fiber bioreactor 601. In addition to pressure, sensor 610 may, in implementations, also be a temperature sensor that detects the media pressure and temperature during operation.


Media flows through IC circulation pump 612 which may be used to control the rate of media flow or rate of circulation. IC circulation pump 612 may pump the fluid in a first direction (e.g. counter clockwise) or second direction opposite the first direction (e.g., clockwise). Exit port 601B may be used as an inlet in the reverse direction. Media entering the IC loop may flow through valve 614. As those skilled in the art will appreciate, additional valves and/or other devices may be placed at various locations to isolate and/or measure characteristics of the media along portions of the fluid paths. Samples of media may be obtained from sample coil 618 during operation. Media then returns to IC inlet port 601A to complete fluid circulation path 602.


Cells grown/expanded in hollow fiber bioreactor 601 may be flushed out of hollow fiber bioreactor 601 into harvest bag 699 through valve 698 and line 697. Alternatively, when valve 698 is closed, the cells may be redistributed within hollow fiber bioreactor 601 for further growth. It is to be understood that the schematic shown represents one possible configuration for various elements of the CES 600, and modifications to the schematic shown are within the scope of the one or more present implementations.


Fluid in second fluid circulation path 604 enters hollow fiber bioreactor 601 via EC inlet port 601C and leaves hollow fiber bioreactor 601 via EC outlet port 601D. Media in the EC loop may be in contact with the outside of the hollow fibers in the hollow fiber bioreactor 601, thereby allowing diffusion of small molecules into and out of the hollow fibers that may be within chamber 601, according to an implementation.


Pressure/temperature sensor 624 disposed in the second fluid circulation path 604 allows the pressure and temperature of media to be measured before the media enters the EC space of the hollow fiber bioreactor 601. Sensor 626 allows the pressure and/or temperature of media in the second fluid circulation path 604 to be measured after it leaves the hollow fiber bioreactor 601. With regard to the EC loop, samples of media may be obtained from sample port 630 or a sample coil during operation.


After leaving EC outlet port 601D of hollow fiber bioreactor 601, fluid in second fluid circulation path 604 passes through EC circulation pump 628 to oxygenator or gas transfer module 632. EC circulation pump 628 may also pump the fluid in opposing directions, according to implementations. Second fluid flow path 622 may be fluidly associated with oxygenator or gas transfer module 632 via an inlet port 632A and an outlet port 632B of oxygenator or gas transfer module 632. In operation, fluid media flows into oxygenator or gas transfer module 632 via inlet port 632A, and exits oxygenator or gas transfer module 632 via outlet port 632B. Oxygenator or gas transfer module 632 adds oxygen to and removes both carbon dioxide and bubbles from media in the CES 600.


In various implementations, media in second fluid circulation path 604 may be in equilibrium with gas entering oxygenator or gas transfer module 632. The oxygenator or gas transfer module 632 may be any appropriately sized device useful for oxygenation or gas transfer. Air or gas flows into oxygenator or gas transfer module 632 via filter 638 and out of oxygenator or gas transfer device 632 through filter 640. Filters 638 and 640 reduce or prevent contamination of oxygenator or gas transfer module 632 and associated media. Air or gas purged from the CES 600 during portions of a priming sequence may vent to the atmosphere via the oxygenator or gas transfer module 632.


In the configuration depicted for CES 600, fluid media in first fluid circulation path 602 and second fluid circulation path 604 flows through hollow fiber bioreactor 601 in the same direction (a co-current configuration). The CES 600 may also be configured to flow in a counter-current configuration.


In accordance with at least one implementation, media, including cells (from a source such as a cell container, e.g. a bag) may be attached at attachment point 662, and fluid media from a media source may be attached at attachment point 646. The cells and media may be introduced into first fluid circulation path 602 via first fluid flow path 606. Attachment point 662 may be fluidly associated with the first fluid flow path 606 via valve 664, and attachment point 646 may be fluidly associated with the first fluid flow path 606 via valve 650. A reagent source may be fluidly connected to point 644 and be associated with fluid inlet path 642 via valve 648, or second fluid inlet path 674 via valves 648 and 672.


Air removal chamber (ARC) 656 may be fluidly associated with first circulation path 602. The air removal chamber 656 may include one or more sensors including an upper sensor and lower sensor to detect air, a lack of fluid, and/or a gas/fluid interface, e.g., an air/fluid interface, at certain measuring positions within the air removal chamber 656. For example, ultrasonic sensors may be used near the bottom and/or near the top of the air removal chamber 656 to detect air, fluid, and/or an air/fluid interface at these locations. Implementations provide for the use of numerous other types of sensors without departing from the spirit and scope of the present disclosure. For example, optical sensors may be used in accordance with implementations of the present disclosure. Air or gas purged from the CES 600 during portions of a priming sequence or other protocol(s) may vent to the atmosphere out air valve 660 via line 658 that may be fluidly associated with air removal chamber 656.


An EC media source may be attached to EC media attachment point 668 and a wash solution source may be attached to wash solution attachment point 666, to add EC media and/or wash solution to either the first or second fluid flow path. Attachment point 666 may be fluidly associated with valve 670 that may be fluidly associated with first fluid circulation path 602 via valve 672 and first fluid inlet path 642. Alternatively, attachment point 666 may be fluidly associated with second fluid circulation path 604 via second fluid inlet path 674 and second fluid flow path 684 by opening valve 670 and closing valve 672. Likewise, attachment point 668 may be fluidly associated with valve 676 that may be fluidly associated with first fluid circulation path 602 via first fluid inlet path 642 and valve 672. Alternatively, fluid container 668 may be fluidly associated with second fluid inlet path 674 by opening valve 676 and closing valve distribution 672.


In the IC loop, fluid may be initially advanced by the IC inlet pump 654. In the EC loop, fluid may be initially advanced by the EC inlet pump 678. An air detector 680, such as an ultrasonic sensor, may also be associated with the EC inlet path 684.


In at least one implementation, first and second fluid circulation paths 602 and 604 are connected to waste line 688. When valve 690 is opened, IC media may flow through waste line 688 and to waste or outlet bag 686. Likewise, when valve 692 is opened, EC media may flow to waste or outlet bag 686.


After cells have been grown in hollow fiber bioreactor 601, they may be harvested via cell harvest path 697. Here, cells from hollow fiber bioreactor 601 may be harvested by pumping the IC media containing the cells through cell harvest path 697, with valve 698 open, into cell harvest bag 699.


Various components of the CES 600 may be contained or housed within a machine or housing, such as cell expansion machine 202 (FIGS. 2 and 3), wherein the machine maintains cells and media at a predetermined temperature. It is further noted that, in implementations, components of CES 600 and CES 500 (FIG. 5) may be combined. In other implementations, a CES may include fewer or additional components than those shown in FIGS. 5 and 6 and still be within the scope of the present disclosure. In implementations, portions of CES 500 and 600 may be implemented by one or more features of the QUANTUM® Cell Expansion System (CES), manufactured by Terumo BCT, Inc. of Lakewood, Colo.


In one specific implementation of using CES 600, hematopoietic stem cells (HSC's), e.g., CD34+ HSCs, may be expanded in an implementation of CES 600. In this implementation, HSC's (including CD34+ HSCs), which may be collected using a leukapheresis process or a manual process (e.g., umbilical cords), may be introduced into the bioreactor 601. The HSC's (including CD34+ HSCs) may be introduced into the bioreactor 601 through path 602.


In some implementations, the HSC's (including CD34+ HSCs) may be subjected to a selection process (e.g., a purification process) before introduction into bioreactor 601. The process may involve the use of a centrifuge, purification column, magnetic selection, or chemical selection. Some examples of cell selection/purification procedures include use of isolation columns from, for example, Miltenyi Biotec of Bergisch Gladbach, Germany. In one example, cord blood is first subjected to a cell selection process that selects for HSC's (including CD34+ HSCs) before the cells are introduced into the bioreactor 601. Other examples may utilize apheresis machines to deplete other cells that may be included with the HSC's (including CD34+ HSCs) when originally collected. For example, the HSC's may be sourced from cord blood, bone marrow, or peripheral blood. After initial collection, but before being introduced into the bioreactor 601, a volume of HSC's including CD34+ HSCs may be processed to deplete red blood cells, specific leukocytes, granulocytes, and/or other cells from the volume. These are merely some examples, and implementations of the present invention are not limited thereto.


In other implementations, the HSC's (including CD34+ HSCs) may be added directly to the bioreactor 601 after collection without any additional purification. For example, cord blood (with HSC's) may be added to the bioreactor. In addition to a number of proteins and other bioactive molecules, the cord blood may include HSC's (including CD34+ HSCs), red blood cells, platelets, granulocytes, and/or leukocytes.


It is noted that in some implementations, the HSC's may be added to bioreactor 601, after a priming step. As may be appreciated, the cells being expanded may not be adherent and therefore it may not be required that they adhere to the hollow fiber walls of bioreactor 601 for expansion/proliferation. In these implementations, it may be unnecessary to coat the inside of the hollow fibers with a coating to promote adhesion, e.g., fibronectin. In these implementations, the HSC's (including CD34+ HSCs) (purified or unpurified) may be introduced into the bioreactor 601 after a priming step and without a bioreactor coating step. If the cells were adherent cells, a coating step may be performed after the priming step and before introduction of the HSC's.


Once in the bioreactor 601, the cells may be exposed to growth factors, activators, hormones, reagents, proteins, and/or other bioactive molecules that may aid in the expansion of the cells. In one example, a co-culture cell line may have been previously grown/introduced, in the bioreactor 601, to optimize the conditions for growing the HSC's (including CD34+ HSCs). In one specific implementation, human mesenchymal stem cells (hMSC's) may be co-cultured with the HSC's (including CD34+ HSCs) to promote growth of CD34+ HSCs. Without being bound by theory, it is believed that MSC's may emit factors (e.g., SDF-1 factors) that interact with HSC's (e.g., CD34+ HSCs) and promote proliferation of these cells. In some implementations, use of the co-cultured hMSC's may involve a growing process that is performed initially, under conditions optimized for proliferating the hMSC's, before the HSC's (including CD34+ HSCs) are introduced into the bioreactor 601. The hMSC's may be derived in implementations from bone marrow, peripheral blood, cord cells, adipose tissue, and/or molar tissue.


In addition to co-culture cells, a supplement including one or more growth factors, activators, hormones, reagents, proteins, and/or other bioactive molecules may be added to bioreactor 601 to grow and expand the HSC's. The supplement may be added as a single volume addition or over a period of time (e.g., continuously, intermittently, or on a regular schedule). In one implementation, a combination of cytokines and/or other proteins, e.g., recombinant cytokines, hormones, may be included as part of the supplement. As one example, a supplement may include one or more of: recombinant human Flt3 ligand (rhFlt-3L), recombinant human stem cell factor (rhSCF), recombinant human thrombopoietin (rhTPO), recombinant human (rh) Glial-derived neurotrophic factors and/or combinations thereof. One example of a supplement that may be used with implementations is STEMCELL2MAX™ supplement (stemcell2MAX, Cantanhede, Portugal).


It is noted that in some implementations, the combination of factors may be included in the media in which the cells are suspended. For example, the HSC's may be suspended in media and introduced 1406 into the bioreactor in the media. In implementations, the media may include a combination of growth factors that aid in proliferation of the HSC's.


After the cells have been introduced into the bioreactor with the supplement, co-culture cells, and/or other material for expanding the cells, the cells are allowed to expand in bioreactor 1410. During the expansion, there may be materials that may be added or removed from bioreactor. As one example, additional proteins (e.g., cytokines) may be added to bioreactor 601. In some implementations, more than one protein or other bioactive agent may be used. The additional material may be added individually, at the same time, at different times, or may be combined and added in combination.


It is noted that some implementations may provide for adding material more directly into the bioreactor 501, such as through port 516 (FIG. 5). In other implementations, however, the materials may be added in a location, e.g., through path 606, so that the materials may be perfused more slowly into bioreactor 601.


In addition to materials for aiding in growing the HSC's (including CD34+ HSCs), the HSC's may also be fed, such as by addition of a media that may include a number of nutrients. In some implementations, the media may be commercially available media that may include serum. In other implementations, the media may be serum free and include other additives. The media may be modified by the addition of other materials, some non-limiting examples including salts, serum, proteins, reagents, bioactive molecules, nutrients. One example of media that may be used to feed the HSC's (including CD34+ HSCs) includes CELLGRO® serum free media (CellGenix, Freiburg, Germany).


In some implementations, while the co-culture cells are located in the IC space, feeding may occur in the EC space. Feeding through the EC space may, in implementations, reduce the amount of force that may be felt by the cells from circulating fluid in the IC space. Circulation of media in the EC space may, in implementations, provide sufficient nutrients for the expansion of the HSC's (including CD34+ HSCs).


As part of the expansion of the HSC's (including CD34+ HSCs), other conditions such as temperature, pH, oxygen concentration, carbon dioxide concentration, waste concentration, metabolite concentration may also be controlled in bioreactor 601. In some implementations, the flow rates of the EC side, e.g., path 604 may be used to control various parameters. For example, if it is desired to reduce waste or metabolite concentrations on the IC side, where the cells are growing, flow rate on the EC side may be increased to ensure that the waste and/or metabolites are removed from the IC side by migration through the hollow fibers from the IC side to the EC side.


After the CD34+ HSCs have been expanded, the cells may be removed from the bioreactor 601. The CD34+ HSCs may be collected in container 699. In implementations, the collected CD34+ HSCs may be administered to a patient to reestablish hematopoiesis. Some non-limiting examples including patients undergoing treatment for various cancers, e.g., leukemia, myelodysplasia, non-Hodgkin lymphoma, which may effect hematopoiesis. The cells may be administered with other compounds or molecules.


In some implementations, use of CES 600 may provide advantages in growing HSC's (including CD34+ HSCs) over conventional processes. For example, the use of hollow fibers allows close cell to cell communication, which may enhance the growth of the CD34+ HSCs to start and continue to proliferate. Also, the use of a hollow fiber bioreactor, such as bioreactor 601, may provide a large surface area for cell growth, which may yield a higher concentration or higher volume of CD34+ HSCs.


Further, the conditions in bioreactor 601 may be controlled using a number of different components of the CES 600, including IC flow rates and EC flow rates. Also, CES 600 provides various locations for the addition of materials, which allows more direct, or indirect, e.g., perfusion, of cytokines into bioreactor 601.


Additionally, CES 600 provides a closed system. That is, the steps for growing the CD34+ HSCs may be performed without direct exposure to the ambient environment, which may contaminate the cells, or be contaminated by the cells or materials used in growing the cells. It is also believed that some implementations may provide for using a smaller starting concentration of CD34+ HSCs for expansion, compared to other methods/systems. In these implementations, CD34+ HSCs may also be expanded to yield larger amounts than from other methods/systems. It is also believed that some implementations may provide for shortening the time for growing an effective dose of CD34+ HSCs.



FIG. 7 illustrates example components of a computing system 1100 upon which implementations of the present disclosure may be implemented. Computing system 1100 may be used in implementations, for example, where a cell expansion system uses a processor to execute tasks, such as custom tasks or pre-programmed tasks performed as part of processes, such as the process described above.


The computing system 1100 may include a user interface 1102, a processing system 1104, and/or storage 1106. The user interface 1102 may include output device(s) 1108, and/or input device(s) 1110 as understood by a person of skill in the art. Output device(s) 1108 may include one or more touch screens, in which the touch screen may comprise a display area for providing one or more application windows. The touch screen may also be an input device 1110 that may receive and/or capture physical touch events from a user or operator, for example. The touch screen may comprise a liquid crystal display (LCD) having a capacitance structure that allows the processing system 1104 to deduce the location(s) of touch event(s), as understood by those of skill in the art. The processing system 1104 may then map the location of touch events to user interface (UI) elements rendered in predetermined locations of an application window. The touch screen may also receive touch events through one or more other electronic structures, according to implementations. Other output devices 1108 may include a printer, speaker. Other input devices 1110 may include a keyboard, other touch input devices, mouse, voice input device, as understood by a person of skill in the art.


Processing system 1104 may include a processing unit 1112 and/or a memory 1114, according to implementations of the present disclosure. The processing unit 1112 may be a general purpose processor operable to execute instructions stored in memory 1114. Processing unit 1112 may include a single processor or multiple processors, according to implementations. Further, in implementations, each processor may be a multi-core processor having one or more cores to read and execute separate instructions. The processors may include general purpose processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), other integrated circuits, as understood by a person of skill in the art.


The memory 1114 may include any short-term or long-term storage for data and/or processor executable instructions, according to implementations. The memory 1114 may include, for example, Random Access Memory (RAM), Read-Only Memory (ROM), or Electrically Erasable Programmable Read-Only Memory (EEPROM), as understood by a person of skill in the art. Other storage media may include, for example, CD-ROM, tape, digital versatile disks (DVD) or other optical storage, tape, magnetic disk storage, magnetic tape, other magnetic storage devices, as understood by a person of skill in the art.


Storage 1106 may be any long-term data storage device or component. Storage 1106 may include one or more of the systems described in conjunction with the memory 1114, according to implementations. The storage 1106 may be permanent or removable. In implementations, storage 806 stores data generated or provided by the processing system 104.


This disclosure provides methods of expanding cells (i.e., increasing the number of cells grown in culture). In particular, these methods are useful in the expansion of human hematopoietic stem cells (HSCs), including HSCs that express CD34 protein (CD34-positive HSCs, or CD34+ HSCs). In these methods, the CD34+ HSCs may be CD45+/CD34+ HSCs and/or CD133+CD38− progenitor cells. These methods advantageously expand HSCs many fold (for example, at least 50-fold) quickly and efficiently, while minimizing the differentiation of these HSCs.


Flow 1400 may be performed in embodiments to expand target cells, such as CD34+ HSCs in monoculture or co-culture. Flow 1400 starts at step 1404 and proceeds to step 1412 where expanded cells (e.g., CD34+ HSC's)) may be removed from a bioreactor.


Similarly, the cells to be expanded in these methods may be cells collected from a donor fluid (e.g., one or more blood components) that may include stem cells, CD34+ HSCs, T-cells, monocytes, and/or natural killer (NK) cells. In these methods, specific “target” cells within the donor fluids (e.g. CD34+ HSCs) may be expanded while other cells present in the donor fluid are removed or reduced in number.


These methods may include expanding the cells in culture on a membrane. Within these methods of cell expansion, the membrane may be useful in trapping, collecting, and/or otherwise holding cells. The membrane may be arranged in any form, such as a flat sheet, a filter matrix, a hollow fiber, any combination thereof, and/or any plurality thereof. In these methods, the membranes may comprise a coating on at least one surface of the membrane, wherein the coating comprises stromal cell-derived factor-1 (SDF-1), and fibronectin or isoforms, or functional equivalents thereof. A particularly useful membrane within the methods of this disclosure is a hollow fiber or a plurality of hollow fibers, as they appear within a hollow fiber bioreactor. Such hollow fibers contain an interior portion or surface within the lumen of the hollow fiber, and an exterior surface (“extracapillary” side or surface). The hollow fiber membrane may comprise a plurality of hollow fibers. An example of a hollow fiber may be as shown in the schematic representation of FIG. 8, depicting a length of the hollow fiber 800 and an end of the hollow fiber 802, with a lumen 804 and an extracapillary side 808 of the hollow fiber 800. As depicted in FIG. 8, the lumen surface 806 may have a coating 810.


In some examples of these methods, the membrane may be used in conjunction with a cell processing device. In one example, the cell processing device may be the SPECTRA OPTIA® apheresis system, COBE® spectra apheresis system, and the TRIMA ACCEL® automated blood collection system, all manufactured by Terumo BCT, of Lakewood, Colo. After the cells are collected from a donor, the cells may be passed through the membrane to isolate target cells therefrom.


In some examples of these methods, the membrane may be used in conjunction with a cell expansion device. In one example, the cell expansion device may correspond to the Quantum® Cell Expansion System manufactured by Terumo BCT, of Lakewood, Colo. After the target cells are isolated (e.g., as described above), the target cells may be expanded in the membrane to, for example, increase a number of the target cells contained therein.


Capture of small sized species, such as proteins or exosomes may be conducted on a continuous flow basis over the membrane. Diffusion dynamics may be effective in helping to transport these species to the membrane where they can be captured by their conjugate chemistry which has been deposited on the membrane. Transport to fiber walls may be further assisted by moderate ultrafiltration from the lumen side 906 to the extracapillary side of the hollow fiber 900 as illustrated in the schematic representation of FIG. 9 (arrows indicate direction of ultrafiltration flow). Ultrafiltration flow may occur through a coating 910 present on the lumen surface 906 of the hollow fiber 900. Flow may be stopped for segregating mixed cell populations as illustrated in the schematic representation of FIG. 10, wherein particles 1002 in the lumen of the hollow fiber 1000 are suspended in the lumen 1004 while flow through the lumen 1004 has stopped. When there is no flow, the particles 1002 (e.g., HSCs) may fall to the bottom 1006 of the hollow fiber 1000 as illustrated in the schematic representation of FIG. 11. At this point, target species (such as cells) may adhere to the surface(s) of the membrane and non-target species (such as cells or cellular debrix) may be washed from the membrane leaving target species contained on the membrane. In one example, when non-target species have been removed, a release mechanism (including but not limited to changing pH, changing temperature, displacing binder chemistry) may be used to release the association (such as a bond) between the membrane components and the target species (for example between an aptamer and a cell membrane antigen) leaving the target species in their native, unmodified state. For example, an aptamer may be cleaved by an appropriate nuclease to break the bond between an aptamer and a cell, to release the cell.


The membrane may comprise one or more coatings that are configured to attract, collect, and/or hold target cells, which may then be expanded. In the instance when the membrane is the hollow fibers of a hollow fiber bioreactor, the hollow fibers may comprise a coating on one or both of the lumen surface and the extracapillary surface of the hollow fibers. The coating provided in this disclosure may be a coating that is chemically linked to the membrane (e.g., through hydrophobic and hydrophilic interaction). In some examples, a base coating material may serve as a first coating layer, and a secondary coating material may serve as a secondary coating layer. These coating materials may be applied to a membrane sequentially or together. Examples of a first coating material may include fibronectin, vitronectin, any extracellular matrix (ECM) glycoprotein, collagen, enzyme, equivalents and/or combinations thereof, and/or any molecule or material that is capable of providing cellular adhesion to a membrane or other surface. Examples of a secondary coating material may include a soluble protein moiety, biotinylated molecules, an anti-biotin antibody, a biotin-binding and/or streptavidin-binding peptide, a streptavidin, an avidin, monoclonal antibodies, aptamers (e.g., aptamers targeted toward specific cell surface markers), cytokines (e.g., Interleukin (IL)-6, IL-21), chemokines (e.g., stromal cell-derived factor (SDF)-1), equivalents and/or combinations thereof.


The coating may be applied in a single chemical operation. For instance, a first molecule (e.g., the first-part coating material) and a second molecule (e.g., the second-part coating material) may be conjugated outside of the membrane and then coated onto the membrane at the same time. When formed by coating membranes of this disclosure may be used to (1) make a selective bioreactor to expand cells; and/or (2) create a filter that can capture a specific target cell or molecule (such as any biotinylated molecule or cell).


In one example, the membrane may comprise one or more materials that promote cellular adhesion to at least one surface of the substrate. For example, the coating may comprise the dimeric glycoprotein fibronectin, or a functional equivalent of fibronectin, such as the many known isoforms of fibronectin created through alternative splicing of its pre-mRNA, or other proteins that contain the integrin-binding sequence, Arg-Gly-Asp (RGD) of fibronectin proteins that provides the primary cell adhesive activity of fibronectin.


Additional useful coatings may include one or more protein moieties. Such protein moieties may be selected to target specific target cells present within a donor fluid. For example, the protein moiety may be a chemokine, such as stromal cell-derived factor-1 (SDF-1), which may be used to enhance collection of CD34+ HSCs from a donor fluid (e.g., when compared to an uncoated membrane or a membrane coated only with fibronectin). Another useful protein moiety in these coatings may be interleukin-21 (IL-21). Another useful protein moiety in these coatings may be the combination of SDF-1 and IL-21. Another useful protein moiety in these coatings may be the combination of fibronectin and SDF-1, as depicted in FIG. 12, wherein a coating 1210 comprising the combination of combination of fibronectin and SDF-1 is associated with the lumen surface of the hollow fiber 1200. Additional coatings of the membrane may be selected to target, collect, and/or hold the same or different cells from within a donor fluid.


In these methods, the membrane may be coated with a mixture of fibronectin and a soluble protein moiety as illustrated in the schematic representation of FIG. 12.


As depicted in FIG. 13, in these methods, a plurality of cells 1302 (such as a suspension of HSCs) may be introduced into the hollow fiber membrane 1300 having a coating 1310 on the lumen surface 1306.


In some implementations, the coated membrane may be coated with a mixture of fibronectin and a soluble protein moiety to capture biotinylated molecules, such as streptavidin, avidin, and/or anti-biotin antibodies and/or functional equivalents thereof.


As illustrated in the schematic representation of FIG. 15, in some examples, the lumen surface 1506 of the hollow fiber 1500 may have a coating 1510, which may be, for example, a coating comprising biotinylated molecules. In one example, this type of membrane coating may allow for target species 1502 (such as HSCs) within a suspension of non-target species 1503 (such as red blood cells) to be captured. The coated membrane may be used to isolate or captures target cells from a mixed population of cells. As depicted in FIG. 16, target cells 1502 may be captured by, for example, a protein moiety present in the coating 1510 on the lumen surface 1506 of the hollow fiber 1500. Following flushing 1550 of the hollow fiber 1500, non-target species 1503 are removed from the lumen 1504 of the hollow fiber 1500, while target species 1502 remain bound to the lumen surface 1506 of the hollow fiber 1500.


In these methods, a plurality of cells are directed into contact with a membrane, which may be a coated membrane of this disclosure, and expanded while in contact with the membrane. In the instance which a hollow fiber membrane is used in these methods, the plurality of cells may be introduced 1406 into hollow fibers of a hollow fiber bioreactor, wherein the hollow fibers each comprise an interior lumen and an extracapillary side, as described above. The plurality of cells may be first purified by various means prior to being directed into contact with the membrane. Alternatively, the plurality of cells may be directed into contact with the membrane without any initial purification, such as direct from collection from a donor source of cells (e.g. a collection of peripheral blood, or bone marrow, or cord blood (CB)), which may include introducing the plurality of cells into a plurality of hollow fibers without any prior purification. The cells may be directed into contact with the membrane and then left in that position to associate with the membrane, before additional circulation or movement against the membrane to “seed” additional cells on the membrane or remove residual cells or cellular debris from the membrane. When the membrane includes the hollow fibers of a hollow fiber bioreactor, this procedure may advantageously include circulating, with a pump, the plurality of cells within the lumen of the hollow fibers, and then stopping the pump to allow a portion of the plurality of cells to attach to a first portion of the lumen of the hollow fibers, and then rotating the hollow fiber bioreactor 180 degrees from an initial position before again circulating, with the pump, the plurality of cells within the lumen of the hollow fibers, and then stopping the pump to allow a portion of the plurality of cells to attach to a second portion of the lumen of the hollow fibers.


The cells may be expanded 1410 by exposing 1408 the cells in the hollow fibers to growth conditions. The growth conditions may include exposing the cells to one or more of a cell growth media, for example, by circulating a cell growth media through the lumen of hollow fibers of a hollow fiber bioreactor and/or through the extracapillary side of the hollow fibers. Alternatively or additionally, the growth conditions may comprise exposing the cells to one or more growth factors. Useful growth factors may include FMS-like Tyrosine Kinase 3 Ligand (Flt-3L), Stem Cell Factor (SCF), thrombopoietin (TPO), glial cell-derived neurotrophic factor (GDNF), interleukin-3 (IL-3), interleukin-6 (IL-6), IL-21, SDF-1, or combinations thereof. In the instance GDNF is present in the growth media, it may be particularly useful at a concentration of 0.5% to 2% weight per volume, such as at a concentration of about 10 ng/mL in the growth media.


Within these methods that use the membrane of hollow fibers of a hollow fiber bioreactor, a first media may be used in the lumen of the hollow fibers and a second media may be used in contact with the extracapillary side of the hollow fibers. In these methods, the media in the lumen may be concentrated in at least one component relative to the concentration of the same component on the extracapillary side of the hollow fibers. In these methods, the concentrated component may be GDNF, SR-1, SCF, TPO, Flt-3L, IL-3, IL-6, SDF-1, fibronectin, or combinations thereof. In these methods, the concentrated component may be concentrated at least five-fold, or at least ten-fold.


Another useful factor for expanding the cells may include an aryl hydrocarbon receptor antagonist, such as StemRegenin 1 (SR1) or UM171, which was developed at the University of Montreal and which is in clinical development for cell therapy by ExcellThera, Inc.


The coating may be used to provide a specialized environment for cell culture (e.g., when the coating comprises a base coating material, such as fibronectin, and a secondary coating material comprising a soluble protein moiety, such as SDF-1, IL-21). Accordingly, this disclosure provides compositions useful for expanding CD34+ HSCs. These compositions may comprise at least one of glial cell line-derived neurotrophic factor (GDNF), and an aryl hydrocarbon receptor (AHR) antagonist (such as SR-1). These compositions may also include at least one of SCF, TPO, Flt-3L, IL-3, IL-6, SDF-1, and fibronectin. In these compositions, GDNF may be is present at a concentration of 0.5% to 2% weight per volume, or at a concentration of at least 10 ng/mL. In these compositions, fibronectin and SDF-1 may be immobilized on a cell culture surface, such as a semi-permeable membrane. These compositions may increase levels of BCL2 and inhibit HSC differentiation.


The coated membranes of this disclosure may be used to provide a specialized environment to capture biotinylated molecules, such as streptavidin, avidin, anti-biotin, (e.g., when the coating comprises a first coating material, such as fibronectin, and a secondary coating material comprising a biotin capture moiety, such as biotinylated molecules, aptamers targeted toward specific cell surface markers, or soluble moieties such as a cytokine (e.g., IL-6)).


At least one benefit to the chemical coating described herein is the ability to manufacture membranes (e.g., hollow fiber membranes) having the coating in a sterile environment. A sterile package including the chemically coated, and sterilized, coated membrane may be opened and ready to use after removing the membrane from the package (e.g., without requiring further processing).


In one example, the Quantum® Cell Expansion System bioreactor hollow fiber membrane (HFM) may be coated with a coating material comprising streptavidin-fibronectin. This coating material may be used, for example, to select or isolate specific cell types when subsequently coupled with biotinylated cell-specific monoclonal antibodies (mAbs).


In some examples, a fibronectin-streptavidin foundation may be used as the coating material for the attachment of biotinylated molecules to functionalize the surface of a polyethersulfone HFM bioreactor, or preparatory columns, for cell selection. Fibronectin may bind to the polyethersulfone HFM in the Quantum® Cell Expansion System bioreactor through the adherence and expansion of adherent cells such as mesenchymal stromal/stem cells (MSCs), fibroblasts and aortic endothelial cells. This fibronectin-streptavidin conjugation may take advantage of a high affinity of streptavidin binding for biotin. While considering available protein coupling biochemistries, it may be important to keep the protocols direct and efficient with minimal residue or reactants to accommodate their adaption in the manufacturing of cell therapy products. In one example, fibronectin-streptavidin mixture or conjugate may be mixed and/or linked, which will allow the HFM bioreactor or column with biotinylated cytokines, chemokines, and/or other ligands to facilitate cell selection and/or expansion. Other affinity separations of biomolecules may also be used. In any case, this protein-protein conjugation can be viewed as a platform for affinity processes associated with cell therapy which uses available technology.


In these methods, a mixture of fibronectin and streptavidin may be used as the coating material for the coated membrane. This process may include reconstitution of lyophilized fibronectin and streptavidin (e.g., in a ratio of 1:3.3 by mass) in water at ambient temperature for approximately 30 minutes. After the conjugation of fibronectin-streptavidin, the mixture volume may be brought up to 100 mL with phosphate buffered saline w/o Ca2+-Mg2+ and introduced into the Quantum® Cell Expansion System using the “Coat Bioreactor” task for a sufficient period of time (e.g., 8 hours). After the bioreactor coating, excess unbound conjugated protein may be washed out and a selected biotinylated molecule, for example, cytokine (interleukin or growth factor), epitope, ligand, monoclonal antibody, stains, or aptamer, may be introduced into the Quantum® Cell Expansion System bioreactor using the “Coat Bioreactor” task for coupling to the fibronectin-streptavidin coating. Once complete, the resulting fibronectin-streptavidin-bioconjugate protein may be ready for use in cell selection or cell signaling (including differentiation) applications. Other applications may include the coating of preparatory HFM columns or matrixes which could be used for cell selection or differentiation prior to the introduction of cells into the Quantum® Cell Expansion System.


In these methods, recombinant or semi-synthetic fibronectin or fibrinogen may be substituted for plasma-derived fibronectin. Extracellular matrix proteins such as fibronectin may bind to the polyethersulfone hollow fiber membrane by virtue of polarity and hydrogen bonding. Fibronectin has a naturally adhesive nature due to its glycoprotein structure and specific domains which may allow fibronectin to bind to both polyethersulfone and cell membrane integrins.


In one example, the covalent coupling of fibronectin to streptavidin, using a similar mass ratio as outlined above, may be achieved using a streptavidin conjugation kit. This kit may make use of a specific linkage modifier and quencher chemistry to generate a covalent linkage between fibronectin and streptavidin in a time period of 30 minutes to 24 hours, and in some implementations in a time period of 3 hours to 15 hours. In some examples, the time to generate a covalent linkage between fibronectin and streptavidin may be approximately 4 hours, plus or minus 30 minutes. The affinity of the chosen biotinylated molecule to streptavidin, in the covalent coating method, may be similar to the affinity of the biotinylated molecule in the fibronectin-streptavidin mixture coating method. One advantage of the covalent approach may include an improved stability of the fibronectin-streptavidin coupling.


The coupling of streptavidin-biotinylated molecules to fibronectin using a molar ratio, for example, of 1:3 (fibronectin:streptavidin) may be useful. In some examples, the coupling of the fibronectin-streptavidin biotinylated molecules to the HFM bioreactor may be a two-step process. This conjugation coating chemistry may be a platform for binding an array of biotinylated molecules for cell selection, stimulation, expansion, or differentiation.


Fibronectin-streptavidin protein conjugate may be selected as an adhesion molecule for the Quantum® Cell Expansion System bioreactor. Coupling biotinylated cell-specific mAbs or protein epitopes to the fibronectin-streptavidin conjugate may exploit the high affinity of streptavidin for biotin at a specific ratio of up to and including 1:4 with an approximate disassociation constant of Kd=10−14 to 10−15 M. Examples of biotinylated antibodies or epitopes which are cell-specific may include anti-CD3 mAb for parent T cells, anti-CD4/CD25 mAb for human T-reg cells, anti-CD8 mAb for human T-effector cells, anti-CD34 mAb for hematopoietic stem cells, or anti-CD56 mAb for NK cells. The streptavidin-biotin linkage may comprise a strong non-covalent linkage and, as such, this functional specificity can be used to select for virtually any cell type by simply changing the specificity of the biotinylated mAb conjugate. In addition, it is also possible that the reverse approach could be utilized where biotinylated-fibronectin would couple with streptavidin-cell specific mAb, which could be used to select cells of interest. If the first approach were used, then the biotinylation of mAbs, with the small biotin molecule (m.w. 244.3 Daltons), is less likely to affect mAb binding or cell antigen recognition. Secondly, the net negative charge and lack of glycosylation streptavidin may serve to minimize the non-specific binding of cells. This concept can leverage the highly specific interaction and versatility of the streptavidin-biotin interaction to provide a better adhesion system. In some examples, cells may be enzymatically separated from the streptavidin-fibronectin-biotin-mAb-cell complex by enzymatically cleaving the DNase-sensitive linker.


Accordingly, this disclosure also provides a coated membrane, and methods of making and using the same. These coated membranes may be hollow fibers, including those hollow fibers used in hollow fiber bioreactors. These coated hollow fiber membranes may include lumen surface and an extracapillary surface and have a first coating on at least one of the lumen surface and an extracapillary surface. The first coating may comprise a material that promotes cellular adhesion to at least one of the lumen surface and an extracapillary surface. The second coating on at least one of the lumen surface and an extracapillary surface, may comprise a soluble protein moiety. In these coated hollow fiber membranes, the first coating may comprise fibronectin. In these coatings, the second coating may comprise at least one of a cytokine, an aptamer, a chemokine (for example, SDF-1 or IL-21), a monoclonal antibody, streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. These membranes may be composed of a material comprising polysulfone or polyethersulfone.


In these coated hollow fiber membranes, the amount of the fibronectin coating the hollow fiber may be 0.001 μg/cm2 to 2 μg/cm2, or may be 0.01 μg/cm2 to 1.0 μg/cm2, or may be 0.10 μg/cm2 to 0.50 μg/cm2, or may be 0.20 μg/cm2 to 0.40 μg/cm2, or may be 0.23 μg/cm2 to 0.24 μg/cm2. In these coated hollow fiber membranes, the amount of the SDF-1 coating the hollow fiber may be 0.001 ng/cm2 to 0.30 ng/cm2, or may be 0.01 ng/cm2 to 0.10 ng/cm2, or may be 0.05 ng/cm2 to 0.09 ng/cm2, or may be 0.075 ng/cm2.


This disclosure also provides methods of forming a coated hollow fiber membrane. These methods include providing a hollow fiber membrane having a lumen surface and an extracapillary surface, and applying a first coating onto the lumen surface of the hollow fiber membrane, and applying a second coating onto the lumen surface of the hollow fiber membrane. In these methods, the first coating may comprise a material that promotes cellular adhesion to at least one of the lumen of the hollow fiber membrane and the extracapillary surface of the hollow fiber membrane (such as fibronectin) and the second coating may comprise a soluble protein moiety, such as one or more of one of a cytokine, an aptamer, a chemokine, a monoclonal antibody, streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. In these methods, applying the first coating and the second coating material may comprise conjugating a first coating material and a second coating material into a conjugate apart from the hollow fiber membrane and coating the conjugate onto the lumen surface of the hollow fiber membrane. These methods may include applying the first coating onto the extracapillary surface of the hollow fiber membrane and/or applying the second coating onto the extracapillary surface of the hollow fiber membrane. In these methods, the first coating may be fibronectin, and the second coating may be SDF-1 or interleukin-21 IL-21.


As described herein, the bioreactor (e.g., the HFM, the hollow fiber device, and/or the hollow fibers) may be coated sequentially. Sequentially coating the bioreactor may provide enhanced exposure to the SDF-1 moiety over time. For instance, in accordance with an example protocol, on Day −2 (e.g., two days before seeding): the bioreactor HFM may be coated with fibronectin (e.g., using the “Coat Bioreactor” task described above), on Day −1 (e.g., one day before seeding): the bioreactor HFM may be coated with SDF-1 (e.g., using the “Coat Bioreactor” task described above), and on Day 0 (e.g., the day of seeding): the bioreactor may be seeded with CB-derived CD34+ HSCs. In some examples, each coating may take between 8 hours and 24 hours to complete.


In these methods, the cells in contact with the membrane (such as cells within the lumen of a plurality of hollow fibers) may be expanded by growing in a monoculture (i.e., substantially in the absence of other cell types) or in a co-culture (i.e., in the presence of other cell types). For example, in these methods, CD34+ HSCs expanded in hollow fibers may be expanded in monoculture, wherein no additional cell type is co-cultured with the CD34+ HSCs in the hollow fibers. In these methods in which CD34+ HSCs are expanded in hollow fibers in monoculture, the hollow fibers may comprise a coating comprising SDF-1 and fibronectin on at least one of the lumen surface and the extracapillary surface of the hollow fibers. In these methods, CD34+ HSCs are advantageously expanded in the presence of SDF-1 and fibronectin without the need for other cells in co-culture.


In these methods, the plurality of cells (such as CD34+ HSCs) may be expanded by growing in co-culture. CD34+ HSCs may be expanded in co-culture with mesenchymal stem cells. In these methods, cells to be grown in co-culture (such as mesenchymal stem cells) may be introduced into the hollow fibers before introducing the plurality of cells for expansion into the hollow fibers. The cells to be grown in co-culture (such as mesenchymal stem cells) may be grown in monoculture in the hollow fibers (such as by exposing the mesenchymal stem cells in the hollow fibers to growth conditions) before introducing the plurality of cells (such as CD34+ HSCs) to be expanded. Alternatively or additionally, the plurality of cells (such as CD34+ HSCs) to be expanded may first be grown in co-culture (such as in co-culture with mesenchymal stem cells) in a static growth chamber (such as traditional cell culture wells or flasks) before removing all or a portion of the plurality of cells (such as CD34+ HSCs) to be expanded from the static growth chamber and introducing the plurality of cells from the static growth chamber into the hollow fibers.


In these methods, the expansion of the cells may be advantageously sufficient to expand a plurality of cells comprising CD34+ HSCs obtained from a single unit of blood or tissue to a plurality of expanded cells sufficient for at least one engraftment procedure for a human recipient. In these instances, the single unit of blood may be cord blood, or the single unit of tissue may be bone marrow.


In these methods, the expanded cells comprising CD34+ HSCs may have at least 90% viability after expansion. In these methods, the expanded cells comprising CD34+ HSCs may be expanded at least 50-fold.


In some examples, this disclosure provides a method and device for the isolation of a target species, for example a target cell or a target molecule, from a mixed population of non-target species. Isolation of a target cell from a mixed population of cells may be used to describe the method and device. A hollow fiber device similar to a hemodialyzer may be used in the cell isolation procedures. As described above, the intracapillary (lumen) walls of hollow fibers may be coated such that a specific binding reagent (e.g., coating materials) is uniformly attached to the intracapillary surface of the hollow fiber device. Additionally or alternatively, the extracapillary walls of the hollow fibers may be treated with a binding reagent, increasing a surface area (e.g., for molecular capture).


The binding reagent may, for example, correspond to a monoclonal antibody (mAb) or a sequenced aptamer. The binding reagent may be selected such that the binding reagent has a specificity for a receptor molecule on the surface of the target cell to be isolated. For instance, if T-cells are to be separated from a mononuclear cell (MNC) collection, a binding reagent with specificity for the CD3, CD4, CD8, and/or a combination of T-cell markers may be affixed (e.g., applied, coated, deposited) to the intracapillary surface and/or the extracapillary surface of a hollow fiber forming the membrane. One example of a method of isolating T-cells from the mixed cell population may include attaching antibodies or aptamers to a cell prior to introduction to the membrane and then passed over a streptavidin-coated membrane, such as a streptavidin-coated hollow fiber. In another example, a counter-flow confinement (CFC) approach is used, wherein a collection of cells may be flowed into the lumen side of the hollow fiber membrane. Once the cells are contained within the lumen side of the membrane, counterflow may be minimized to a level sufficient to retain the cells within the fibers. Once target cells are bound to the lumen surface, both longitudinal flow (lumen inlet header to lumen outlet header) and ultrafiltration flow may be used to remove unbound cells from the lumen of the hollow fiber.


In some examples, a release agent may be used to facilitate detachment of target cells from their binding sites (e.g., facilitating target cell harvest). The release agent may be flowed either longitudinally or with ultrafiltration or with both.


Although examples may be described herein in conjunction with a hollow fiber device (e.g., a bioreactor or other device comprising coated membranes arranged as hollow fibers), it should be appreciated that any membrane capable of receiving a coating can be used. For instance, any one or more of the following devices may be used to receive the various coatings and/or perform the methods described herein: large surface area hollow fiber device, a dialyzer (e.g., hemodialyzer), a cell-capture column (e.g., magnetic cell sorting, a magnetic column apparatus), a polysulfone membrane filter device, a cell processing system, and the like.


In these methods, at least a portion of the plurality of expanded cells may be removed 1412 from the membrane (such as the hollow fibers of a hollow fiber bioreactor). The expanded cells may then be stored, or used for transplantation or administration within other therapeutic procedures for a patient, such as a cancer treatment protocol. In these methods, administering the plurality of expanded cells to a patient may reconstitute hematopoiesis in the patient.


Human leukocyte antigen (HLA)-8-allele matched cord blood (CB) transplantation is an allogeneic procedure for the treatment of certain hematological malignancies, hemoglobinopathies, and autoimmune disorders. CB-derived CD34+ stem cells and progenitor cells may be selected for hematopoietic reconstitution because of their increased capacity for self-renewal and proliferation, longer telomeres, and lower incidence of graft vs. host disease (GVHD) through a lower frequency of alloreactive T cells along with their ability to achieve rapid engraftment in hematological transplant recipients. However, one of the challenges in this setting, is to provide a sufficient number of T cell-depleted hematopoietic stem and progenitor cells which may be necessary to support mixed allogeneic hematopoietic stem cell transplantation (HSCT). Only about 4%-5% of the cord blood units stored in CB banks contain a sufficient number of CD34+ HSCs for single unit grafts (≥1.05×107 CD34+ HSCs) or for double unit grafts (≥1.40×107 CD34+ HSCs) for 70 kg patients.


Methods to expand cord blood-derived CD34+ HSCs, in either co-culture with mesenchymal stromal cells or with small molecules in combination with various cytokine supplements, frequently rely on inoculums of 4-6×106 or more CD34+ HSCs from cord blood units (CBUs). In some implementations (e.g., to extend the range of stored CBUs), a monoculture expansion protocol is provided for low initial seeding of 2×106 preselected cord blood-derived CD34+ HSCs in a cell processing system (e.g., the Quantum® cell expansion system's perfusion-based, 2-chambered, semi-permeable hollow fiber membrane (HFM) bioreactor) using a primary cytokine cocktail comprised of recombinant human-stem cell factor (SCF), -thrombopoietin (TPO), -fms-like tyrosine kinase 3 ligand (Flt3L), -interleukin 3 (IL-3), and 13 interleukin 6 (IL-6) at one-tenth of the manufacturer's recommended concentration. This cytokine cocktail may be further supplemented with recombinant human glial cell-derived neurotrophic factor (rhGDNF) to, for instance, maintain cell viability and combined with the aryl hydrocarbon receptor (AHR) antagonist SR-1. GDNF may upregulate the expression of the anti-apoptotic gene BCL2 in human CB-CD34+ cell progenitors and SR-1 may limit HSC differentiation during CD34+ HSC expansion when implemented with other HSC cytokines. The proximity of mesenchymal stromal cells (MSCs) and hematopoietic stem and progenitor (HSPCs) in the bone marrow sinusoids, coupled with the perivascular support of HSPCs by SCF from CD146+ MSCs, may contribute to their inclusion in hematopoietic co-culture processes. However attractive, the co-culture of MSCs and HSPCs adds complexity, time, and potential variability to the stem cell and progenitor expansion process. Even so, MSC/HSPC co-culture may provide alternative production strategies in CB-derived CD34+ HSCs. Automating the hematopoietic cell and progenitor expansion process may provide a dependable quantity of selected cells for therapeutic indications.


Moreover, the Quantum® System may support the expansion of both adherent MSCs as well as suspension CD3+ T cells and Regulatory T cells with a perfusion-based HFM bioreactor. In the CB-derived CD34+ cell expansion method described herein, the intercapillary (IC) HFM lumen of the bioreactor may be coated with a mixture of human fibronectin (Fn) and the chemokine stromal derived factor 1 (SDF-1) prior to cell seeding in order to mimic the stimulatory and homing effects of bone marrow-derived or Wharton's Jelly-derived mesenchymal stromal cells. The preselected CB-derived CD34+ HSCs may be subsequently propagated under suspension culture conditions, and allowed to adhere to the coated-HFM IC-surface during this process, for example, to engage with the Fn-SDF-1 modified surface. In some cases, immobilized SDF-1 may be required to develop integrin-mediated cell adhesion of CD34+ HSCs by VLA-4 integrin to murine endothelial cells. In this context, hydrogel immobilization of SCF and SDF1α along with the incorporation of the PEG-RGD integrin recognition sequence onto the cell culture surface recapitulates certain aspects of the bone marrow microenvironment. The implementations and examples described herein provide expanding CB-derived CD34+ HSCs with a modified extracellular matrix protein.


In one example, a method and/or system for the automated monoculture expansion of CB-derived HSCs and progenitor cells beginning with mixed, positively selected CB-derived CD34+ HSCs is provided. These cells may be resuspended in serum-free medium and supplemented with a defined hematopoietic cytokine cocktail and expanded under a programmed, but modifiable, perfusion protocol for a period of 8 days, for example, to minimize T cell differentiation in the Fn-SDF-1 coated HFM bioreactor system. Quantum® System-expanded CB-derived CD34+ HSCs may generate a sufficient quantity of cells to support both single and double unit minimal CD34+ dose equivalency while conserving the CD34+ phenotype and with a minimal frequency of lymphocytes. Furthermore, these CB-derived expanded progenitor cells may demonstrate their ability to differentiate into mature hematopoietic colony forming units (CFUs) under methylcellulose assay conditions.


In an example implementation, three master lots of cord blood derived, preselected, mixed CD34+ HSCs may be expanded in an about 2.1 m2 HFM bioreactor with an about 124 mL perfusion-culture volume and harvested using an automated suspension cell protocol. Cells may be introduced into the intracapillary loop (e.g., the IC loop) of the HFM bioreactor through a defined perfusion protocol and maintained within the lumen of the bioreactor with a custom counter-flow fluidics program.


As noted above, the membranes of this disclosure may be used to effectively create a membrane that can capture a specific target cell or molecule. Thus, this disclosure also provides methods of capturing cells. Flow 2400 may be performed in embodiments to capture cells, such as CD34+ HSCs. Flow 2400 starts at step 2404 and proceeds to step 2414 where captured target cells (e.g., HSC's) may be removed from a bioreactor. These methods include introducing 2406 a mixture of target species, such as cells or molecules, and non-target species onto a membrane of this disclosure (such as into hollow fibers of a hollow fiber bioreactor wherein the hollow fibers each comprise an interior lumen and an extracapillary side). As described in detail above, these membranes comprise a coating on at least one surface of the membrane comprising at least one of a material that promotes cellular adhesion, and a protein moiety. In the instance of using a hollow fiber membrane, one or both of the lumen surface and the extracapillary surface of the hollow fibers may be coated with the material that promotes cellular adhesion and/or a protein moiety.


The mixture of species in contact with the membrane may be exposed 2408 to conditions that enhance the association of the target species with the membrane (i.e., “capture conditions”) 2410. Examples of capture conditions may include changes in pH, temperature, tonicity, and/or the addition or subtraction of compounds that enhance the association of the target species with the membrane. The implementation of the capture conditions may effectively capture at least a portion of the target cells on a surface of the membrane (such as at least one of the lumen and the extracapillary surface of hollow fibers). Thereafter, at least a portion of the non-target species may be flushed 2412 from the membrane (such as from the lumen of hollow fibers). In these capture methods, the target species may be, for example, CD34+ HSCs and the non-target species may be, for example, additional cell types or cellular debris or blood proteins.


In these capture methods, the coating material on the membrane that promotes cellular adhesion to a surface of the membrane may comprise fibronectin. In these capture methods, the protein moiety may be at least one of stromal cell-derived factor-1 (SDF-1), interleukin-21 (IL-21), streptavidin, avidin, and anti-biotin antibodies or functional fragments thereof. In these capture methods, the coating may comprise fibronectin and SDF-1. In these methods of capturing target cell species (such as CD34+ HSCs), after flushing at least a portion of the non-target cells from the membrane, the captured target cells may then be expanded, for example, by changing the media and/or other conditions at the membrane to enhance growth and expansion of the captured cells, such as CD34+ HSCs. These capture methods may include removing at least a portion of the captured target species (such as CD34+ HSCs) from the membranes. These captured species may be removed 2414 from the membrane after capture of the target species and flushing to remove non-target species, or after the target cell species have been expanded after capture, as described above.


This disclosure also provides methods of capturing cells, using the interaction of biotin and avidin. These methods include introducing a mixture of target species and non-target species into hollow fibers. In these methods, the hollow fibers each comprise an interior lumen and an extracapillary side, and the hollow fibers may comprise a coating on at least one of the lumen surface and the extracapillary surface of the hollow fibers. In these methods, the coating may comprise at least one of streptavidin, avidin, a biotinylated molecule, and an anti-biotin antibody or a functional fragment thereof. In these methods, the target and/or non-target species may be cells (e.g., HSCs) or molecules. In these methods, the mixture of target and non-target species may be exposed to capture conditions, to capture at least a portion of the target species on at least one of the lumen and the extracapillary surface of the hollow fibers. At least a portion of the non-target species may then be flushed from the hollow fibers. In these methods, the target cells introduced into the hollow fibers may comprise biotinylated aptamers or biotinylated antibodies that bind to the coating on the at least one of the lumen surface and the extracapillary surface of the hollow fibers.


These methods in which the target species are cells may include, after flushing at least a portion of the non-target cells from the hollow fibers, the portion of the target cells that are captured on a surface of the hollow fibers may be exposed to growth conditions to expand the portion of the target cells captured in the hollow fibers thereby generating a plurality of expanded target cells. In these methods, after capture of the target cells and flushing of the non-target cells, at least a portion of the captured target cells may be removed from the hollow fibers.


This disclosure also provides methods of expanding cells by perfusion in a cell expansion system. These methods may include coating a hollow fiber bioreactor with a first fluid, wherein the first fluid comprises a signaling factor and/or a coating factor. A plurality of cells may be introduced into the hollow fiber bioreactor, wherein the hollow fiber bioreactor comprises a hollow fiber membrane. The plurality of cells may be exposed to a second fluid, wherein the second fluid comprises a plurality of growth factors. The plurality of cells in the hollow fiber bioreactor may be grown in monoculture or in coculture. In these methods, the first fluid may comprise at least one of fibronectin and SDF-1. In these methods, the fibronectin and the SDF-1 may be mixed together prior to coating the hollow fiber bioreactor. In these methods, the hollow fiber bioreactor may be coated sequentially by coating the hollow fiber bioreactor with the fibronectin and then coating the hollow fiber bioreactor with the SDF-1. In these methods, the hollow fiber bioreactor may be coated sequentially by coating the hollow fiber bioreactor with the SDF-1 and then coating the hollow fiber bioreactor with the fibronectin. In these methods, an amount of the fibronectin used to coat the hollow fiber bioreactor may be 0.001 μg/cm2 to 2 μg/cm2, or 0.01 μg/cm2 to 1.0 μg/cm2, or 0.10 μg/cm2 to 0.50 μg/cm2, or 0.20 μg/cm2 to 0.40 μg/cm2, or 0.23 μg/cm2 to 0.24 μg/cm2. In these methods, an amount of the SDF-1 used to coat the hollow fiber bioreactor may be 0.001 ng/cm2 to 0.30 ng/cm2, 0.01 ng/cm2 to 0.10 ng/cm2, or 0.05 ng/cm2 to 0.09 ng/cm2, or 0.075 ng/cm2.


In these methods, the second fluid may comprise GDNF. In these methods, an amount of the GDNF in the second fluid may be 0.001 ng/mL to 40.0 ng/mL, or 0.01 ng/mL to 20 ng/mL, or 0.10 ng/mL to 15 ng/mL, or 1.0 ng/mL to 15 ng/mL, or 5.0 ng/mL to 15 ng/mL, or 10 ng/mL.


In these methods, the plurality of growth factors may comprise at least one of SCF, TPO, Flt-3L, IL-3, and IL-6. In these methods the second fluid may comprise StemRegenin (SR-1). In these methods an amount of the SR-1 in the second fluid may be 0.001 μM to 3.0 μM, or 0.01 μM to 2.0 μM, or 0.10 μM to 1.0 μM, or 0.75 μM.


In these methods, prior to introducing the plurality of cells into the hollow fiber bioreactor, hollow fiber bioreactor may be coated for a predetermined time period with a mixture of 5 mg of human plasma-derived fibronectin or 0.23-0.24 μg/cm2 of fibronectin and recombinant human Stem Cell Derived Factor 1 (SDF-1) at 0.075 ng/cm2. In these methods, the predetermined time period is 4.0 hours to 16.0 hours, or 8.0 hours to 12.0 hours.


EXAMPLES
Example 1. Short Expansion Strategy for Cord Blood-Derived CD34+ HSCs in the Quantum® System

Human cord blood-derived CD34+ hematopoietic stem cells (HSCs) expanded for 8 days or less engrafted more successfully in a humanized, immunodeficient murine model than cells expanded for greater than 8 days. Expanding cord blood-derived CD34+ HSCs for 8 days or less resulted in BALB/C-RAG2 null IL-2r-gamma null murine model humanized mice (Clinical Immunology, 140:102-116, 2011) displaying more consistent human hematopoietic and lymphoid engraftment.


Implementations provide for reducing, or shortening, the time period(s) for the expansion of cells, e.g., CD34+ HSCs and/or CB-CD34+ HSCs, while improving, for example, cell yield, phenotype and functionality. An implementation provides for an inoculum expansion and Quantum® system expansion of HSC CB-CD34+ HSCs in co-culture with mesenchymal stem cells (MSCs), an in situ source of SDF-1, for about 14 days. Further implementations provide for improving, for example, yield, phenotype and functionality with a shortened monoculture protocol. Human cord blood-derived CD34+ HSCs may be expanded in two phases, for example: (1) Inoculum prep expansion of about 1 million CB-CD34+ HSCs in a T25 flask for about 3 days, followed by (2) the expansion of viable CD34+ HSCs by perfusion in the Quantum® Cell Expansion System for about 5 days to maintain the HSC phenotype of CD34+CD38-CD133+ and related engraftment function by using a monoculture technique with fibronectin-immobilized SDF-1 and other growth factors/cytokines. For example, implementations provide for: (1) the use of a shortened timeline for cell expansion of about 8 days: in flask for about 3 days and in the Quantum® System for about 5 days using, for example, (1) an immobilized SDF-1 signaling factor coupled with (2) a novel growth factor cocktail utilizing, for example, one or more of: SCF, TPO, Flt-3L, IL-3, IL-6, GNDF±SR-1, and combinations thereof, in monoculture. In an implementation, a monoculture protocol(s), e.g., a shortened monoculture protocol(s), may use a bi-directional cell reseeding task(s) in the Quantum® System, for example.


CD34+ Mixed Cell Expansion
Flask Study

In an example, a pilot flask study is conducted over seven days. Cord blood-derived CD34+ HSCs were grown at 37° C. with CO2 CD34 complete medium without shaking. Cells were seeded on day 1 at 1×105 cells/mL in 7 mL and harvested at day 7. A yield of 5,700,000 was considered optimal. CD34 medium produces 11,800,000 cells, while CD34 medium at 1:10 dilution in complete medium produced 9,200,000 cells and CD34 medium at 1:20 dilution produced 5,900,000 cells. Cell viability was 86.2%, 90.3%, and 90.1% for undiluted, 1:10 dilution, and 1:20 dilution CD34 medium, respectively (n=2 per arm, with cells counts performed in triplicate).


Freeze-Thaw Study

The feasibility of expanding thawed, mixed cord blood-derived CD34+ HSCs (Stem Cell Technologies, Lot 1907519003, was tested. The cells (1.1×106 and 2. 1×106 CB-derived CD34+ HSCs are seeded in two, separate monoculture Quantum runs, respectively) were cultured in SCGM media (Cat. 20802-0500, CellGenix GmbH, Freiburg, Germany) with a modified supplement cocktail (StemSpan™ CD34+supplement at I % by volume plus GDNF and SR-I) using fibronectin-immobilized SDF-1 coated surfaces in T25 flasks. Both the flasks and the Quantum CESs are coated overnight at 37° C. with the Fibronetin-SDF-1 protein mixture prior to cell seeding. Fluidics-wise, flasks were in a static condition, whereas the Quantum systems were perfused overnight (12-15 hours) using the Quantum CES “Coat Bioreactor” Task (IC Inlet@ 0 mL/min, IC Circ@ 20 mL/min with Fn/SDF-1, EC Inlet@ 0.1 mL/min with PS, and EC Circ@ 30 mL/min, EC outlet). The cells were cultured for 3 days and in the Quantum® System hollow fiber membrane (HFM) bioreactor for a period of 5 days.


In the feasibility study, two media formulations with SCF, TPO, Flt-3L, IL-3, IL-6, and GNDF and with or without SR-1 cocktail are evaluated for their ability to support the expansion of CB-derived CD34+ HSCs in monoculture. Both experimental arms are seeded with 1×106 cells in T25 flasks. On day 3, the Q1893 (without SR-1) Quantum® system and Q1894 (with SR-1) Quantum® system are seeded with cell inoculums from their respective flask cultures.


On day 8, harvest yields are 4.49×107 cells without SR-1 (viability 98.5%) and 5.57×107 (viability 98.8%) cells with SR-1. Flow cytometry analysis of the cryopreserved hematopoietic stem cell Quantum® system harvest phenotype indicated the CD34+ cell fraction was 1.40×107 cells or 31.1% of the total harvest without SR-1 and 2.1×107 or 37.7% of the total harvest with SR-1. The minimum and maximum CD34+ doses are 7,000,000 and 10,500,000 cells, respectively.


Example 2. Monoculture Expansion Strategy for Cord Blood-Derived CD34+ HSCs in the Quantum® System

An implementation provides an automated expansion protocol for CB-derived CD34+ HSCs in the Quantum® system's dynamic perfusion-based, 2-chambered, semi-permeable hollow fiber membrane (HFM) bioreactor using a novel cytokine cocktail that may be comprised of, for example, SCF, TPO, Flt-3L, IL-3, IL-6, and Fibronectin-SDF-1 coated membrane, and the cocktail can be supplemented with GDNF and SR-1. In addition, the intracapillary (IC) HFM lumen may be coated with a mixture of human fibronectin and the chemokine SDF-1 to mimic the stimulatory and homing effects of bone marrow-derived mesenchymal stromal cells.


In a series of tests of this automated expansion protocol, three master lots of thawed cord blood (CB) derived, preselected, mixed CD34+ HSCs are expanded in an about 2. 1m2 HFM bioreactor with an about 124 mL IC volume with an initial cell seeding of 2.0×106 of the CD34+ HSCs. First, cells are resuspended in SCGM base medium supplemented with the growth factor cocktail. The cells are thawed at 37° C. in a water bath, washed in 23 mL of complete medium, and resuspended in 50 mL of complete serum-free GMP SCGM medium (Cat. 20802-0500, CellGenix GmbH, Freiburg, Germany) supplemented with StemSpan™ CD34 Supplement 10X (Cat. 2691, Stem Cell Technologies, Vancouver, BC, Canada), which contains recombinant human FMS-like tyrosine kinase 3 ligand (F1t31), stem cell factor (SCF), thrombopoietin (TPO), interleukin 3 (IL-3), and interleukin 6 (IL-6) at a concentration of 1% by volume, Glial cell-derived neurotrophic factor (GDNF) at 10 ng/mL (Cat. 212-GD-050, R&D Systems, Minneapolis, MN, USA), StemRegenin I (SR-1) at 0.75 1.1M (Cat. 72342, Stem Cell Technologies, Vancouver, Canada), and Penicillin-Streptomycin-Neomycin (PSN) antibiotic mixture 100X at I % by volume (Cat. 15640-055, ThermoFisher Scientific, Waltham, MA, USA). Base medium may be formulated with serum-free GMP SCGM supplemented with SR-I and PSN antibiotic mixture.


Prior to seeding the CD34+ HSC inoculum, the Quantum® System HFM bioreactor (S. A. of 21,000 cm2) is coated overnight with a mixture of 5 mg of human plasma-derived fibronectin (or 0.23-0.24 μg/cm2, Cat. 356008, Corning Life Sciences, Corning, N.Y., USA) and recombinant human Stem Cell Derived Factor 1 (SDF-1) at 0.075 ng/cm2 (Cat. 6448-SD, R&D Systems, Minneapolis, Minn., USA) in 100 mL of PBS w/o Ca2+—Mg2+ (Cat. 17-516Q, Lonza Group, Walkersville, Md., USA) at a temperature of 37° C. and mixed gas (5% CO2, 20% O2, balance N2).


The cells were then introduced into the intracapillary loop (e.g., the IC loop) of the HFM bioreactor through a defined perfusion protocol and maintained within the lumen of the bioreactor with a custom counter-flow fluidics program. CB-derived CD34+ HSCs were seeded in suspension into the coated HFM bioreactor in 50 mL of complete medium (serum-free GMP SCGM base medium with the following cytokine cocktail: SCF, TPO, Flt-3L, IL-3, IL-6, GDNF, and SR-1) after lumen and extracapillary medium exchange and conditioning (cell expansion medium is conditioned in the Quantum CES by circulating the medium by perfusion through the IE/EC loops of Quantum system bioreactor for at least 10 minutes using the Quantum embedded task entitled “Condition Media” with the following circulation rates: IC Circ @ 100 mL/min, EC Circ @ 250 mL/min, and EC Inlet @ 0.1 mL/min. This equilibrates the mixed gas (20% O2, 5% CO2, and balance N2) in the bioreactor medium by gas exchange in the EC Loop via gas transfer module), expanded in monoculture, and harvested on day 8 of cell culture using Quantum® System automated tasks, as outlined in the automated task settings shown in following Tables 1-3:









TABLE 1







(enlarged Part 1 of 3): Quantum CD34+ Cell Seeding Task(s)





















Cell Line
PBS

Cell Line
None
Cell Line
Cells





IC Media
N/A

IC Media Line
Complete
IC Media
Complete





Line




Line






EC Media
N/A

EC Media Line
Base
EC Media
Base





Line




Line






Reagent
N/A
Fn + SDF-1
Reagent Line
None
Reagent Line
None





Line











Wash Line
N/A

Wash Line
None
Wash Line
None















Day −1 to 0
Day 0 to 2

















Load




Load CD34+ Cells



















Expansion

Coat

Condition
(2-20 × 106 cells)
Condition BR
Feed Cells
















Set
Prime
Bioreactor
IC EC Washout
Media
Custom 1 (Load Cells and Feed for 2 Days)















Quantum System Prep
Step 1
Step 2
Step 3
Step 4



















STEP 1
STEP 2
STEP 3
STEP 4
STEP 5
STEP 5
STEP 6
STEP 7
STEP 8





Task Settings
IC inlet
Default
Default
Default
EC media
None
Cell
IC Media
IC Media
IC Media



IC inlet rate
settings
settings
settings
100
0
50
50
80
0.1



IC circ rate



−17
20
0
0
−40
−0.1



EC inlet



EC Media
None
None
None
None
None



EC inlet rate



148
0
0
0
0
0



EC circ rate



−1.7
30
30
30
30
30



Outlet



IC and EC
EC outlet
IC outlet
IC outlet
EC outlet
EC outlet







outlet








Rocker



In Motion
Stationary (0°)
In Motion
In Motion
In Motion
Stationary (0°)







(−90°, 180°, 1 sec)

(−90°, 180°, 1 sec)
(−90°, 180°, 1 sec)
(−90°, 180°, 1 sec)




Stop



Exchange
Manual
Empty bag
IC volume
IC Volume
Manual



condition



(2.5 IC volume;
(≥10 min)

(50 ml)
(310 mL)
(2880 min)







2.5 EC volume)














(enlarged Part 2 of 3): Quantum CD34+ Cell Seeding Task(s)























Cell Line
PBS

Cell Line
None








IC Media
N/A

IC Media Line
Complete








Line












EC Media
N/A

EC Media
Base








Line


Line









Reagent
N/A
Fn + SDF-1
Reagent Line
None








Line












Wash Line
N/A

Wash Line
None


















Day −1 to 0























Load












Expansion

Coat
IC EC
Condition








Set
Prime
Bioreactor
Washout
Media



















Quantum System Prep























STEP 1
STEP 2
STEP 3
STEP 4
STEP 5









Task Settings
IC inlet
Default
Default
Default
EC media
None







IC inlet rate
settings
settings
settings
100
0







IC circ rate



−17
20







EC inlet



EC Media
None







EC inlet rate



148
0







EC circ rate



−1.7
30







Outlet



IC and EC
EC outlet











outlet








Rocker



In Motion
Stationary (0°)











(−90°, 180°, 1 sec)








Stop



Exchange
Manual







condition



(2.5 IC volume;
(≥10 min)











2.5 EC volume)

















(enlarged Part 3 of 3): Quantum CD34+ Cell Seeding Task(s)
























Cell Line
Cells











IC Media Line
Complete











EC Media Line
Base











Reagent Line
None











Wash Line
None

















Day 0 to 2























Load CD34+ Cells











(2-20 × 106 cells)
Condition BR
Feed Cells




















Custom 1 (Load Cells and Feed for 2 Days)























Step 1
Step 2
Step 3
Step 4

























STEP 5
STEP 6
STEP 7
STEP 8













Cell
IC Media
IC Media
IC Media










50
50
80
0.1










0
0
−40
−0.1










None
None
None
None










0
0
0
0










30
30
30
30










IC outlet
IC outlet
EC outlet
EC outlet










In Motion
In Motion
In Motion
Stationary (0°)










(−90°, 180°, 1 sec)
(−90°, 180°, 1 sec)
(−90°, 180°, 1 sec)











Empty bag
IC volume
IC Volume
Manual











(50 ml)
(310 mL)
(2880 min)
















TABLE 2





Quantum CD34+ Cell Redistribution and Increase Feeding Task(s)
















Cell Line
None


IC Media Line
Complete


EC Media Line
Base


Reagent Line
None


Wash Line
None














Day 2 to 8












CD34+ Cell Redistribution
Feed Cells











Custom 2 (Cell Redistribution and increase Feed)













Step 1
Step 2
Step 3




STEP 9
STEP 10
STEP 11





Task Settings
IC inlet
None
IC Media
IC Media



IC inlet rate
0
50
0.2*



IC circ rate
300
−30
−0.1*



EC inlet
None
None
None



EC inlet rate
0
0
0



EC circ rate
100
30
100



Outlet
EC outlet
EC outlet
EC outlet



Rocker
In Motion
In Motion
Stationary




(−90°, 180°, 1 sec)
(−90°, 180°, 1 sec)
(0°)



Stop condition
Time
IC Volume
Manual




(4 min)
(150 mL)
(1440 min)
















TABLE 3





Quantum CD34+ Cell Harvest
















Cell Line
None


IC Media Line
Complete


EC Media Line
Base


Reagent Line
None


Wash Line
None














Day 8-Harvest




CD34+ Cell Harvest




Custom 3 (Harvest)












Step 1
Step 2




STEP 12
STEP 13





Task Settings
IC inlet
None
IC media



IC inlet rate
0
100



IC circ rate
300
−20



EC inlet
None
EC Media



EC inlet rate
0
60



EC circ rate
300
30



Outlet
EC outlet
Harvest



Rocker
In Motion
In Motion




(−90°, 180°, 1 sec)
(−90°, 180°, 1 sec)



Stop condition
Time
IC Volume




(4 min)
(400 mL)









Default tasks are used for Quantum® System priming, IC media/EC media exchange, and media conditioning tasks. In the process, glucose and lactate levels were monitored by i-STAT Analyzer G and CG4+ cartridges (Abbott Point-of-Care, Princeton, N.J.). During cell expansion, the Quantum® System IC and EC inlet flow rates were adjusted in response to the glucose consumption and lactate generation rates and the nature of the automated task. The program uses a gas mixture of about 5% CO2, about 20% O2, and balance N2 at about 37° C. for a period of only about 8 days, to reduce (i.e., to minimize) T cell differentiation during cell culture. Cells are harvested using an automated suspension cell protocol.


For example, Quantum System inlet flow rate(s) may range from about +0.1 to about 100 mL/min, and IC circulation flow rate(s) may range from about −40 to about 300 mL/min. Corresponding Quantum System EC inlet flow rate(s) may range from about Oto about 148 mL/min, and EC circulation rate(s) may range from about −1.7 mL/min to about 300 mL/min during the cell culture process. During expansion, glucose and/or lactate levels may be analyzed by i-STAT analyzers (e.g., Abbott Point-of-Care, Princeton, NJ, USA) using G and CG4+ cartridges, for example. At harvest, cells were counted (e.g., with a Vi-CELL™ XR cell analyzer, Beckman Coulter, Indianapolis, IN, USA) (FIG. 17), which included quantification of cell viability by trypan blue (FIG. 18), cryopreserved in CryoStar® CS10 freeze medium (e.g., Biolife Solutions, Bothell, WA, USA), and stored in liquid nitrogen vapor phase until further analysis.


Expansion Results

The mean harvest yield, was about 1.02×108 cells (ranging about 4.02×107 to about 1.61×108 cells) with a mean cell viability by trypan blue of about 95.5% (ranging about 93.3% to about 96.8%) and determined by a cell viability counter (Vi-CELL™ XR, Beckman Coulter). The cell expansion yield of 4.0×107-1.6×108 cells exceeded a minimum CD34+ cell dose of 1.5×105 cells/kg for a single-unit graft and a minimum CD34+ cell dose of 1.0×105 cells/kg for a double-unit graft. This equates to minimum doses of 1.1×107 CD34+ HSCs and 1.4×107 CD34+ HSCs for a single- and a double-unit graft, respectively, for a 70 kg patient.


The mean cell population doubling is about 5.4, the mean cell population doubling time is about 34.9 hours and the mean-fold increase may be 51.0-fold (ranging from about 20.1-fold to about 80.5-fold) over the course of the expansion period. IC medium input perfusion flow rates were adjusted in response to glucose and lactate metabolites and range from about 0.1 to about 0.2 mL/min.


A median cord blood unit (CBU) may contain about 4.4×106 CD34+ HSCs up to a maximum of about 2.0×107 CD34+ HSCs. Using the methods and systems described herein the average expansion yields from a single CBU, may be on the order of 2.2×108 to 1.0×109 CB-derived stem or progenitor cells, for example, with an automated 8 day monoculture cell expansion protocol by simply increasing the cell inoculum from 2.0×106 cells up to 4.4×106-2.0×107 cells with a full CBU CD34+ cell fraction. This approach, among other things, can increase the cell seeding density from, for example, 1.6×104 cells/mL to 3.6×104-1.6×105 cells/mL in the perfusion bioreactor, and result in a shorter expansion timeframe that can reduce the potential for cell differentiation.


Cryopreservation

Comparing such CD34+ HSC harvests to the pre-cryopreservation viability across various UCB donors revealed a relationship between expansion yields and pre-cryopreservation cell viability (FIG. 19). Quantum CES CD34+ cell viability is measured at harvest, by trypan blue dye exclusion using a BC Vi CELL™ XR Cell Analyzer. There is a broad range of pre-cryopreservation CD34+ cell viability. In our study, the pre-cryopreservation cell viability ranged from 84% to 98%. Expanding the CB-derived CD34+ HSCs in the Quantum CES generated a mean harvest cell viability of 95%.


Glycolytic Metabolism

Monitoring the glycolytic metabolism shows that the glucose consumption rate may range from 0 to a high of 0.596 on day 5 and the lactate generate rate may range from 0 to a high of 0.650 mmol/day on day 8 (FIG. 20). The difference in peak days for these two metabolites can be attributed to media flow rate adjustments, differential expression of enzymes controlling glycolytic flux, and the demand for central biosynthetic metabolites during cell expansion.


Immunophenotyping

Thawed cell harvest samples at 1×106 cells from each of the three (3) automated CB-derived CD34+ cell expansions are resuspended and washed in complete media, centrifuged at 500 g for 5 minutes, resuspended in 100 μL of BD Flow Stain Buffer, blocked with 5 μL of human BD Fe for 10 minutes prior to staining with, the following conjugated stains: BD Pharmingen anti-human CD45-APC-H7 (Cat. 560178), anti-human CD34-APC (Cat. 560940), anti-human CD133-PE (Cat. 566593), anti-human CD38-BB515 (Cat. 564499), anti-human CD41a-APC-H7 (Cat. 561422), anti-human CD3-PE (Cat. 555333), anti-human CD19-PE (Cat. 555413), anti-human CD56 (555516), anti-human CD15-BB515 (Cat. 565236), and 7-AAD (Cat. 559925). The ISHAGE-gating guidelines for enumerating CD34+ HSCs by flow cytometry may be consulted for the immunophenotyping of expanded cells and the CD34+ HSC populations may be subordinated to the CD45+ parent cell populations (Cytometry, 34:61-70, 1998). In addition, the CD34+ gating strategy was verified with a CD-Chex CD34 peripheral blood control (Streck, CD-Chex CD34, Level 3). Cell sample data were acquired on a BD FACSCanto II flow cytometer with BD FACSDiva™ v9.0 software (10,00 events/sample) and subsequently analyzed with FlowJo™ v10.7 software.


As shown in Table 1 and FIGS. 21A and 21B, flow cytometry indicate the mean frequency of the CD45+/CD34+ immunophenotype to be 54.3% (range 51.9 to 57.9%) and the mean frequency of the more primitive CD133+CD38 immunophenotype to be 31.8% (range 25.9 to 39.0%) at harvest on Day 8 of automated culture. These results compare favorably with other CD34+ HSC 7-day expansion protocols using SR-1 (CD34+ HSCs 10-25%) media and 21-day CD34+CD38− expansion protocols using Nicotinamide (CD34+ HSCs 0.2-4.4%) media in UCB-derived cell culture. The mean frequency of the differentiated cell lineages was 0.5% for lymphocytes (CD3+, CD19+, CD56+), 27.7% for neutrophils (CD15+), and 26.5% for platelets (CD41a+). The fact that biomarkers for both neutrophils and platelets may be present in expanded CB-derived CD34+ HSC population can be attributed, in part, to the cytokine composition of the expansion media which contains the interleukins IL-3 and IL-6. Although used to support CD34+ cell expansion, both cytokines are also implicated in the development of myeloid cell lineages.









TABLE 1







Cell Population Hierarchy & Statistics










Cell Type
Percentage







HSCs
56.0



Single Cells
97.0



Live Cells
96.3



CD45+
99.5



CD34+
51.9



CD133hi CD38lo
30.6










In Vitro CB-CD34+ Clonal Differentiation

The MethoCult™ CD34+ cell differentiation hematopoietic colony-forming-unit (CFU) assay is performed with MethoCult™ H4034 Optimum medium which may be supplemented with rh-cytokines SCF, GM-CSF, IL-3, G-CSF, and EPO (Stem Cell Technologies, Vancouver, BC, Canada). The cells generated hematopoietic progenitor lineages of GEMM, GM, BFU-E CFUs.


Briefly, Quantum-harvested UCB-derived CD34+ HSCs may be washed, resuspended in IMDM w/2% FBS, diluted in methylcellulose-based medium, vortexed, and seeded at 1.1 mL/35 mm well of medium in multi-well plates using seeding densities of 150, 500, and 1,000 cells/well. The CFU plates may be incubated in a static incubator under 37° C., 5% CO2, humidity conditions for 14 days after which CFUs in each well may be manually counted and scored (n=6) using an Olympus CKX41 inverted microscope at 4× objective magnification with cellSens 2.2 software.


After 14 days of methylcellulose-based cell culture in MethoCult Optimum H4034 cytokine medium, the CB-derived CD34+ cell differentiated CFUs averaged 56% for the GM, 23% for GEMM and 21% for BFU-E progenitor lineages of the total CFUs across the three expanded CB-derived CD34+ cell lines (see, e.g., FIG. 22 and FIG. 23). These CFU example results are comparable to prior studies with methylcellulose H4034 cytokine differentiation of electroporated, genetically unmodified CB-derived CD34+ HSCs where the majority of the lineages may be GM-CFU (60%) clones followed by BFU-E (36%) and GEMM-CFU (10%) clones and/or where the majority of both the genetically modified and unmodified clones may also be GM-CFU (60%) followed by BFU-E (18-20%) and GEMM-CFU (5%) clones. The differences in the relative distribution of the CFU clones among these studies can be attributed to variations in the donor CBU cell sources, stem cell selection methods, genetic modifications in some instances, and the cytokine cocktail formulations used in the expansion of the CB-derived CD34+ HSCs prior to differentiation. Other small molecule supplements formulated with cytokines beyond SR-1, may include nicotinamide (an SIRT1 histone deacetylase and ribosylase inhibitor), valproic acid (a histone HDAC1 inhibitor), and UM171 (an inhibitor of histone HDAC1 deacetylation and LSD1 demethylation) which may be options for hematopoietic stem cell culture for the purpose of increasing CB-derived CD34+ cell amplification and improving engraftment.


The MethoCult™ differentiation assay of harvested cells may generate hematopoietic progenitor lineages of GEMM, GM, BFU-E CFUs. These results, taken as a whole, demonstrated that the automated Quantum® system monoculture protocol(s) can support the expansion of preselected CB-derived CD34+ HSCs for both single and double CBU dose equivalency with minimal lymphocyte residual.


It will be apparent to those skilled in the art that various modifications and variations can be made to the methods and structure of the present invention without departing from its scope. Thus, it should be understood that the present invention is not limited to the specific examples given. Rather, the present invention is intended to cover modifications and variations within the scope of the following claims and their equivalents.


While example implementations and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise configuration and resources described above. Various modifications, changes, and variations apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present invention disclosed herein without departing from the scope of the present invention.

Claims
  • 1. A method of expanding cells, comprising: applying a coating to an interior lumen of a plurality of hollow fibers of a hollow fiber bioreactor, the plurality of hollow fibers being semi-permeable, the coating including fibronectin configured to adhere to the interior lumen and stromal cell-derived factor 1 (SDF-1) configured to both adhere to the fibronectin and retain CD34+ hematopoietic stem cells thereto;introducing a first plurality of cells into the plurality of hollow fibers of the hollow fiber bioreactor, the first plurality of cells including CD34+ hematopoietic stem cells derived from at least one of cord blood, bone marrow, and peripheral blood;maintaining and concentrating the first plurality of cells within the plurality of hollow fibers by directing fluid into opposite ends of the hollow fiber bioreactor simultaneously;exposing the first plurality of cells in the hollow fibers to growth conditions; andexpanding at least a portion of the first plurality of cells in the hollow fibers of the bioreactor to generate a second plurality of expanded target cells including CD34+ hematopoietic stem cells that are expanded at least 50-fold, by introducing into the plurality of hollow fibers, and into contact with the first plurality of cells, the following:soluble growth supporting cytokines including at least one of SCF, TPO, Flt-3L, IL-3, and IL-6;an aryl receptor antagonist; andglial cell-derived neurotrophic factor (GDNF).
  • 2. The method of claim 1, wherein the first plurality of cells is introduced to the plurality of hollow fibers without any prior purification.
  • 3. The method of claim 1, wherein exposing the first plurality of cells in the hollow fibers to growth conditions includes exposing the first plurality of cells to one or more growth factors including FMS-like Tyrosine Kinase 3 Ligand (Flt-3L), Stem Cell Factor (SCF), thrombopoietin (TPO), glial-derived neurotrophic factor (GDNF), and combinations thereof.
  • 4. The method of claim 1, wherein exposing the first plurality of cells in the hollow fibers to growth conditions includes circulating a cell growth media through the interior lumen of the hollow fibers.
  • 5. The method of claim 1, wherein exposing the first plurality of cells in the hollow fibers to growth conditions includes circulating a cell growth media through an extracapillary side of the hollow fibers.
  • 6. The method of claim 1, wherein introducing the first plurality of cells into the hollow fibers includes: circulating a portion of the plurality of cells within the interior lumen of the hollow fibers;stopping the circulation to allow one or more of the portion of the plurality of cells to contact a first portion of the interior lumen of the hollow fibers;rotating the hollow fiber bioreactor 180 degrees from an initial position;circulating another portion of the plurality of cells within the interior lumen of the hollow fibers; andstopping the circulation to allow one or more of the other portion of the plurality of cells to contact a second portion of the interior lumen of the hollow fibers.
  • 7. The method of claim 1, wherein the first plurality of cells is introduced simultaneously at opposing ends of the hollow fibers.
  • 8. The method of claim 1, wherein the coating includes a protein moiety.
  • 9. The method of claim 1, wherein the aryl receptor antagonist is at least one of StemRegenin I (SRI) and UMI 71.
  • 10. The method of claim 1, wherein the soluble growth supporting cytokines including at least one of SCF, TPO, Flt-3L, IL-3, and IL-6 is included in a cytokine cocktail having a concentration within a range of about 0.5% to about 2% weight per volume.
  • 11. The method of claim 1, wherein the GDNF is at a concentration of at least 10 ng/mL.
  • 12. The method of claim 1, wherein the hollow fibers include a first media in the interior lumen and a second media in contact with an extracapillary side of the hollow fibers.
  • 13. The method of claim 12, wherein the media in the interior lumen is concentrated in at least one component relative to the concentration of the same component on the extracapillary side of the hollow fibers.
  • 14. The method of claim 13, wherein the component is the GDNF.
  • 15. The method of claim 13, wherein the component includes at least one of SR-I, SCF, TPO, Flt-3L, IL-3, IL-6, SDF-1, and fibronectin.
  • 16. The method of claim 1, wherein the second plurality of cells is maintained within, and concentrated within, the plurality of hollow fibers by simultaneous flow of the fluid into opposite ends of the hollow fiber bioreactor.
  • 17. The method of claim 1, wherein the first plurality of cells includes enriched CD34+ cells.
  • 18. The method of claim 1, wherein the first plurality of cells includes at least 2 million cells.
  • 19. The method of claim 1, wherein the soluble growth supporting cytokines including at least one of SCF, TPO, Flt-3L, IL-3, and IL-6 are at a concentration of 1% by volume of 7 mL to 10,000 mL and multiples thereof.
  • 20. The method of claim 1, wherein introducing the first plurality of cells includes introducing 2×106 cord blood-derived CD34+ cells.
  • 21. The method of claim 1, wherein introducing the first plurality of cells includes introducing 1.6×104 cord blood-derived CD34+ cells per mL of intracapillary complete cell culture medium including at least one of SCF, TPO, Flt-3L, IL-3, IL-6, GDNF, and SR-1 into the hollow fiber bioreactor.
  • 22. The method of claim 1, wherein the second plurality of expanded target cells includes at least 1.05×108 CD34+ hematopoietic stem cells.
  • 23. The method of claim 1, wherein introducing the first plurality of cells into the plurality of hollow fibers includes introducing the first plurality of cells into only first ends of the plurality of hollow fibers while introducing media counterflow into second ends of the plurality of hollow fibers, the first ends are opposite to the second ends.
  • 24. The method of claim 1, wherein introducing the first plurality of cells into the plurality of hollow fibers includes introducing the first plurality of cells into only first ends of the plurality of hollow fibers without introducing counterflow into second ends of the plurality of hollow fibers, the first ends are opposite to the second ends.
  • 25. The method of claim 1, wherein applying the coating to the interior lumen of the plurality of hollow fibers of the hollow fiber bioreactor includes applying the coating by ultrafiltration.
  • 26. The method of claim 1, wherein the soluble growth supporting cytokines are maintained and concentrated within the plurality of hollow fibers by introducing fluid into opposite ends of the hollow fiber bioreactor simultaneously.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of and priority, under 35 U.S.C. § 119(e), to the following U.S. Provisional Patent Application Ser. Nos.: 63/165,060, filed on Mar. 23, 2021, entitled “Cell Expansion”; 63/169,173, filed on Mar. 31, 2021, entitled “Cell Expansion”; 63/183,591, filed on May 3, 2021, entitled “Cell Expansion”; 63/227,293, filed on Jul. 29, 2021, entitled “Cell Expansion”; 63/228,561, filed on Aug. 2, 2021, entitled “Cell Expansion”; 63/275,389, filed on Nov. 3, 2021, entitled “Methods and Systems for Isolating Target Cells Using a Multiple Part Membrane Substrate”; 63/275,793, filed on Nov. 4, 2021, entitled “Methods and Systems for Isolating Target Cells Using a Multiple Part Membrane Substrate”; 63/304,467, filed on Jan. 28, 2022, entitled “Methods and Systems for Isolating Target Cells Using a Multiple Part Membrane Substrate”; the entire disclosures of each are incorporated herein by reference, in their entirety.

US Referenced Citations (986)
Number Name Date Kind
2997077 Rodrigues Aug 1961 A
3013435 Rodrigues Dec 1961 A
3067915 Shapiro et al. Dec 1962 A
3191807 Rodrigues Jun 1965 A
3283727 Rodrigues Nov 1966 A
3701717 Ingvorsen Oct 1972 A
4173415 Wyatt Nov 1979 A
4301010 Eddleman et al. Nov 1981 A
4301118 Eddleman et al. Nov 1981 A
4412990 Lundblad et al. Nov 1983 A
4418691 Yannas et al. Dec 1983 A
4439901 Eddleman Apr 1984 A
4478829 Landaburu et al. Oct 1984 A
4486188 Altshuler et al. Dec 1984 A
4509695 Bessman Apr 1985 A
4585654 Landaburu et al. Apr 1986 A
4618586 Walker Oct 1986 A
4629686 Gruenberg Dec 1986 A
4670544 Schwinn et al. Jun 1987 A
4727059 Binder et al. Feb 1988 A
4828706 Eddleman May 1989 A
4897358 Carrasco Jan 1990 A
4960521 Keller Oct 1990 A
4988623 Schwarz et al. Jan 1991 A
5015585 Robinson May 1991 A
5019054 Clement et al. May 1991 A
5126238 Gebhard et al. Jun 1992 A
5130141 Law et al. Jul 1992 A
5149544 Gentile et al. Sep 1992 A
5169930 Ruoslahti et al. Dec 1992 A
5192553 Boyse et al. Mar 1993 A
5197985 Caplan et al. Mar 1993 A
5202254 Amiot et al. Apr 1993 A
5225346 Matsumiya et al. Jul 1993 A
5226914 Caplan et al. Jul 1993 A
5240614 Ofsthun et al. Aug 1993 A
5240861 Bieri Aug 1993 A
5283058 Faustman Feb 1994 A
5310676 Johansson et al. May 1994 A
5324428 Flaherty Jun 1994 A
5342752 Platz et al. Aug 1994 A
5422197 Zito Jun 1995 A
5436151 McGlave et al. Jul 1995 A
5437994 Emerson et al. Aug 1995 A
5439757 Zito Aug 1995 A
5459069 Palsson et al. Oct 1995 A
5460964 McGlave et al. Oct 1995 A
H1509 Eran et al. Dec 1995 H
5478739 Slivka et al. Dec 1995 A
5486359 Caplan et al. Jan 1996 A
5496659 Zito Mar 1996 A
5507949 Ho Apr 1996 A
5512180 Ho Apr 1996 A
5527467 Ofsthun et al. Jun 1996 A
5543316 Zawadzka et al. Aug 1996 A
5545492 Zito Aug 1996 A
5549674 Humes et al. Aug 1996 A
5571720 Grandics et al. Nov 1996 A
5591625 Gerson et al. Jan 1997 A
5593580 Kopf Jan 1997 A
5595909 Hu et al. Jan 1997 A
5599703 Davis et al. Feb 1997 A
5605822 Emerson et al. Feb 1997 A
5605829 McGlave et al. Feb 1997 A
5605835 Hu et al. Feb 1997 A
5622857 Goffe Apr 1997 A
5626731 Cooley et al. May 1997 A
5627070 Gruenberg May 1997 A
5635386 Palsson et al. Jun 1997 A
5635387 Fei et al. Jun 1997 A
5643736 Bruder et al. Jul 1997 A
5646043 Emerson et al. Jul 1997 A
5654186 Cerami et al. Aug 1997 A
5656421 Gebhard et al. Aug 1997 A
5658995 Kohn et al. Aug 1997 A
5667985 O'Leary et al. Sep 1997 A
5670147 Emerson et al. Sep 1997 A
5674750 Kraus et al. Oct 1997 A
5684712 Goffe et al. Nov 1997 A
5686289 Humes et al. Nov 1997 A
5695989 Kalamasz Dec 1997 A
5700289 Breitbart et al. Dec 1997 A
5705534 D'Agostino et al. Jan 1998 A
5707859 Miller et al. Jan 1998 A
5712163 Parenteau et al. Jan 1998 A
5728581 Schwartz et al. Mar 1998 A
5733541 Taichman et al. Mar 1998 A
5733542 Haynesworth et al. Mar 1998 A
5736396 Bruder et al. Apr 1998 A
5744347 Wagner et al. Apr 1998 A
5750651 Oppermann et al. May 1998 A
5753506 Johe May 1998 A
5763197 Tsukamoto et al. Jun 1998 A
5763266 Palsson et al. Jun 1998 A
5766944 Ruiz Jun 1998 A
5772994 Ildstad et al. Jun 1998 A
5783075 Eddleman et al. Jul 1998 A
5783216 Faustman Jul 1998 A
5785912 Cooley et al. Jul 1998 A
5804446 Cerami et al. Sep 1998 A
5806529 Reisner et al. Sep 1998 A
5807686 Wagner et al. Sep 1998 A
5811094 Caplan et al. Sep 1998 A
5811397 Francavilla et al. Sep 1998 A
5817773 Wilson et al. Oct 1998 A
5821218 Toback et al. Oct 1998 A
5827735 Young et al. Oct 1998 A
5827740 Pittenger Oct 1998 A
5830921 Cooley et al. Nov 1998 A
5833979 Schinstine et al. Nov 1998 A
5837258 Grotendorst Nov 1998 A
5837539 Caplan et al. Nov 1998 A
5840502 Van Vlasselaer Nov 1998 A
5840576 Schinstine et al. Nov 1998 A
5840580 Terstappen et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5843633 Yin et al. Dec 1998 A
5846796 Cerami et al. Dec 1998 A
5853247 Shroyer Dec 1998 A
5853717 Schinstine et al. Dec 1998 A
5855608 Brekke et al. Jan 1999 A
5855613 Antanavich et al. Jan 1999 A
5855619 Caplan et al. Jan 1999 A
5858747 Schinstine et al. Jan 1999 A
5858782 Long et al. Jan 1999 A
5861315 Nakahata Jan 1999 A
5866115 Kanz et al. Feb 1999 A
5866420 Talbot et al. Feb 1999 A
5868930 Kopf Feb 1999 A
5882295 Kope Mar 1999 A
5882918 Goffe Mar 1999 A
5882929 Fofonoff et al. Mar 1999 A
5888807 Palsson et al. Mar 1999 A
5902741 Purchio et al. May 1999 A
5906827 Khouri et al. May 1999 A
5906934 Grande et al. May 1999 A
5908782 Marshak et al. Jun 1999 A
5908784 Johnstone et al. Jun 1999 A
5912177 Turner et al. Jun 1999 A
5914108 Tsukamoto et al. Jun 1999 A
5922597 Verfaillie et al. Jul 1999 A
5922847 Broudy et al. Jul 1999 A
5925567 Kraus et al. Jul 1999 A
5928945 Seliktar et al. Jul 1999 A
5935849 Schinstine et al. Aug 1999 A
5938929 Shimagaki et al. Aug 1999 A
5939323 Valentini et al. Aug 1999 A
5942225 Bruder et al. Aug 1999 A
5955353 Amiot Sep 1999 A
5958763 Goffe Sep 1999 A
5965436 Thiede et al. Oct 1999 A
5972703 Long et al. Oct 1999 A
5980795 Klotzer et al. Nov 1999 A
5981211 Hu et al. Nov 1999 A
5981708 Lawman et al. Nov 1999 A
5998184 Shi Dec 1999 A
6001585 Gramer Dec 1999 A
6001643 Spaulding Dec 1999 A
6001647 Peck et al. Dec 1999 A
6004743 Kenyon et al. Dec 1999 A
6010696 Caplan et al. Jan 2000 A
6015554 Galy Jan 2000 A
6022540 Bruder et al. Feb 2000 A
6022742 Kopf Feb 2000 A
6022743 Naughton et al. Feb 2000 A
6027743 Khouri et al. Feb 2000 A
6030836 Thiede et al. Feb 2000 A
6040180 Johe Mar 2000 A
6045818 Cima et al. Apr 2000 A
6048721 Armstrong et al. Apr 2000 A
6048727 Kopf Apr 2000 A
6049026 Muschler Apr 2000 A
6054121 Cerami et al. Apr 2000 A
6060270 Humes May 2000 A
6066317 Yang et al. May 2000 A
6071691 Hoekstra et al. Jun 2000 A
6074366 Rogers et al. Jun 2000 A
6082364 Balian et al. Jul 2000 A
6083747 Wong et al. Jul 2000 A
6086643 Clark et al. Jul 2000 A
6087113 Caplan et al. Jul 2000 A
6096537 Chappel Aug 2000 A
6103117 Shimagaki et al. Aug 2000 A
6103522 Torok-Storb et al. Aug 2000 A
6110176 Shapira Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6114307 Jaspers et al. Sep 2000 A
6117985 Thomas et al. Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6127141 Kopf Oct 2000 A
6129911 Faris Oct 2000 A
6143293 Weiss et al. Nov 2000 A
6146360 Rogers et al. Nov 2000 A
6146888 Smith et al. Nov 2000 A
6149902 Artavanis-Tsakonas et al. Nov 2000 A
6149906 Mosca Nov 2000 A
6150164 Humes Nov 2000 A
6152964 Van Blitterswijk et al. Nov 2000 A
6162643 Wille, Jr. Dec 2000 A
6165225 Antanavich et al. Dec 2000 A
6165785 Ogle et al. Dec 2000 A
6174333 Kadiyala et al. Jan 2001 B1
6174526 Cerami et al. Jan 2001 B1
6174666 Pavlakis et al. Jan 2001 B1
6179871 Halpern Jan 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6197575 Griffith et al. Mar 2001 B1
6200606 Peterson et al. Mar 2001 B1
6214369 Grande et al. Apr 2001 B1
6214574 Kopf Apr 2001 B1
6224860 Brown May 2001 B1
6225119 Qasba et al. May 2001 B1
6225368 D'Agostino et al. May 2001 B1
6228117 De Bruijn et al. May 2001 B1
6228607 Kersten et al. May 2001 B1
6238908 Armstrong et al. May 2001 B1
6239157 Mbalaviele May 2001 B1
6242252 Reid et al. Jun 2001 B1
6248319 Zsebo et al. Jun 2001 B1
6248587 Rodgers et al. Jun 2001 B1
6255112 Thiede et al. Jul 2001 B1
6258597 Bachovchin et al. Jul 2001 B1
6258778 Rodgers et al. Jul 2001 B1
6261549 Fernandez et al. Jul 2001 B1
6280718 Kaufman et al. Aug 2001 B1
6280724 Moore Aug 2001 B1
6281012 McIntosh et al. Aug 2001 B1
6281195 Rueger et al. Aug 2001 B1
6287864 Bagnis et al. Sep 2001 B1
6291249 Mahant et al. Sep 2001 B1
6297213 Oppermann et al. Oct 2001 B1
6299650 Van Blitterswijk et al. Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6306575 Thomas et al. Oct 2001 B1
6322784 Pittenger et al. Nov 2001 B1
6322786 Anderson Nov 2001 B1
6326198 Emerson et al. Dec 2001 B1
6326201 Fung et al. Dec 2001 B1
6328765 Hardwick et al. Dec 2001 B1
6328960 McIntosh et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6335195 Rodgers et al. Jan 2002 B1
6338942 Kraus et al. Jan 2002 B2
6340592 Stringer Jan 2002 B1
6342370 Connolly et al. Jan 2002 B1
6355239 Bruder et al. Mar 2002 B1
6358252 Shapira Mar 2002 B1
6361997 Huss Mar 2002 B1
6365149 Vyakarnam et al. Apr 2002 B2
6368636 McIntosh et al. Apr 2002 B1
6372210 Brown Apr 2002 B2
6372244 Antanavich et al. Apr 2002 B1
6372494 Naughton et al. Apr 2002 B1
6372892 Ballinger et al. Apr 2002 B1
6376742 Zdrahala et al. Apr 2002 B1
6379953 Bruder et al. Apr 2002 B1
6387367 Davis-Sproul et al. May 2002 B1
6387369 Pittenger et al. May 2002 B1
6387693 Rieser et al. May 2002 B2
6387964 D'Agostino et al. May 2002 B1
6392118 Hammang et al. May 2002 B1
6394812 Sullivan et al. May 2002 B1
6399580 Elias et al. Jun 2002 B1
6410320 Humes Jun 2002 B1
6414219 Denhardt et al. Jul 2002 B1
6416496 Rogers et al. Jul 2002 B1
6417205 Cooke et al. Jul 2002 B1
6419829 Ho et al. Jul 2002 B2
6420138 Gentz et al. Jul 2002 B1
6423681 Barasch et al. Jul 2002 B1
6426332 Rueger et al. Jul 2002 B1
6428802 Atala Aug 2002 B1
6429012 Kraus et al. Aug 2002 B1
6429013 Halvorsen et al. Aug 2002 B1
6432653 Okarma Aug 2002 B1
6432711 Dinsmore et al. Aug 2002 B1
6440407 Bauer et al. Aug 2002 B1
6440734 Pykett et al. Aug 2002 B1
6451562 Ruben et al. Sep 2002 B1
6454811 Sherwood et al. Sep 2002 B1
6455678 Yin et al. Sep 2002 B1
6458585 Vachula et al. Oct 2002 B1
6458589 Rambhatla et al. Oct 2002 B1
6461495 Morrissey et al. Oct 2002 B1
6461853 Zhu Oct 2002 B1
6464983 Grotendorst Oct 2002 B1
6465205 Hicks, Jr. Oct 2002 B2
6465247 Weissman et al. Oct 2002 B1
6465249 Reya et al. Oct 2002 B2
6468794 Uchida et al. Oct 2002 B1
6472200 Mitrani Oct 2002 B1
6475481 Talmadge Nov 2002 B2
6479064 Atala Nov 2002 B1
6482231 Abatangelo et al. Nov 2002 B1
6482411 Ahuja et al. Nov 2002 B1
6482645 Atala Nov 2002 B2
6482926 Thomas et al. Nov 2002 B1
6488925 Ruben et al. Dec 2002 B2
6491918 Thomas et al. Dec 2002 B1
6495129 Li et al. Dec 2002 B1
6495364 Hammang et al. Dec 2002 B2
6497875 Sorrell et al. Dec 2002 B1
6498034 Strobl Dec 2002 B1
6506574 Rambhatla et al. Jan 2003 B1
6511510 de Bruijn et al. Jan 2003 B1
6511767 Calver et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6524452 Clark et al. Feb 2003 B1
6528052 Smith et al. Mar 2003 B1
6528245 Sanchez-Ramos et al. Mar 2003 B2
6531445 Cohen et al. Mar 2003 B1
6534084 Vyakarnam et al. Mar 2003 B1
6537807 Smith et al. Mar 2003 B1
6541024 Kadiyala et al. Apr 2003 B1
6541249 Wager et al. Apr 2003 B2
6544506 Reisner Apr 2003 B2
6548734 Glimcher et al. Apr 2003 B1
6555324 Olweus et al. Apr 2003 B1
6555374 Gimble et al. Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6562616 Toner et al. May 2003 B1
6565843 Cohen et al. May 2003 B1
6569421 Hodges May 2003 B2
6569427 Boyse et al. May 2003 B1
6569428 Isner et al. May 2003 B1
6569654 Shastri et al. May 2003 B2
6576188 Rose et al. Jun 2003 B1
6576428 Assenmacher et al. Jun 2003 B1
6576464 Gold et al. Jun 2003 B2
6576465 Long Jun 2003 B1
6582471 Bittmann et al. Jun 2003 B1
6582955 Martinez et al. Jun 2003 B2
6586192 Peschle et al. Jul 2003 B1
6589728 Csete et al. Jul 2003 B2
6589786 Mangano et al. Jul 2003 B1
6596274 Abatangelo et al. Jul 2003 B1
6599300 Vibe-Hansen et al. Jul 2003 B2
6599520 Scarborough et al. Jul 2003 B2
6610535 Lu et al. Aug 2003 B1
6613798 Porter et al. Sep 2003 B1
6616912 Eddleman et al. Sep 2003 B2
6617070 Morrissey et al. Sep 2003 B1
6617152 Bryhan et al. Sep 2003 B2
6617159 Cancedda et al. Sep 2003 B1
6623749 Williams et al. Sep 2003 B2
6623942 Ruben et al. Sep 2003 B2
6624108 Clark et al. Sep 2003 B1
6626950 Brown et al. Sep 2003 B2
6627191 Bartelmez et al. Sep 2003 B1
6632425 Li et al. Oct 2003 B1
6632620 Makarovskiy Oct 2003 B1
6632934 Moreadith et al. Oct 2003 B1
6638765 Rosenberg Oct 2003 B1
6642048 Xu et al. Nov 2003 B2
6642049 Chute et al. Nov 2003 B1
6642201 Khavinson et al. Nov 2003 B1
6645489 Pykett et al. Nov 2003 B2
6645727 Thomas et al. Nov 2003 B2
6645763 Kobayashi et al. Nov 2003 B2
6649189 Talmadge et al. Nov 2003 B2
6649595 Clackson et al. Nov 2003 B2
6649631 Orme et al. Nov 2003 B1
6653105 Triglia et al. Nov 2003 B2
6653134 Prockop et al. Nov 2003 B2
6660523 Blom et al. Dec 2003 B2
6662805 Frondoza et al. Dec 2003 B2
6667034 Palsson et al. Dec 2003 B2
6667176 Funk et al. Dec 2003 B1
6670169 Schob et al. Dec 2003 B1
6670175 Wang et al. Dec 2003 B2
6673603 Baetge et al. Jan 2004 B2
6673606 Tennekoon et al. Jan 2004 B1
6677306 Veis et al. Jan 2004 B1
6683192 Baxter et al. Jan 2004 B2
6685936 McIntosh et al. Feb 2004 B2
6685971 Xu Feb 2004 B2
6686198 Melton et al. Feb 2004 B1
6696575 Schmidt et al. Feb 2004 B2
6699716 Sullivan et al. Mar 2004 B2
6703017 Peck et al. Mar 2004 B1
6703209 Baetscher et al. Mar 2004 B1
6706293 Quintanilla Almagro et al. Mar 2004 B1
6709864 Pittenger et al. Mar 2004 B1
6712850 Vyakarnam et al. Mar 2004 B2
6719969 Hogaboam et al. Apr 2004 B1
6719970 Costantino et al. Apr 2004 B1
6720340 Cooke et al. Apr 2004 B1
6730314 Jeschke et al. May 2004 B2
6730315 Usala et al. May 2004 B2
6730510 Roos et al. May 2004 B2
6733746 Daley et al. May 2004 B2
6734000 Chin et al. May 2004 B2
6740493 Long et al. May 2004 B1
6759039 Tsang et al. Jul 2004 B2
6759245 Toner et al. Jul 2004 B1
6761883 Weissman et al. Jul 2004 B2
6761887 Kavalkovich et al. Jul 2004 B1
6767699 Polo et al. Jul 2004 B2
6767737 Wilson et al. Jul 2004 B1
6767738 Gage et al. Jul 2004 B1
6767740 Sramek et al. Jul 2004 B2
6770478 Crowe et al. Aug 2004 B2
6777227 Ricci et al. Aug 2004 B2
6777231 Katz et al. Aug 2004 B1
6780612 Ford et al. Aug 2004 B1
6787355 Miller et al. Sep 2004 B1
6790455 Chu et al. Sep 2004 B2
6793939 Badylak Sep 2004 B2
6797269 Mosca et al. Sep 2004 B2
6797514 Berenson et al. Sep 2004 B2
6800480 Bodnar et al. Oct 2004 B1
6802971 Gorsuch et al. Oct 2004 B2
6805860 Alt Oct 2004 B1
6809117 Enikolopov et al. Oct 2004 B2
6811773 Gentz et al. Nov 2004 B1
6811776 Kale et al. Nov 2004 B2
6814961 Jensen et al. Nov 2004 B1
6821513 Fleming Nov 2004 B1
6821790 Mahant et al. Nov 2004 B2
6828145 Avital et al. Dec 2004 B2
6833269 Carpenter Dec 2004 B2
6835377 Goldberg et al. Dec 2004 B2
6835566 Smith et al. Dec 2004 B2
6838284 de Bruijn et al. Jan 2005 B2
6841150 Halvorsen et al. Jan 2005 B2
6841151 Stringer Jan 2005 B2
6841294 Morrissey et al. Jan 2005 B1
6841355 Livant Jan 2005 B2
6841386 Kraus et al. Jan 2005 B2
6841542 Bartelmez et al. Jan 2005 B2
6844011 Faustman Jan 2005 B1
6849051 Sramek et al. Feb 2005 B2
6849255 Gazit et al. Feb 2005 B2
6849454 Kelly et al. Feb 2005 B2
6849662 Enikolopov et al. Feb 2005 B2
6852308 Kohn et al. Feb 2005 B2
6852321 Colucci et al. Feb 2005 B2
6852533 Rafii et al. Feb 2005 B1
6855242 Comninellis et al. Feb 2005 B1
6855542 DiMilla et al. Feb 2005 B2
6863900 Kadiyala et al. Mar 2005 B2
6866843 Habener et al. Mar 2005 B2
6872389 Faris Mar 2005 B1
6875430 McIntosh et al. Apr 2005 B2
6887600 Morrissey et al. May 2005 B2
6887704 Peled et al. May 2005 B2
6908763 Akashi et al. Jun 2005 B1
6911201 Merchav et al. Jun 2005 B1
6914279 Lu et al. Jul 2005 B2
6939955 Rameshwar Sep 2005 B2
6965018 Mikesell et al. Nov 2005 B2
6979321 Geis et al. Dec 2005 B2
6988004 Kanno et al. Jan 2006 B2
7008394 Geise et al. Mar 2006 B2
7015037 Furcht et al. Mar 2006 B1
7029666 Bruder et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7045098 Stephens May 2006 B2
7052517 Murphy et al. May 2006 B2
7056493 Kohn et al. Jun 2006 B2
7118672 Husain et al. Oct 2006 B2
7122178 Simmons et al. Oct 2006 B1
7160719 Nyberg Jan 2007 B2
7169295 Husain et al. Jan 2007 B2
7172696 Martinez et al. Feb 2007 B1
7175763 Husain et al. Feb 2007 B2
7192776 Stephens Mar 2007 B2
7195711 Gorsuch et al. Mar 2007 B2
7250154 Kohn et al. Jul 2007 B2
7271234 Kohn et al. Sep 2007 B2
7294259 Cote et al. Nov 2007 B2
7300571 Cote et al. Nov 2007 B2
7303676 Husain et al. Dec 2007 B2
7303677 Cote et al. Dec 2007 B2
7341062 Chachques et al. Mar 2008 B2
7358001 Morrissey et al. Apr 2008 B2
7361493 Hammond et al. Apr 2008 B1
7368169 Kohn et al. May 2008 B2
7378271 Bader May 2008 B2
7399872 Webster et al. Jul 2008 B2
7416884 Gemmiti et al. Aug 2008 B2
7425440 Malinge et al. Sep 2008 B2
7435586 Bartlett et al. Oct 2008 B2
7438902 Habener et al. Oct 2008 B2
7439057 Frangos et al. Oct 2008 B2
7452529 Brown, Jr. et al. Nov 2008 B2
7491388 McIntosh et al. Feb 2009 B1
7494811 Wolfinbarger, Jr. et al. Feb 2009 B2
7514074 Pittenger et al. Apr 2009 B2
7514075 Hedrick et al. Apr 2009 B2
7524676 Reiter et al. Apr 2009 B2
7534609 Merchav et al. May 2009 B2
7572374 Gorsuch et al. Aug 2009 B2
7579179 Bryhan et al. Aug 2009 B2
7585412 Gorsuch et al. Sep 2009 B2
7588938 Ma Sep 2009 B2
7598075 Smith et al. Oct 2009 B2
7608447 Cohen et al. Oct 2009 B2
7659118 Furcht et al. Feb 2010 B2
7678573 Merchav et al. Mar 2010 B2
7682823 Runyon Mar 2010 B1
7722896 Kohn et al. May 2010 B2
D620732 Andrews Aug 2010 S
7838122 Kohn et al. Nov 2010 B2
7838289 Furcht et al. Nov 2010 B2
7892829 Pittenger et al. Feb 2011 B2
7919307 Klaus et al. Apr 2011 B2
7927587 Blazer et al. Apr 2011 B2
7989851 Lu et al. Aug 2011 B2
8008528 Kohn et al. Aug 2011 B2
8034365 Baluca Oct 2011 B2
8075881 Verfaillie et al. Dec 2011 B2
8147824 Maziarz et al. Apr 2012 B2
8147863 Kohn et al. Apr 2012 B2
8158120 Pittenger et al. Apr 2012 B2
8158121 Pittenger et al. Apr 2012 B2
8252280 Verfaillie et al. Aug 2012 B1
8252887 Bolikal et al. Aug 2012 B2
8288159 Warren et al. Oct 2012 B2
8288590 Kohn et al. Oct 2012 B2
8298823 Warren et al. Oct 2012 B2
8361453 Uhrich et al. Jan 2013 B2
8377683 Lu et al. Feb 2013 B2
8383397 Wojciechowski et al. Feb 2013 B2
8383806 Rameshwar Feb 2013 B2
8399245 Leuthaeuser et al. Mar 2013 B2
8415449 Kohn et al. Apr 2013 B2
8435781 Kodama May 2013 B2
8461289 Kohn et al. Jun 2013 B2
8476399 Bolikal et al. Jul 2013 B2
8486621 Luo et al. Jul 2013 B2
8486695 Danilkovitch et al. Jul 2013 B2
8492140 Smith et al. Jul 2013 B2
8492150 Parker et al. Jul 2013 B2
8524496 Meiron et al. Sep 2013 B2
8529888 Meiron et al. Sep 2013 B2
8540499 Page et al. Sep 2013 B2
8551511 Brandom et al. Oct 2013 B2
8580249 Blazar et al. Nov 2013 B2
8678638 Wong Mar 2014 B2
8852570 Pittenger et al. Oct 2014 B2
8852571 Pittenger et al. Oct 2014 B2
8852572 Pittenger et al. Oct 2014 B2
8852573 Pittenger et al. Oct 2014 B2
8852574 Pittenger et al. Oct 2014 B2
8852575 Pittenger et al. Oct 2014 B2
9109193 Galliher et al. Aug 2015 B2
9220810 Ma et al. Dec 2015 B2
9441195 Wojciechowski et al. Sep 2016 B2
9534198 Page et al. Jan 2017 B2
9732313 Hirschel et al. Aug 2017 B2
10093956 Hirschel et al. Oct 2018 B2
10494421 Castillo Dec 2019 B2
20010017188 Cooley et al. Aug 2001 A1
20010020086 Hubbell et al. Sep 2001 A1
20010021516 Wei et al. Sep 2001 A1
20010029046 Beaulieu Oct 2001 A1
20010033834 Wilkison et al. Oct 2001 A1
20010036663 Kraus et al. Nov 2001 A1
20010041687 Mruk Nov 2001 A1
20010044413 Pierce et al. Nov 2001 A1
20010049139 Lagasse et al. Dec 2001 A1
20020015724 Yang et al. Feb 2002 A1
20020018804 Austin et al. Feb 2002 A1
20020028510 Sanberg et al. Mar 2002 A1
20020031757 Ohgushi et al. Mar 2002 A1
20020037278 Ueno et al. Mar 2002 A1
20020045260 Hung et al. Apr 2002 A1
20020064869 Ebner et al. May 2002 A1
20020076400 Katz et al. Jun 2002 A1
20020077687 Ahn Jun 2002 A1
20020082698 Parenteau et al. Jun 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020128581 Vishnoi et al. Sep 2002 A1
20020128582 Farrell et al. Sep 2002 A1
20020128583 Min et al. Sep 2002 A1
20020128584 Brown et al. Sep 2002 A1
20020130100 Smith Sep 2002 A1
20020132343 Lum Sep 2002 A1
20020139743 Critz et al. Oct 2002 A1
20020142457 Umezawa et al. Oct 2002 A1
20020146678 Benvenisty Oct 2002 A1
20020146817 Cannon et al. Oct 2002 A1
20020150989 Greene et al. Oct 2002 A1
20020151056 Sasai et al. Oct 2002 A1
20020159981 Peled et al. Oct 2002 A1
20020160032 Long et al. Oct 2002 A1
20020160510 Hariri Oct 2002 A1
20020168765 Prockop et al. Nov 2002 A1
20020169408 Beretta et al. Nov 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020182664 Dolecek et al. Dec 2002 A1
20020188962 Denhardt et al. Dec 2002 A1
20020197240 Chiu Dec 2002 A1
20030021850 Xu Jan 2003 A1
20030022390 Stephens Jan 2003 A1
20030027330 Lanza et al. Feb 2003 A1
20030027331 Yan et al. Feb 2003 A1
20030032143 Neff et al. Feb 2003 A1
20030036168 Ni et al. Feb 2003 A1
20030040113 Mizuno et al. Feb 2003 A1
20030049236 Kassem et al. Mar 2003 A1
20030054331 Fraser et al. Mar 2003 A1
20030059851 Smith Mar 2003 A1
20030059939 Page et al. Mar 2003 A1
20030078345 Morrisey Apr 2003 A1
20030082795 Shuler et al. May 2003 A1
20030086915 Rader et al. May 2003 A1
20030089471 Gehr et al. May 2003 A1
20030092101 Ni et al. May 2003 A1
20030101465 Lawman et al. May 2003 A1
20030103957 McKerracher Jun 2003 A1
20030104568 Lee Jun 2003 A1
20030113813 Heidaran et al. Jun 2003 A1
20030113910 Levanduski Jun 2003 A1
20030124091 Tuse et al. Jul 2003 A1
20030124721 Cheatham et al. Jul 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030133918 Sherley Jul 2003 A1
20030138950 McAllister et al. Jul 2003 A1
20030143727 Chang Jul 2003 A1
20030148152 Morrisey Aug 2003 A1
20030149011 Ackerman et al. Aug 2003 A1
20030152558 Luft et al. Aug 2003 A1
20030157078 Hall et al. Aug 2003 A1
20030157709 DiMilla et al. Aug 2003 A1
20030161817 Young et al. Aug 2003 A1
20030166272 Abuljadayel Sep 2003 A1
20030170214 Bader Sep 2003 A1
20030180296 Salcedo et al. Sep 2003 A1
20030185817 Thomas et al. Oct 2003 A1
20030202938 Rameshwar Oct 2003 A1
20030203483 Seshi Oct 2003 A1
20030204323 Morrisey Oct 2003 A1
20030211602 Atala Nov 2003 A1
20030211603 Earp et al. Nov 2003 A1
20030216718 Hamblin et al. Nov 2003 A1
20030219898 Sugaya et al. Nov 2003 A1
20030223968 Yang Dec 2003 A1
20030224420 Hellerstein et al. Dec 2003 A1
20030224510 Yamaguchi et al. Dec 2003 A1
20030225010 Rameshwar Dec 2003 A1
20030232432 Bhat Dec 2003 A1
20030232752 Freeman et al. Dec 2003 A1
20030235909 Hariri et al. Dec 2003 A1
20040009158 Sands et al. Jan 2004 A1
20040009589 Levenberg et al. Jan 2004 A1
20040010231 Leonhardt et al. Jan 2004 A1
20040014209 Lassar et al. Jan 2004 A1
20040018174 Palasis Jan 2004 A1
20040018617 Hwang Jan 2004 A1
20040023324 Sakano et al. Feb 2004 A1
20040023370 Yu et al. Feb 2004 A1
20040033214 Young et al. Feb 2004 A1
20040033599 Rosenberg Feb 2004 A1
20040037811 Penn et al. Feb 2004 A1
20040037815 Clarke et al. Feb 2004 A1
20040038316 Kaiser et al. Feb 2004 A1
20040053869 Andrews et al. Mar 2004 A1
20040062753 Rezania et al. Apr 2004 A1
20040063205 Xu Apr 2004 A1
20040067585 Wang et al. Apr 2004 A1
20040071668 Bays et al. Apr 2004 A1
20040072259 Scadden et al. Apr 2004 A1
20040077079 Storgaard et al. Apr 2004 A1
20040079248 Mayer et al. Apr 2004 A1
20040087016 Keating et al. May 2004 A1
20040091936 West May 2004 A1
20040096476 Uhrich et al. May 2004 A1
20040097408 Leder et al. May 2004 A1
20040101959 Marko et al. May 2004 A1
20040107453 Furcht et al. Jun 2004 A1
20040110286 Bhatia Jun 2004 A1
20040115804 Fu et al. Jun 2004 A1
20040115806 Fu Jun 2004 A1
20040120932 Zahner Jun 2004 A1
20040121461 Honmou et al. Jun 2004 A1
20040121464 Rathjen et al. Jun 2004 A1
20040126405 Sahatjian et al. Jul 2004 A1
20040128077 Koebler et al. Jul 2004 A1
20040131601 Epstein et al. Jul 2004 A1
20040132184 Dennis et al. Jul 2004 A1
20040136967 Weiss et al. Jul 2004 A1
20040137612 Baksh Jul 2004 A1
20040137613 Vacanti et al. Jul 2004 A1
20040143174 Brubaker Jul 2004 A1
20040143863 Li et al. Jul 2004 A1
20040151700 Harlan et al. Aug 2004 A1
20040151701 Kim et al. Aug 2004 A1
20040151706 Shakhov et al. Aug 2004 A1
20040151729 Michalopoulos et al. Aug 2004 A1
20040152190 Sumita Aug 2004 A1
20040161419 Strom et al. Aug 2004 A1
20040171533 Zehentner et al. Sep 2004 A1
20040180347 Stanton et al. Sep 2004 A1
20040191902 Hambor et al. Sep 2004 A1
20040197310 Sanberg et al. Oct 2004 A1
20040197375 Rezania et al. Oct 2004 A1
20040208786 Kevy et al. Oct 2004 A1
20040214275 Soejima et al. Oct 2004 A1
20040219134 Naughton et al. Nov 2004 A1
20040219136 Hariri Nov 2004 A1
20040219563 West et al. Nov 2004 A1
20040224403 Bhatia Nov 2004 A1
20040229351 Rodriguez et al. Nov 2004 A1
20040234972 Owens et al. Nov 2004 A1
20040235158 Bartlett et al. Nov 2004 A1
20040235160 Nishikawa et al. Nov 2004 A1
20040235166 Prockop et al. Nov 2004 A1
20040242469 Lee et al. Dec 2004 A1
20040258669 Dzau et al. Dec 2004 A1
20040259242 Malinge et al. Dec 2004 A1
20040259254 Honmou et al. Dec 2004 A1
20040260058 Scheek et al. Dec 2004 A1
20040260318 Hunter et al. Dec 2004 A1
20040265996 Schwarz et al. Dec 2004 A1
20050002914 Rosen et al. Jan 2005 A1
20050003460 Nilsson et al. Jan 2005 A1
20050003527 Lang et al. Jan 2005 A1
20050003534 Huberman et al. Jan 2005 A1
20050008624 Peled et al. Jan 2005 A1
20050008626 Fraser et al. Jan 2005 A1
20050009178 Yost et al. Jan 2005 A1
20050009179 Gemmiti et al. Jan 2005 A1
20050009181 Black et al. Jan 2005 A1
20050013804 Kato et al. Jan 2005 A1
20050014252 Chu et al. Jan 2005 A1
20050014253 Ehmann et al. Jan 2005 A1
20050014254 Kruse Jan 2005 A1
20050014255 Tang et al. Jan 2005 A1
20050019801 Rubin et al. Jan 2005 A1
20050019908 Hariri Jan 2005 A1
20050019910 Takagi et al. Jan 2005 A1
20050019911 Gronthos et al. Jan 2005 A1
20050026836 Dack et al. Feb 2005 A1
20050031587 Tsutsui et al. Feb 2005 A1
20050031595 Peled et al. Feb 2005 A1
20050031598 Levenberg et al. Feb 2005 A1
20050032122 Hwang et al. Feb 2005 A1
20050032207 Wobus et al. Feb 2005 A1
20050032209 Messina et al. Feb 2005 A1
20050032218 Gerlach Feb 2005 A1
20050036980 Chaney et al. Feb 2005 A1
20050037488 Mitalipova et al. Feb 2005 A1
20050037490 Rosenberg et al. Feb 2005 A1
20050037492 Xu et al. Feb 2005 A1
20050037493 Mandalam et al. Feb 2005 A1
20050037949 O'Brien et al. Feb 2005 A1
20050106119 Brandom et al. May 2005 A1
20050106127 Kraus et al. May 2005 A1
20050112447 Fletcher et al. May 2005 A1
20050112762 Hart et al. May 2005 A1
20050118712 Tsai et al. Jun 2005 A1
20050130297 Sarem et al. Jun 2005 A1
20050136093 Denk Jun 2005 A1
20050137517 Blickhan et al. Jun 2005 A1
20050142162 Hunter et al. Jun 2005 A1
20050149157 Hunter et al. Jul 2005 A1
20050152946 Hunter et al. Jul 2005 A1
20050158289 Simmons et al. Jul 2005 A1
20050172340 Logvinov et al. Aug 2005 A1
20050175665 Hunter et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050178395 Hunter et al. Aug 2005 A1
20050178396 Hunter et al. Aug 2005 A1
20050180957 Scharp et al. Aug 2005 A1
20050181502 Furcht et al. Aug 2005 A1
20050182463 Hunter et al. Aug 2005 A1
20050183731 Hunter et al. Aug 2005 A1
20050186244 Hunter et al. Aug 2005 A1
20050186671 Cannon et al. Aug 2005 A1
20050187140 Hunter et al. Aug 2005 A1
20050196421 Hunter et al. Sep 2005 A1
20050208095 Hunter et al. Sep 2005 A1
20050244963 Teplyashin Nov 2005 A1
20050249731 Aslan et al. Nov 2005 A1
20050255118 Wehner Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050277577 Hunter et al. Dec 2005 A1
20050281790 Simmons et al. Dec 2005 A1
20050282733 Prins et al. Dec 2005 A1
20050283844 Furcht et al. Dec 2005 A1
20060002900 Binder et al. Jan 2006 A1
20060008452 Simmons et al. Jan 2006 A1
20060019389 Yayon et al. Jan 2006 A1
20060054941 Lu et al. Mar 2006 A1
20060083720 Fraser et al. Apr 2006 A1
20060099198 Thomson et al. May 2006 A1
20060166364 Senesac Jul 2006 A1
20060172008 Yayon et al. Aug 2006 A1
20060193840 Gronthos et al. Aug 2006 A1
20060228798 Verfaillie et al. Oct 2006 A1
20060239909 Anderson et al. Oct 2006 A1
20060258586 Sheppard et al. Nov 2006 A1
20060258933 Ellis et al. Nov 2006 A1
20060259998 Brumbley et al. Nov 2006 A1
20060280748 Buckheit Dec 2006 A1
20060286077 Gronthos et al. Dec 2006 A1
20070005148 Barofsky et al. Jan 2007 A1
20070011752 Paleyanda Jan 2007 A1
20070042462 Hildinger Feb 2007 A1
20070065938 Gronthos et al. Mar 2007 A1
20070105222 Wolfinbarger et al. May 2007 A1
20070116612 Williamson May 2007 A1
20070117180 Morikawa et al. May 2007 A1
20070122904 Nordon May 2007 A1
20070123996 Sugaya et al. May 2007 A1
20070166834 Williamson et al. Jul 2007 A1
20070178071 Westenfelder Aug 2007 A1
20070196421 Hunter et al. Aug 2007 A1
20070197957 Hunter et al. Aug 2007 A1
20070198063 Hunter et al. Aug 2007 A1
20070202485 Nees et al. Aug 2007 A1
20070203330 Kretschmar et al. Aug 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070258943 Penn et al. Nov 2007 A1
20070274970 Gordon et al. Nov 2007 A1
20070275457 Granchelli et al. Nov 2007 A1
20070295651 Martinez et al. Dec 2007 A1
20070298015 Beer et al. Dec 2007 A1
20080003663 Bryhan et al. Jan 2008 A1
20080009458 Dornan et al. Jan 2008 A1
20080032398 Cannon et al. Feb 2008 A1
20080050770 Zhang et al. Feb 2008 A1
20080063600 Aguzzi et al. Mar 2008 A1
20080064649 Rameshwar Mar 2008 A1
20080069807 Jy et al. Mar 2008 A1
20080095676 Andretta Apr 2008 A1
20080095690 Liu Apr 2008 A1
20080103412 Chin May 2008 A1
20080110827 Cote et al. May 2008 A1
20080113426 Smith et al. May 2008 A1
20080113440 Gurney et al. May 2008 A1
20080153077 Henry Jun 2008 A1
20080160597 van der Heiden et al. Jul 2008 A1
20080166808 Nyberg Jul 2008 A1
20080181879 Catelas et al. Jul 2008 A1
20080190857 Beretta et al. Aug 2008 A1
20080194017 Esser et al. Aug 2008 A1
20080206831 Coffey et al. Aug 2008 A1
20080220524 Noll et al. Sep 2008 A1
20080220526 Ellison et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080227189 Bader Sep 2008 A1
20080268165 Fekety et al. Oct 2008 A1
20080306095 Crawford Dec 2008 A1
20090004738 Merchav et al. Jan 2009 A1
20090011399 Fischer Jan 2009 A1
20090047289 Denhardt et al. Feb 2009 A1
20090074728 Gronthos et al. Mar 2009 A1
20090075881 Catelas et al. Mar 2009 A1
20090076481 Stegmann et al. Mar 2009 A1
20090081770 Srienc et al. Mar 2009 A1
20090081797 Fadeev et al. Mar 2009 A1
20090092608 Ni et al. Apr 2009 A1
20090098103 Madison et al. Apr 2009 A1
20090098645 Fang et al. Apr 2009 A1
20090100944 Newby Apr 2009 A1
20090104163 Deans et al. Apr 2009 A1
20090104692 Bartfeld et al. Apr 2009 A1
20090104699 Newby et al. Apr 2009 A1
20090118161 Cruz May 2009 A1
20090181087 Kraus et al. Jul 2009 A1
20090183581 Wilkinson et al. Jul 2009 A1
20090191627 Fadeev et al. Jul 2009 A1
20090191632 Fadeev et al. Jul 2009 A1
20090191634 Martin et al. Jul 2009 A1
20090203065 Gehman et al. Aug 2009 A1
20090203129 Furcht et al. Aug 2009 A1
20090203130 Furcht et al. Aug 2009 A1
20090214382 Burgess et al. Aug 2009 A1
20090214481 Muhs et al. Aug 2009 A1
20090214652 Hunter et al. Aug 2009 A1
20090215022 Page et al. Aug 2009 A1
20090227024 Baker et al. Sep 2009 A1
20090227027 Baker et al. Sep 2009 A1
20090233334 Hildinger et al. Sep 2009 A1
20090233353 Furcht et al. Sep 2009 A1
20090233354 Furcht et al. Sep 2009 A1
20090258379 Klein et al. Oct 2009 A1
20090269841 Wojciechowski et al. Oct 2009 A1
20090270725 Leimbach et al. Oct 2009 A1
20090280153 Hunter et al. Nov 2009 A1
20090280565 Jolicoeur et al. Nov 2009 A1
20090291890 Madison et al. Nov 2009 A1
20100009409 Hubbell et al. Jan 2010 A1
20100021954 Deshayes et al. Jan 2010 A1
20100021990 Edwards et al. Jan 2010 A1
20100028311 Motlagh et al. Feb 2010 A1
20100075410 Desai et al. Mar 2010 A1
20100086481 Baird et al. Apr 2010 A1
20100092536 Hunter et al. Apr 2010 A1
20100093607 Dickneite Apr 2010 A1
20100111910 Rakoczy May 2010 A1
20100129376 Denhardt et al. May 2010 A1
20100129912 Su et al. May 2010 A1
20100136091 Moghe et al. Jun 2010 A1
20100144634 Zheng et al. Jun 2010 A1
20100183561 Sakthivel et al. Jul 2010 A1
20100183585 Van Zant et al. Jul 2010 A1
20100203020 Ghosh Aug 2010 A1
20100230203 Karayianni Sep 2010 A1
20100248366 Fadeev et al. Sep 2010 A1
20100278933 Sayeski et al. Nov 2010 A1
20100285453 Goodrich Nov 2010 A1
20100285590 Verfaillie et al. Nov 2010 A1
20100291180 Uhrich Nov 2010 A1
20100291181 Uhrich et al. Nov 2010 A1
20100297234 Sugino et al. Nov 2010 A1
20100304427 Faris et al. Dec 2010 A1
20100304482 Deshayes et al. Dec 2010 A1
20100310524 Bechor et al. Dec 2010 A1
20100316446 Runyon Dec 2010 A1
20110085746 Wong et al. Apr 2011 A1
20110111498 Oh et al. May 2011 A1
20110129447 Meretzki et al. Jun 2011 A1
20110129486 Meiron Jun 2011 A1
20110143433 Oh et al. Jun 2011 A1
20110159584 Gibbons et al. Jun 2011 A1
20110171182 Abelman Jul 2011 A1
20110171659 Furcht et al. Jul 2011 A1
20110177595 Furcht et al. Jul 2011 A1
20110212493 Hirschel et al. Sep 2011 A1
20110256108 Meiron et al. Oct 2011 A1
20110256160 Meiron et al. Oct 2011 A1
20110293583 Aberman Dec 2011 A1
20120028352 Oh et al. Feb 2012 A1
20120051976 Lu et al. Mar 2012 A1
20120058554 Deshayes et al. Mar 2012 A1
20120064047 Verfaillie et al. Mar 2012 A1
20120064583 Edwards et al. Mar 2012 A1
20120118919 Cianciolo May 2012 A1
20120122220 Merchav et al. May 2012 A1
20120135043 Maziarz et al. May 2012 A1
20120145580 Paruit et al. Jun 2012 A1
20120156779 Anneren et al. Jun 2012 A1
20120178885 Kohn et al. Jul 2012 A1
20120189713 Kohn et al. Jul 2012 A1
20120208039 Barbaroux et al. Aug 2012 A1
20120219531 Oh et al. Aug 2012 A1
20120219737 Sugino et al. Aug 2012 A1
20120226013 Kohn et al. Sep 2012 A1
20120231519 Bushman et al. Sep 2012 A1
20120237557 Lewitus et al. Sep 2012 A1
20120295352 Antwiler Nov 2012 A1
20120308531 Pinxteren et al. Dec 2012 A1
20120315696 Luitjens et al. Dec 2012 A1
20130004465 Aberman Jan 2013 A1
20130039892 Aberman Feb 2013 A1
20130058907 Wojciechowski et al. Mar 2013 A1
20130059383 Dijkhuizen Borgart et al. Mar 2013 A1
20130101561 Sabaawy Apr 2013 A1
20130143313 Niazi Jun 2013 A1
20130157353 Dijkhuizen Borgart et al. Jun 2013 A1
20130259843 Duda et al. Oct 2013 A1
20130319575 Mendyk Dec 2013 A1
20130323213 Meiron et al. Dec 2013 A1
20130337558 Meiron et al. Dec 2013 A1
20140004553 Parker et al. Jan 2014 A1
20140017209 Aberman et al. Jan 2014 A1
20140030805 Kasuto et al. Jan 2014 A1
20140051162 Nankervis Feb 2014 A1
20140051167 Nankervis et al. Feb 2014 A1
20140112893 Tom et al. Apr 2014 A1
20140186937 Smith et al. Jul 2014 A1
20140193895 Smith et al. Jul 2014 A1
20140193911 Newby et al. Jul 2014 A1
20140242039 Meiron et al. Aug 2014 A1
20140248244 Danilkovitch et al. Sep 2014 A1
20140315300 Oh et al. Oct 2014 A1
20140342448 Nagels Nov 2014 A1
20150004693 Danilkovitch et al. Jan 2015 A1
20150104431 Pittenger et al. Apr 2015 A1
20150111252 Hirschel et al. Apr 2015 A1
20150125138 Karnieli et al. May 2015 A1
20150175950 Hirschel et al. Jun 2015 A1
20150225685 Hirschel et al. Aug 2015 A1
20150247122 Tom et al. Sep 2015 A1
20150259749 Santos et al. Sep 2015 A1
20160362650 Wojciechowski et al. Dec 2016 A1
20160362652 Page et al. Dec 2016 A1
20180010082 Jaques et al. Jan 2018 A1
20180030398 Castillo Feb 2018 A1
20180155668 Hirschel et al. Jun 2018 A1
20190194628 Rao et al. Jun 2019 A1
Foreign Referenced Citations (248)
Number Date Country
1016332 Aug 1977 CA
4007703 Sep 1991 DE
10244859 Apr 2004 DE
10327988 Jul 2004 DE
102012200939 Jul 2013 DE
750938 Jan 1997 EP
906415 Apr 1999 EP
959980 Dec 1999 EP
1007631 Jun 2000 EP
1028737 Aug 2000 EP
1028991 Aug 2000 EP
1066052 Jan 2001 EP
1066060 Jan 2001 EP
1084230 Mar 2001 EP
1147176 Oct 2001 EP
1220611 Jul 2002 EP
1223956 Jul 2002 EP
1325953 Jul 2003 EP
1437404 Jul 2004 EP
1437406 Jul 2004 EP
1447443 Aug 2004 EP
1452594 Sep 2004 EP
1062321 Dec 2004 EP
1484080 Dec 2004 EP
1498478 Jan 2005 EP
1036057 Oct 2005 EP
1605044 Dec 2005 EP
1756262 Feb 2007 EP
1771737 Apr 2007 EP
1882030 Jan 2008 EP
1908490 Apr 2008 EP
1971679 Sep 2008 EP
1991668 Nov 2008 EP
2027247 Feb 2009 EP
2200622 Jun 2010 EP
2208782 Jul 2010 EP
2264145 Dec 2010 EP
2303293 Apr 2011 EP
2311938 Apr 2011 EP
2331957 Jun 2011 EP
2334310 Jun 2011 EP
2334783 Jun 2011 EP
2361968 Aug 2011 EP
2366775 Sep 2011 EP
2465922 Jun 2012 EP
2548951 Jan 2013 EP
2561066 Feb 2013 EP
2575831 Apr 2013 EP
2591789 May 2013 EP
2624845 Aug 2013 EP
2626417 Aug 2013 EP
2641606 Sep 2013 EP
2689008 Jan 2014 EP
2694639 Feb 2014 EP
2697362 Feb 2014 EP
2739720 Jun 2014 EP
2807246 Dec 2014 EP
1414671 Nov 1975 GB
2297980 Dec 1999 GB
2360789 Oct 2001 GB
3285 May 2007 HU
2003052360 Feb 2003 JP
5548207 Jul 2014 JP
115206 Apr 2003 MY
WO-9013306 Nov 1990 WO
WO-9105238 Apr 1991 WO
WO-9106641 May 1991 WO
WO-9109194 Jun 1991 WO
WO-9425571 Nov 1994 WO
WO-9629395 Sep 1996 WO
WO-9639035 Dec 1996 WO
WO-9705826 Feb 1997 WO
WO-9729792 Aug 1997 WO
WO-9739104 Oct 1997 WO
WO-1997-040137 Oct 1997 WO
WO-9831403 Jul 1998 WO
WO-9851317 Nov 1998 WO
WO-9851785 Nov 1998 WO
WO-9905180 Feb 1999 WO
WO-9924391 May 1999 WO
WO-9924490 May 1999 WO
WO-9927167 Jun 1999 WO
WO-9949015 Sep 1999 WO
WO-0006704 Feb 2000 WO
WO-0009018 Feb 2000 WO
WO-0016420 Mar 2000 WO
WO-0017326 Mar 2000 WO
WO-0029002 May 2000 WO
WO-0032225 Jun 2000 WO
WO-0044058 Jul 2000 WO
WO-0054651 Sep 2000 WO
WO-0056405 Sep 2000 WO
WO-0059933 Oct 2000 WO
WO-0069449 Nov 2000 WO
WO-0075196 Dec 2000 WO
WO-0077236 Dec 2000 WO
WO-2001000783 Jan 2001 WO
WO-2001011011 Feb 2001 WO
WO-2001018174 Mar 2001 WO
WO-2001021766 Mar 2001 WO
WO-2001025402 Apr 2001 WO
WO-2001029189 Apr 2001 WO
WO-0122810 Apr 2001 WO
WO-2001034167 May 2001 WO
WO-2001049851 Jul 2001 WO
WO-2001054706 Aug 2001 WO
WO-2001-094541 Dec 2001 WO
WO-2002042422 May 2002 WO
WO-2002057430 Jul 2002 WO
WO-2002092794 Nov 2002 WO
WO-2002101385 Dec 2002 WO
WO-2003010303 Feb 2003 WO
WO-2003014313 Feb 2003 WO
WO-2003016916 Feb 2003 WO
WO-2003023018 Mar 2003 WO
WO-2003023019 Mar 2003 WO
WO-2003025167 Mar 2003 WO
WO-2003029402 Apr 2003 WO
WO-2003040336 May 2003 WO
WO-2003042405 May 2003 WO
WO-2003046161 Jun 2003 WO
WO-2003055989 Jul 2003 WO
WO-2003061685 Jul 2003 WO
WO-2003061686 Jul 2003 WO
WO-2003068961 Aug 2003 WO
WO-2003072064 Sep 2003 WO
WO-2003078609 Sep 2003 WO
WO-2003078967 Sep 2003 WO
WO-2003080816 Oct 2003 WO
WO-2003082145 Oct 2003 WO
WO-2003085099 Oct 2003 WO
WO-2003089631 Oct 2003 WO
WO-2003091398 Nov 2003 WO
WO-2003095631 Nov 2003 WO
WO-2004001697 Dec 2003 WO
WO-2004012226 Feb 2004 WO
WO-2004016779 Feb 2004 WO
WO-2004018526 Mar 2004 WO
WO-2004018655 Mar 2004 WO
WO-2004026115 Apr 2004 WO
WO-2004029231 Apr 2004 WO
WO-2004042023 May 2004 WO
WO-2004042033 May 2004 WO
WO-2004042040 May 2004 WO
WO-2004044127 May 2004 WO
WO-2004044158 May 2004 WO
WO-2004046304 Jun 2004 WO
WO-2004050826 Jun 2004 WO
WO-2004053096 Jun 2004 WO
WO-2004055155 Jul 2004 WO
WO-2004056186 Jul 2004 WO
WO-2004065616 Aug 2004 WO
WO-2004069172 Aug 2004 WO
WO-2004070013 Aug 2004 WO
WO-2004072264 Aug 2004 WO
WO-2004073633 Sep 2004 WO
WO-2004074464 Sep 2004 WO
WO-2004076642 Sep 2004 WO
WO-2004076653 Sep 2004 WO
WO-2004087870 Oct 2004 WO
WO-2004094588 Nov 2004 WO
WO-2004096975 Nov 2004 WO
WO-2004104166 Dec 2004 WO
WO-2004106499 Dec 2004 WO
WO-2004113513 Dec 2004 WO
WO-2005001033 Jan 2005 WO
WO-2005001081 Jan 2005 WO
WO-2005003320 Jan 2005 WO
WO-2005007799 Jan 2005 WO
WO-2005010172 Feb 2005 WO
WO-2005011524 Feb 2005 WO
WO-2005012480 Feb 2005 WO
WO-2005012510 Feb 2005 WO
WO-2005012512 Feb 2005 WO
WO-05014775 Feb 2005 WO
WO-2005028433 Mar 2005 WO
WO-05044972 May 2005 WO
WO-2005056747 Jun 2005 WO
WO-05051316 Jun 2005 WO
WO-2005063303 Jul 2005 WO
WO-2005075636 Aug 2005 WO
WO-2005107760 Nov 2005 WO
WO-2006009291 Jan 2006 WO
WO-2006032075 Mar 2006 WO
WO-2006032092 Mar 2006 WO
2006-047841 May 2006 WO
WO-2006-047841 May 2006 WO
WO-2006108229 Oct 2006 WO
WO-2006113881 Oct 2006 WO
WO-2006121445 Nov 2006 WO
WO-06124021 Nov 2006 WO
WO-06129312 Dec 2006 WO
WO-2007115367 Oct 2007 WO
WO-2007115368 Oct 2007 WO
WO-2008006168 Jan 2008 WO
WO-2008011664 Jan 2008 WO
WO-2008017128 Feb 2008 WO
WO-2008028241 Mar 2008 WO
WO-08040812 Apr 2008 WO
WO-2008116261 Oct 2008 WO
WO-2008149129 Dec 2008 WO
WO-2009026635 Mar 2009 WO
WO-09058146 May 2009 WO
WO-09080054 Jul 2009 WO
WO-09081408 Jul 2009 WO
WO-2009140452 Nov 2009 WO
WO-09132457 Nov 2009 WO
WO-2009144720 Dec 2009 WO
WO-10005527 Jan 2010 WO
WO-2010019886 Feb 2010 WO
WO-10014253 Feb 2010 WO
WO-10019997 Feb 2010 WO
WO-2010026573 Mar 2010 WO
WO-2010026574 Mar 2010 WO
WO-2010026575 Mar 2010 WO
WO-2010036760 Apr 2010 WO
WO-2010059487 May 2010 WO
WO-10061377 Jun 2010 WO
WO-10068710 Jun 2010 WO
WO-10071826 Jun 2010 WO
WO-10083385 Jul 2010 WO
WO-10111255 Sep 2010 WO
WO-10119036 Oct 2010 WO
WO-10123594 Oct 2010 WO
WO-2011025445 Mar 2011 WO
WO-2011132087 Oct 2011 WO
WO-2011147967 Dec 2011 WO
WO-2012072924 Jun 2012 WO
WO-2012127320 Sep 2012 WO
WO-2012138968 Oct 2012 WO
WO-2012140519 Oct 2012 WO
WO-2012171026 Dec 2012 WO
WO-2012171030 Dec 2012 WO
WO-2013110651 Aug 2013 WO
WO-2014037862 Mar 2014 WO
WO-2014037863 Mar 2014 WO
WO-2014068508 May 2014 WO
WO-2014128306 Aug 2014 WO
WO-2014128634 Aug 2014 WO
WO-2014131846 Sep 2014 WO
WO-2014141111 Sep 2014 WO
WO-2015004609 Jan 2015 WO
WO-2015118148 Aug 2015 WO
WO-2015118149 Aug 2015 WO
WO-2015131143 Sep 2015 WO
WO-2017072201 May 2017 WO
2017-205667 Nov 2017 WO
WO-2017-205667 Nov 2017 WO
Non-Patent Literature Citations (267)
Entry
Cuchiara et al. Covalent immobilization of stem cell factor and stromal derived factor 1a for in vitro culture of hematopoietic progenitor cells (2013) Acta Biomaterialia, 9, pp. 9258-9269. (Year: 2013).
Nankervis et al. Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor (2018) Current Stem Cell Reports, 4, pp. 46-51 (Year: 2018).
Fonseca-Pereira et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function (2014) Nature, 514, pp. 98-101 (Year: 2014).
Boitano et al. Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells (2010) Science, 329, pp. 1345-1348. (Year: 2010).
Frank, Nathan D. Et Al., “Evaluation of Reagents Used to Coat the Hollow-Fiber Bioreactor Membrane of the Quantum Cell Expansion System for the Culture of Human Mesenchymal Stem Cells”, Materials Science and Engineering C, Elsevier Science S.A., Ch, vol. 96, Oct. 26, 2018, pp. 77-85.
Abumiya, et al at National Cardiovascular Center Research Institute in Japan, suggest that subjecting human umbilical vein endothelial cells (HUVECs) to laminar shear stress for a period of 8 hours increased the relative expression of VEGFR-2 mRNA (Ateriosclerosis, Thrombosis, and Vascular Biology, 2002).
Afzali B, Edozie FC, Fazekasova H, Scotta C, Mitchell PJ, Canavan JB, Kordasti SY, Chana PS, Ellis R, Lord GM, John S, Hilton R, Lechler RI, Lombardi G. Comparison of regulatory T cells in hemodialysis patients and healthy controls: implications for cell therapy in transplantation. Clin J Am Soc Nephrol. 2013;8(8):1396-405.
Akram, Khondoker M., et al. “Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms.” Respiratory research 14.1 (2013): 1-16.
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Fibroblasts and Their Transformations: The Connective-Tissue Cell Family. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26889.
Alenazi, Noof A., et al. “Modified polyether-sulfone membrane: A mini review.” Designed monomers and polymers 20.1 (2017): 532-546.
Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514-524.
Amy Putnam, Todd M. Brusko, Michael R. Lee, Weihong Liu, Gregory L. Szot, Taumoha Ghosh, Mark A. Atkinson, and Jeffrey A. Bluestone. Expansion of human regulatory T-Cells from patients with Type 1 Diabetes. Diabetes, 58: 652-662, 2009.
Anamelechi, Charles C., et al. “Streptavidin binding and endothelial cell adhesion to biotinylated fibronectin.” Langmuir 23.25 (2007): 12583-12588.
Anurathapan et al., “Engineered T cells for cancer treatment,” Cytotherapy, vol. 16, pp. 713-733, 2014.
Aronowski J, Samways E, Strong R, Rhoades HM, Grotta JC. An alternative method for the quantitation of neuronal damage after experimental middle cerebral artery occlusion in rats: Analysis of behavioral deficit. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1996;16:705-713.
Arrigoni, Chiara, et al. “Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid.” Biotechnology and bioengineering 100.5 (2008): 988-997.
Azar, Toni, Jody Sharp, and David Lawson. “Heart rates of male and female Sprague-Dawley and spontaneously hypertensive rats housed singly or in groups.” Journal of the American Association for Laboratory Animal Science 50.2 (2011): 175-184.
Baecher-Allan, Clare, et al. “CD4+ CD25high regulatory cells in human peripheral blood.” The Journal of Immunology 167.3 (2001): 1245-1253.
Bai, Tao, et al. “Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel.” Nature medicine 25.10 (2019): 1566-1575.
Bai/Delaney (Nohla Therapeutics) showed that expanding Cord Blood-derived CD34+CD38-CD45RA-HSPCs in a biodegradable zwitterionic hydrogel with a rNotch ligand cocktail for 24 days mitigated HSPC differentiation and promoted self-renewal of lymphoid and myeloid cell phenotypes in an NSG mouse model (Nature Medicine, 2019).
Ballas CB, Zielske SP, Gerson SL (2002) Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 38: 20-28.
Ballke C, Gran E, Baekkevold ES, Jahnsen FL. Characterization of Regulatory T-Cell Markers in CD4+ T Cells of the Upper Airway Mucosa. PLoS One. 2016;11(2):e0148826.
Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1): 121-143.
Barckhausen C, Rice B, Baila S, et al. (2016) GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor. Methods Mol Biol 1416: 389-412.
Barker et al. “CD34+ Cell Content of 126 341 Cord Blood Units in the US Inventory: Implications for Transplantation and Banking,” blood Advances, vol. 3, No. 8, pp. 1267-1271, Apr. 23, 2019.
Barker, Juliet N., et al. “CD34+ cell content of 126 341 cord blood units in the US inventory: implications for transplantation and banking.” Blood advances 3.8 (2019): 1267-1271.
Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. The Journal of head trauma rehabilitation. 2009;24:439-451.
Bending D, Pesenacker AM, Ursu S, Wu Q, Lom H, Thirugnanabalan B, Wedderburn LR. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193(6):2699-708.
Berendse M, Grounds MD, Lloyd CM (2003) Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp Cell Res 291(2): 435-450.
Bernard, A., Payton, Mar. 1995. “Fermentation and Growth of Escherichia coli for Optimal Protein Production”, John Wiley & Sons. Current Protocols in Protein Science (1995) 5.3.1-5.3.18.
Berney SM, Schaan T, Wolf RE, van der Heyde H, Atkinson TP. CD2 (OKT11) augments CD3-mediated intracellular signaling events in human T lymphocytes. J Investig Med. 2000;48(2):102-9.
Bioheart Clinical Trial Clinica 1302 Apr. 18, 2008.
Biomolecular and Cellular Interactions with the Hollow Fiber Membrane Currently Used in the Quantum® Cell Expansion System. 12th NJ Symposium on Biomaterials Science, Oct. 6- 7, 2014, New Brunswick, NJ.
Blache C, Chauvin JM, Marie-Cardine A, Contentin N, Pommier P, Dedreux I, Francois S, Jacquot S, Bastit D, Boyer O. Reduced frequency of regulatory T cells in peripheral blood stem cell compared to bone marrow transplantations. Biol Blood Marrow Transplant. 2010;16(3):430-4.
Bluestone et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine 7(315):1-34, 2015.
Bluestone JA, Tang Q. Treg cells-the next frontier of cell therapy. Science. 2018;362(6411):154-155.
Bluestone, Jeffrey A., et al. “Type 1 diabetes immunotherapy using polyclonal regulatory T cells.” Science translational medicine 7.315 (2015): 315ra189-315ra189.
Blum S, Moore AN, Adams F, Dash PK. A mitogen-activated protein kinase cascade in the ca1/ca2 subfield of the dorsal hippocampus is essential for long-term spatial memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999;19:3535-3544.
Boitano, Anthony E., et al. “Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.” Science 329.5997 (2010): 1345-1348.
Bojun Li et al. Heparin-induced conformation changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation. Biomaterials Science 3: 73-84, 2015.
Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of Stromal Stem Cells from Human Adipose Tissue. Methods Mol Biol. 2006;325:35-46. doi: 10.1385/1-59745-005-7:35. PMID: 16761717.
Borden, M. and Longo, M., “Dissolution Behavior of Lipid Monolayer-Coated, Air-Filled Microbubbles: Effect of Lipid Hydrophobic Chain Length,” Langmuir, vol. 18, pp. 9225-9233, 2002.
Bourke, Sharon L., and Joachim Kohn. “Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol).” Advanced drug delivery reviews 55.4 (2003): 447-466.
Brand, K. and Hermfisse, U., “Aerobic Glycolysis by Proliferating Cells: a Protective Strategy against Reactive Oxygen Species,” The FASEB Journal, vol. 11, pp. 388-395, Apr. 1997.
Brentjens et al., “CD19-Targeted T Cells Rapidly Induce Molecular Remission in Adults with Chemotherapy-Refractory Acute Lympohblastic Leukemia,” Science Translational Medicine, vol. 5, Issue 177, pp. 1-9, Mar. 20, 2013.
Brentjens et al., “Safety and Persistance of Adoptively Transferred Autologous CD19-Target T Cells in Patients with Relapsed or Chemotherapy Refractory B-Cell Leukemias,” Blood, vol. 118, No. 18, pp. 4817-4828, Nov. 3, 2011.
Brunstein C, Miller J, Cao Q, McKenna D, Hippen K, Curtsinger J, DeFor T, Levine B, June C, Rubinstein P, McGlave P, Blazar B, Wagner J. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117(3):1061-1070.
C. H. Weaver, et al. An Analysis of Engraftment Kinetics as a function of the CD34 Content of the Peripheral Blood Progenitor Cell Collections in 692 Patients After the Administration of Myeloblative Chemotherapy. Blood 86(10): 3691-3969, 1995.
Cano, Àngels, Cristina Minguillón, and Cristina Palet. “Immobilization of endo-1, 4-β-xylanase on polysulfone acrylate membranes: Synthesis and characterization.” Journal of membrane science 280.1-2 (2006): 383-388.
Carswell, K. and Papoutsakis, E. “Culture of Human T Cells in Stirred Bioreactors for Cellular Immunotherapy Applications: Shear, Proliferation, and the IL-2 Receptor,” Biotechnology and Bioengineering, vol. 68, No. 3, pp. 329-338, May 5, 2000.
Celeste Nelson et al., Emergent patterns of growth controlled by multicellular form and mechanics, (in Christopher Chen's Lab demonstrated, in separate experiments, that curved surfaces with a radius of curvature (200 ?m) that is greater than the cell diameter and surfaces that have undulating special patterning (depressions) increase the patterned growth of ECs [PNAS 102(33): 11594-11599, 2005].
Chapman NM, Chi H. mTOR signaling, Tregs and immune modulation. Immunotherapy. 2014;6(12):1295-311.
Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566-78.
Chen, C. and Broden, M., “The Role of Poly(theylene glycol) Brush Architecture in Complement Activation on Targeted Microbubble Surfaces,” Biomaterials, vol. 32, No. 27, pp. 6579-6587, Jun. 17, 2011.
Choi W, Kwon SJ, Jin HJ, et al. (2017) Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clin Transl Med 6(1): 38.
Chullikana A, Majumdar AS, Gottipamula S, et al. (2015) Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 17(3): 250-261.
Claudio G. Brunstein, Jeffrey S. Miller, Qing Cao, Daivd H. McKenna, Keli L. Hippen, Julie Curtsinger, Todd Defor, Bruce L. Levine, Carl H. June, Pablo Rubinstein, Philip B. McGlave, Bruce R. Blazar, and John E. Wagner. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood, 117(3): 1061-1070, 2010.
Coeshott C, Vang B, Jones M, Nankervis B. Large-scale expansion and characterization of CD3(+) T-cells in the Quantum((R)) Cell Expansion System. J Transl Med. 2019;17(1):258.
Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T cells and intestinal homeostasis. Immunol Rev. 2005;204:184-94.
Coquillard C. mTOR Signaling in Regulatory T cell Differentiation and Expansion. SOJ Immunology. 2015;3(1):1-10.
Creed JA, DiLeonardi AM, Fox DP, Tessler AR, Raghupathi R. Concussive brain trauma in the mouse results in acute cognitive deficits and sustained impairment of axonal function. Journal of neurotrauma. 2011;28:547-563.
Cuchiara, Maude L. et al., “Covalent Immobilization of Stem Cell Factor and Stromal Derived Factor 1[Alpha] for in Vitro Culture of Hematopoietic Progenitor Cells”, Acta Bio Materials, vol. 9, No. 12, Dec. 1, 2013, pp. 9258-9269, Amsterdam, NL (25 Pages).
Cuchiara, Maude L., et al. “Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells.” Acta biomaterialia 9.12 (2013): 9258-9269.
Da Silva, Ricardo MP, Joao F. Mano, and Rui L. Reis. “Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries.” Trends in Biotechnology 25.12 (2007): 577-583.
Dash PK, Hochner B, Kandel ER. Injection of the camp-responsive element into the nucleus of aplysia sensory neurons blocks long-term facilitation. Nature. 1990;345:718-721.
Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S. Involvement of the glycogen synthase kinase-3 signaling pathway in tbi pathology and neurocognitive outcome. PloS one. 2011;6:e24648.
Dash PK, Mach SA, Blum S, Moore AN. Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem. 2002;9:167-177.
Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PloS one. 2010;5:e11383.
Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neuroscience letters. 2009;460:103-107.
Davila et al., “Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B cell Acute Lymphoblastic Leukemia,” Science Translational Medicine, vol. 6, No. 224, pp. 1-10, Feb. 19, 2014.
Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and ve-cadherin in the control of vascular permeability. Journal of cell science. 2008;121:2115-2122.
Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and haemostasis. 2001;86:308-315.
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Developmental cell. 2009;16:209-221.
Del Pino A, Ligero G, Lopez MB, et al. (2015) Morphology, cell viability, karyotype, expression of surface markers and plasticity of three primary cell line cultures before and after the cryostorage in LN2 and GN2. Cryobiology 70(1): 1-8.
Delaney, Colleen, et al. “Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution.” Nature medicine 16.2 (2010): 232-236.
Ding, Zhongli, Guohua Chen, and Allan S. Hoffman. “Synthesis and purification of thermally sensitive oligomer? enzyme conjugates of poly (N-isopropylacrylamide)? trypsin.” Bioconjugate chemistry 7.1 (1996): 121-125.
Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. Journal of neuroscience methods. 1991;39:253-262.
Dominici M, Le Blanc K, Mueller I, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317.
Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair. Regen Med 5(6): 919-932.
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol. 2018;142(6):1710-1718.
Fakin R, Hamacher J, Gugger M, Gazdhar A, Moser H, Schmid RA. Prolonged amelioration of acute lung allograft rejection by sequential overexpression of human interleukin-10 and hepatocyte growth factor in rats. Exp Lung Res. 2011;37(9):555-62.
Fedorov et al., “PD-1- and CTLA-4-Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses,” Science Translational Medicine, vol. 5, No. 215, pp. 1-12, Dec. 11, 2013.
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18(10):749-769.
Fischbach, Michael A., Jeffrey A. Bluestone, and Wendell A. Lim. “Cell-based therapeutics: the next pillar of medicine.” Science translational medicine 5.179 (2013): 179ps7-179ps7.
Fisk, Nicholas M., et al. “Can routine commercial cord blood banking be scientifically and ethically justified ?.” PLoS medicine 2.2 (2005): e44.
Forbes Jun. 23, 2014 article “Will this man cure cancer?”
Fowler DH. Rapamycin-resistant effector T-cell therapy. Immunol Rev. 2014;257(1):210-25.
Frank, Nathan D. et al., “Evaluation of Reagents Used to Coat the Holow-Fiber Bioreactor Membrane of the Quantum Cell Expansion System for the Culture of Human Mesenchymal Stem Cells”, Materials Science and Engineering C, Elsevier Sciense S.A., Ch, vol. 96, Oct. 26, 2018, pp. 77-85.
Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scotta C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G. A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. Mol Ther Methods Clin Dev. 2018;8:198-209.
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769-77.
Fuchs A, Gliwinski M, Grageda N, Spiering R, Abbas AK, Appel S, Bacchetta R, Battaglia M, Berglund D, Blazar B, Bluestone JA, Bornhauser M, Ten Brinke A, Brusko TM, Cools N, Cuturi MC, Geissler E, Giannoukakis N, Golab K, Hafler DA, van Ham SM, Hester J et al. Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Front Immunol. 2017;8:1844.
G0211: Study for Gamma Irradiation of Bioreactor Membranes, undated, author unknown, 3 pages.
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. J Immunol. 2016;197(7):2567-75.
Garlie, Nina K., et al. “T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer.” Journal of immunotherapy (Hagerstown, Md.: 1997) 22.4 (1999): 336-345.
Gedaly R, De Stefano F, Turcios L, Hill M, Hidalgo G, Mitov MI, Alstott MC, Butterfield DA, Mitchell HC, Hart J, Al-Attar A, Jennings CD, Marti F. mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation. 2019;103(4):705-715.
Gimble, Jeffrey M., Adam J. Katz, and Bruce A. Bunnell. “Adipose-derived stem cells for regenerative medicine.” Circulation research 100.9 (2007): 1249-1260.
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807-26.
Godin, Michel, et al. “Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator.” Applied physics letters 91.12 (2007): 123121.
Goh, Celeste, Sowmya Narayanan, and Young S. Hahn. “Myeloid-derived suppressor cells: the dark knight or the joker in viral infections?.” Immunological reviews 255.1 (2013): 210-221.
Golab K, Leveson-Gower D, Wang XJ, Grzanka J, Marek-Trzonkowska N, Krzystyniak A, Millis JM, Trzonkowski P, Witkowski P. Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol. 2013;16(3):371-5.
Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK. Assessing the safety of stem cell therapeutics. Cell stem cell. 2011;8:618-628.
Griesche, Nadine, et al. “A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells.” cells tissues organs 192.2 (2010): 106-115.
Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity. 2011;34(3):396-408.
Haack-Sorensen M, Follin B, Juhl M, et al. (2016) Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med 14(1): 319.
Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, Scheff SW. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: More than a focal brain injury. Journal of neurotrauma. 2005;22:252-265.
Hami et al., “GMP Production and Testing of Xcellerated T Cells for the Treatment of Patients with CLL,” Cytotherapy, pp. 554-562, 2004.
Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Jenkins LW, Lyeth BG, Hayes RL. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. Journal of neurotrauma. 1992;9:11-20.
Hanley PJ, Mei Z, Durett AG, et al. (2014) Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 16(8): 1048-1058.
Harimoto, Masami, et al. “Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes.” Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 62.3 (2002): 464-470.
He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, Zheng Y, Downes M, Evans RM. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci USA. 2017;114(47):12542-12547.
He X, Landman S, Bauland SC, van den Dolder J, Koenen HJ, Joosten I. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells. PLoS One. 2016;11(5):e0156311.
Heskins, Michael, and James E. Guillet. “Solution properties of poly (N-isopropylacrylamide).” Journal of Macromolecular Science—Chemistry 2.8 (1968): 1441-1455.
Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27(5):786-800.
Högstedt, Benkt, Anita Karlsson, and Anders Holmén. “Frequency and size distribution of micronuclei in lymphocytes stimulated with phytohemagglutinin and pokeweed mitogen in workers exposed to piperazine.” Hereditas 109.(1988): 139-142.
Hollyman et al., “Manufacturing Validation of Biologicall Functional T Cells Targeted to CD19 Antigen for Autologous Adoptive Cell Therapy,” J Immunother, vol. 32, No. 2, pp. 169-180, Feb.-Mar. 2009.
Horwitz, Mitchell E., et al. “Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide.” Journal of Clinical Oncology 37.5 (2019): 367-373.
International Search Report for corresponding International Application No. PCT/US2022/021595 dated Jul. 1, 2022 (4 Pages).
Itkin, Tomer, and Tsvee Lapidot. “SDF-1 keeps HSC quiescent at home.” Blood, The Journal of the American Society of Hematology 117.2 (2011): 373-374.
Iwashima, Shigejiro, et al. “Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.” Stem cells and development 18.4 (2009): 533-544.
Jang, Eugene, et al. “Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle.” Proceedings of the National Academy of Sciences 109.5 (2012): 1679-1684.
Jarocha D, Stangel-Wojcikiewicz K, Basta A, Majka M (2014) Efficient myoblast expansion for regenerative medicine use. Int J Mol Med 34(1): 83-91.
Jin, H., and J. Bae. “Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.” 22nd Annual ISCT Meeting (2016): S29.
Jo CH, Lee YG, Shin WH, et al. (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5): 1254-1266.
Johansson, Ulrika, et al. “Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices.” PloS one 10.6 (2015): e0130169.
John Carvell, et al. Monitoring Live Biomass in Disposable Bioreactors, BioProcess International 14(3)s, Mar. 2016.
John Nicolette, et al (Abbott Laboratories). In Vitro Micronucleus Screening of Pharmaceutical Candidates by Flow Cyto9metry in Chinese Hamster V79 Cells, Environmental and Molecular Mutagenesis 00:000-000, 2010.
John P. Carvell and Jason E. Dowd. On-line measurements and control of viable cell density in cell culture manufacturing processes using radio frequency impedance. Cytotechnology 50: 35-48, 2006.
Johnson, Patrick A., et al. “Interplay of anionic charge, poly (ethylene glycol), and iodinated tyrosine incorporation within tyrosine?derived polycarbonates: Effects on vascular smooth muscle cell adhesion, proliferation, and motility.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 93.2 (2010): 505-514.
Johnston LC, Su X, Maguire-Zeiss K, Horovitz K, Ankoudinova I, Guschin D, Hadaczek P, Federoff HJ, Bankiewicz K, Forsayeth J. Human interleukin-10 gene transfer is protective in a rat model of Parkinson's disease. Mol Ther. 2008;16(8):1392-9.
Jones M, Varella-Garcia M, Skokan M, et al. (2013) Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System. Cytotherapy 15(11): 1323-1339.
Jones, M., “The Monoculture of Cord Blood-Derived CD34+ Cells by Perfusion Using a Semi-Permeable Hollow Fiber Membrane Quantum Cell Expansion System With a Novel Growth Factor Cocktail”, Cytotherapy, vol. 23, No. 5, May 25, 2021, p. S84.
Jones2016ISCT 2016 Poster 69.
Joy, Abraham, et al. “Control of surface chemistry, substrate stiffness, and cell function in a novel terpolymer methacrylate library.” Langmuir 27.5 (2011): 1891-1899.
Kalamasz et al., “Optimization of Human T-Cell Expansion Ex Vivo Using Magnetic Beads Conjugated with Anti-CD3 and Anti-CD28 Antibodies,” J Immunother, vol. 27, No. 5, pp. 405-418, Sep.-Oct. 2004.
Kim, Do-Hyung, et al. “mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.” Cell 110.2 (2002): 163-175.
Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A, Matarese G, Smith DM, Haas R, Mauro C, Wraith DC, Okkenhaug K, Catapano AL, De Rosa V, Norata GD, Marelli-Berg FM. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47(5):875-889 e10.
Klapper et al., “Single-Pass, Closed-System Rapid Expansion of Lymphocyte Cultures for Adoptive Cell Therapy,” Journal of Immunological Methods, 345, pp. 90-99, Apr. 21, 2009.
Klein, Elias, Eva Eichholz, and Don H. Yeager. “Affinity membranes prepared from hydrophilic coatings on microporous polysulfone hollow fibers.” Journal of membrane science 90.1-2 (1994): 69-80.
Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, Yong C, Surh N, Marie JC, Huehn J, Zimmermann V, Kinet S, Dardalhon V, Taylor N. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.
Korpanty et al., “Tageting Vascular Enothelium with Avidin Microbubbles,” Ultrasound in Medicine and Biology, vol. 31, No. 9, pp. 1279-1283, May 24, 2005.
Krauss et al., “Signaling Takes a Breath—New Quantitative Perspectives on Bioenergetics and Signal Transduction,” Immunity, vol. 15, pp. 497-502, Oct. 2001.
Kulikov, A. V., et al. “Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic acid in rats.” Bulletin of experimental biology and medicine 145.4 (2008): 514-519.
Kumar P, Marinelarena A, Raghunathan D, Ragothaman VK, Saini S, Bhattacharya P, Fan J, Epstein AL, Maker AV, Prabhakar BS. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation. Cell Mol Immunol. 2019;16(2):138-153.
Kwan, J. and Borden, M., “Lipid Monolayer Collapse and Microbubble Stability,” Advances in Colloid and Interface Science, vols. 183-184, pp. 82-99, Aug. 21, 2012.
Lampugnani MG, Caveda L, Breviario F, Del Maschio A, Dejana E. Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Bailliere's clinical haematology. 1993;6:539-558.
Lang, Julie, et al. “Generation of hematopoietic humanized mice in the newborn BALB/c-Rag2nullll2rγnull mouse model: a multivariable optimization approach.” Clinical Immunology 140.1 (2011): 102-116.
Lataillade, Jean-Jacques, et al. “Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival.” Blood, The Journal of the American Society of Hematology 95.3 (2000): 756-768.
Lechanteur, Chantal et al., “Large-Scale Clinical Expansion of Mesenchymal Stem Cells in the GMP-Compliant, Closed Automated Quantum Cell Expansion System: Comparison With Expansion in Traditional T-Flasks”, Journal of Stem Cell Research & Therapy, vol. 4, No. 08, Aug. 7, 2014 (12 Pages).
Lee et al., “Continued Antigen Stimulation Is Not Required During CD4+ T Cell Clonal Expansion,” The Journal of Immunology, 168, pp. 1682-1689, 2002.
Lee III, Daniel W., et al. “Long-term outcomes following CD19 CAR T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation.” Blood 128.22 (2016): 218.
Lee, Jae W., et al. “Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.” Proceedings of the national academy of Sciences 106.38 (2009): 16357-16362.
Levine, B., “T Lymphocyte Engineering ex vivo for Cancer and Infectious Disease,” Expert Opinion on Biological Therapy, vol. 4, No. 4, pp. 475-489, 2008.
Lindstein, Tullia, et al. “Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway.” Science 244.4902 (1989): 339-343.
Liotta, Francesco, et al. “Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma.” BJU international 107.9 (2011): 1500-1506.
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701-1711.
Lum et al., “Ultrasound Radiation Force Enables Targeted Deposition of Model Drug Carriers Loaded on Microbubbles,” Journal of Controlled Release, 111, pp. 128-134, 2006.
M. R. Koller, et al. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplantion 21:653-663, 1998.
Malin, Stephen F., et al. “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.” (1999): 1651-1658.
Malone et al., “Characterization of Human Tumor-Infiltrating Lymphocytes Expanded in Hollow-Fiber Bioreactors for Immunotherapy of Cancer,” Cancer Biotherapy & Radiopharmaceuticals, vol. 16, No. 5, pp. 381-390, 2001.
Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA 112(47): 14452-14459.
Marek-Trzonkowska, Natalia, et al. “Administration of CD4+ CD25highCD127-regulatory T cells preserves β-cell function in type 1 diabetes in children.” Diabetes care 35.9 (2012): 1817-1820.
Markgraf CG, Clifton GL, Aguirre M, Chaney SF, Knox-Du Bois C, Kennon K, Verma N. Injury severity and sensitivity to treatment after controlled cortical impact in rats. Journal of neurotrauma. 2001; 18:175-186.
Mathew et al. A Phase I Clinical Trials I with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Nature, Scientific Reports 8:7428 (1-12), 2018.
Mathew, James M., et al. “A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants.” Scientific reports 8.1 (2018): 1-12.
Matthay, Michael A., et al. “Therapeutic potential of mesenchymal stem cells for severe acute lung injury.” Chest 138.4 (2010): 965-972.
Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, Weaver CT. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3− precursor cells in the absence of interleukin 10. Nat Immunol. 2007;8(9):931-41.
McKenna DH, Jr., Sumstad D, Kadidlo DM, et al. Optimization of cGMP purification and expansion of umbilical cord blood-derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy 2017;19:250-62.
McLimans W, Kinetics of Gas Diffusion in Mammalian Cell Culture Systems. Biotechnology and Bioengineering 1968; 10:725-740.
McMurtrey, Richard J. “Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids.” Tissue Engineering Part C: Methods 22.3 (2016): 221-249.
Menge, Tyler, et al. “Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury.” Science translational medicine 4.161 (2012): 161ra150-161ra150.
Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS. HIF-1alpha Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Rep. 2019;27(1):226-237 e4.
Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899-911.
Murugappan, G., et al. “Human hematopoietic progenitor cells grow faster under rotational laminar flows.” Biotechnology progress 26.5 (2010): 1465-1473.
Nankervis B, Jones M, Vang B et al. (2018) Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor. Curr Stem Cell Rep. Advanced online publication. https://doi.org/10.1007/s40778-018-0116-x.
Nankervis, Brian, et al. “Optimizing T cell expansion in a hollow-fiber bioreactor.” Current Stem Cell Reports 4.1 (2018): 46-51.
Nedoszytko B, Lange M, Sokolowska-Wojdylo M, Renke J, Trzonkowski P, Sobjanek M, Szczerkowska-Dobosz A, Niedoszytko M, Gorska A, Romantowski J, Czarny J, Skokowski J, Kalinowski L, Nowicki R. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis. Postepy Dermatol Alergol. 2017;34(5):405-417.
Nehlin JO, Just M, Rustan AC (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12: 349-365.
New victories for adult Stem Cell Research New York Feb. 6, 2007.
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17(6):618-25.
Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129.
Nikolaychik, V. V., M. M. Samet, and P. I. Lelkes. “A New, Cryoprecipitate Based Coating For Improved Endothelial Cell Attachment And Growth On Medical Grade Artificial Surfaces.” ASAIO Journal (American Society for Artificial Internal Organs: 1992) 40.3 (1994): M846-52.
Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N, Yu S, Yan X, Lee HK, Pasman L, Brodsky I, Yordy B, Zhao H, Bruning J, Medzhitov R. T cell-intrinsic role of IL-6 signaling in primary and memory responses. Elife. 2014;3:e01949.
Niwayama, Jun, et al. “Analysis of hemodynamics during blood purification therapy using a newly developed noninvasive continuous monitoring method.” Therapeutic Apheresis and Dialysis 10.4 (2006): 380-386.
Nugent, Helen M., et al. “Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts.” Journal of vascular surgery 46.3 (2007): 548-556.
Okano et al (Tokyo Women's Medical College, Japan) demonstrated the recovery of endothelial cells and hepatocytes from plasma-treated polystyrene dishes grafted with PNIAAm (Journal of Biomedical Materials Research, 1993).
Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008;105(29):10113-8.
Onyszchuk G, LeVine SM, Brooks WM, Berman NE. Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: A magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neuroscience letters. 2009;452:204-208.
Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, Severa M, Rizzo F, Coccia EM, Bonacina F, Mitro N, Norata GD, Rossetti G, Ranzani V, Pagani M, Giorda E, Wei Y, Matarese G, Barnaba V, Piconese S. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A. 2018;115(28):E6546-E6555.
Parhi, Purnendu, Avantika Golas, and Erwin A. Vogler. “Role Of Proteins And Water In The Initial Attachment Of Mammalian Cells To Biomedical Surfaces: A Review.” Journal of Adhesion Science and Technology 24.5 (2010): 853-888.
Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, Zhao J, Letourneau PA, Huby MP, Baer LA, Salsbury JR, Kozar RA, Wade CE, Walker PA, Dash PK, Cox CS, Jr., Doursout MF, Holcomb JB. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PloS one. 2011;6:e25171.
Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Reitz MS, Holcomb JB, Dash PK. Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/beta-catenin signaling. Stem cells and development. 2011;20:89-101.
Pati, Shibani, and Todd E. Rasmussen. “Cellular therapies in trauma and critical care medicine: Looking towards the future.” PLoS Medicine 14.7 (2017): e1002343.
Pati, Shibani, et al. “Lyophilized plasma attenuates vascular permeability, inflammation and lung injury in hemorrhagic shock.” PloS one 13.2 (2018): e0192363.
Peters JH, Preijers FW, Woestenenk R, Hilbrands LB, Koenen HJ, Joosten I. Clinical grade Treg: GMP isolation, improvement of purity by CD127 Depletion, Treg expansion, and Treg cryopreservation. PLoS One. 2008;3(9):e3161.
Peters, R.; Jones, M.; Brecheisen, M.; Startz, T.; Vang, B.; Nankervis, B.; Frank, N.; Nguyen, K. (2012) TerumoBCT. https://www.terumobct.com/location/north-america/products-and-services/Pages/Quantum-Materials.aspx.
Porter CM, Horvath-Arcidiacono JA, Singh AK, Horvath KA, Bloom ET, Mohiuddin MM. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a non-human primate xenotransplantation model. Xenotransplantation. 2007;14(4):298-308.
Povsic TJ, O'Connor CM, Henry T, et al. (2011) A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 162(4): 654-662.
Prockop, Darwin J., Carl A. Gregory, and Jeffery L. Spees. “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues.” Proceedings of the National Academy of Sciences 100.suppl_1 (2003): 11917-11923.
Q. L. Hao, et al. A functional comparison of CD34+ CD38= cells in cord blood and bone marrow. Blood 86:3745-3753, 1995.
Rahmahwati, Nurlaela, Deana Wahyuningrum, and Anita Alni. “The Synthesis Of Polyethersulfone (PES) Derivatives For The Immobilization Of Lipase Enzyme.” Key Engineering Materials. vol. 811. Trans Tech Publications Ltd, 2019.
Rey-Jurado, Emma, et al. “Assessing the importance of domestic vaccine manufacturing centers: an overview of immunization programs, vaccine manufacture, and distribution.” Frontiers in immunology 9 (2018): 26.
Roballo KC, Dhungana S, Z. J, Oakey J, Bushman J. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials. 2019;209:1-9.
Rodrigues, C., Fernandes, T., Diogo, M., Lobato da Silva, C., Cabral, J. Stem Cell Cultivation in Bioreactors. 2011. Biotechnology Advances v. 29, pp. 815-829.
Ronco C1, Levin N, Brendolan A, Nalesso F, Cruz D, Ocampo C, Kuang D, Bonello M, De Cal M, Corradi V, Ricci Z. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances. Hemodial Int. Oct. 2006; 10(4):380-8.
Ronco, C., Brendolan, A., Crepaldi, C., Todighiero, M., Scabardi, M. Blood and Dialysate Flow Distributions in Hollow-Fiber Hemodialyzers Analyzed by Computerized Helical Scanning Technique. 2002. Journal of the American Society of Nephrology. V. 13, pp. S53-S61.
Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16(2):90-101.
Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe L, Roers A, Henderson WR, Jr., Muller W, Rudensky AY. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58.
Rudensky, Alexander Y. “Regulatory T cells and Foxp3.” Immunological reviews 241.1 (2011): 260-268.
Ryu, Min-Hyung, and Mark Gomelsky. “Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.” ACS synthetic biology 3.11 (2014): 802-810.
S. Koestenbauer, et al. Protocols for Hematopoietic Stem Cell Expansion from Umbilical Cord Blood. Cell Transplantation 18: 1059-1068, 2009.
S. L. Smith, et al. Expansion of neutrophil precursors and progenitors in suspension cultures of CD34+ cells enriched from human bone marrow. Experimental Hematology 21:870-877, 1993.
Safinia N, Grageda N, Scotta C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol. 2018;9:354.
Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466-470.
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64.
Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18-32.
Schild, Howard G. “Poly (N-isopropylacrylamide): experiment, theory and application.” Progress in polymer science 17.2 (1992): 163-249.
Schmitz R, Alessio A, Kina P. The Physics of PET/CT scanners. Imaging Research Laboratory, Department of Radiology, University of Washington http://depts.washington.edu/imreslab/education/Physics%20of%20PET.pdf.
Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305-34.
Shevkoplyas et al., “The Force Acting on a Superparamagnetic Bead due to an Applied Magnetic Field,” Lab on a Chip , 7, pp. 1294-1302, 2007.
Shimazu Y, Shimazu Y, Hishizawa M, Hamaguchi M, Nagai Y, Sugino N, Fujii S, Kawahara M, Kadowaki N, Nishikawa H, Sakaguchi S, Takaori-Kondo A. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia. Cancer Immunol Res. 2016;4(2):136-45.
Shimizu et all., “Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces,” Circulation Research, vol. 90, Feb. 22, 2022, e40-e48, pp. 1-9.
Sigma-Aldrich Cheimcals Mitomycin C (M4287) MSDS, v4.4, Jul. 7, 2011.
Sirsi, S. and Borden, M., “Microbubble Composition, Properties, and Biomedical Applications,” Bubble Science, Engineering & Technolology, vol. 1, No. 1-2, pp. 3-17, 2009.
Smith C, Okern G, Rehan S, et al. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement. Clinical & Translational Immunology 2015;4:e31.
Somerville et al., “Clinical Scale Rapid Expansion of Lymphocytes for Adoptive Cell Transfer Therapy in the WAVE® Bioreactor,” Journal of Translational Medicine, vol. 10, No. 69, pp. 1-11, 2012.
Somerville, R. and Dudley, M., “Bioreactors Get Personal,” Oncolmmunology, vol. 1, No. 8, pp. 1435-1437, Nov. 2012.
Spectrum Labs KrosFlo Research Ili TFF System, undated, Spectrum Laboratories, Inc., 4 pages.
Stafano Tiziani, et al. Metabolomic Profiling of Drug Response in Acute Myeloid Leukaemia Cell lines. PLOSone 4(1): e4251 (Jan. 22, 2009).
StAR_Abstract, undated, author unknown, 1 page.
Startz et al May 2016 TBCT T-cell White Paper.
Startz, T., et al. “Maturation of dendritic cells from CD14+ monocytes in an automated functionally closed hollow fiber bioreactor system.” Cytotherapy 16.4 (2014): S29.
Steven M. Bryce, et al (Litron Laboratories). In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutation Research 630(1-2): 78-91, 2007.
Steven M. Bryce, et al (Novartis Pharma AG, Johnson & Johnson Pharmaceutical Research, GlaxoSmithKline). Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Genetic Toxicology and Environmental Mutagenesis 650: 181-195, 2008.
Streltsova et al., “Recurrent Stimulation of Natural Killer Cell Clones with K562 Expressing Membrane-Bound interleukin-21 Affects Their Phenotype, Interferon-y Production, and Lifespan,” International Journal of Molecular Sciences, vol. 20, No. 443, 2019, pp. 1-18.
Stuart, Martien A. Cohen, et al. “Emerging applications of stimuli-responsive polymer materials.” Nature materials 9.2 (2010): 101-113.
Su LF, Del Alcazar D, Stelekati E, Wherry EJ, Davis MM. Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proc Natl Acad Sci U S A. 2016;113(41):E6192-E6198.
Takezawa, Toshiaki, Yuichi Mori, and Katsutoshi Yoshizato. “Cell culture on a thermo-responsive polymer surface.” Bio/technology 8.9 (1990): 854-856.
The effect of rocking rate and angle on T cell cultures grown in Xuri™ Cell Expansion Systems, Aug. 2014, GE Healthcare UK Limited, 4 pages.
Trzonkowski et al., “Ex Vivo Expansion of CD4+ CD25+ T Regulatory Cells for Immunosuppressive Therapy,” Cytometry Part A, 75A, pp. 175-188, 2009.
Trzonkowski, Piotr, et al. “First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127? T regulatory cells.” Clinical immunology 133.1 (2009): 22-26.
Tsvetkov, Ts, et al. “Isolation and cryopreservation of human peripheral blood monocytes.” Cryobiology 23.6 (1986): 531-536.
Ueda, Ryosuke, et al. “Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.” Cancer medicine 5.1 (2015): 49-60.
Underwood, P. Anne, et al. “Effects of base material, plasma proteins and FGF2 on endothelial cell adhesion and growth.” Journal of Biomaterials Science, Polymer Edition 13.8 (2002): 845-862.
Urbich, et al from the Goethe-Universität, demonstrated that human endothelial cells increased VEGFR-2 mRNA expression when exposed to 5-15 dynes/cm2 of constant shear force for a period of 6-24 hours (FEBS, 2002).
Van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int. 2016;29(1):3-11.
Van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev. 2012;249(1):27-42.
Vera et al., “Accelerated Production of Antigen-Specific T-Cells for Pre-Clinical and Clinical Applications Using Gas-Permeable Rapid Expansion Cultureware (G-Rex),” J Immunother, vol. 33, No. 3, pp. 305-315, Apr. 2010.
Villa, Alma Y. Camacho, et al. “CD133+ CD34+ and CD133+ CD38+ blood progenitor cells as predictors of platelet engraftment in patients undergoing autologous peripheral blood stem cell transplantation.” Transfusion and Apheresis Science 46.3 (2012): 239-244.
Visser EP1, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. Jan. 2009;50(1):139-47.
Von Laer, D., et al. “Loss of CD38 antigen on CD34+ CD38+ cells during short-term culture.” Leukemia 14.5 (2000): 947-948.
Wagner Jr, John E., et al. “Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft.” Cell stem cell 18.1 (2016): 144-155.
Walker, Peter A., et al. “Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NF?B-mediated increase in interleukin-6 production.” Stem cells and development 19.6 (2010): 867-876.
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35(6):871-82.
Wang, Jiamian, John A. Jansen, and Fang Yang. “Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review.” Frontiers in Chemistry 7 (2019): 258.
Ward H, Vigues S, Poole S, Bristow AF. The rat interleukin 10 receptor: cloning and sequencing of cDNA coding for the alpha-chain protein sequence, and demonstration by western blotting of expression in the rat brain. Cytokine. 2001;15(5):237-40.
Wawman, Rebecca Ellen, Helen Bartlett, and Ye Htun Oo. “Regulatory T cell metabolism in the hepatic microenvironment.” Frontiers in immunology 8 (2018): 1889.
Weber et al., “White Paper on Adoptive Cell Therapy for Cancer with Tumor-Infiltrating Lymphocytes: A Report of the CTEP Subcommittee on Adoptive Cell Therapy,” Clinical Cancer Research, vol. 17, No. 7, pp. 1664-1673, Apr. 1, 2011.
Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, Phase III clinical trial. Dermatol Surg 33(3): 263-268.
Widdel, F. 2010. “Theory and measurement of bacterial growth” http://www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf.
Yamada, Noriko, et al. “Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells.” Die Makromolekulare Chemie, Rapid Communications 11.11 (1990): 571-576.
Yang, Hee Seok, et al. “Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment.” Cell transplantation 19.9 (2010): 1123-1132.
Yi, Zhuan, et al. “A readily modified polyethersulfone with amino-substituted groups: its amphiphilic copolymer synthesis and membrane application.” Polymer 53.2 (2012): 350-358.
Yoshinari, Masao, et al. “Effect of cold plasma-surface modification on surface wettability and initial cell attachment.” International Journal of Biomedical and Biological Engineering 3.10 (2009): 507-511.
Zappasodi et al., “The Effect Of Artificial Antigen-Presenting Cells with Preclustered Anit-CD28/-CD3/LFA-1 Monoclonal Antibodies on the Induction of ex vivo Expansion of Functional Human Antitumor T Cells,” Haematologica, vol. 93, No. 10, pp. 1523-1534, 2008.
Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Publisher Correction: Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018;19(6):645.
Zeng B, Kwak-Kim J, Liu Y, Liao AH. Treg cells are negatively correlated with increased memory B cells in pre-eclampsia while maintaining suppressive function on autologous B-cell proliferation. Am J Reprod Immunol. 2013;70(6):454-63.
Zheng, et al at the University of lowa have shown that the differential effects of pulsatile blood flow and cyclic stretch are an important growth stimulus (American Journal of Physiology—Heart and Circulatory Physiology, 2008).
Related Publications (1)
Number Date Country
20220306978 A1 Sep 2022 US
Provisional Applications (8)
Number Date Country
63304467 Jan 2022 US
63275793 Nov 2021 US
63275389 Nov 2021 US
63228561 Aug 2021 US
63227293 Jul 2021 US
63183591 May 2021 US
63169173 Mar 2021 US
63165060 Mar 2021 US