1. Field of the Invention
This invention resides in the field of laboratory apparatus for biological and biochemical laboratories, and particularly to apparatus for cell counting.
2. Description of the Prior Art
Cell counting in suspensions of blood cells, bacteria, and biological cells in general is a procedure commonly used in clinical and research laboratories. Measurement of the number of cells per unit volume of the suspension by cell counting is valuable in assessing such qualities as biological function and activity as well as cell viability and growth. Cell counting is commonly performed on a hemocytometer, which utilizes a microscope slide to hold the suspension and a microscopic viewer to allow viewer observation of the slide for manual counting, either directly or from an image of the slide. To count cells in a suspension, a drop of the suspension is placed in the slide and covered by a second slide or any thin transparent cover slip. The gap (also referred to as the “chamber”) between the slide and the cover slip is typically on the order of 100 microns. A grid on the underside of the cover slip delineates an area for counting, and knowledge of both the area and the depth of the gap allows the viewer to determine the cell count per unit volume. The grid enables the viewer to select a portion of the grid whose area is small relative to the dimensions of the slide, thereby enabling the user to count cells with relative ease and quickness and with minimal risk of error. A critical feature of the slide and cover slip combination is therefore the distance between them, and another is the evenness of the distribution of the cells across the width of the slide. If the distance is not uniform or the cells are not distributed evenly, the concentration calculated from the selected area can differ from the concentration in the suspension as a whole.
Conventional means of placing the suspension in the chamber of a cell counting slide involve the use of a pipette to introduce the suspension to one side of the chamber through a notch or similar opening in the cover sheet. The suspension then flows from the notch into the chamber. Examples of disclosures of slides of this type and their use are found in Tolles, W., U.S. Pat. No. 4,171,866, issued Oct. 23, 1979, and Fisch, H., U.S. Pat. No. 5,349,436, issued Sep. 20, 1994. The result of this procedure however is often an uneven distribution of the cells, with the concentration being relatively high in areas to the sides of the notch than in areas near the center of the notch due to differences in the flow direction and flow rate of the suspension at different points within the chamber. The concentration of cells at the center of the chamber, which is typically where the counting takes place, is therefore different (most often lower) than the concentration of the suspension as a whole. The present invention addresses this problem.
The present invention resides in a cell counting slide that contains a counting chamber and one or more reservoirs along the periphery of the counting chamber. The counting chamber is also referred to herein as a cell counting section, and it and the reservoir(s) together form a cavity in the interior of the cell counting slide. The slide in many cases is a combination of two plates, one forming the base and the other taking the place of the cover slip in conventional cell counting slides. The two plates can be individual components that are stacked together for use, or they can be fused together for sale, shipment, or use as a unit. Alternatively, they can be formed (cast or machined) as a single (unitary) piece of material. In all cases, the depth (or height) of the cell counting section, which defines the depth of the cell suspension during counting, is set by the floor and ceiling of the section, which are two opposing and parallel flat surfaces. The upper plate is transparent to allow counting from above, and in many embodiments, the entire slide is transparent.
The reservoir preferably extends the full length of a side of the chamber. In many cases, the chamber is rectangular in shape and the reservoir extends the full length of one of the shorter (lateral) sides of the rectangle, and in many of these cases, two reservoirs are included, one on each of two opposing sides of the rectangle. In either case, the reservoir extends below the floor of the cell counting section and is deeper than the gap between the floor and ceiling of the cell counting section, preferably by a factor of at least two. The suspension can be fed to the reservoir through a port in the upper plate of the slide, such as by a pipette. When a suspension is added in this manner, the reservoir fills with the suspension before the suspension enters the counting chamber. Only after the reservoir is filled does the suspension enter the cell counting section, and when the reservoir extends the full length of one side the passage of the cells into the cell counting section occurs substantially evenly along the length of that side.
The depths of both the counting chamber and the reservoir(s) can vary. For a cell counting section that is 100 microns in depth, for example, best results in, most cases will be obtained with a reservoir that is 300 microns to 1 milliliter (1,000 microns), or most preferably about 500 microns, in depth. The reservoir does not require a uniform depth. For a rectangular counting area, reservoirs extending the lengths of each of two opposing sides of the rectangle are useful, allowing the user a choice between the two reservoirs. The suspension can be added through a single reservoir, using the opposing reservoir as a vent for air to escape from the cell counting section.
The drawings attached hereto represent illustrative embodiments of the invention. In each of these embodiments, the slide is constructed as two plates, a top plate and a bottom plate.
One embodiment is depicted in a top view of the stacked plates in
As seen in the cross section of
In an alternative structure, the platform 16 can be at the same height as the periphery 17 of the bottom plate 12, while the central section of the top plate 13 above the platform can be thinner than the remainder of the top plate, thereby forming a gap of the same width as in the structure shown in
A second embodiment is shown in a top view in
A comparison of cell distributions in slides of the present invention vs. those of the prior art (lacking the reservoirs) is seen in
In the claims appended hereto, the term “a” or “an” is intended to mean “one or more.” The term “comprise” and variations thereof such as “comprises” and “comprising,” when preceding the recitation of a step or an element, are intended to mean that the addition of further steps or elements is optional and not excluded. All patents, patent applications, and other published reference materials cited in this specification are hereby incorporated herein by reference in their entirety. Any discrepancy between any reference material cited herein or any prior art in general and an explicit teaching of this specification is intended to be resolved in favor of the teaching in this specification. This includes any discrepancy between an art-understood definition of a word or phrase and a definition explicitly provided in this specification of the same word or phrase.
This application claims the benefit of U.S. Provisional Patent Application No. 61/294,373, filed Jan. 12, 2010, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4171866 | Tolles | Oct 1979 | A |
5306467 | Douglas-Hamilton et al. | Apr 1994 | A |
5349436 | Fisch | Sep 1994 | A |
6165739 | Clatch | Dec 2000 | A |
20040180397 | Chang | Sep 2004 | A1 |
20060275743 | Simmet | Dec 2006 | A1 |
20100328766 | Griffin et al. | Dec 2010 | A1 |
20110211058 | McCollum et al. | Sep 2011 | A1 |
20120013727 | Breniman et al. | Jan 2012 | A1 |
20120295300 | Heng et al. | Nov 2012 | A1 |
20120314092 | Chu et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
2 127 557 | Apr 1984 | GB |
S63-105715 | May 1988 | JP |
H09-236756 | Sep 1997 | JP |
Entry |
---|
Office Action from JP Appl. No. 2012-548990, dated Aug. 19, 2013 (with English Translation). |
The Supplementary European Search Report from EP 11733236.1, mailed Oct. 25, 2013. |
Number | Date | Country | |
---|---|---|---|
20120015392 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
61294373 | Jan 2010 | US |