CELL CULTURE DISH SUITABLE FOR IN SITU ELECTROPORATION AND INDUCING DESIRED CELL POTENCY AND OTHER BEHAVIORS

Information

  • Patent Application
  • 20190256813
  • Publication Number
    20190256813
  • Date Filed
    October 26, 2018
    6 years ago
  • Date Published
    August 22, 2019
    6 years ago
Abstract
A cell culture dish made of non media-permeable material and having a base and a plurality of separate juxtaposed side-by-side wells having common interior well walls preventing physical contact or movement of chemical factors between the separated cell or tissue cultures, the walls having different heights and defining an outer “surround” cell or tissue culture and one or more inner “center” cell or tissue cultures to enable contained cell or tissue communication between the well spaces, the wells configured to comprise two or more cell or tissue cultures, the wells permitting signal communication between the cells or tissues situated within said wells, and further comprising wall material, electrode contacts electrodes and/or electrode contacts, and well dimensions suitable for facilitating electroporation. The inventor observed 100% efficiency in cell reprogramming with protein electroporation-orders of magnitude above other reported methods.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a novel culturing apparatus (assembly) which can be termed a cell culture dish. More particularly, the present invention is a “combined cell culture dish” or “dish-in-dish” apparatus comprising at least one smaller cell culture dish fixedly positioned within a larger cell culture dish, and the number of such fixated cell culture dishes can include a multiple number of fixated cell culture dishes within one another, either concentric or eccentric, in any number of geometric shapes, and without limitation to the number of petri dishes included. An alternate embodiment of this invention can include a plurality of cell culture dishes juxtaposed side-by-side having common interior well walls, and the well walls may or may not be different in height depending on the application. The combined cell culture dish differs from the prior art because the walls of said combined petri dishes may be of different heights and made from any combination of transparent and non-transparent materials that will allow juxtaposing and different cultures to grow simultaneously. Such separate but juxtaposing culture growth can then be studied to determine whether certain cultures grown separately and in close proximity influence each other in certain ways. The combined cell culture dish of the present invention may or may not be fitted with single or multiple covers and may or may not be stacked.


Examples of prior petri dishes may be found in the following U.S. Pat. No. 4,675,298 (Brusewitz, Gerhard). U.S. Pat. No. 4,160,700 (Boomus, Mary), and U.S. Pat. No. 3,660,243 (Young, Cecil).


The transcendent challenge for medicine in the 21st century will be replacing damaged, worn-out or genetically-compromised cells. Transcription factors binding specifically to DNA play a vital role in regulating gene expression. It is the particular complement of transcription factors within an individual cell, that determine which cellular programs are active and which are turned off. In this capacity transcription factors play a decisive role in determining and maintaining cellular identity, as well as determining cellular vulnerability.


SUMMARY OF THE INVENTION

The present invention is directed to a novel cell culture dish having a multi-chambered construction which facilitates juxtaposition of different physically separated cultures. Said novel multi-chambered cell culture dish will permit co-culturing of any two or more separate cultures, whether those cultures are species related or not.


In general, the cell culture dish of the present invention comprises two or more dishes which create a central compartment and one or more peripheral compartments which surround the central compartment. Said central and peripheral compartments may take the form of any shape, including, but not limited to. cylindrical, square, pentagonal, or hexagonal. The material used to construct said petri dish may include, but may not be limited to. any non media-permeable form of glass, plastic or metal or combination thereof, which will sustain culture growth and permit observation and recording of said culture growth, including, but not limited to. the recording of signal transduction. Separated areas created by utilizing the central compartment and one or more peripheral compartments may be geometrically concentric or eccentric.


The petri dish of the present invention may comprise one or more dishes within a dish or may be constructed of a single dish with a flat well bottom having one or more sets of walls that extend from said well bottom forming one or more separate enclosures having the same geometric shape or a variety of geometric shapes. The wall or walls are constructed to ensure physical isolation of two or more sets of cells from one another to prevent physical contact between the separated cells or movement of chemical factors originating in the media or within the cells. The separate wells may or may not be numbered to enhance the identification of certain cell cultures.


A preferred embodiment of this invention is depicted in FIG. 1 below.


The petri dish described above can be sterilized using either wet or dry heat. However, the petri dish may be a single use device as well. The outer wall of the multi-chambered petri dish can be sized appropriately to fit high-perform an c e incubation and perfusion chambers for live cell imaging and to withstand temperatures ranging from 5 degrees below Celsius to 50 degrees above Celsius. However, the multi-chambered petri dishes of this invention may also withstand a host of temperatures outside the previously stated range.


One object of the present invention is to provide a multi-chambered cell or tissue culture dish suitable for assessing cell communication that is not prohibited by intervention of the chamber walls.


Another object of this invention is to provide a cell or tissue culture dish having a plurality of separate wells which permit communication between cells or tissues situated within said wells of signals or communication which might emanate from said cells or tissues.


Still another object of this invention is to provide a multi-chambered cell or tissue culture dish with a transparent and flat bottom to enable convenient and accurate viewing and analysis of the contents of each separate chamber.


A further object of this invention is to provide a multi-chambered cell or tissue culture dish which can be made from a number of transparent materials, including, but not limited to. glass, acrylic polymers, fluorinated ethylene propylene, ultra high molecular weight polyethylene, polycarbonate, polystyrene, or any amorphous high-performance polymer, with or without electrodes and/or electrode contacts facilitating electroporation.


Yet another object of this invention is to provide a multi-chambered cell or tissue culture dish manufactured with well walls having different heights and defining an outer “surround” cell culture and one or more inner “center” cell cultures to enable contained cell or tissue communication within the well spaces. Such communication would include, but would not be limited to. putative nociceptive cell signaling in physically disconnected but proximal cell populations, including cell-to-cell communications which are taking place after eliminating the availability of any potential pathways for neural or diffusible factor mediated cell-cell communication.


The ability to derive proliferating, self-renewing, multipotent and pluripotent cell population(s) from otherwise non-pluripotent, non-self renewing cells may have significant positive implications for all fields utilizing cellular therapies. These fields include bone marrow transplantation, transfusion medicine, and gene therapy and enable the production of patient-specific stem cells and other desired cell types. Likewise, the ability to initiate differentiation of cells into neural, muscle, and various other desirable stem and somatic cell populations is and will also be of significant value to medicine and commercial processes involving animals. Accordingly, the present invention provides methods for genetic production and uses of self-renewing cell populations, totipotent cell populations, multipotent cell populations, pluripotent cell populations, and differentiating/differentiated cell populations, e.g. neuronal cell populations, muscle cell populations, hematopoietic cell populations, etc., and other desired cell populations such as, for example, HIV resistant cell populations.


It is a proposition of the present invention that the efficient introduction or overexpression of specific transcription factors, alone or in combination with other cell fate determinants (e.g. notch, numb, numblike and other proteins, as well as certain miRNAs and other non-coding RNAs), enables the interconversion of what have been considered transitory (multipotent, pluripotent, and/or self-renewing) or fixed (differentiated or somatic) cellular phenotypes. The ability to reliably induce phenotypic conversion or cellular reprogramming allows the production of stem cells, replacement cells, tissues, and organs that match individual patients. In conjunction with gene therapy techniques and cell culture techniques, cell type interconversion also provides for the production of disease-resistant and genetically-repaired cells that are suitable for transplantation.


It is an object of this invention to provide various manners of generating proliferating, self-renewing, totipotent, multipotent and/or pluripotent cell population(s), as well as other desirable differentiating/differentiated cell populations, from either dividing or non-dividing cells without the use of oncogenes. Differentiating cell populations comprise cells expressing some, but not all markers associated with specific cell type categorization. It is disclosed herein, for example, that appropriate Numb isoform expression in combination with other transgenes/proteins (especially transcription factors) enables the production of dividing, pluripotent cell populations or differentiating cell populations. Moreover, the genetic vectors of the present invention may be used to produce genetic modification (e.g. expression of gene products deficient in the patient) and to transiently or permanently induce proliferation, self-renewal, or stem/progenitor cell behavior in endogenous cells in vivo, particularly those cells found in tissues which normally do not show or no longer show such behavior. Finally, other genetic vectors of the present invention may be used to produce genetic modification and/or to block proliferation, self-renewal, or stem/progenitor cell behavior in cells aberrantly displaying such behavior (e.g. cancer cells). It is also an object of the present invention to provide therapeutic vectors and cells capable of expressing synthetic oligonucleotide sequences predicted to attenuate disease processes. For example, the current invention discloses the use of synthetic oligonucleotides to reduce gene expression critical HIV and other immunodeficiency virus infection, propagation and spread.


The invention may be used with any suitable cells, including vertebrate cells, and including fish, mammalian, avian, amphibian, and reptilian cells.


The inventor observed 100% efficiency in cell reprogramming with protein electroporation-orders of magnitude above other reported methods.





BRIEF DESCRIPTION OF FIGURES


FIG. 1 is a front view of a two well cell or tissue culture dish constructed according to this invention, containing different cell or tissue cultures within each separate well.



FIG. 2 is a front view of a two well cell or tissue culture dish constructed according to this invention with the wells positioned side-by-side.



FIG. 3 is a front view of a three well cell or tissue culture dish constructed according to this invention with the wells positioned side-by-side.



FIG. 4 is a front view of a nine well cell or tissue culture dish constructed according to this invention with the wells positioned side-by-side.



FIG. 5 is a schematized vector map corresponding to the vector sequence of Example 13.





DETAILED DESCRIPTION OF FIGURES

The multi-chambered cell or tissue culture dish shown in FIG. 1 is composed of a common base 1 made of the same transparent chemical resistant material. In the present embodiment, two wells are formed as depicted, the center well being defined by well wall 3 and the surround well being defined by well wall 2 which is dimensionally higher, as can be determined by measuring from the base 1 to the surround cell wall rim 4 than is well wall 3 which is measured from the base 1 to the center cell wall rim 5. It is understood that a greater number of center wells may be provided depending on the application having differing cell wall heights. FIG. 1 also depicts a cell or tissue culture 7, situated in the surround well, which is defined dimensionally by the base 1, the surround well wall 2 and the center well wall 3. FIG. 1 also depicts a cell or tissue culture 6, situated in the center well as defined dimensionally by the base 1, and the center well wall 3.


The multi-chambered cell or tissue culture dish shown in FIG. 2 is composed of a common base 5 made of the same transparent chemical resistant material. In the present embodiment, two wells are formed as depicted, the left well being separated from the right well by well wall 1 and the right well being defined by well walls 1, 2, 3, and 4. It is understood that a greater number of wells than the two depicted may be juxtaposed together depending on the application. FIG. 2 also depicts a cell or tissue culture 6 situated in the left well.


The multi-chambered cell or tissue culture dish shown in FIG. 3 is composed of a common base 6 made of the same transparent chemical resistant material. In the present embodiment, three wells are formed as depicted, the right well being separated from the middle well by well wall 2 and the right well being defined by well walls 2, 3, 4, and 5. It is understood that a greater number of wells than the three depicted may be juxtaposed together depending on the application. FIG. 3 also depicts a cell or tissue culture 7 situated in the far left well.


The multi-chambered cell or tissue culture dish shown in FIG. 4 is composed of a common base 15 made of the same transparent chemical resistant material as the remainder of well walls. In the present embodiment, nine wells are formed as depicted, the right well being separated from the middle well by well wall 2 and the first well being defined by well walls 24, 3, 4, and 1. the second well being defined by well walls 4, 5, 6, and 7, the third well being defined by well walls 7, 8, 9, and 10, the fourth well being defined by well walls 6, 8, 12, and 14, the fifth well being defined by well walls 14, 14, 16, and a front wall, the sixth well being defined by well walls 16, 17, 18 and a rear wall, the seventh well being defined by well walls 18, 19, 20 and 21, the eighth well being defined by well walls 21, 22, 23 and an interior well wall, and the ninth well being defined as the well situated in the center and surrounded by wells 1 through 8, sharing common walls with those wells. It is understood that a greater number of wells than the nine depicted may be juxtaposed together depending on the application. FIG. 4 also depicts a cell or tissue culture 13 situated in the fourth well.


It will be clear to a person skilled in the art that specific embodiments discussed herein are not the only possible modes of this invention that can be manufactured. Many other features that are not shown in the described embodiments are within the scope of this invention.


DETAILED DESCRIPTION

All patents, patent applications, and publications cited in this application are hereby incorporated by reference herein in their entireties.


As discussed herein, ‘“DNA” refers to deoxyribonucleic acid and “RNA” refers to ribonucleic acid. As discussed herein, “cDNA” refers to complementary DNA; “mRNA” refers to messenger RNA; “siRNA” refers to small interfering RNA; “shRNA” refers to small hairpin RNA; “miRNA’” refers to microRNA, such as single-stranded RNA molecules, typically about 20-30 nucleotides in length, which may regulate gene expression; “decoy” and “decoy RNA” and “RNA decoy” refer to an RNA molecule that mimics the natural binding domain for a ligand.


As used herein, the meaning of the term “ameliorating” includes lessening an effect, or reducing damage, or minimizing the effect or impact of an action, activity, or function, and includes, for example, lessening the deleterious effects of a disease or condition.


As used herein, the meaning of the term “retarding” includes slowing or lessening the progress of an effect or action, and includes, for example, slowing the progress of a disease, slowing the rate of infection, or otherwise acting to slow or reduce the advance or progress of a disease or condition.


As used herein, an “inducing agent” is an agent that aids or is alone effective to promote an action. For example, an exogenous agent that affects a promoter, e.g., by initiating or enhancing its activity, and so affects expression of a gene under control of the promoter, may be termed an inducing agent. For example, tetracycline may be used as an inducing agent; and doxycycline may be used as an inducing agent.


A nucleic acid sequence (e.g., a nucleic acid sequence encoding a polypeptide) is termed “operably linked” to another nucleic acid sequence (e.g., a promoter) when the first nucleic acid sequence is placed in a functional relationship with the second nuceleic acid sequence. For example, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. As used herein, the term “driven by” refers to a gene or coding sequence that is operably linked to a promoter sequence, and that the promoter sequence affects the transcription or expression of the coding sequence.


As used herein, a “marker” is a molecule that is detectable, or codes for a detectable molecule, or acts on other molecules so that the presence of the marker is detectable. A “marker protein” or “marker polypeptide” is a protein or polypeptide that is detectable in a laboratory or clinical environment, and, in embodiments, may be detectable by eye. A “marker gene” encodes a marker protein or marker polypeptide.


As used herein, “HIV” refers to human immunodeficiency virus, and includes variants such as, e.g., HIV-I, HIV-2. Other immunodeficiency viruses include simian immunodeficiency virus (SIV) and feline immunodeficiency virus (FIV). Enzymes related to IHV may be termed “HIV enzymes” and include, for example,\integrase, protease, reverse transcriptase, and transactivating regulatory protein (TAT).


Infection by HIV is believed to involve receptors termed “HIV receptors.” There may be multiple such receptors, some of which may be termed “HIV co-receptors.” As discussed herein, HIV co-receptors include CXCR4 and CCR5.


A theoretical basis for the embodiments of the invention is described herein, however, this discussion is not in any way to be considered as binding or limiting on the present invention. Those of skill in the art will understand that the various embodiments of the invention may be practiced regardless of the model used to describe the theoretical underpinnings of the invention.


In a preferred embodiment, cells are “selected” from accessible, dividing or non-dividing cell populations for the purpose of generating the desired a) proliferating, multipotent or pluripotent cell population, differentiating b) populations of neuronal cells c) muscle cells, d) and/or any other desired cell population; moreover the desired cell population may be capable of further differentiation in vitro, in vivo, and/or tissue-appropriate and regionally-appropriate differentiation in vivo.


Sources of cells selected for use in the invention:


Selected cells may include any cell practicable in the present invention. Cells selected for use in the present invention (herein termed “selected cells”) may originate as endogenous cells of the patient—including cells derived from other organ systems; or from exogenous sources (including those derived from cell lines, cryopreserved sources, banked sources, and donors). Cells may also be selected from cells genetically-modified with synthetic or natural nucleic acid sequences. The term “selected cells” as used herein does not include human embryonic stem cells.


In embodiments of the present invention, in order that they may be isolated without the involvement of invasive procedures, selected cells will preferably be easily accessible cells (e.g. peripheral blood leukocytes, circulating hematopoietic stem cells, epithelial cells (e.g. buccal cheek cells (e.g. Michalczyk et al, 2004)), adipose tissue (e.g. Gimble et al., 2007; Ma et al., 2007), umbilical cord blood cells (e.g. Zhao, et al., 2006; Tian et al., 2007), etc.). However, bone marrow stem cells, spermatogonia (e.g. Guan el al., 2006; Takahashi et al., 2007), primordial germ cells (PGCs), stem cells isolated from amniotic membranes (e.g. Ilancheran et al., 2007), amniotic fluid (e.g. De Coppi et al., 2007), as well as cells isolated from the skin (e.g. Tumbar, 2006; Dunnwald et al., 2001; Szudal'tseva et al., 2007), etc., are also covered by the present invention. Such cells can be isolated from the tissues in which they reside by any means known to the art.


Spermatogonia cells can be isolated using a two-step enzymatic digestion followed by Percoll separation. Cells can then be resuspended in minimum essential medium (MEM) supplemented with bovine serum albumin to a final concentration of 106/mL. In detail: Tubule fragments are accessed surgically and teased apart prior to treatment with 1 mg/ml trypsin, hyaluronidase, and collagenase, and then 1 mg/ml hyaluronidase and collagenase, in MEM containing 0.10% sodium bicarbonate, 4 mM L-glutamine, nonessential amino acids, 40 microgram/ml gentamycin, 100 KJ to 100 microgram/ml penicillin-streptomycin, and 15 mM HEPES. Spermatogonia cells are further separated from tubule fragments by centrifugation at 30 times gravity. After filtration through nylon filters with 77- and/or 55-micron pore sizes, cells are collected and loaded onto a discontinuous Percoll density gradient. Fractions with a purity greater than 40% progenitor/stem/spermatogonia cells are washed and resuspended to a concentration of cells equivalent to 10 progenitor/stem/spermatogonia cells per ml. Afterwards cells are cultured and/or stored by any cryopreservation technique known to the art.


The selected cells may be genetically-modified cells, especially cells that have been genetically modified by any means known to the art, to encode therapeutic or commercially useful deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences.


In accordance with an aspect of the present invention, there is provided a method of producing a desired cell population (e.g. pluripotent, neuronal, muscle, etc.) from the selected cells.


Achieving multipotent, pluripotent, and/or self renewing cell populations:


In order to achieve a) a population of proliferating, self renewing pluripotent cells, the selected cell(s) and/or their progeny are transfected/contacted with nucleotide sequence(s) including those encoding the “long” (PRR insert+) isoform(s) of the mammalian numb gene. At about the same time the selected cells may also be transfected/contacted with synthetic oligonucleotides targeting the short Numb isoforms and Numblike, then cultured under conditions which promote growth of the selected cells at an optimal growth rate. Selected cells are maintained under these conditions for the period of time sufficient to achieve the desired cell number.


The cells are grown at the (optimal) rate of growth achieved by incubation with LIF, steel factor, and/or equipotent concentrations of 11-6, hyper 1L-6, IL-7, oncostatin-M and/or cardiotrophin-1; or that growth rate achieved in the presence of other growth enhancing cytokines (e.g. those conditions described for culturing pluripotent cells e.g. Guan et al., 2006). The growth rate is determined from the doubling times of the selected cells in said growth culture medium. Likewise, culture conditions such as those described in U.S. Pat. Nos. 6,432,711 and 5,453,357 may also be suitable for the propagation and expansion, at an optimal growth rate, of cells transfected/contacted with the long (PRR+) Numb isoform(s). Other appropriate protocols and reference cytokine concentrations have been taught by Koshimizu et al., 1996; Keller et al., 1996; Piquet-Pellorce, 1994; Rose et al., 1994; Park and Han, 2000; Guan et al., 2006; Dykstra et al., 2006; Zhang et al., 2007). However the practice of the present invention is not limited to the details of these teachings.


In a preferred embodiment, the selected cells are cultured in a standard growth medium (e.g. Minimal Essential Medium with or without supplements (e.g. glutamine, and beta.-mercaptoethanol). The medium may include basic fibroblast growth factor (bFGF), steel factor, leukemia inhibitory factor (LIF), and/or factors with LIF activity (e.g. LIF, LIF receptor (LIFR), ciliary Neurotrophic factor (CNTF), oncostatin M (OSM), OSM receptor (OSMR), cardiotrophin, interleukins (IL) such as IL-6, hyper IL-6, GP 130, etc.) as well as horse serum. LIF, as well as other factors with LIF activity, prevents spontaneous differentiation of the cells. Under these conditions, selected cells transfected/contacted with the PRR+Numb isoform(s) and their progeny are expected to achieve multipotency, pluripotency and/or self-renewal.


In a preferred embodiment, the selected cell(s) and/or their progeny are transfected/contacted with nucleotide sequence(s) encoding the “long” (PRR insert+) Numb isoform(s) as well as sequences encoding other transgenes. Many of those transgenes are listed below along with their corresponding identification numbers (accession numbers) in the NCBI sequence database.


In another preferred embodiment, the selected cell(s) and/or their progeny are transfected with nucleotide sequence(s) encoding a portion of the “long” (PRR insert+) Numb isoform(s) as well as sequences encoding other transgenes. Many of those transgenes are listed below along with their corresponding identification (accession) numbers (codes) in the NCBI sequence database.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform encoding sequences as well as sequences encoding other transgenes, including LIF.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform encoding sequences as well as sequences encoding other transgenes, including ones with LIF activity.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including the LIFR.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (P RR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including oncostatin M (OSM).


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including oncostatin M receptor (OSMR).


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including cardiotrophin-1.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including CNTF.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4 and SOX2.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRRf) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including NANOG, OCT3/4 and SOX2.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4 and SOX2 and a transgene with LIF activity.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted sequences encoding other transgenes, including OCT3/4 and SOX2 and a transgene with LIF activity.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including Notch (e.g. Gaiano et al., 2000).


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4, SOX2 and Notch (e.g. notch 1 and/or notch 2).


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4, SOX2, NANOG, and Notch.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (P RR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4, SOX2, NANOG, and a transgene with LIF activity.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4, SOX2, NANOG, and multiple transgenes with LIF activity.


In a preferred embodiment, the selected cells and/or their progeny are transfected/contacted with long (PRR+) Numb isoform(s) encoding sequences as well as sequences encoding other transgenes, including OCT3/4, Notch, HOXB4 and SOX2.


Over time, other gene combinations differing from those described herein may be described or discovered capable of causing cells to become multipotent, pluripotent, capable of self-renewal, or to begin differentiating. However this patent application covers such “‘genetic reprogramming” of any nucleated cell utilizing nucleic acid or protein electroporation (see Gagne et al., 1991; Saito et al., 2001; Yuan, 2008; Huang et al., 2007; Xia and Zhang, 2007; Cemazar and Sersa 2007; lsaka and Imai, 2007; Luxembourg et al., 2007; Van Tendeloos, 2007; Takahashi, 2007; etc.), liposomes, nanocapsules, nanovaults, etc. (see Goldberg et al., 2007; Li et al., 2007), and/or another approach avoiding viral integration or other random alteration of the cell's genome, as such means increase safety and efficiency.


Excluded, of course, from the category of random alteration are approaches involving gene-targeting and site-directed methods designed to introduce or remove DNA at specific locations in the genome.


Likewise, this patent application covers the genetic reprogramming of any nucleated cell utilizing nucleic acid or protein electroporation, liposomes, nanocapsules, nanovaults, etc., and/or another approach avoiding retroviral/lenti viral integration or other random alteration of the cell's genome, as such means increase safety and efficiency. Such approaches and methods include all known to the art and practicable in the present invention.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; or known to be multipotency, pluripotency, or self-renewal inducing) are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; or known to be multipotency, pluripotency, or self-renewal inducing) are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; or known to be multipotency, pluripotency, or self-renewal inducing) so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; or known to be multipotency, pluripotency, or self-renewal inducing) so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Nanog are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Nanog so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding viral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Oct4 and Sox2 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding viral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4/Sox2 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding viral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding viral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding viral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Nanog are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Nanog are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Nanog so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Nanog so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to a gene with LIF activity are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to a gene with LIF activity are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to to a gene with LIF activity so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to a gene with LIF activity so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Oct4 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Oct4 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding re troviral/lenti viral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lenti viral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Sox2 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Sox2 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Sox2 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Sox2 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Iin28 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to Iin28 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults. and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to Iin28 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to c-myc are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to c-myc are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to c-myc so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to c-myc so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding Oct4 and Sox2 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Oct4 and Sox2 are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4 and Sox2 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4 and Sox2 so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb Isoforms so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb Isoforms so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Oct4, Sox2, and Nanog are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Oct4, Sox2, and Nanog are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4, Sox2, and Nanog so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Oct4, Sox2, and Nanog so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent. and/or self-renewing cells from the selected cells.


In a separate preferred embodiment, nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to produce multipotent, pluripotent, and/or self-renewing cells from the selected cells and the method is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) are utilized in concert with the nucleic acid(s) or protein(s) corresponding to Long (PRR+) Numb isoforms so long as a population of multipotent, pluripotent, and/or self-renewing cells is produced from the selected cells and the method is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


It is to be understood that any combination of nucleic acid or protein sequences described herein can be modified by excluding those corresponding to Numb and/or Numblike so long as the desired cell population or behavior is achieved.


Similarly, it should be understood that the methods described herein for initiating differentiation are applicable to any induced or non-induced multipotent, pluripotent, or self-renewing stem cells, other progenitor cells, or other selected cells, not only those obtained in the manner described herein.


It is to be understood that any combination of nucleic acid or protein sequences described herein can be modified by excluding nucleic acid sequences or proteins corresponding to Numb and/or Numblike so long as the desired cell population is achieved.


In another embodiment, the various nucleic acid or protein combinations described herein are employed with the exclusion of the nucleic acid or protein corresponding to the Numblike and/or Numb isoforms.


In a preferred embodiment, the selected cells and/or their progeny are cells that have been genetically-modified beforehand.


In a preferred embodiment, the transfection/contacting steps described herein represent transient transfection.


In a further preferred embodiment such transient transfection is accomplished using viral vectors that do not integrate into the host genome.


In another preferred embodiment, such transient transfection is accomplished using standard transfection techniques (electroporation, chemically mediated transfection, fusogenic or non-fusogenic liposomes, nanocapsules, nanovaults, etc.).


Over time, other gene combinations differing from those described herein may be described or discovered capable of causing cells to become multipotent, pluripotent, capable of self-renewal or to begin differentiating. However this patent application also covers the genetic reprogramming of any nucleated cell utilizing nucleic acid or protein electroporation (for example methods see Gagne et al., 1991; Saito et al., 2001; Yuan, 2008; Huang et al., 2007; Xia and Zhang, 2007; Cemazar and Sersa 2007; Isaka and Imai, 2007; Luxembourg et al., 2007; Van Tendeloos, 2007; Takahashi, 2007; etc.) electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding viral integration or other random alteration of the cell's genome as such means increase safety and efficiency.


In another preferred embodiment, transfection/contacting with long (PRR+) numb isoform encoding sequences (and/or synthetic oligonucleotides targeting numblike and short numb isoforms) is accompanied or replaced by transient or permanent transfection with other sequences including ones selected from those encoding human LIF (e.g. Du and Shi, 1996) oncostatin-M, cardiotrophin-1, IL-I 1, IL-6, IL6R, hyper IL-6, LIFR, gp130, OCT3 (OCT4), Nanog, SOX2, and/or FGF-4.


Simultaneous transfection/contacting with any subset of these distinct transgene sequences can be accomplished by any means known to the art including the use of a single genetic vector, multiple genetic vectors, serial transfection/contacting and selection based on distinct marker proteins and/or antibiotic resistances.


In another preferred embodiment, cells transfected/contacted with long (PRR+) numb isoform(s) are cultured in a cell culture promoting an optimal growth rate, such as described above, and that includes EGF, bFGF, oncostatin, LIF (e.g. Du and Shi, 1996), steel factor, IL-11, cardiotrophin-1, IL-6, hyper-IL-6, CNTF, and/or soluble gpl30.


Assessment of Potency and Differentiation

Pluripotency and multipotency can be assessed by any means known to the art including 1) transplantation, 2) culture under conditions promoting embryoid body formation, 3) injection of cells into animal blastocyst stage embryos with subsequent development, and 4) RNA expression assays (e.g. RI-PCR and microarray based analyses) for gene expression associated with differentiation, multipotency, pluripotency, etc. (see Guan et al., 2006), 5) colony-formation, as well as by ES-like morphology. One approach disclosed herein for detecting pluripotency in selected cells and/or their progeny involves transfection/contacting with a reporter construct comprising the Nanog promoter operably linked to a fluorescent protein gene. This allows identification and enrichment of Nanog expressing cells using Fluorescence Activated Cell Sorting (FACS), etc.


In a preferred embodiment, endogenous cells (e.g. cells surrounding a burn or injury site) are transfected/contacted in vivo with genetic vectors encoding the long (PRR+) numb isoform(s) alone or in conjuction with other transgenes named herein to transiently promote renewed or increased cell proliferation. This approach can also be utilized clinically in the setting of hypoplastic tissues, disorders where stem/progenitor cells are abnormally depleted, and other disorders where the approach can be shown to be beneficial.


Achieving Differentiating Cell Populations

In order to achieve b) neural c) muscle d) and other cell populations capable of further environmentally-regulated differentiation in vivo, selected cell(s) and/or their progeny are optionally transfected/contacted with long (PRR+) Numb isoform sequence(s) and/or synthetic oligonucleotide sequences and expanded by growth for sufficient time to achieve the desirable number of cell progeny in vitro (as described above).


Following this optional step, the selected cells and/or their progeny are washed free of the cytokines and agents comprising the expansion/optimal growth media, and are optionally transfected/contacted with the nucleotide sequence(s) encoding the Numblike gene and/or “short” ‘(PRR−) Numb isoform(s) and/or synthetic oligonucleotides targeting the long (PRR+) isoforms, etc. (e.g. Zaehres et al., 2005), then cultured under conditions which promote differentiation of the selected cells into the desired cell type(s).


In most instances, the cells are then cultured in the presence of 5-10% fetal bovine serum and agents(s) promoting differentiation of the selected cells and/or their progeny into a desired cell population. The presence of the fetal bovine and of the agents(s) provides for growth or proliferation at a rate that is less than the optimal (or expansion) growth rate, and favors differentiation of the cells into a desired cell population. The agents and precise culture conditions are selected according to the desired cell population as described below.


Achieving Neuronal or Neural Cell Populations

When the desired cell population is a neural cell population, the successfully transfected cells are cultured under conditions that promote growth at a rate which is less than the optimal rate and in the presence of agent(s) promoting differentiation of the cells into neural cells. Conditions promoting differentiation into neurons have been described in numerous publications including (Benninger et al., 2003; Chung et al. 2005; Harkany et al., 2004; Ikeda et al., 2004; Ikeda et al., 2005; Wernig et al., 2002; and Wernig et al., 2004). Furthermore, combining retinoic acid exposure with the presence of additional cytokines favors specific neuronal cell type differentiation in vitro (e.g. Soundararajan et al., 2006; Soundararajan et al., 2007; U.S. Pat. No. 6,432,711).


In a preferred embodiment, in vitro differentiation of neurons or neural cells occurs in the presence of 50 ng/mL nerve growth factor (NGF).


In a preferred embodiment, when a neuronal population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding Nurrl, REN, Neurogeninl, Neurogenin2, Neurogenic, Mash 1, Phox2b, Phox2a, dlland, Gata3, Shh, FGF8, Lmxlb, Nkx2.2, Petl, Lbxl, and/or Rnx.


In another preferred embodiment, when dopaminergic neurons are the desired neuronal population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding Mashl, Ngn2, Nurrl, Lmxlb, and/or Ptx-3.


In another preferred embodiment, when serotonergic neurons are the desired neuronal population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding Mashl, Phox2b, Lmxlb, Nkx2.2, Gata2, Gata3 and/or Petl.


In another preferred embodiment, when cholinergic neurons are the desired neuronal population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding MASHlIl, Phox2a and/or RKST4.


In another preferred embodiment, when GABAergic neurons are the desired neuronal population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding MASHl, Phox2a and/or REST4, followed, optionally, by culture in media supplemented with LIF, Neurotrophin 3 (NT3), and/or nerve growth factor (NGF).


In another preferred embodiment, when noradrenergic neurons are the desired neuronal population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding Mashl, dlland, Phox2a, Phox2b, Gata2 and/or Gata3.


In another preferred embodiment, when GABAergic neurons are the desired neuronal population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding P1TX2, Dlx2, Dlx5, antisense Hesl RNA and/or other HESl targeting synthetic oligonucleotides.


In another preferred embodiment, when a neuronal or neural cell population is the desired population, cells transfected/contacted with short (PRR−) numb isoforms (and/or numblike) are cultured in a cell culture medium promoting differentiation, such as described above and that includes one or more of the following agents: retinoic acid, NT3, NGF, glial cell-line derived growth factor (GDNF), and interferon gamma (IFN-gamma)


Achieving Muscle Cell Populations

When the desired cell population is a muscle population, the successfully transfected/contacted cells are cultured in the presence of an agent promoting differentiation of the cells into muscle cells and growth at a rate less than the optimal rate. Conditions promoting differentiation into muscle cells have also been described previously (Nakamura et al., 2003; Pal and Khanna, 2005; Pipes et al., 2005; Albilez et al., 2006; Pal and Khanna, 2007; Behfar et al., 2007; U.S. Pat. No. 6,432,711). Furthermore, exposure of selected cells and/or their progeny to hexamethylene bis-acrylamide or dimethylsulfoxide in the presence of additional cytokines favors the initiation of muscle type differentiation in vitro.


In a preferred embodiment, when a cardiac muscle cell population is the desired population, cells transfected/contacted with short (PRR−) numb isoforms (and/or numblike) are cultured in a cell culture medium promoting differentiation into cardiomyocytes (He et al., 2003; Guan et al., 2007; etc.), or that includes specific agents at concentrations promoting cardiac cell differentiation (e.g. 0.75%-1% dimethyl sulfoxide (DMSO), 20% normal bovine serum (NBS), 10(-7) mM retinoic acid (RA) and 20% cardiomyocytes conditioned medium (Hua et al., 2006).


In a preferred embodiment, when a muscle cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding muscle type specific bHLH-encoding sequences, MyoD, Myogenin, Myf5, Myf6, Mef2, Myocardin, Ifrdl, Gata 4, Gata 5, and Gata 6.


In another preferred embodiment, when a cardiac muscle cell population is the desired population, the cells are transfected/contacted with nucleotide sequences including ones selected from those sequences encoding Myocardin, Gata 4, Gata 5, and Gata 6.


In a preferred embodiment, when a smooth muscle cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding the muscle type specific Myocardin nucleotide sequence.


In a preferred embodiment, when a skeletal muscle cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding the muscle type specific MyoD and myogenin nucleotide sequences.


In a preferred embodiment, when an oligodendrocyte cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding the oligodendrocyte-specific OLIG1, OLIG2, and Zfp488 nucleotide sequences.


Simultaneous transfection with any subset of these distinct transgene sequences listed above can be accomplished by any means known to the art including the use of multiple genetic vectors, serial transfection as well as selection based on distinct marker proteins and/or antibiotic resistance.


When the desired cell population is a hematopoietic cell population, the differentiation medium includes specific agents at concentrations promoting differentiation into hematopoietic progenitor cells (e.g. vascular endothelial growth factor (VEGF), thrombopoietin, etc. (e.g. Ohmizono, 1997; Wang et al., 2005; Srivastava et al., 2007; Gupta et al., 2007) or differentiated hematopoietic cell types (according to methods known to the art for providing differentiated hematopoietic cell types from undifferentiated or pluripotent cells).


When the desired cell population is a germ cell population, the differentiation medium includes specific agents at concentrations promoting differentiation into germ cells (e.g. Nayernia et al. 2006a, 2006b).


In a preferred embodiment, when a germ cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding FIGLA (NCBI accession No: AY541030 NM_001004311, SEQ ID NO: 130), FIG alpha (NCBI accession No: U91840, SEQ ID NO: 131), DAZL (NCBI accession No: NM_001190811, SEQ ID NO: 122; NCBI accession No: NM_001351, SEQ ID NO: 123), STRA8 (NCBI accession No: NM_182489, SEQ ID NO: 215), FOXL2 (NCBI accession No: AF522275, SEQ ID NO: 132), OOGENESIN1 (NCBI accession No: NM_178657 XM_622900, SEQ ID NO: 181), OOGENESIN2 (NCBI accession No: NM_198661 XM_355532, SEQ ID NO: 182), OOGENESIN3 (NCBI accession No: NM_201258 XM_131812, SEQ ID NO: 183), OOGENESIN4 (NCBI accession No: NM_001347238 XM_006538858, SEQ ID NO: 184; NCBI accession No: NM_173773, SEQ ID NO: 185), SYCP2 (NCBI accession No: NM_014258 XM_005260247, SEQ ID NO: 216), SYCP3 (NCBI accession No: NM_001177949, SEQ ID NO: 217; NCBI accession No: NM_153694, SEQ ID NO: 218; NCBI accession No: NM_001177948, SEQ ID NO: 219), SPO11 (NCBI accession No: AF169385, SEQ ID NO: 207), REC8 (NCBI accession No: NM_005132, SEQ ID NO: 194; NCBI accession No: NM_001048205, SEQ ID NO: 195), DMC1 (NCBI accession No: NM_007068, SEQ ID NO: 124; NCBI accession No: NM_001363017, SEQ ID NO: 125; NCBI accession No: NM_001278208, SEQ ID NO: 126), MOS (NCBI accession No: NM_005372, SEQ ID NO: 166), STAG3 (NCBI accession No: NM_012447, SEQ ID NO: 212; NCBI accession No: NM_001282716, SEQ ID NO: 213; NCBI accession No: NM_001282717, SEQ ID NO: 214), CCNB1 (NCBI accession No: NM_001354845, SEQ ID NO: 117; NCBI accession No: NM_031966, SEQ ID NO: 118; NCBI accession No: NM_001354844, SEQ ID NO: 119), FOXO1 (NCBI accession No: NM_002015, SEQ ID NO: 133), FOXO3 (NCBI accession No: BC068552, SEQ ID NO: 134), SOHLH1 (NCBI accession No: NM_001101677, SEQ ID NO: 199; NCBI accession No: NM_001012415, SEQ ID NO: 200), SOHLH2 (NCBI accession No: NM_017826 XM_370720, SEQ ID NO: 201; NCBI accession No: NM_001282147, SEQ ID NO: 202), NOBOX (NCBI accession No: NM_001080413, SEQ ID NO: 167; NCBI accession No: XM_017011742, SEQ ID NO: 168), OBOX1 (NCBI accession No: NM_027802, SEQ ID NO: 173), OBOX2 (NCBI accession No: NM_145708, SEQ ID NO: 174), OBOX3 (NCBI accession No: NM_145707, SEQ ID NO: 175), OBOX4 (NCBI accession No: AF461109, SEQ ID NO: 176), OBOX6 (NCBI accession No: NM_145710, SEQ ID NO: 177), LHX8 (NCBI accession No: NM_001001933, SEQ ID NO: 154), LHX9 (NCBI accession No: NM_020204, SEQ ID NO: 155; NCBI accession No: NM_001014434, SEQ ID NO: 156), OOG1 (NCBI accession No: NM_178657 XM_622900, SEQ ID NO: 181), SP1 (NCBI accession No: NM_138473 XM_028606, SEQ ID NO: 208; NCBI accession No: NM_003109, SEQ ID NO: 209), ZFP38 (NCBI accession No: NM_011757, SEQ ID NO: 232; NCBI accession No: NM_001044703, SEQ ID NO: 233; NCBI accession No: NM_001044704, SEQ ID NO: 234), TRF2 (NCBI accession No: U95970, SEQ ID NO: 229), TB2/TRF3 (NCBI accession No: AY457923, SEQ ID NO: 230), TAF4B (NCBI accession No: NM_001293725, SEQ ID NO: 220; NCBI accession No: NM_005640, SEQ ID NO: 221), TAF7L (NCBI accession No: NM_024885, SEQ ID NO: 222), TAF71 (NCBI accession No: NM_001168474, SEQ ID NO: 223), TIA1 (NCBI accession No: NM_022037, SEQ ID NO: 225; NCBI accession No: NM_022173, SEQ ID NO: 226; NCBI accession No: NM_001351508, SEQ ID NO: 227), PHTF1 (NCBI accession No: NM_006608, SEQ ID NO: 189; NCBI accession No: NM_001323041, SEQ ID NO: 190; NCBI accession No: NM_001323042, SEQ ID NO: 191), TNP2 (NCBI accession No: NM_005425, SEQ ID NO: 228), HILS1 (NCBI accession No: NR_024193, SEQ ID NO: 145), DAZL (NCBI accession No: NM_001190811, SEQ ID NO: 122; NCBI accession No: NM_001351, SEQ ID NO: 123), BMP15 (NCBI accession No: NM_005448, SEQ ID NO: 116), PTTG3 (NCBI accession No: NR_002734, SEQ ID NO: 193), AURKC (NCBI accession No: NM_001015878, SEQ ID NO: 114; NCBI accession No: NM_001015879, SEQ ID NO: 115), OTX2 (NCBI accession No: NM_021728, SEQ ID NO: 186; NCBI accession No: NM_172337, SEQ ID NO: 187; NCBI accession No: NM_001270523, SEQ ID NO: 188), SOX15 (NCBI accession No: NM_006942, SEQ ID NO: 203), SOX30 (NCBI accession No: NM_178424, SEQ ID NO: 204; NCBI accession No: NM_007017, SEQ ID NO: 205; NCBI accession No: NM_001308165, SEQ ID NO: 206), FOXR1 (NCBI accession No: NM_181721, SEQ ID NO: 135), ALF (NCBI accession No: NM_001133, SEQ ID NO: 113), OCT4 (NCBI accession No: NM_002701, SEQ ID NO: 178; NCBI accession No: NM_203289, SEQ ID NO: 179; NCBI accession No: NM_001173531, SEQ ID NO: 180), DPPA3/STELLA (NCBI accession No: BC062480, SEQ ID NO: 129), ZFP38 (NCBI accession No: NM_011757, SEQ ID NO: 232; NCBI accession No: NM_001044703, SEQ ID NO: 233; NCBI accession No: NM_001044704, SEQ ID NO: 234), RPS6KA3 (NCBI accession No: NM_004586 XM_939339 XM_944112, SEQ ID NO: 196), HINFP (NCBI accession No: NM_015517, SEQ ID NO: 141; NCBI accession No: NM_198971, SEQ ID NO: 142; NCBI accession No: NM_001243259, SEQ ID NO: 143; NCBI accession No: NM_001351957, SEQ ID NO: 144), NPAT (NCBI accession No: D83243, SEQ ID NO: 169), SP1 (NCBI accession No: NM_138473 XM_028606, SEQ ID NO: 208; NCBI accession No: NM_003109, SEQ ID NO: 209), SP3 (NCBI accession No: NM_003111 XM_092672, SEQ ID NO: 210; NCBI accession No: NM_001017371, SEQ ID NO: 211), HOXA1 (NCBI accession No: NM_005522, SEQ ID NO: 146; NCBI accession No: NM_153620, SEQ ID NO: 147), HOXA7 (NCBI accession No: AJ005814, SEQ ID NO: 148), HEX (NCBI accession No: Z21533, SEQ ID NO: 140), YP30 (NCBI accession No: NM_214493, SEQ ID NO: 231), ZP1 (NCBI accession No: NM_207341, SEQ ID NO: 235), ZP2 (NCBI accession No: NM_003460, SEQ ID NO: 236; NCBI accession No: NM_001290104, SEQ ID NO: 237), ZP3 (NCBI accession No: X56777 S53912, SEQ ID NO: 238), SFE1 (NCBI accession No: NM_001170815, SEQ ID NO: 197), SFE9 (NCBI accession No: AY540956, SEQ ID NO: 198), OPO, PLN (NCBI accession No: NM_002667, SEQ ID NO: 192), RDV, GLD1, MMU-MiR351 (NCBI accession No: NR_029776, SEQ ID NO: 161), MMU-MiR615 (NCBI accession No: NR_030526, SEQ ID NO: 164), MMU-MiR592 (NCBI accession No: NR_030420, SEQ ID NO: 163), MMU-MiR882 (NCBI accession No: NR_030540, SEQ ID NO: 165), MMU-MiR185 (NCBI accession No: NR_029571, SEQ ID NO: 157), MMU-MiR491 (NCBI accession No: NR_030478, SEQ ID NO: 162), MMU-MiR326 (NCBI accession No: NR_029891, SEQ ID NO: 159), MMU-MiR330 (NCBI accession No: NR_029763, SEQ ID NO: 160), MMU-MiR351 (NCBI accession No: NR_029776, SEQ ID NO: 161).


For example, but not limiting, in one preferred embodiment, when a sperm or spermatocyte cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding SYCP2 (NCBI accession No: NM_014258 XM_005260247, SEQ ID NO: 216), SYCP3 (NCBI accession No: NM_001177949, SEQ ID NO: 217; NCBI accession No: NM_153694, SEQ ID NO: 218; NCBI accession No: NM_001177948, SEQ ID NO: 219), SPO11 (NCBI accession No: AF169385, SEQ ID NO: 207), REC8 (NCBI accession No: NM_005132, SEQ ID NO: 194; NCBI accession No: NM_001048205, SEQ ID NO: 195), DMC1 (NCBI accession No: NM_007068, SEQ ID NO: 124; NCBI accession No: NM_001363017, SEQ ID NO: 125; NCBI accession No: NM_001278208, SEQ ID NO: 126), MOS (NCBI accession No: NM_005372, SEQ ID NO: 166), STAG3 (NCBI accession No: NM_012447, SEQ ID NO: 212; NCBI accession No: NM_001282716, SEQ ID NO: 213; NCBI accession No: NM_001282717, SEQ ID NO: 214), OCT4 (NCBI accession No: NM_002701, SEQ ID NO: 178; NCBI accession No: NM_203289, SEQ ID NO: 179; NCBI accession No: NM_001173531, SEQ ID NO: 180), ALF (NCBI accession No: NM_001133, SEQ ID NO: 113), RPS6KA3 (NCBI accession No: NM_004586 XM_939339 XM_944112, SEQ ID NO: 196), HINFP (NCBI accession No: NM_015517, SEQ ID NO: 141; NCBI accession No: NM_198971, SEQ ID NO: 142; NCBI accession No: NM_001243259, SEQ ID NO: 143; NCBI accession No: NM_001351957, SEQ ID NO: 144), SP1 (NCBI accession No: NM_138473 XM_028606, SEQ ID NO: 208; NCBI accession No: NM_003109, SEQ ID NO: 209), SP3 (NCBI accession No: NM_003111 XM_092672, SEQ ID NO: 210; NCBI accession No: NM_001017371, SEQ ID NO: 211), TAF71 (NCBI accession No: NM_001168474, SEQ ID NO: 223), TIA1 (NCBI accession No: NM_022037, SEQ ID NO: 225; NCBI accession No: NM_022173, SEQ ID NO: 226; NCBI accession No: NM_001351508, SEQ ID NO: 227), PHTF1 (NCBI accession No: NM_006608, SEQ ID NO: 189; NCBI accession No: NM_001323041, SEQ ID NO: 190; NCBI accession No: NM_001323042, SEQ ID NO: 191), TNP2 (NCBI accession No: NM_005425, SEQ ID NO: 228), HILS1 (NCBI accession No: NR_024193, SEQ ID NO: 145), CLGN (NCBI accession No: NM_001130675, SEQ ID NO: 120; NCBI accession No: NM_004362, SEQ ID NO: 121), TEKT1 (NCBI accession No: NM_053285, SEQ ID NO: 224), FSCN3 (NCBI accession No: NM_020369, SEQ ID NO: 136), DNAHC8 (NCBI accession No: NM_001206927, SEQ ID NO: 127; NCBI accession No: NM_001371, SEQ ID NO: 128), LDHC (NCBI accession No: NM_017448, SEQ ID NO: 149; NCBI accession No: NM_002301, SEQ ID NO: 150), ADAM3 (NCBI accession No: AK302269, SEQ ID NO: 110), OAZ3 (NCBI accession No: NM_016178, SEQ ID NO: 170; NCBI accession No: NM_001134939, SEQ ID NO: 171; NCBI accession No: NM_001301371, SEQ ID NO: 172), AKAP3 (NCBI accession No: NM_001278309, SEQ ID NO: 111; NCBI accession No: NM_006422, SEQ ID NO: 112), MMU-MiR351 (NCBI accession No: NR_029776, SEQ ID NO: 161), MMU-MiR615 (NCBI accession No: NR_030526, SEQ ID NO: 164), MMU-MiR592 (NCBI accession No: NR_030420, SEQ ID NO: 163), MMU-MiR882 (NCBI accession No: NR_030540, SEQ ID NO: 165), and MMU-MiR185 (NCBI accession No: NR_029571, SEQ ID NO: 157).


For example, but not limiting, in one preferred embodiment, when a oocyte cell population is the desired cell population, transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding MOS (NCBI accession No: NM_005372, SEQ ID NO: 166), CCNB1 (NCBI accession No: NM_001354845, SEQ ID NO: 117; NCBI accession No: NM_031966, SEQ ID NO: 118; NCBI accession No: NM_001354844, SEQ ID NO: 119), OCT4 (NCBI accession No: NM_002701, SEQ ID NO: 178; NCBI accession No: NM_203289, SEQ ID NO: 179; NCBI accession No: NM_001173531, SEQ ID NO: 180), FIG alpha (NCBI accession No: U91840, SEQ ID NO: 131), FIGL alpha (NCBI accession No: AY541030 NM_001004311, SEQ ID NO: 130), ALF (NCBI accession No: NM_001133, SEQ ID NO: 113), SOHLH1 (NCBI accession No: NM_001101677, SEQ ID NO: 199; NCBI accession No: NM_001012415, SEQ ID NO: 200), SOHLH2 (NCBI accession No: NM_017826 XM_370720, SEQ ID NO: 201; NCBI accession No: NM_001282147, SEQ ID NO: 202), LHX8 (NCBI accession No: NM_001001933, SEQ ID NO: 154), LHX9 (NCBI accession No: NM_020204, SEQ ID NO: 155; NCBI accession No: NM_001014434, SEQ ID NO: 156), OOG1 (NCBI accession No: NM_178657 XM_622900, SEQ ID NO: 181), FIG alpha (NCBI accession No: U91840, SEQ ID NO: 131), SP1 (NCBI accession No: NM_138473 XM_028606, SEQ ID NO: 208; NCBI accession No: NM_003109, SEQ ID NO: 209), LHX3 (NCBI accession No: NM_178138, SEQ ID NO: 151; NCBI accession No: NM_014564, SEQ ID NO: 152; NCBI accession No: NM_001363746, SEQ ID NO: 153), LHX9 (NCBI accession No: NM_020204, SEQ ID NO: 155; NCBI accession No: NM_001014434, SEQ ID NO: 156), TBP2/TRF3 (NCBI accession No: AY457923, SEQ ID NO: 230), DAZL (NCBI accession No: NM_001190811, SEQ ID NO: 122; NCBI accession No: NM_001351, SEQ ID NO: 123), BMP15 (NCBI accession No: NM_005448, SEQ ID NO: 116), GDF9 (NCBI accession No: NM_005260, SEQ ID NO: 137; NCBI accession No: NM_001288824, SEQ ID NO: 138; NCBI accession No: NM_001288825, SEQ ID NO: 139), PTTG3 (NCBI accession No: NR_002734, SEQ ID NO: 193), AURKC (NCBI accession No: NM_001015878, SEQ ID NO: 114; NCBI accession No: NM_001015879, SEQ ID NO: 115), OTX2 (NCBI accession No: NM_021728, SEQ ID NO: 186; NCBI accession No: NM_172337, SEQ ID NO: 187; NCBI accession No: NM_001270523, SEQ ID NO: 188), SOX15 (NCBI accession No: NM_006942, SEQ ID NO: 203), SOX30 (NCBI accession No: NM_178424, SEQ ID NO: 204; NCBI accession No: NM_007017, SEQ ID NO: 205; NCBI accession No: NM_001308165, SEQ ID NO: 206), FOXR1 (NCBI accession No: NM_181721, SEQ ID NO: 135), NOBOX (NCBI accession No: NM_001080413, SEQ ID NO: 167; NCBI accession No: XM_017011742, SEQ ID NO: 168), OBOX1 (NCBI accession No: NM_027802, SEQ ID NO: 173), OBOX2 (NCBI accession No: NM_145708, SEQ ID NO: 174), OBOX3 (NCBI accession No: NM_145707, SEQ ID NO: 175), OBOX6 (NCBI accession No: NM_145710, SEQ ID NO: 177), OOGENESIN1 (NCBI accession No: NM_178657 XM_622900, SEQ ID NO: 181), OOGENESIN2 (NCBI accession No: NM_198661 XM_355532, SEQ ID NO: 182), OOGENESIN3 (NCBI accession No: NM_201258 XM_131812, SEQ ID NO: 183), OOGENESIN4 (NCBI accession No: NM_001347238 XM_006538858, SEQ ID NO: 184; NCBI accession No: NM_173773, SEQ ID NO: 185), YP30 (NCBI accession No: NM_214493, SEQ ID NO: 231), ZP1 (NCBI accession No: NM_207341, SEQ ID NO: 235), ZP2 (NCBI accession No: NM_003460, SEQ ID NO: 236; NCBI accession No: NM_001290104, SEQ ID NO: 237), ZP3 (NCBI accession No: X56777 S53912, SEQ ID NO: 238), SFE1 (NCBI accession No: NM_001170815, SEQ ID NO: 197), SFE9 (NCBI accession No: AY540956, SEQ ID NO: 198), OPO, PLN (NCBI accession No: NM_002667, SEQ ID NO: 192), RDV, GLD1, DAZL (NCBI accession No: NM_001190811, SEQ ID NO: 122; NCBI accession No: NM_001351, SEQ ID NO: 123), STRA8 (NCBI accession No: NM_182489, SEQ ID NO: 215), MMU-MiR615 (NCBI accession No: NR_030526, SEQ ID NO: 164), MMU-MiR491 (NCBI accession No: NR_030478, SEQ ID NO: 162), MMU-MiR326 (NCBI accession No: NR_029891, SEQ ID NO: 159), MMU-MiR330 (NCBI accession No: NR_029763, SEQ ID NO: 160), MMU-MiR212 (NCBI accession No: NR_029794, SEQ ID NO: 158) and MMU-MiR351 (NCBI accession No: NR_029776, SEQ ID NO: 161).


When the desired cell population is an endoderm and pancreatic islet cell population, the differentiation media includes specific agents at concentrations promoting differentiation into endoderm and pancreatic islet cells (e.g. Xu et al., 2006; Denner et al., 2007; Shim et al., 2007; Jiang et al., 2007).


In a preferred embodiment, differentiation of selected cells and/or their progeny may occur in the differentiation medium in the absence of transfection with numblike, short Numb isoforms or other transgenes/proteins, although the differentiation medium may be unchanged.


In embodiments, a single vector will be utilized which controls the expression of nucleotide sequence(s) encoding the “long” (PRR+) isoform(s) of the mammalian numb gene (and/or synthetic oligonucleotides targeting numblike or the short numb isoforms) under one regulable promoter (e.g. a tetracyc line-regulated promoter), while the Numblike and short Numb isoforms (and/or synthetic oligonucleotides targeting the long (PRR+) isoforms) are expressed under the control of another, distinct, but also regulable promoter. Thus, the long (PRR+) numb isoform(s) can be expressed (and/or short isoforms repressed) when expansion of the selected cells is desired and an inducing agent (e.g. tetracycline) is added to the growth medium; later numblike and the short isoforms can be expressed (and/or long (PRR+) numb isoform(s) repressed) when differentiation is desired.


Alternatively, proteins and peptides corresponding to Numb isoforms, Notch, OCT3/4, SOX2, and other DNA sequences listed herein may be applied in analogous fashion to selected cells and/or their progeny via electroporation (e.g. Koken et al., 1994; Ritchie and Gilroy, 1998), using nano particles, cationic lipids, fusogenic liposomes (e.g. Yoshikawa et al., 2005; 2007), etc. in lieu of, or in combination with genetic transfection. Generally, electroporation allows for high transfection efficiency (and efficient production of the desired cells) without genomic integration of the transgene and is therefore associated with increased safety.


The DNA or RNA encoding protein(s) or polypeptide(s) promoting proliferation, multipotentiality, pluripotentiality or differentiation of the selected cells may be isolated in accordance with standard genetic engineering techniques (for example, by isolating such DNA from a cDNA library of the specific cell line) and placing it into an appropriate expression vector, which then is transfected into the selected cells.


In another preferred embodiment, endoderm and pancreatic islet cells are the desired population, and transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding Foxa2, Sox17, HLXB9 and/or Pdxl.


In another preferred embodiment, hepatocytes are the desired population, and transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding hepatic nuclear factor (HNF)-I, IINF-3, IINF-4, HNF-6 and creb-binding protein.


In another preferred embodiment, hematopoietic cells are the desired population, and transfection/contacting with short numb isoform (and/or numblike) proteins or with sequences encoding short numb isoform proteins (and/or numblike), is accompanied or replaced by transient or permanent transfection/contacting with other proteins and/or nucleic acid sequences, including ones selected from those encoding Runxl/AML1 and NOV(CCN3), and/or cell culture in the presence of colony stimulating factors specific for the desired cell populations. The Runxl/AML1 a isoform is introduced when engraftment is desired and the b isoform when differentiation is desired (Creemers et al., 2006).


In another preferred embodiment, chondrocytes are the desired population, and lransfcction with sequences encoding short numb isoforms (and/or numblike) is accompanied or replaced by transient or permanent transfection of other sequences including ones encoding Sox9, CREB-binding protein, Gataó and/or Runx2.


In another preferred embodiment, bone cells (especially osteoblasts) are the desired population, and transfection with sequences encoding short numb isoforms (and/or numblike) is accompanied or replaced by transient or permanent transfection of other sequences including Runx2.


In a preferred embodiment, the genetic vectors encoding the long Numb isoforms (such as those described herein) are introduced transiently or under the control of a regulable promoter, into endogenous cells in vivo in order to cause those cells proliferate transiently.


In a preferred embodiment, endogenous cells (e.g. ependymal zone cells of the central nervous system) are transfected/contacted in vivo with genetic vectors encoding either the shortest numb isoform or the numblike protein(s) alone or in conduction with other transgenes/proteins named herein, in order to transiently or permanently promote renewed or increased differentiation (especially neuronal differentiation) and migration of progenitor/ependymal cells in the central nervous system). This renewal or increase is measured in terms of the number of cells showing new-onset expression of markers associated with differentiation. This may be accomplished by introduction of the genetic vectors into the organ system using methods suitable for that purpose (see examples).


In a preferred embodiment, endogenous cells (e.g. ependymal zone cells of the central nervous system) are transfected/contacted in vivo with genetic vectors encoding the long numb isoform(s) and/or other transgenes/proteins named herein, in order to transiently promote renewed or increased stem cell proliferation (with subsequent differentiation of progeny cells). This renewal or increase is measured in terms of the number of cells showing new-onset expression of marlers associated with dividing progenitors. This may be accomplished by introduction of the genetic vectors into the organ system using methods suitable for that purpose (see examples).


Likewise this approach is also be suitable for inducing renewed or increased differentiation from other stem cell populations in other tissues (such as the skin, etc). This approach can be utilized, for example, clinically in the setting of central nervous system injury, disorders of other tissues where normal differentiation or migration are inadequate, dysplaslic disorders and other disorders where the approach is beneficial.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; and/or known to be capable of initiating the desired manner of differentiation) are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to initiate differentiation in the selected cells.


In a preferred embodiment, nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; and/or known to be capable of initiating the desired manner of differentiation) are the only nucleic acid(s) or protein(s) overexpressed and/or introduced to initiate differentiation in the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; and/or known to be capable of initiating the desirable manner of differentiation) so long as a population of differentiating cells is produced from the selected cells.


In a separate preferred embodiment, other nucleic acid(s) or protein(s) can be utilized in concert with the nucleic acid(s) or protein(s) corresponding to a single gene, or portion thereof, (particularly those named herein, discovered according to methods described herein, discovered according to other published methods; and/or known to be capable of initiating the desirable manner of differentiation) so long as a population of differentiating cells is produced from the selected cells and the method utilized is electroporation, liposomes, nanocapsules, nanovaults, and/or another approach avoiding retroviral/lentiviral integration or other random alteration of the cell's genome.


It is to be understood that any combination of nucleic acid or protein sequences described herein can be modified by excluding those corresponding to Numb and/or Numblike so long as the desired cell population or behavior is achieved.


Similarly, it should be understood that the methods described herein (or elsewhere) for initiating differentiation are applicable to any induced or non-induced multipotent, pluripotent, or self-renewing stem cells, or other selected cells, not only those obtained in the manner described herein.


Sources of Selected Cells

The population of selected cells may derive from various stem cells, progenitor cells and somatic cells. However somatic cells lacking nuclei (e.g. mature, human red blood cells) are specifically excluded. Selected stem cells may be derived from existing cell lines or isolated from stored, banked, or cryopreserved sources. Typical sources of stem cells include bone marrow, peripheral blood, placental blood, amniotic fluid (e.g. De Coppi et al., 2007), umbilical cord blood (e.g. Zhao, et al., 2006; Tian et al., 2007), adipose tissue (e.g. Gimble et al., 2007; Ma et al., 2007), non-human embryos, and others. Circulating leukocytes and other non-stem cells may likewise be selected and subjected to the same culture conditions as described above effective that they acquire multipotency, pluripotency and/or self-renewal as a result. Examples of other accessible somatic cells useful in this invention include lymphocytes and epithelial (e.g. buccal cheek) cells. Isolation and collection of cells selected for use within the present invention may be performed by any method known to the art.


In embodiments involving animals, stem cells isolated from prostate, testis, embryonic brain, and intestine are also disclosed as being preferred sources of selected cells.


In a preferred embodiment, the selected cells and/or their progeny are cultured in a three-dimensional format.


A further aim of the present invention is to provide cells for use in the production of patient-compatible and patient-specific tissues and organs for transplantation to patients deemed to be requiring such organs or tissues. It is disclosed herein that the pluripotent, multipotent, and/or differentiating cells provided by the methods described herein (or similar methods) be utilized in conjunction with techniques aimed at the production of such organs and/or tissues (e.g. Boland et al., 2006. Xu et al., 2006; Campbell and Weiss, 2007). Such utilization is specifically covered by the present invention.


For instance, pluripotent, multipotent, and/or differentiating cells produced or treated according to the methods desribed herein (or other published methods) may be grown in association with three-dimcsnisonal or two-dimensional scaffoldings engineered to replicate normal tissue structure and/or organ structures (e.g. Yarlagada et al., 2005; Kim et al, 1998; WO/2003/070084; EP1482871; WO03070084; U.S. Pat. Nos. 2,395,698; 7,297,540; 6,995,013; 6,800,753; Isenberg et al., 2006).


Similarly, scaffoldings to be occupied by the pluripotent, multipotent, and/or differentiating cells may be derived from cadaveric organ(s) or tissue(s) after the cadaveric organs or tissues (e.g. bone, heart, kidney, liver, lung, etc.) may be treated in such away that the host immune cells resident in that tissue, and other undesirable or ancillary host cells, are eliminated (e.g. by ionizing radiation, sterilization (e.g. Mroz et al., 2006), and/or various methods of decellularization (U.S. Pat. Nos. 6,734,018; 6,962,814; 6,479,064; 6,376,244; 5,032,508; 4,902,508; 4,956,178; 5,281,422, 5,554,389; 6,099,567; and 6,206,931; 4361552 and 6576618; 6753181; U.S. application Ser. No. 11/162,715; WO/2001/048153; WO/2002/024244; WO003002165; WO/2001/049210; WO/2007/025233; European Patents EP1482871; EP1246903; EP1244396; EP0987998; EP1244396; EP1 333870; Rieder et al., 2004; Ott et al., 2008; Taylor et al., 1998)).


Likewise, it is anticipated that the pluripotent, multipotent, and/or differentiating cells of the present invention may be used in applications utilizing inkjet-style printing for tissue engineering (e.g. Boland et al., 2006. Xu et al., 2006; Campbell et al., 2007).


Therefore such use of the cells produced or treated according to the methods described herein is covered.


In another preferred embodiment, the selected cells and/or their progeny are cultured in hanging drops.


In accordance with another aspect of the present invention, selected cells may be modified genetically beforehand.


In accordance with another aspect of the present invention, selected cells may be modified with DNA or RNA encoding protein(s) or polypeptide(s) promoting differentiation of the cell into a desired cell population.


Screening Cell Populations

In one embodiment, the methods of this invention comprise screening cells from cell lines, donor sources, umbilical cord blood, and autologous or donor bone marrow, blood, spermatogonia, primordial germ cells, buccal cheek cells, or any other cell source effective in the current invention. Selected cells can be screened to confirm successful transfection with beneficial sequence(s) or therapeutic vector(s) as well as successful initiation of differentiation by any method known to the art (Guan et al., 2006; U.S. Pat. No. 6,432,711). In some embodiments, the cells are screened using standard PCR and nucleic acid hybridization-based methods or using rapid typing methods. In preferred embodiments, the cells are screened according to expression of reporter genes. In some embodiments, cells are screened by expression of a marker gene encoded by the transgene expressing vector(s) such as an antibiotic resistance gene or a fluorescent protein (e.g. GFP) gene.


Screening for Therapeutic Vectors and Beneficial Sequences

Cells can be screened for the presence of beneficial sequence(s) and therapeutic vector(s) using any method(s) known to the art for detection of specific sequences. Each cell sample can be screened for a variety of sequences simultaneously. Alternatively, multiple samples can be screened simultaneously.


Cell differentiation may be monitored by several means: including (i) morphological assessment, (ii) utilizing reverse transcriptase polymerase chain reaction (RT-PCR), Northern blot, or microarray techniques to monitor changes in gene expression, (iii) assaying cellular expression of specific markers such as beta tubulin III (for neurons) etc. (Ozawa, et al., 1985). In some embodiments, the cells are screened for successful initiation of differentiation using FACS sorting based on cell type specific markers or transgenic marker expression (e.g. antibiotic resistance or fluorescent protein expression) under the control of cell type specific promoters such as the myosin promoter in muscle cells; the human cardiac a-actin promoter in cardiomyocytes; the insulin promoter in insulin producing cells; the neuronal-specific enolase (NSE) promoter for neuronal differentiation, or neurotransmitter related promoters such as the tyrosine hydroxylase promoter in dopaminergic neurons; etc.). In some embodiments, the cells are screened using standard PCR and nucleic acid hybridization-based methods. In a particularly preferred embodiment, the cells are screened using rapid typing methods.


Screening for Human Leukocyte Antigen (HLA) Type

In certain embodiments, the selected cells are selected with respect to compatible HLA typing. The HLA genotype can be determined by any means known to those of skill in the art.


The cells used for screening may consist of cells taken directly from a donor, or from cell lines established from donor cells, or other practicable cell sources. The cells can be screened for beneficial sequence(s), and/or therapeutic vector(s) and HLA type at once, or separately. Those cells successfully transfected with a beneficial sequence and showing an appropriate HLA genotype can be prepared for transplantation to a patient.


In certain embodiments, the transfected/contacted cells are transplanted without HLA typing. In other embodiments, the cells are HLA typed for compatibility.


Screening for Agents Promoting a Cellular Phenotype

The present invention also provides for methods of screening proteins and agents for their ability to induce phenotypic changes or differentiation of the selected cells and/or their progeny into desired cell populations. Briefly, vectors encoding complementary DNAs (cDNAs) from appropriate cDNA libraries are transfected into the selected cells/and or their progeny. Once a specific cDNA that induces differentiation or other phenotypic change is identified, such cDNA then may be isolated and cloned into an appropriate expression vector for protein production in appropriate cells (e.g. COS cells) in vitro. Later the protein containing supernatant can be applied to the selected cell cultures to determine if any secreted proteins from such cells induce differentiation Alternatively, candidate agents can be applied to the selected cell cultures to determine if any secreted proteins from such cells induce differentiation (see U.S. Pat. No. 6,432,711).


The present invention also provides for methods of screening nucleic acids for their ability to induce multipotentiality, pluripotentiality, and/or self-renewal, or to initiate differentiation of selected cells and/or their progeny. In these methods, vectors encoding selected cDNAs (or cDNAs from appropriate cDNA libraries, or other sequences) are introduced into the selected cells/and or their progeny using electroporation, nanocapsules, nanovaults, liposomes, retroviruses, lentiviruses, and/or any other practicable means of transfection. Once a specific cDNA that induces a phenotypic change, multipotentiality, pluripotentiality, and/or self-renewal, is identified, such cDNA then may be isolated and cloned into an appropriate expression vector. Assays for determining such changes include those described elsewhere herein.


Likewise the protein corresponding to the identified cDNA may be produced in appropriate cells (e.g. COS cells) in vitro to determine whether the protein containing supernatant can be applied to the selected cell cultures and induce the desired changes.


Finally, proteins may be introduced into the selected cells/and or their progeny using electroporation, nanocapsules, nanovaults, liposomes, retroviruses, lentiviruses, and/or any other practicable means of transfection, and the resulting cells assessed as described herein for multipotentiality, pluripotentiality, self-renewal or the initiation of differentiation.


Tranplantation of Cells into Patients


After screening, selected cells and/or their progeny may be cryopreserved, maintained as cell lines in culture, or may be administered to the patient. Selected cells can be cryopreserved or maintained in culture by any means known to the art and preserved for future transplantation procedures.


Preferably, the cells to be screened are obtained from accessible sources allowing easy collection.


With regard to producing HIV resistant cells: targeted somatic cells and stem cells of this invention can be of any type capable of differentiating into cells that can be infected by HIV, that can sustain the transcription and/or replication of HIV, that can alter the HIV immune response, or that can retard progression to AIDS. Such stem cells include, but are not limited to, pluripotent cells derived from spermatogonia, primordial germ cells, hematopoietic stem cells, peripheral blood cells, placental blood cells, amniotic fluid cells, umbilical cord blood cells, buccal cheek cells, adipose tissue cells (including stem cells derived from those tissues), reprogrammed cells, induced multipotent cells, induced pluripotent cells, etc., non-human embryos, and/or any other cell type that can form blood and immune cells, HIV target cells, and other cells.


Therapeutic vector(s) express “beneficial sequence(s)” intended to render transfected/contacted or infected cells less capable of sustaining HIV replication and transcription. The genetic vector expressing “beneficial sequence(s)” as well as any virus derived from such genetic vector, are herein termed “therapeutic vector”.


After screening, cells transfected/contacted with the desired therapeutic vector(s) and expressing beneficial sequence (with or without compatible HLA genotype) may be expanded ex vivo (in vitro) using standard methods to culture dividing cells and maintained as stable cell lines (U.S. Pat. Nos. 6,432,711 and 5,453,357 herein incorporated by reference). Alternatively, these cells can be administered to the patient and expanded in vivo.


Selected cells can be cryopreserved by any means known to the art and preserved for future transplantation procedures.


Transplantation of Desirable Cell Populations into Patients


In certain embodiments, cell populations are enriched for stem cells prior to transplantation. Various methods to select for stem cells are well known in the art. For example, cell samples can be enriched by fluorescently labeled monoclonal antibodies recognizing cell-surface markers of undifferentiated hematopoietic stem cells (e.g., CD34, CD59, Thyl, CD38 low, C-kit low, lin− minus) for sorting via fluorescence-activated cell sorting (FACS).


In other embodiments, a sample of the selected cells is transplanted, without enrichment.


In some embodiments, the endogenous stem cells of the bone marrow are eliminated or reduced prior to transplantation of the therapeutic stem cells. Therapeutic stem cells are defined as those stem cells containing beneficial sequence(s) or therapeutic vector(s).


In some embodiments, the transplantation process may involve the following phases: (1) conditioning, (2) stem cell infusion, (3) neutropenic phase, (4) engraftment phase, and (5) post-engraftment period.


In some embodiments, the endogenous stem cells that normally produce the desired cells (e.g. bone marrow stem cells) are eliminated or reduced prior to transplantation.


Chemotherapy, radiation, etc. and/or methods analogous to those described in U.S. Pat. No. 6,217,867 may be used to condition the bone marrow for appropriate engraftment of the transplant. Finally, therapeutic stem cells may be transplanted into the patient using any method known to the art.


Design of Numb/Numblike and Other Transgene Encoding Vectors

In one embodiment transfection with nucleic acid sequence(s) encoding numblike/numb isoform(s) is accomplished via viral transfection. The term “‘Numb/Numblike encoding vector(s)” refers to the vectors incorporating the nucleic acid sequence(s) encoding numblike/numb isoform(s) and/or synthetic oligonucleotides targeting numblike or numb isoforms, as well as any additional transgene sequences, synthetic oligonucleoties, etc, and any associated viral supernatant incorporated in those vector sequences.


The Numb/Numblike Encoding Vector(s) May Comprise an Expression Vector.

Appropriate expression vectors are those that may be employed for transfecting DNA or RNA into eukaryotic cells. Such vectors include, but are not limited to, prokaryotic vectors such as, for example, bacterial vectors; eukaryotic vectors, such as, for example, yeast vectors and fungal vectors; and viral vectors, such as, but not limited to adenoviral vectors, adeno-associated viral vectors, and retroviral vectors. Examples of retroviral vectors which may be employed include, but are not limited to, those derived from Moloney Murine Leukemia Virus, Moloney Murine Sarcoma Virus, and Rous Sarcoma Virus, FIV, HIV, SIV and hybrid vectors.


It is disclosed that the Numb/Numblike encoding vector(s) may be used to transfect cells in vitro and/or in vivo. Transfection can be carried out by any means known to the art, especially through virus produced from viral packaging cells. Such virus may be encapsidated so as to be capable of infecting a variety of cell types. Nevertheless, any encapsidation technique allowing infection of selected cell types and/or their progeny is practicable within the context of the present invention.


Design of Human Immunodeficiency Virus (HIV) Gene Therapy Vector(s)

The “therapeutic vector(s)” may incorporate an expression vector. Appropriate expression vectors are those that may be employed for transfecting DNA or RNA into eukaryotic cells. Such vectors include, but are not limited to, prokaryotic vectors such as, for example, bacterial vectors; eukaryotic vectors, such as, for example, yeast vectors and fungal vectors; and viral vectors, such as, but not limited to adenoviral vectors, adeno-associated viral vectors, and retroviral vectors. Examples of retroviral vectors which may be employed include, but are not limited to, those derived from Moloney Murine Leukemia Virus, Moloney Murine Sarcoma Virus, and Rous Sarcoma Virus, feline immunodeficiency virus (FIV), HIV, simian immunodeficiency virus (SIV) and hybrid vectors.


It is disclosed herein that the therapeutic vector(s) may be used to transfect target cells in vitro and/or in vivo. Transfection can be carried out by any means known to the art, especially through virus produced from viral packaging cells. Such virus may be encapsidated so as to be capable of infecting CD34+ cells and/or CD4+ cells. However, in some instances, other cell types are transfected/contacted by means not involving the CD4 or CD34 proteins. Nevertheless, any encapsidation technique allowing infection of such cell types may therefore be included in the disclosure of the present invention.


Pseudotyping with different envelope proteins expands the range of host cells transduceable by viral vectors and therapeutic vectors, and allows the virus to be concentrated to high titers, especially when pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G) (Li et al., 1998; Reiser et al., 2000).


Vector Construction

Viral vectors utilized in this invention may be of various types including hybrid vectors. Vectors may, for instance, be third-generation lentiviral vectors which include only a very small fraction of the native genome (Zufferey et al., 1998). Production of transgene encoding vector(s) may also involve self-inactivating transfer vectors (Zufferey et al., 1998; Miyoshi et al., 1998) eliminating the production of full-length vector RNA after infection of target cells.


Viral vectors may be utilized which are replication-incompetent due to failure to express certain viral proteins necessary for replication. However the possibility exists that helper virus may enable therapeutic virus replication. This likelihood can be reduced by the use of self-inactivating vectors.


In a preferred embodiment, transgene sequences are driven by a ubiquitin promoter, U6 promoter, EFl alpha promoter, CMV promoter, regulable promoters and/or desired cell type specific promoters.


Viral Tropism

In a preferred embodiment, virus derived from the Numb isoform/Numblike encoding vector(s), therapeutic vector(s) and/or other transgeneic vector(s) of this invention is pseudotyped with vesicular stomatitis virus envelope glycoprotein to enable concentration of the virus to high titers and to facilitate infection of CD34+ cells.


Sequence Selection

The use of any sequence with 70% or greater identity (or complementarity) to any sequence referred to as a NUMB or Numblike sequence (searchable using the Entrez-Pubmed database) is covered by the invention if utilized in the manner described in the present invention.


The current invention also relates in part to a genetic vector that includes sequences capable of markedly reducing the susceptibility of mammalian cells to infection by HIV 1 and IIlV-2 viruses (both together referred to herein as HlV).


The current invention discloses the novel combination of synthetic oligonucleotides to reduce the expression of genes critical to the HIV/AIDS disease process.


The desirability of combining synthetic oligonucleotides to effect co-receptor “knock down” with expression of TAR and RRIi decoy secμjences arises from the proposition, expressed herein, that combining multiple gene therapy approaches simultaneously targeting 1) HIV infection, 2) HlV transcription, and 3) HIV replication in individual cells is likely to produce superior therapeutic benefits than any of these approaches in isolation.


Therapeutic vector(s) express “‘beneficial sequence(s)” intended to render transfected/contacted or infected cells less capable of sustaining HIV replication and transcription. The genetic vector expressing “beneficial sequence(s)” as well as any virus derived from such genetic vector, are herein termed “therapeutic vector”.


The present invention is directed in part to the genetic modification of cells susceptible to infection by HIV or capable of propagating HlV. Such cells are herein termed “target cells”.


The present invention provides a composition and method for using therapeutic viral vectors to reduce the susceptibility of mature or immature target cells, leukocytes, blood cells, any stem/progenitor cells, and/or their progeny to infection by HIV.


It follows that the present invention also provides a composition and method for using therapeutic viral vectors to reduce the susceptibility of reprogrammed cells, induced multipotent cells, induced pluripotent cells, and/or their progeny to infection by HIV.


It is a further objective of this invention to reduce the ability of mature or immature target cells, stem/progenitor cells, (including reprogrammed cells, induced multipotent cells, induced pluripotent cells) and/or their progeny to sustain immunodeficiency virus replication and transcription.


It is another objective of this invention to achieve efficient, long-term expression of the therapeutic sequences in mature or immature target cells, other quiescent cells, stem/progenitor cells, and/or their progeny.


In one aspect, this invention provides a method for preventing or treating HIV infection. The method involves transplanting stem cells transfected/contacted with therapeutic vector(s) or sequence(s), into patients with HIV infection.


Beneficial sequence(s) may be ones that reduce the ability of HIV to infect a cell, transcribe viral DNA, or replicate within an infected cell, or which enhances the ability of a cell to neutralize HIV infection.


In certain embodiments, the beneficial sequence(s) represent synthetic oligonucleotide(s) which interfere with HIV entry, including siRNA, shRNA, antisense RNA or miRNA directed against any of the HIV co-receptors (including, but not limited to, CXCR4, CCR5, CCR2b, CCR3, and CCR1).


In a preferred embodiment, the therapeutic vector(s) includes synthetic oligonucleotides targeting one or more HIV co-receptors including CXCR4, CCR5, CCR1, CCR2, CCR3, CXCR6 and/or BOB.


In another preferred embodiment the therapeutic vector(s) includes synthetic oligonucleotides targeting the major HIV co-receptors CXCR4 and CCR5


In a further preferred embodiment the therapeutic vector(s) includes synthetic oligonucleotides targeting one or more HIV enzymes such as HIV reverse transcriptase, integrase and protease.


Appropriate sequences for the synthetic oligonucleotides are those 1) predictable by computer algorithms to be effective in reducing targeted sequences, and 2) capable of successfully reduce the amount of targeted enzyme by >70% in standard quantitative RNA assays and in assays of enzymatic activity or to a lesser but therapeutic degree.


The phrase “targeted sequence” indicates that a particular sequence has a nucleotide base sequence that has at least 70% identity to a viral genomic nucleotide sequence or its complement (e.g., is the same as or complementary to such viral genomic sequence), or is a corresponding RNA sequence. In particular embodiments of the present invention, the term indicates that the sequence is at least 70% identical to a viral genomic sequence of the particular virus against which the oligonucleotide is directed, or to its complementary sequence.


Any of the various types of synthetic oligonucleotides may be expressed via therapeutic vector transfection, and the current invention is directed to all possible combinations of such oligonucleotides.


In a preferred embodiment, the synthetic oligonucleotide sequences are driven by target cell, specific promoter(s).


In another preferred embodiment, the synthetic oligonucleotide sequences are driven by U6 promoter(s).


Synthetic oligonucleotides, by the same token, may be included in the same therapeutic vector(s) with decoy RNA.


Decoy RNA

Decoy RNA are sequences of RNA that are effective at binding to certain proteins and inhibiting their function.


In a preferred embodiment, the therapeutic vector(s) comprise(s) multiple decoy RNA sequences.


In a further embodiment the decoy RNA sequences are flanked by sequences that provide for stability of the decoy sequence.


In another preferred embodiment the decoy RNA sequences are RRE and/or TAR decoy sequences.


In a preferred embodiment, the RRE and TAR decoy sequences are HIV-2 derived TAR and RRE sequences.


In another preferred embodiment the decoy sequences also include Psi element decoy sequences.


In a preferred embodiment, the decoy sequences are each driven by a U6 promoter.


In another preferred embodiment, the decoy sequences are driven by target-cell specific promoters.


In a preferred embodiment, the therapeutic vector targets multiple stages of the HIV life cycle by encoding synthetic nucleotide sequence(s) in combination with HIV-2 TAR and/or RRE decoy sequences.


In another preferred embodiment, the vector includes miRNA oligonucleotide sequences.


In another preferred embodiment, the vector includes shRNA oligonucleotide sequences.


In another preferred embodiment, the vector includes si RNA oligonucleotide sequences.


In another preferred embodiment, the vector includes RNAi oligonucleotide sequences.


In another preferred embodiment, the vector includes ribozyme sequences.


In another preferred embodiment, the vector includes a combination of synthetic oligonucleotide classes.


In a further embodiment, the synthetic nucleotide sequences target HIV co-receptors such as CCR5, CXCR4, etc.


In a further embodiment, the synthetic nucleotide sequences target HIV enzymes such as integrase, protease, reverse transcriptase, TAT, etc.


In a further embodiment, the ribozyme sequences target HIV co-receptors such as CCR5, CXCR4, etc, or HIV enzymes such as integrase, protease, reverse transcriptase, TAT, etc.


In a preferred embodiment, virus is generated using the therapeutic vector(s) and the virus is pseudotyped.


In a preferred embodiment, virus is generated using the therapeutic vector(s) and the virus is not pseudotyped and the virus shows native HIV tropism.


In a preferred embodiment, the therapeutic vector(s) is a viral vector.


In a preferred embodiment, the therapeutic vector(s) is a lentiviral vector.


In a preferred embodiment, the therapeutic vector(s) is a third generation lentiviral vector.


In a preferred embodiment, the therapeutic vector(s) includes a combination of synthetic oligonucleotide classes.


In a preferred embodiment, synthetic nucleotide sequence expression is driven by the EF-I alpha promoter or other target-cell appropriate promoters.


In a preferred embodiment, synthetic nucleotide sequence expression is driven by the 1)6 promoter or other target-cell appropriate promoters.


In a preferred embodiment, synthetic nucleotide sequence expression is driven by a combination of EF-I alpha and U6, and/or other target-cell appropriate promoters.


In a preferred embodiment, HF-I alpha drives miRNA expression while the U6 promoter drives RNA decoy expression.


In a preferred embodiment, HF-I alpha drives siRNA sequence expression while the U6 promoter drives RNA decoy expression.


In a preferred embodiment, EF-I alpha drives shRNA sequence expression while the U 6 promoter drives RNA decoy expression.


In a preferred embodiment, the therapeutic vector(s) includes multiple miRNA sequences directed against CXCR4, multiple miRNA sequences directed against CCR5, an 111V-2 RRE decoy sequence and an HIV-2 TAR decoy sequence, and the vector is a viral vector.


In a preferred embodiment, treatment involving the therapeutic vector(s) is combined with other modes of antiretroviral therapy including pharmacological therapies.


Antiretroviral therapies appropriate for combination with the therapeutic vector(s) are those that have additive or synergistic effects in combination with the therapeutic vector.


Cells targeted for gene therapy in HIV may include, but are not necessarily be limited to mature peripheral blood T lymphocytes, monocytes, tissue macrophages, T cell progenitors, macrophage-monocyte progenitor cells, and/or multipotent hematopoietic stem cells, such as those found in umbilical cord blood, peripheral blood, and occupying bone marrow spaces.


The present invention also relates to transfection of CD4+ T cells, macrophages, T cell progenitors, macrophage-monocyte progenitors, CD 34+ stem/progenitor cells and/or any other quiescent cell, dividing cell, stem cell or progenitor cell capable of differentiation in vitro or in vivo into HIV target cells, CD4+ T cells, macrophages, T cell progenitors, macrophage-monocyte progenitors, and/or CD 34+ stem/progenitor cells. Transfected cells, therefore, can be endogenous cells in situ, or exogenous cells derived from other body regions or even other individual donors. Cells selected for this purpose are herein termed “selected cells”.


By the same token, self-renewing, multipotent and/or pluripotent stem cells (including reprogrammed and induced pluripotent cells) represent another logical target for HIV gene therapy, and their use is specifically covered by the present invention.


In one embodiment of this process, selected cells (e.g. hematopoietic stem cells, skin stem cells, umbilical cord cells, primordial germ cells (PGCs), spermatogonia, any accessible somatic cell, etc.) are 1) propagated in culture using one or more cytokines such as steel factor, leukemia inhibitory factor (LIF), cardiotropic 1, IL-11, IL-6, IL-6 R, GP-130, CNTF, IGF-I, bFGF, and/or oncostatin-M and 2) transfected/contacted with the therapeutic vector(s) or beneficial sequence(s) prior to differentiation using any methods known to the art, such as those described in U.S. Pat. No. 5,677,139 herein incorporated by reference, or by methods analogous to U.S. Pat. No. 5,677,139 with respect to other target cells.


In separate embodiments, it may be desirable to perform the various steps prior to transfection.


In separate embodiments, for the purpose of generating pluripotent stem cell populations, it may be desirable to perform only the incubation steps above.


Appropriate concentrations of LlF and steel factor for stem/progenitor cell propagation/proliferation as well as other cell culture conditions have been described previously (e.g. U.S. Pat. Nos. 6,432,711 and 5,453,357 herein incorporated by reference). Other appropriate protocols and reference cytokine concentrations have been taught by Koshimizu et al., 1996; Keller et al., 1996; Piquet-Pellorce, 1994; Rose et al., 1994; Park and Han, 2000; Guan et al., 2006; Dykstra et al., 2006).


The population of target cells may include somatic cells, stem cells and progenitor cells. Stem cells may be derived from existing cell lines or isolated from stored, banked, or cryopreserved sources. Typical sources of stem cells include marrow, peripheral blood, placental blood, amniotic fluid, umbilical cord blood, adipose tissue, non-human embryos, etc.


Somatic cells, especially circulating leukocytes and other non-progenitor/stem cells may likewise be subjected to the same culture conditions as described above for stem/progenitor cells effective that they acquire stem/progenitor cell properties as a result.


The invention also discloses the production (e.g. US Patent Application 20030099621) of target cells from stem/progenitor cells that may be made relatively resistant to HIV infection and/or HIV replication.


It is understood, however, that any method of differentiating previously propagated stem/progenitor/leukocyte cells into the desired target cells may be employed within the scope of the invention so long as functional target cells relatively resistant to HIV infection and/or HIV replication/and/or HIV transcription are produced.


In a preferred embodiment, the therapeutic viral vector is packaged with one or more envelope proteins from native HIV viruses conferring upon the therapeutic virus the capacity to infect any cell that native HIV strains are capable of infecting.


Cells selected for use in this invention will be in some instances accessible (e.g. umbilical cord stem cells, bone marrow stem cells, spermatogonia and primordial germ cells of the testis, stem cells isolated from amniotic fluid, stem cells isolated from the skin, etc.). Such cells can be isolated from the tissues in which they reside by any means known to the art.


Other selected cells may comprise reprogrammed cells, induced multipotent cells, induced pluripotent cells, etc.


In accordance with an aspect of the present invention, there is provided a method of producing a desired cell line, cell type, or cell class from the selected cells. Generally, the method comprises culturing the selected cells and/or their progeny under conditions which promote growth of the selected cells at an optimal growth rate. The resulting cell population is then cultured under conditions which promote cell growth at a rate which is typically less than the optimal rate, and in the presence of an agent promoting differentiation of the cells into the desired cell line, cell type, or cell class (e.g. CD4+ T cells).


The present invention also discloses the propagation of the selected cells and/or their progeny in culture, before or after transfection with the therapeutic vector, by any means known to the art (e.g. US Patent Application 20060099177). Such methods also include incubation with LIF, steel factor, 11-6, IL-7, oncostatin-M and/or cardiotropic 1 and other growth enhancing cytokines, etc.


The present invention further discloses the directed differentiation of cells transfected/contacted with the therapeutic vector(s) into desired cell types by further incubation in media containing the appropriate cytokines and growth factors such as colony stimulating factors such as M-CSF (CSF-I), GM-CSF, IL-7, any cytokine promoting CD4+ T cell differentiation, etc.


Transfection

Genetic modification of selected cells and target cells, whether they be exogenous cells or endogenous cells can be performed according to any published or unpublished method known to the art (e.g. U.S. Pat. Nos. 6,432,711, 5,593,875, U.S. 5,783,566, U.S. Pat. Nos. 5,928,944, 5,910,488, 5,824,547, etc.) or by other generally accepted means. Suitable methods for transforming host cells can be found in Sambrook et al.


(Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks.


Successfully transfected/contacted cells can be identified by selection protocols involving markers such as antibiotic resistance genes in addition to RNA expression assays and morphological analyses. Clones from successfully transfected/contacted cells, expressing the appropriate exogenous DNA at appropriate levels, can be preserved as cell lines by cryopreservation (utilizing any appropriate method of cryopreservation known to the art).


Selectable markers (e.g., antibiotics resistance genes) may include those which confer resistance to drugs, such as G418, hygromycin, ampicillin and blasticidin, etc. Cells containing the gene of interest can be identified by drug selection where cells that have incorporated the selectable marker gene survive, and others die.


A theoretical basis for the embodiments of the invention is described herein, however, this discussion is not in any way to be considered as binding or limiting on the present invention. Those of skill in the art will understand that the various embodiments of the invention may be practiced regardless of the model used to describe the theoretical underpinnings of the invention.


The invention will now be described and illustrated with respect to the following examples; however, the scope of the present invention is not intended to be limited thereby.


Example 1: Construction of the Transgenic Vectors Suitable for Use in the Present Invention

Suitable EGFP-Numb and HGFP-Numblike, and EGFP-X lentiviral vectors (where X is any transgene described in the present invention) can be produced by cloning into an appropriate viral vector (e.g. the two-gene I Il V-EGFP-HSA vector (Reiser et al., 2000)). Adapter primers can be selected for PCR amplification of Numblike and Numb isoform cDNAs and cloning into a genetic vector. In preparation for cloning, the gene vector is digested with enzymes. Subsequently, the cDNA for each transgene is inserted into the nef coding region previously occupied by the I ISA cDNA. EGFP (enhanced green fluorescent protein) and a cell population-appropriate promoter (e.g. CMV ie or EFl alpha) having been previously inserted into the viral coding region. Genetic constructs may include a vector backbone, and a transactivator which regulates a promoter operably linked to heterologous nucleic acid sequences.


Examples of retroviral vectors which may be employed include, but are not limited to, those derived from Moloney Murine Leukemia Virus, Moloney Murine Sarcoma Virus, and Rous Sarcoma Virus, FIV, and HIV. Appropriate expression vectors are those that may be employed for transfecting DNA or RNA into eukaryotic cells. Such vectors include, but are not limited to, prokaryotic vectors such as, for example, bacterial vectors; eukaryotic vectors, such as, for example, yeast vectors and fungal vectors; and viral vectors, such as, but not limited to, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, and retroviral vectors.


The replication incompetent pcDNA 6.2/EmGFP-Bsd/V5-DEST vector is an example of an appropriate expression vector (Invitrogen) and allows expression of synthetic oligonucleotides (e.g. miRNAs) transferred from the pcDNA 6.2 GW/miR vector that have the capacity to cleave targeted sequences. These vectors include flanking and loop sequences from endogenous miRNA to direct the excision of the engineered miRNA from a longer Pol II transcript (pre-miRNA).


Combining multiple miRNA sequences directed against specific endogenous RNA species increases the likelihood of success in reducing target sequence expression. miRNA sequences may be operably linked to regulable or tissue specific promoters.


By utilizing lentiviral vectors for gene expression, the resulting Numb/Numblike encoding vector(s) and/or other transgenic vector(s) of this invention, becomes capable of stably transducing both dividing and non-dividing cell types.


In a preferred embodiment, the resulting Numb/Numblike encoding vector(s), and/or other transgenic vector(s) of this invention contain multiple synthetic oligonucleotide sequences driven by one or more promoters so as to reduce expression of specific numb isoforms and/or numblike.


Example 2

Another example of a suitable vector is a retroviral vector. Retroviruses are RNA viruses that contain an RNA genome. The gag, pol, and env genes are flanked by long terminal repeat (LTR) sequences. The 5′ and 3′ LTR sequences promote transcription and polyadenylation of mRNA's.


The retroviral vector may provide a regulable transactivating element, an internal ribosome reentry site (IRHS), a selection marker, and a target heterologous gene operated by a regulable promoter.


Alternatively, multiple sequences may be expressed under the control of multiple promoters. Finally, the retroviral vector may contain cis-acting sequences necessary for reverse transcription and integration. Upon infection, the RNA is reverse transcribed to DNA that integrates efficiently into the host genome. The recombinant retrovirus of this invention is genetically modified in such a way that some of the retroviral, infectious genes of the native virus have been removed and in certain instances replaced instead with a target nucleic acid sequence for genetic modification of the cell. The sequences may be exogenous DNA or RNA, in its natural or altered form.


Example 3: Example Methods for Generation of Numb/Numblike Encoding Vector(s), and/or Other Transgenic Vector(s) of this Invention

The methods for generation of the resulting Numb/Numblike encoding vector(s), and/or other transgenic vector(s) of this invention include those taught in Invitrogen's Viral Power Lentiviral Expression Systems Manual, 2007. Briefly, the EmGFP-bsd cassette is cloned as a PmIl-BIpI fragment into the pLenti6/R4R2/V5-DEST vector, while the mill-long (PRR+) numb isoform or miR-short numb isoform/numblike cassettes are simultaneously transferred by BP reaction into pDONR221. Then the regulable promoter(s) and miR-isoform cassettes are Multisite LR crossed into the modified pLenti6/EmGFP-bsd/R4R2-DES Tvector.


Multiple vectors can be generated in this manner comprising different combinations of synthetic oligonucleotides and transgene cassettes.










pLenti6/R4R2/V5-DEST vector sequence:



(SEQ ID NO: 1)



aatgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatgagttagcaacatgccttacaaggagagaaaaagca






ccgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgacatggattgg





acgaaccactgaattgccgcattgcagagatattgtatttaagtgcctagctcgatacataaacgggtctctctggttagacca





gatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagt





gtgtgcccgtctgltgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgc





ccgaacagggacttgaaagcgaaagggaaaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacg





gcaagaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagatgggtgc





gagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccagggggaaagaaaaaat





ataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgttagaaacatcagaagg





ctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagtagcaa





ccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaa





gtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaatt





atataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagagaaaa





aagagcagtgggaataggagctttgttccttgggltcttgggagcagcaggaagcactatgggcgcagcgtcaatgacgct





gacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcat





ctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacag





ctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctgg





aacagatttggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaa





gaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacat





aacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctata





gtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaa





ggaatagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggtatcgatgtcg





acgttaacgctagtgatatcaactttgtatagaaaagttgaacgagaaacgtaaaatgatataaatatcaatatattaaattagat





tttgcataaaaaacagactacataatactgtaaaacacaacatatccagtcactatggcggccgcattaggcaccccaggcttt





acactttatgcttccggctcgtataatgtgtggattttgagttaggatccgtcgagattttcaggagctaaggaagctaaaatgg





agaaaaaaatcaclggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtcagttgctca





atgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccggc





ctttattcacattcttgcccgcctgatgaatgctcatccggaattccgtatggcaatgaaagacggtgagctggtgatatgggat





agtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggc





agtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatatgttttt





cgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcacca





tgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgatlcaggttcatcatgccgtttgtgatggcttccat





gtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggcggggcgtaaagatctggatccggcttacta





aaagccagataacagtatgcgtatttgcgcgctgattttlgcggtataagaatatatactgatatgtatacccgaagtatgtcaa





aaagaggtatgctatgaagcagcgtattacagtgacagttgacagcgacagctatcagttgctcaaggcatatatgatgtcaa





tatctccggtctggtaagcacaaccatgcagaatgaagcccgtcgtctgcgtgccgaacgctggaaagcggaaaatcagg





aagggatggctgaggtcgcccggtttattgaaatgaacggctcttttgctgacgagaacagggactggtgaaatgcagttta





aggtttacacctataaaagagagagccgttatcgtctgtttgtggatgtacagagtgatattattgacacgcccgggcgacgg





atggtgatccccctggccagtgcacgtctgctgtcagataaagtctcccgtgaactttacccggtggtgcatatcggggatga





aagctggcgcatgatgaccaccgatatggccagtgtgccggtctccgttatcggggaagaagtggctgatctcagccaccg





cgaaaatgacatcaaaaacgccattaacctgatgttctggggaatataaatgtcaggctccgttatacacagccagtctgcag





gtcgaccatagtgactggatatgttgtgttttacagtattatgtagtctgttttttatgcaaaatctaatttaatatattgatatttatatc





attttacgtttctcgttcagctttcttgtacaaagtggttgatatccagcacagtggcggccgctcgagtctagagggcccgcg





gttcgaaggtaagcctatccctaaccctctcctcggtctcgattctacgcgtaccggttagtaatgagtttggaattaattctgtg





gaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtca





gcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccata





gtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaatttttttta





tttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttaggaggcctaggcttttgca





aaaagctcccgggagcttgtatatccattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtatatcggcata





gtataatacgacaciggtgaggaactaaaccatggccaagcctttgtctcaagaagaatccaccctcattgaaagagcaacg





gctacaatcaacagcatccccatctctgaagactacagcgtcgccagcgcagctctctctagcgacggccgcatcttcactg





gtgtcaatgtatatcattttactgggggaccttgtgcagaactcgtggtgctgggcactgctgctgctgcggcagctggcaac





ctgacttgtatcgtcgcgatcggaaatgagaacaggggcatcttgagcccctgcggacggtgccgacaggtgcttctcgat





ctgcatcctgggatcaaagccatagtgaaggacagtgatggacagccgacggcagttgggattcgtgaattgctgccctct





ggttatgtgtgggagggctaagcacaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagcc





actttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctc





tctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttga





gtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttltagtcagtgtggaaaatctc





tagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttatt





gcagcttataatggttacaaataaagcaatagcatcacaaaUtcacaaataaagcatttttttcactgcattctagttgtggtttgt





ccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgcccatcccgcccctaactccgcccagt





tccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccaga





agtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtgagtcgtattacgcgcgctcactggccg





tcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggc





gtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtag





cggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctccttt





cgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttag





tgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcg





ccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattctttt





gatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaata





ttaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtat





ccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcc





cttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttg





ggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaat





gatgagcacttttaaagtlctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatac





actattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgca





gtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttt





tttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcg





tgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaac





aattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgat





aaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagtta





tctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcatt





ggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctt





tttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatctt





cttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatca





agagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagtta





ggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcga





taagtcgtgtcttaccgggttggactaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgc





acacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcc





cgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggg





ggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggc





ggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgc





gttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgc





agcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaat





gcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattagg





caccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagcta





tgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagctt






Example 4: Additional Methods for Generation of Therapeutic Vector(s)

“Packaging cell lines” derived from human and/or animal fibroblast cell lines result from transfecting or infecting normal cell lines with viral gag, pol, and env structural genes. On the other hand, packaging cell lines produce RNA devoid of the psi sequence, so that the viral particles produced from packaging cell do not contain the gag, pol, or env genes. Once the therapeutic vector's DNA containing the psi sequence (along with the therapeutic gene) is introduced into the packaging cell, by means of transfection or infection, the packaging cell may produce virions capable of transmitting the therapeutic RNA to the final target cell (e.g. a CD4+ cell).


The “infective range” of the therapeutic vector(s) is determined by the packaging cell line. A number of packaging cell lines are available for production of virus suitable for infecting a broad range of human cell types. These packaging cell lines are nevertheless generally capable of encapsidating viral vectors derived from viruses that in nature usually infect different animal species. For example, vectors derived from SIV or MMLV can be packaged by GP 120 encapsidating cell lines.


An example protocol for producing a therapeutic viral supernatant is provided as follows:


1. Twenty micrograms of retrovirus vector are mixed with 2-3 micrograms of viral DNA containing the selectable marker gene (e.g. antibiotic resistance gene) by gentle tapping in 0.8-1 milliliter of Ilepes buffered saline (pH=7.05) in a 1.5 ml plastic tube.


2. Seventy microliters of 2M CaCl are added to the mixture by repeated gentle tapping.


3. When a blue precipitate first begins to appear within the tube, the product should be gently applied to a 30% confluent layer of packaging cells (from any number of commercial vendors). The DNA mixture should be applied only after first removing the medium from the packaging cells.


4. The packaging cells are set to incubate for 20-30 minutes at room temperature (25 degrees Celsius) before transferring them back to an incubator at 36-38 degrees Celsius for 3.5 hours.


5. Add 3.5-4 milliliters of Hepes buffered saline containing 15% glycerol for 3 minutes then wash cell with Dulbecco's Modified Eagle's Medium (DMEM)+! 0% FBS×2.


6. Add back DMKM+10% FBS, and incubate cells for 20 hours at 37 degrees Celsius.


7. Remove and filter medium containing therapeutic viral particles.


Excess viral supernatant is immediately stored or concentrated and stored at −80 degrees Celsius). Supernatant may stored with 5-8 micrograms of polybrene to increase the efficiency of target cell infection. Otherwise polybrene may be excluded or added just before infection.


8. Stable producer lines can be established by splitting packaging cell lines 1 to 20, or 1 to 40 and subsequently incubating these cells for up to 10 days (changing medium every three days) in medium containing selective drugs (e.g. certain antibiotics corresponding to transfected resistance genes).


9. After 10 days isolated colonies are picked, grown-up aliquoted and frozen for storage.


Assay of Retrovirus Infectivity/Titration is achieved by application of a defined volume of viral supernatant to a layer of confluent “test” cells such as NIII 3T3 cells plated at 20% confluence. After 2-3 cell division times (24-36 hours for NIH 3T3 cells) colonies of “test” cells incubated at 37 degrees in antibiotic-containing medium are counted. The supernatant's titer are estimated from these colony counts by the following formula:





Colony Forming Units/ml=colonies identified×0.5(split factor)/volume of virus(ml)


The accuracy of this estimate is increased by testing large volumes of supernatant over many plates of “test” cells.


Application of the therapeutic viral supernatant to target cells may be accomplished by various means appropriate to the clinical situation.


Example 5: Growth Medium for Selected Cells

Selected cells can be expanded/grown in Dulbecco's modified Minimal Essential Medium (DMEM) supplemented with glutamine, beta.-mercaptoethanol, 10% (by volume) horse serum, and human recombinant Leukemia Inhibitory Factor (LIF). LIF replaces the need for maintaining selected cells on feeder layers of cells, (which may also be employed) and is essential for maintaining selected cells in an undifferentiated, multipotent, or pluripotent state, such cells can be maintained in Dulbecco's modified Minimal Essential Medium (DMEM) supplemented with glutamine, beta.-mercaptoethanol, 10% (by volume) horse serum, and human recombinant Leukemia Inhibitory Factor (LIF). The LIF replaces the need for maintaining cells on feeder layers of cells, (which may also be employed) and is essential for maintaining cells in an undifferentiated state (per U.S. Pat. No. 6,432,711).


In order to initiate the differentiation of the selected cells into neuronal cells, the cells are trypsinized and washed free of LIF, and placed in DMEM supplemented with 10% fetal bovine serum (FBS). After resuspension in DMEM and 10% FBS, IX105 cells are plated in 5 ml DMEM, 10% FBS, 0.5 microM retinoic acid in a 60 mm Fisher bacteriological grade Petri dishes, where the cells are expected to form small aggregates. Aggregation aids in proper cell differentiation. High efficiency transfection with appropriate neuronal transcription factors can occur before or after plating in DMEM, FBS, and retinoic acid. (See U.S. Pat. Nos. 6,432,711 and 5,453,357 for additional details).


Example 6: Hla Matching

Selected cells (e.g. umbilical cord blood or cells from any other suitable source and/or their progeny), can be screened, genetically-modified (optional), expanded, and induced to begin differentiating into the desired cell type(s) (optional). The cells are then transplanted according to standard stem cell transplantation protocols. In certain instances, cells may be transplanted into patients without HLA matching.


Example 7

In some rare instance, it may be appropriate to introduce transgene encoding vectors into patients in order to stimulate or inhibit cellular division or cellular differentiation, in vivo.


Example 8: Genetic Modification of Selected Cells

In vitro genetic modification of exogenous cells or patient's endogenous cells can be performed according to any published or unpublished method known to the art (e.g. U.S. Pat. Nos. 6,432,711, 5,593,875, 5,783,566, 5,928,944, 5,910,488, 5,824,547, etc.) or by other generally accepted means. Suitable methods for transforming host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other laboratory textbooks.


Successfully transfected/contacted cells are identified by selection protocols involving markers such as antibiotic resistance genes in addition to RNA expression assays and morphological analyses. Clones from successfully transfected/contacted cells, expressing the appropriate exogenous DNA at appropriate levels, can be preserved as cell lines by cryopreservation (utilizing any appropriate method of cryopreservation known to the art).


Selectable markers (e.g., antibiotics resistance genes) may include those conferring resistance to drugs, such as G418, hygromycin and methotrexate. Cells containing the gene of interest can be identified by drug selection where cells that have incorporated the selectable marker gene survive, and others die.


The current invention discloses the selection of genetically-modified cells as “selected cells” of the invention. The term genetic modification refers to alteration of the cellular genotype by introducing natural or synthetic nucleic acids into selected cells and/or their progeny or immortalized cell lines and/or their progeny by any means known to the art. Alternatively culture conditions that induce permanent changes in gene expression patterns are considered herein to represent genetic modification. Modification of stem cells, whether they be derived from the host brain, endogenous donor sources, exogenous donor sources, or cell lines, represents a feasible approach to the treatment of certain human diseases, especially those of the human nervous system.


Genetic modifications covered by this disclosure include, but are not limited to: genetic modifications performed in vivo; modifications that alter the activity or amount of metabolic enzymes expressed by endogenous or exogenous selected cells and/or their progeny; modifications which alter the activity, amount, or antigenicity of cellular proteins; modifications which alter the activity or amount of proteins involved in signal transduction pathways; modifications which alter HLA type; modifications which alter cellular differentiation; modifications which alter neoplastic potential; modifications which alter cellular differentiation; modifications which alter the amount or activity of structural proteins; modifications which alter the amount or activity of membrane associated proteins (structural or enzymatic); modifications which alter the activity or amount of proteins involved in DNA repair and chromosome maintenance; modifications which alter the activity or amount of proteins involved in cellular transport; modifications which alter the activity or amount of enzymes; modifications which alter the activity or amount of proteins involved in synapse formation and maintenance; modifications which alter the activity or amount of proteins involved in neurite outgrowth or axon outgrowth and formation; modifications altering the amount or activity of antioxidant producing enzymes within the cell; modifications which lead to altered post-translational modification of cellular proteins; modifications which alter the activity or amount of proteins involved in other aspects of cellular repair, and alterations which increase the lifespan of the cell (such as production of telomerase). Such proteins as those mentioned above may be encoded for by DNA or RNA derived from the human genome or other animal, plant, viral, or bacterial genomes. This invention also covers sequences designed de novo.


In addition, this invention relates to the in situ, genetic modification of selected cells and/or their progeny cells for the treatment of disease. Endogenous stem cells may be modified in situ by direct injection or application of DNA or RNA vectors, including viruses, retroviruses, liposomes, etc, into the substance of the tissue or into the appropriate portion of the ventricular system of the brain. Since 1992, we have modified thousands of stem/progenitor cells and many thousand progeny cells in this manner. Our data shows that this manner of modifying progenitor cells results in a tremendous variety of modified cell types throughout the nervous system, and has never resulted in adverse effects.


Example 9: Introduction of Genetic Vectors into the Host

In a preferred embodiment, endogenous cells are transfected/contacted with vectors such as those described herein in vivo by introduction of the therapeutic vector(s) into the host blood, tissues, nervous system, bone marrow, etc. The greatest benefit may be achieved by modifying a large number of endogenous target cells. This may be accomplished by using an appropriately-sized, catheter-like device, or needle to inject the therapeutic vector(s) into the venous or arterial circulation, into a specific tissue, such as muscle tissue, or into the nervous system. In a preferred embodiment, the virus is pseudotyped with VSV-G envelope glycoprotein and native HIV-I env proteins.


Example 10: Injection into the Nervous System

Transplantation of selected cells (from either the growth or differentiation media) into the fetal nervous system or genetic modification of endogenous fetal cells utilizing genetic vectors may be accomplished in the following manner Under sterile conditions, the uterus and fetuses are visualized by ultrasound or other radiological guidance. Alternatively the uterus may be exposed surgically in order to facilitate direct identification of fetal skull landmarks. Selected cells can then be introduced by injection (using an appropriately-sized catheter or needle) into the ventricular system, germinal zone(s), or into the substance of the nervous system. Injections may be performed in certain instances, through the mother's abdominal wall, the uterine wall and fetal membranes into the fetus. The accuracy of the injection is monitored by direct observation, ultrasound, contrast, or radiological isotope based methods, or by any other means of radiological guidance known to the art.


Under appropriate sterile conditions, direct identification of fetal skull landmarks is accomplished visually as well as by physical inspection and palpation coupled with stereotaxic and radiologic guidance. Following cell culture, appropriate amounts of the selected or differentiating cells can then be introduced by injection or other means into the ventricular system, germinal zones, or into the substance of the nervous system. The accuracy of the injection may be monitored by direct observation, ultrasound, or other radiological guidance.


In certain, neurological diseases of the adult nervous system, such as Huntington's disease and Parkinson's disease, cells of a specific portion of the brain are selectively affected. In the case of Parkinson's disease, it is the dopaminergic cells of the substantia nigra. In such regionally-specific diseases affecting adults, localized transplantation of cells may be accomplished by radiologically-guided transplantation of differentiating cells under sterile conditions. Radiologic guidance may include the use of CT and/or MRI, and may take advantage contrast or isotope based techniques to monitor injected materials.


In certain neurologic diseases, such as some metabolic storage disorders, cells are affected across diverse regions of the nervous system, and the greatest benefit may be achieved by genetically-modifying endogenous cells or introducing selected cells of the present invention (either from the growth culture media or the differentiating medium) into the tissue in large numbers in a diffuse manner. In the nervous system, these diseases may be best approached by intraventricular injections (using an appropriately-sized, catheter-like device, or needle) (especially at early stages of development) which allows diffuse endogenous cell modification or diffuse engraflment of selected cells isolated from the growth and/or differentiation media. Nevertheless, injection of the cells into the circulatory system for the same purpose is also covered. However, with regard to any disorder affecting multiple organs or the body diffusely (e.g. lysosomal storage disorders, hemoglobinpathies, muscular dystrophy), the cells isolated from the growth and/or differentiation media may also be preferentially introduced directly into the circulation and/or visceral organs, such as the liver, kidney, gut, spleen, adrenal glands, pancreas, lungs, and thymus using endoscopic guidance and any appropriately-sized, catheter-like device, allowing diffuse engraftment of the cells throughout the body, as well as specific introduction and infiltration of the cells into the selected organs.


Example 11: Delivery of Cells by Injection in to the Circulatory Stream and Organs

Diseases of one organ system may be treatable with genetically modified cells from a separate organ system. Also, in some instances, it may become apparent that the selected cells may integrate and differentiate on their own, in vivo, in sufficient numbers if they are injected into blood stream either arterial, venous or hepatic, after culturing in the growth and/or differentiation media. This approach is covered by the present invention. The treatment of diffuse muscle (e.g. muscular dystrophies), organ, tissue, or blood disorders (e.g. Hereditary Spherocytosis, Sickle cell anemia, other hemoglobinopathies, etc,) may, for instance, involve the injection of cells isolated from the growth media or differentiating media into the patient, especially the patient's circulation. This approach is also believed to ameliorate ischemic injuries such as myocardial infarction, stroke, etc., as well as traumatic injuries to brain and other tissues. Injection of such cells produced by the current invention, directly into the circulation, by needle or catheter, so that the cells are enabled to “home” to the bone marrow, muscle, kidneys, lungs, and/or any other other organ system, as well as injection directly into the bone marrow space is suitable for the practice of the present invention. Likewise injection of the cells directly into a lesion site with or without radiologic, ultrasonic or fluoroscopic guidance is also suitable for the practice of the present invention.


Methods of isolating selected cells useful in the present invention include those described by Zhao et al., 2006.


In a preferred embodiment, genetic vectors encoding numblike and/or numb isoforms comprise regulable promoters operably linked to the Numb or numblike transgenes.


In another preferred embodiment, the mode of transfection may be selected from those modes of transfection/contacting that provide for transient rather than permanent expression of the numblike and numb isoforms.


Example 12

Example Genetic Modifications It is believed that hundreds of diseases and clinical conditions are able to be treated and/or ameliorated by the methods of the present invention including, but in no way limited to Canavan's disease (ASP); Tay-Sach's disease (HEXA); Lesch-Nyhan syndrome (HRPT); Huntington's disease(HTT); Sly syndrome; type A and type B Niemann Pick disease;


Sandhoff s disease (HEXB); Fabry's disease (GLA); type C Niemann-Pick disease(NPC1); Gaucher's disease (GBA); Parkinson's disease(PARK2, etc.); Von Hippel Lindau's disease, Sickle cell anemia (HBB) and other thalassemias as well as similar diseases. These transgenes may represent the coding region or portions of the coding region of the normal genes.


It is to be understood, however, that the scope of the present invention is not to be limited to the specific embodiments and examples described above. The invention may be practiced other than as particularly described and still be within the scope of the accompanying claims.


Example 13

An example sequence for a vector capable of rendering cells pluripotent and expressing a long Numb isoform, Oct-4, Sox-2, and EmGFP nucleic acid sequences under the control of tetracycline-sensitive promoters is:










(SEQ ID NO: 2)



aatgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatgagttagcaacatgccttacaaggagagaaaaagca






ccgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgacatggattgg





acgaaccactgaattgccgcattgcagagatattgtatttaagtgcctagctcgatacataaacgggtctctctggttagacca





gatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagt





gtgtgcccgtctgttgtgtgactciggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgc





ccgaacagggacttgaaagcgaaagggaaaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacg





gcaagaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagatgggtgc





gagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccagggggaaagaaaaaat





ataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgttagaaacatcagaagg





ctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagtagcaa





ccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaa





gtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaatt





atataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagagaaaa





aagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcgtcaatgacgct





gacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcat





ctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacag





ctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctgg





aacagatttggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaa





gaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacat





aacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctata





gtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaa





ggaatagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggtatcgatgtcg





acgttaacgctagtgatatcaactttgtatagaaaagttgaacgagaaacgtaaaatgatataaatatcaatatattaaattagat





tttgcataaaaaacagactacataatactgtaaaacacaacatatccagtcactatgggacggatcgggagatctcccgatcc





cctatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatctgctccctgcttgtgtgttggaggtcgct





gagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttagg





cgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggg





gtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacc





cccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtattt





acggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggc





ccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatg





gtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgt





caatgggagtttgttttggaaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcg





gtaggcgtgtacggtgggaggtctatataagcagagctctccctatcagtgatagagatctccctatcagtgatagagatcgt





cgacgagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggac





cgatccagcctccggactctagcgtttaaacttaagcttaccatgccttcgcaagccctcatttcaccaggcccccggcttgg





ggcgccttccttccccatggcgggacacctggcttcggatttcgccttctcgccccctccaggtggtggaggtgatgggcca





ggggggccggagccgggctgggttgatcctcggacctggctaagcttccaaggccctcctggagggccaggaatcggg





ccgggggttgggccaggctctgaggtgtgggggattcccccatgccccccgccgtatgagttctgtggggggatggcgta





ctgtgggccccaggttggagtggggctagtgccccaaggcggcttggagacctctcagcctgagggcgaagcaggagtc





ggggtggagagcaactccgatggggcctccccggagccctgcaccgtcacccctggtgccgtgaagctggagaaggag





aagctggagcaaaacccggaggagtcccaggacatcaaagctctgcagaaagaactcgagcaatttgccaagctcctgaa





gcagaagaggatcaccctgggatatacacaggccgatgtggggctcaccctgggggttctatttgggaaggtattcagcca





aacgaccatctgccgctttgaggctctgcagcttagcttcaagaacatgtgtaagctgcggcccttgctgcagaagtgggtg





gaggaagctgacaacaatgaaaatcttcaggagatatgcaaagcagaaaccctcgtgcaggcccgaaagagaaagcgaa





ccagtatcgagaaccgagtgagaggcaacctggagaatttgttcctgcagtgcccgaaacccacactgcagcagatcagc





cacatcgcccagcagcttgggctcgagaaggatgtggtccgagtgtggttctgtaaccggcgccagaagggcaagcgatc





aagcagcgactatgcacaacgagaggattttgaggctgctgggtctcctttctcagggggaccagtgtcctttcctctggccc





cagggccccattttggtaccccaggctatgggagccctcacttcactgcactgtactcctcggtccctttccctgagggggaa





gcattccccctgtctccgtcaccactctgggctctcccatgcattcaaactgaggtgcctgcccttctaggaatgggggaca





gggggaggggaggagctagggaaagaaaacctggagtttgtgccagggtttttgggattaagttcttcattcactaaggaag





gaattgggaacacaaagggtgggggcaggggagtttggggcaactggttggagggaaggtgaagttcaatgatgctcttg





attttaatcccacatcatgtatcacttttttcttaaataaagaagcctgggacacagtagatagacacacttaaaaaaaaaaacct





cgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgt





cctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggaca





gcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatgggacggatcgggagatctc





ccgatcccctatggtgcactctcagtacaatcttgctctgatgccgcatagttaagccagtatctgctccctgcttgtgtgttgga





ggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttag





ggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaa





ttacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgccca





acgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtg





gagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggt





aaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctat





taccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccat





tgacgtcaatgggagtttgttttggaaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaat





gggcggtaggcgtgtacggtgggaggtctatataagcagagctctccctatcagtgatagagatctccctatcagtgataga





gatcgtcgacgagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacacc





gggaccgatccagcctccggactctagcgttlaaacttaagcttaccatgctattaacttgttcaaaaaagtatcaggagttgtc





aaggcagagaagagagtgtttgcaaaagggggaaagtagtttgctgcctctttaagactaggactgagagaaagaagagg





agagagaaagaaagggagagaagtttgagccccaggcttaagcctttccaaaaaataataataacaatcatcggcggcgg





caggatcggccagaggaggagggaagcgctttttttgatcctgattccagtttgcctctctctttttttcccccaaattattcttcg





cctgattttcctcgcggagccctgcgctcccgacacccccgcccgcctcccctcctcctctccccccgcccgcgggccccc





caaagtcccggccgggccgagggtcggcggccgccggcgggccgggcccgcgcacagcgcccgcatgtacaacatg





atggagacggagctgaagccgccgggcccgcagcaaacttcggggggcggcggcggcaactccaccgcggcggcgg





ccggcggcaaccagaaaaacagcccggaccgcgtcaagcggcccatgaatgccttcatggtgtggtcccgcgggcagc





ggcgcaagatggcccaggagaaccccaagatgcacaactcggagatcagcaagcgcctgggcgccgagtggaaactttt





gtcggagacggagaagcggccgttcatcgacgaggctaagcggctgcgagcgctgcacatgaaggagcacccggatta





taaataccggccccggcggaaaaccaagacgctcatgaagaaggataagtacacgctgcccggcgggctgctggccccc





ggcggcaatagcatggcgagcggggtcggggtgggcgccggcctgggcgcgggcgtgaaccagcgcatggacagtta





cgcgcacatgaacggctggagcaacggcagctacagcatgatgcaggaccagctgggctacccgcagcacccgggcct





caatgcgcacggcgcagcgcagatgcagcccatgcaccgctacgacgtgagcgccctgcagtacaactccatgaccagc





tcgcagacctacatgaacggctcgcccacctacagcatgtcctactcgcagcagggcacccctggcatggctcttggctcc





atgggttcggtggtcaagtccgaggccagctccagcccccctgtggttacctcttcctcccactccagggcgccctgccag





gccggggacctccgggacatgatcagcatgtatctccccggcgccgaggtgccggaacccgccgcccccagcagacttc





acatgtcccagcactaccagagcggcccggtgcccggcacggccattaacggcacactgcccctctcacacatgtgaggg





ccggacagcgaactggaggggggagaaattttcaaagaaaaacgagggaaatgggaggggtgcaaaagaggagagta





agaaacagcatggagaaaacccggtacgctcaaaaagaaaaaggaaaaaaaaaaatcccatcacccacagcaaatgaca





gctgcaaaagagaacaccaatcccatccacactcacgcaaaaaccgcgatgccgacaagaaaacttttatgagagagatc





ctggacttctttttgggggactatttttgtacagagaaaacctggggagggtggggagggcgggggaatggaccttgtatag





atctggaggaaagaaagctacgaaaaactttttaaaagttctagtggtacggtaggagctttgcaggaagtttgcaaaagtctt





taccaataatatttagagctagtctccaagcgacgaaaaaaatgttttaatatttgcaagcaacttttgtacagtatttatcgagat





aaacatggcaatcaaaatgtccattgtttataagctgagaatttgccaataUtttcaaggagaggcttcttgctgaattttgattct





gcagctgaaatttaggacagttgcaaacgtgaaaagaagaaaattattcaaatttggacattttaattgtttaaaaattgtacaaa





aggaaaaaattagaataagtactggcgaaccatctctgtggtcttgtttaaaaagggcaaaagttttagactgtactaaattttat





aacttactgttaaaagcaaaaatggccatgcaggttgacaccgttggtaatttataatagcttttgttcgatcccaactttccatttt





gttcagataaaaaaaaccatgaaattactgtgtttgaaatattttcttatggtttgtaatatttctgtaaatttaUgtgatattttaagg





ttttcccccctttattttccgtagttgtaUttaaaagattcggctctgtattatttgaatcagtctgccgagaatccatgtatatatttg





aactaatatcatccttataacaggtacattttcaacttaagtattttctccattatgcacagtttgagataaataaatttttgaaatatg





gacactgaaaaaaaaaaaaaaaaaacctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttcc





ttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctat





tctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgg





gctctatgggacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagc





cagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgac





cgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattg





attattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggta





aatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatag





ggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagta





cgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggc





agtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactc





acggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggaaccaaaatcaacgggactttccaaaatgtcg





taacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctccctatcagt





gatagagatctccctatcagtgatagagatcgtcgacgagctcgtttagtgaaccgtcagatcgcctggagacgccatccac





gctgttttgacctccatagaagacaccgggaccgatccagcctccggactctagcgtttaaacttaagcttaccatggttgtca





tgggggaggtggtggcgcttggtggccactggcggccgaggtagaggcagtggcgcttgagttggtcgggggcagcgg





cagatttgaggcttaagcaacttcttccggggaagagtgccagtgcagccactgttacaattcaagatcttgatctatatccata





gattggaatattggtgggccagcaatcctcagacgcctcacttaggacaaatgaggaaactgaggcttggtgaagttacgaa





acttgtccaaaatcacacaacttgtaaagggcacagccaagaUcagagccaggctgtaaaaattaaaatgaacaaattacg





gcaaagttttaggagaaagaaggatgtttatgttccagaggccagtcgtccacatcagtggcagacagatgaagaaggcgtt





cgcaccggaaaatgtagcttcccggttaagtaccttggccatgtagaagttgatgaatcaagaggaatgcacatctgtgaag





atgctgtaaaaagattgaaagctgaaaggaagttcttcaaaggcttctttggaaaaactggaaagaaagcagttaaagcagtt





ctgtgggtctcagcagatggactcagagttgtggatgaaaaaactaaggacctcatagttgaccagacgatagagaaagttt





cUtctgtgccccagacaggaactttgatagagccttttcttacatatgccgtgatggcaccactcgtcgctggatctgtcactg





cttcatggctgtcaaggacacaggtgaaaggttgagccatgcagtaggctgtgcttttgcagcctgtttagagcgcaagcag





aagcgggagaaggaatgtggagtgactgctacttttgatgctagtcggaccacttttacaagagaaggatcattccgtgtcac





aacagccactgaacaagcagaaagagaggagatcatgaaacaaatgcaagatgccaagaaagctgaaacagataagata





gtcgttggttcatcagttgcccctggcaacactgccccatccccatcctctcccacctctcctacttctgatgccacgacctctct





ggagatgaacaatcctcatgccatcccacgccggcatgctccaattgaacagcttgctcgccaaggctctttccgaggttttc





ctgctcttagccagaagatgtcaccctttaaacgccaactatccctacgcatcaatgagltgccttccactatgcagaggaaga





ctgatttccccattaaaaatgcagtgccagaagtagaaggggaggcagagagcatcagctccctgtgctcacagatcacca





atgccttcagcacacctgaggaccccttctcatctgctccgatgaccaaaccagtgacagtggtggcaccacaatctcctacc





ttccaagctaatggcactgactcagccttccatgtgcttgctaagccagcccatactgctctagcacccgtagcaatgcctgtg





cgtgaaaccaacccttgggcccatgcccctgatgctgclaacaaggaaattgcagccacatgtlcggggaccgagtggggt





caatcttctggtgctgcctctccaggtctcttccaggccggtcatagacgtactccctctgaggccgaccgatggttagaaga





ggtgtctaagagcgtccgggctcagcagccccaggcctcagctgctcctctgcagccagttctccagcctcctccacccact





gccatctcccagccagcatcacctttccaagggaatgcattcctcacctctcagcctgtgccagtgggtgtggtcccagccct





gcaaccagcctttgtocctgcccagtcctatcctgtggccaatggaatgccctatccagcccctaatgtgcctglgglgggca





tcactccctcccagatggtggccaacgtatttggcactgcaggccaccctcaggctgcccatccccatcagtcacccagcct





ggtcaggcagcagacattccctcactacgaggcaagcagtgctaccaccagtcccttctttaagcctcctgctcagcacctc





aacggttctgcagctttcaatggtgtagatgatggcaggttggcctcagcagacaggcatacagaggttcctacaggcacct





gcccagtggatccttttgaagcccagtgggctgcattagaaaataagtccaagcagcgtactaatccctcccctaccaaccct





ttctccagtgacttacagaagacgtttgaaattgaactttaagcaatcattatggctatgtatcttgtccataccagacagggagc





agggggtagcggtcaaaggagcaaaacagactttgtctcctgattagtactcttttcactaatcccaaaggtcccaaggaaca





agtccaggcccagagtactgtgaggggtgattttgaaagacatgggaaaaagcattcctagagaaaagctgccttgcaatta





ggctaaagaagtcaaggaaatgttgctttctgtactccctcttcccttacccccttacaaatctctggcaacagagaggcaaag





tatctgaacaagaatctatattccaagcacatttactgaaatgtaaaacacaacaggaagcaaagcaatctccctttgtttttcag





gccattcacctgcctcctgtcagtagtggcctgtattagagatcaagaagagtggtttgtgctcaggctggggaacagagag





gcacgctatgctgccagaattcccaggagggcatatcagcaactgcccagcagagctatattttgggggagaagttgagctt





ccatttlgagtaacagaataaatattatatatatcaaaagccaaaatctttatttttatgcatttagaatattttaaatagttctcagat





attaagaagttgtatgagttgtaagtaatcttgccaaaggtaaaggggctagttgtaagaaattgtacataagattgatttatcatt





gatgcctactgaaataaaaagaggaaaggctggaagctgcagacaggatccctagcttgttttctgtcagtcattcattgtaag





tagcacattgcaacaacaatcatgcttatgaccaatacagtcactaggttgtagtttUtttaaataaaggaaaagcagtattgtc





ctggttttaaacctatgatggaattctaatgtcaUattttaatggaatcaatcgaaatatgctctatagagaatatatcttttatatat





tgclgcagtttccttatgttaatcctttaacactaaggtaacatgacataatcataccatagaagggaacacaggttaccatattg





gtttgtaatatgggtcttggtgggttttgttttatcctttaaattttgttcccatgagttttgtggggatggggattctggttttattagct





ttgtgtgtgtcctcttcccccaaacccccttttggtgagaacatccccttgacagttgcagcctcttgacctcggataacaataa





gagagctcatctcatttttacttttgaacgttggccttacaatcaaatgtaagttatatatatttgtactgatgaaaatttataatctgc





tttaacaaaaataaatgttcatggtagaagcttttaaaaaaaaaaaaacctcgactgtgccttctagttgccagccatctgttgttt





gcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcatt





gtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcag





gcatgctggggatgcggtgggctctatgggacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgc





tctgatgccgcatagttaagccagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagct





acaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacggg





ccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagt





tccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgta





tgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtaca





tcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatga





ccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatg





ggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggaaccaaaatc





aacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatat





aagcagagctctccctatcagtgatagagatctccctatcagtgatagagatcgtcgacgagctcgtttagtgaaccgtcaga





tcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccggactctagcgtttaa





acttaagcttaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacg





taaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgc





accaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcacctacggcgtgcagtgcttcgcccgctacccc





gaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggac





gacggcaactacaagacccgcgccgaggtgaagUcgagggcgacaccctggtgaaccgcatcgagctgaagggcatc





gacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaaggtctatatcaccgccga





caagcagaagaacggcatcaaggtgaacttcaagacccgccacaacatcgaggacggcagcgtgcagctcgccgacca





ctaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctg





agcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatgg





acgagctgtacaagtaacctcgactgtgccttctagttgccagccatctgUgtttgcccctcccccgtgccttccttgacccig





gaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggg





gtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatgg





gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatctg





ctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgaccgacaatt





gcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgac





tagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcc





cgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggacttt





ccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgcccc





ctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacat





ctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacgggg





atttccaagtctccaccccattgacgtcaatgggagtttgttttggaaccaaaatcaacgggactttccaaaatgtcgtaacaac





tccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtgagtttggggaccct





tgattgttctttctttttcgctattgtaaaattcatgttatatggagggggcaaagttttcagggtgttgtttagaatgggaagatgtc





ccttgtatcaccatggaccctcatgataattttgtttctttcactttctactctgttgacaaccattgtctcctcttattttcttttcattttc





tgtaactttttcgttaaactttagcttgcatttgtaacgaatttttaaattcacttttgtttatttgtcagattgtaagtactttctctaatca





cttttttttcaaggcaatcagggtatattatattgtacttcagcacagttttagagaacaattgttataattaaatgataaggtagaat





atttctgcatataaattctggctggcgtggaaatattcttattggtagaaacaactacatcctggtcatcatcctgcctttctctttat





ggttacaatgatatacactgtttgagatgaggataaaatactctgagtccaaaccgggcccctctgctaaccatgttcatgcctt





cttctttttcctacagctcctgggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattgtaatacgactcactatag





ggcgaattgatatgtctagattagataaaagtaaagtgattaacagcgcattagagctgcatgtctagattagataaaagtaaa





gtgattaacagcgcattagagctgcUaatgaggtcggaatcgaaggtttaacaacccgtaaactcgcccagaagctaggtg





tagagcagcctacattgtattggcatgtaaaaaataagcgggctttgctcgacgccttagccattgagatgttagataggcacc





atactcacttttgccctttagaaggggaaagctggcaagattttttacgtaataacgctaaaagttttagatgtgctttactaagtc





atcgcgatggagcaaaagtacatttaggtacacggcctacagaaaaacagtatgaaactctcgaaaatcaattagcctttttat





gccaacaaggtttttcactagagaatgcattatatgcactcagcgctgtggggcattttactttaggttgcgtattggaagatca





agagcatcaagtcgctaaagaagaaagggaaacacctactactgatagtatgccgccattattacgacaagctatcgaattat





ttgatcaccaaggtgcagagccagccttcttattcggccttgaattgatcatatgcggattagaaaaacaacttaaatgtgaaa





gtgggtccgcgtacagcggatcccgggaattcagatcttattaaagcagaacttgtttattgcagcttataatggttacaaataa





agcaatagcatcacaaatttcacaaataaagcatttttltcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatca





tgtctggtcaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctca





attagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcag





caaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgact





aattttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggccta





ggcttttgcaaaaagctccccatagtgactggatatgttgtgttttacagtattatgtagtctgttttttatgcaaaatctaatttaata





tattgatatttatatcattttacgtttctcgttcagctttcttgtacaaagtggttgatatccagcacagtggcggccgctcgagtct





agagggcccgcggttcgaaggtaagcctatccctaaccctctcctcggtctcgattctacgcgtaccggttagtaatgagttt





ggaattaattctgtggaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatg





catctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaatt





agtcagcaaccatagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatgg





ctgactaattttttttatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggag





gcctaggcttttgcaaaaagctcccgggagcttgtatatccattttcggatctgatcagcacgtgttgacaattaatcatcggca





tagtatatcggcatagtataatacgacaaggtgaggaactaaaccatggccaagcctttgtctcaagaagaatccaccctcatt





gaaagagcaacggctacaatcaacagcatccccatctctgaagactacagcgtcgccagcgcagctctctctagcgacgg





ccgcatcttcactggtgtcaatgtatatcattttactgggggaccttgtgcagaactcgtggtgctgggcactgctgctgctgcg





gcagctggcaacctgacttgtatcgtcgcgatcggaaatgagaacaggggcatcttgagcccctgcggacggtgccgaca





ggtgcttctcgatctgcatcctgggatcaaagccatagtgaaggacagtgatggacagccgacggcagttgggattcgtga





attgctgccctctggtlatgtgtgggagggctaagcacaattcgagctcggtacctttaagaccaatgacttacaaggcagct





gtagatcttagccactttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgct





tgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataa





agcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagt





gtggaaaatctctagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgaga





ggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattc





tagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgcccatcccgcccct





aactccgcccagttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctct





gagctattccagaagtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtgagtcgtattacgcg





cgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccc





tttcgccagctggcgtaatagcgaagaggcccgcaccgatcgccctlcccaacagttgcgcagcctgaatggcgaatggg





acgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgcccta





gcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctcccttt





agggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccct





gatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccct





atctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgc





gaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaa





tacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattca





acatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagat





gctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccg





aagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaac





tcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgaca





gtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccga





aggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccata





ccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactc





tagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctgg





ctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccct





cccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcct





cactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatct





aggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaa





gatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggttt





gtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagt





gtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgc





tgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaac





ggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaa





agcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacga





gggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatg





ctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctc





acatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccg





aacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgtt





ggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagtt





agctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcac





acaggaaacagctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagc





tt.






A schematized map corresponding to the vector sequence above is shown in FIG. 5.


The vector may be constructed fully through de novo gene synthesis, or in part through the cloning of the Numb, Sox and OCT3/4 cDNA sequences into the position occupied by LacZ in the Invitrogen pcDNA4tolacZ vector. Similarly, the tetR gene is found in the Invitrogen pcDNA6/TR vector. Coding sequences of genes referenced are also appropriate for cloning into the pcDNA41acZ vector.


Alternatively, the tetR gene may be transfected into target cells separately utilizing the pcDNA6/TR vector in combination with a vector comprising the sequence here minus the tetR gene and its PCMV promoter.


Likewise, multiple vectors may be employed so long as elements similar to the elements included in the above sequence are present. This may reduce the likelihood of promoter competition. It is to be understood that other conditional promoter elements may be substituted for the tetracycline sensitive promoter elements.


Example 14

It is expected that intravenous and other administration of pluripotent stem cells produced according to the methods described herein (or other published methods) one or more times can provide replacement cells to the body and that such administration may serve to extend the life or improve the health of the patient suffering age-related senescence.


Example 15: Production of Germ Cells

The current invention covers the derivation of germ cells from multipotent, pluripotent, and/or self-renewing stem cells produced according to the methods described herein (or according to other published methods). The production of such germ cells may be suitable for treating infertility and producing embryos in vitro (e.g. Ilubner et al., 2003; Kehler et al., 2005; Nayernia et al., 2006a; Nayernia et al., 2006b; Drusenheimer et al., 2007; Moore et al., 2007; etc.)


Example 16: Generation of Transgenic Animals

The present invention covers the generation of transgenic animals. As with other pluripotent cells, the pluripotent cells produced by the methods described herein (or other published methods) may be utilized to produce transgenic animals by any method known to the art.


Example 17: Therapeutic Vector Construction

Examples of retroviral vectors which may be employed include, but are not limited to, those derived from Moloney Murine Leukemia Virus, Moloney Murine Sarcoma Virus, and Rous Sarcoma Virus, FIV, and HIV. Appropriate expression vectors are that may be employed for transfecting DNA or RNA into eukaryotic cells. Such vectors include, but are not limited to, prokaryotic vectors such as, for example, bacterial vectors; eukaryotic vectors, such as, for example, yeast vectors and fungal vectors; and viral vectors, such as, but not limited to, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, and retroviral vectors.


The replication incompetent pcDNA 6.2 GW/miR and pcDNA 6.2/EmGFP-Bsd/V5-DEST vectors are examples of an appropriate expression vectors (Invitrogen) and allow expression of synthetic oligonucleotides (e.g. miRNAs) that have the capacity to cleave targeted sequences. These vectors include flanking and loop sequences from endogenous miRNA to direct the excision of the engineered miRNA from a longer Pol II transcript (pre-miRNA).


Alternatively, inclusion of the HIV psi sequence allows the therapeutic vector to compete with native HIV genome for packaging into viral particles, also inhibiting HIV transmission.


Combining multiple miRNA sequences directed against a single target increases the likelihood of success in reducing target sequence expression. miRNA sequences may be operably linked to tissue specific promoters such as the EF-I alpha promoter, any T cell specific promoter, or macrophage specific promoter to ensure expression in the desired cell types.


Utilizing Invitrogen's lentiviral destination (DEST) vectors for gene expression, the resulting therapeutic vector(s) becomes capable of stably transducing both dividing and non-dividing cell types.


In a preferred embodiment, the therapeutic vector(s) contains multiple synthetic oligonucleotide sequences driven by one or more promoters so as to reduce expression of CXCR4, CCR5, and/or any other cellular protein known to act as a co-receptor for HIV infection in target cells.


In one therapeutic vector (constructed in 2006), four miRNA sequences targeting CXCR4 and CCR5 co-receptors were cloned into the pcDNA 6.2 GW/miR vector along with decoy RNA sequences targeting HIV-2 TAR and RRE.


Genetic constructs may include a vector backbone, and a transactivator which regulates a promoter operably linked to heterologous nucleic acid sequences.


Another example of a suitable vector is a retroviral vector. Retroviruses are RNA viruses which contain an RNA genome. The gag, pol, and env genes are flanked by long terminal repeat (LTR) sequences. The 5′ and 3′ LTR sequences promote transcription and polyadenylation of mRNA's.


The retroviral vector may provide a regulable transactivating element, an internal ribosome reentry site (IRES), a selection marker, and a target heterologous gene operated by a regulable promoter.


Alternatively, multiple sequences may be expressed under the control of multiple promoters. Finally, the retroviral vector may contain cis-acting sequences necessary for reverse transcription and integration. Upon infection, the RNA is reverse transcribed to DNA which integrates efficiently into the host genome. The recombinant retrovirus of this invention is genetically modified in such a way that some of the retroviral, infectious genes of the native virus are removed and in embodiments replaced instead with a target nucleic acid sequence for genetic modification of the cell. The sequences may be exogenous DNA or RNA, in its natural or altered form.


Example 18: Example Methods for Generation of the Therapeutic Vector

The methods for generation of the therapeutic vector(s) include those taught in Invitrogen's Viral Power Lentiviral Expression Systems Manual (incorporated by reference herein). Briefly, the EmGFP-bsd cassette is cloned as a PmII-BIpI fragment into the pLenti6/R4R2/V5-DEST vector, while the miR-decoy cassette is simultaneously transferred by BP reaction into pDONR221. Then the EFIa promoter and miR-decoy are Multisite LR crossed into the modified pLenti6/KmGFP-bsd/R4R2-DES Tvector.










pLenti6/R4R2/V5-DEST vector sequence:



(SEQ ID NO: 1)



aatgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatgagttagcaacatgccttacaaggagagaaaaagca






ccgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgacatggattgg





acgaaccactgaattgccgcattgcagagatattgtattlaagtgcctagctcgatacataaacgggtctctctggttagacca





gatctgagcctgggagctctclggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagt





gtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgc





ccgaacagggacttgaaagcgaaagggaaaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacg





gcaagaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagatgggtgc





gagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccagggggaaagaaaaaat





ataaattaaaacatatagtatgggcaagcagggagclagaacgattcgcagttaatcctggcctgttagaaacatcagaagg





ctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagtagcaa





ccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaa





gtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaatt





atataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagagaaaa





aagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcgtcaatgacgct





gacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcat





ctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacag





ctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctgg





aacagatttggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaa





gaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacat





aacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctata





gtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaa





ggaatagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggtatcgatgtcg





acgttaacgctagtgatatcaactttgtatagaaaagttgaacgagaaacgtaaaatgatataaatatcaatatattaaattagat





tttgcataaaaaacagactacataatactgtaaaacacaacatatccagtcactatggcggccgcattaggcaccccaggcttt





acactttatgcttccggctcgtataatgtgtggattttgagttaggatccgtcgagattttcaggagctaaggaagctaaaatgg





agaaaaaaatcactggatataccaccgttgatatalcccaatggcatcgtaaagaacaUttgaggcatttcagtcagttgctc





aatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccgg





cctttattcacattcttgcccgcctgatgaatgctcatccggaattccgtatggcaatgaaagacggtgagctggtgatatggg





atagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccgg





cagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatatgttt





ttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcac





catgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgattcaggUcatcatgccgtttgtgatggcttcc





atgtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggcggggcgtaaagatctggatccggcttact





aaaagccagataacagtatgcgtatttgcgcgctgatttttgcggtataagaatatatactgatatgtatacccgaagtatgtca





aaaagaggtatgctatgaagcagcgtattacagtgacagttgacagcgacagctatcagttgctcaaggcatatatgatgtca





atatctccggtctggtaagcacaaccatgcagaatgaagcccgtcgtctgcgtgccgaacgctggaaagcggaaaatcag





gaagggatggctgaggtcgcccggtttattgaaatgaacggctcttttgctgacgagaacagggactggtgaaatgcagtlt





aaggttlacacctataaaagagagagccgttatcgtctgtttgtggatgtacagagtgatattattgacacgcccgggcgacg





gatggtgatccccctggccagtgcacgtctgctgtcagataaagtctcccgtgaactttacccggtggtgcatatcggggatg





aaagctggcgcatgatgaccaccgatatggccagtgtgccggtctccgttatcggggaagaagtggctgatctcagccacc





gcgaaaatgacatcaaaaacgccattaacctgatgttctggggaatataaatgtcaggctccgttatacacagccagtctgca





ggtcgaccatagtgactggatatgttgtgttttacagtattatgtagtctgttttttatgcaaaatctaatttaatatattgatatttatat





cattttacgtttctcgttcagctttcttgtacaaagtggttgatatccagcacagtggcggccgctcgagtctagagggcccgc





ggttcgaaggtaagcctatccctaaccctctcctcggtctcgattctacgcgtaccggttagtaatgagtttggaattaattctgt





ggaatgtgtgtcagttagggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtc





agcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccat





agtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaatttttttt





attlatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgc





aaaaagctcccgggagcttgtatatccattttcggatctgatcagcacgtgttgacaattaatcatcggcatagtatatcggcat





agtataatacgacaaggtgaggaactaaaccatggccaagcctttgtctcaagaagaatccaccctcattgaaagagcaacg





gctacaatcaacagcatccccatctctgaagactacagcgtcgccagcgcagctctctctagcgacggccgcatcttcactg





gtgtcaatgtatatcattttactgggggaccttgtgcagaactcgtggtgctgggcactgctgctgctgcggcagctggcaac





ctgacttgtatcgtcgcgatcggaaatgagaacaggggcatcttgagcccctgcggacggtgccgacaggtgcttctcgat





ctgcatcctgggatcaaagccatagtgaaggacagtgatggacagccgacggcagttgggattcgtgaattgctgccctct





ggttatgtgtgggagggctaagcacaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagcc





actttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctc





tctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttga





gtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctc





tagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttatt





gcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgt





ccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgcccatcccgcccctaactccgcccagt





tccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccaga





agtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtgagtcgtattacgcgcgctcactggccg





tcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggc





gtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtag





cggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctccttt





cgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttag





tgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcg





ccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattctttt





gatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaata





ttaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtat





ccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcc





cttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttg





ggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaat





gatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatac





actattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgca





gtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttt





tttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcg





tgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaac





aattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgat





aaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagtta





tctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcatt





ggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctu





ttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttc





ttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaa





gagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttag





gccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgat





aagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtg





cacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttc





ccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg





gggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcagggggg





cggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgc





gttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgc





agcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaat





gcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattagg





caccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagcta





tgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagctt.







Example miR-Decoy Cassette Sequence:










(SEQ ID NO: 3)



gtcgaccagtggatcctggaggcttgctgaaggctgtatgctgatcgggtgtaaactgagcttggttttggccactgactgac






caagctcattacacccgatcaggacacaaggcctgttactagcactcacatggaacaaatggcccagatcctggaggcttg





ctgaaggctgtatgctgataccaggcaggataaggccagttttggccactgactgactggccttactgcctggtatcaggac





acaaggcctgttactagcactcacatggaacaaatggcccagatcctggaggcttgctgaaggctgtatgctgtgaccagg





atgaccaatccatgttttggccactgactgacatggattgcatcctggtcacaggacacaaggcctgttactagcactcacatg





gaacaaatggcccagatcctggaggcttgctgaaggctgtatgctgatagcttggtccaacctgttagttttggccactgactg





actaacaggtgaccaagctatcaggacacaaggcctgttactagcactcacatggaacaaatggcccagatctccccagtg





gaaagacgcgcaggcaaaacgcaccacgtgacggagcgtgaccgcgcgccgagcgcgcgccaaggtcgggcagga





agagggcctatttcccatgattccttcatatttgcatatacgatacaaggctgttagagagataattagaattaatttgactgtaaa





cacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatgga





ctatcatatgcttaccgtaacttgaaagtatttcgatttcttgggtttatatatcttgtggaaaggacggtgctcgcttcggcagca





cgtcgtgctagggttcttgggttttctcgcaacagcaggttctgcaatgggcgcggcgtccctgaccgtgtcggctcagtccc





ggactttactggccgggatagtgcagcaacagcaacagctgttggacgtggtcaagagacaacaagaactgttgcgactg





accgtctggggaacgaaaaacctccaggcaagagtcactgctatagagaagtacctacaggaccaggcgcggctaaattc





atggggatgtctagacctagagcggacttcggtccgctttttccccagtggaaagacgcgcaggcaaaacgcaccacgtga





cggagcgtgaccgcgcgccgagcgcgcgccaaggtcgggcaggaagagggcctatttcccatgattccttcatatttgcat





atacgatacaaggctgttagagagataattagaattaatttgactgtaaacacaaagatattagtacaaaatacgtgacgtaga





aagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgat





ttcttgggtttatatatcttgtggaaaggacggtgctcgcttcggcagcacgtcggtcgctctgcggagaggctggcagattg





agccctgggaggttctctccagcactagcaggtagagcctgggtgttccctgctagactctcaccagtgcttggccggcact





gggcagacggctccacgcttgcttgcttaaagacctcttaataaagctgctctagacctagagcggacttcggtccgctttttt





acgtactcgag.






Example 19: Methods for Propagating/Proliferating Stem/Progenitor Cells In Vivo

In order to obtain large numbers of target cells that are relatively resistant to 1) HIV infection and/or 2) HIV replication and/or 3) HIV transcription, progenitor/stem cells can be grown in Dulbecco's modified Minimal Essential Medium (DMEM) supplemented with glutamine, beta.-mercaptoethanol, 10% (by volume) horse serum, and human recombinant Leukemia Inhibitory Factor (LIF). The LIF replaces the need for maintaining progenitor/stem cells on feeder layers of cells, (which may also be employed) and is essential for maintaining progenitor/stem cells in an undifferentiated state.


Example 20

Stem cells are collected from individuals, the cells are transfected/contacted with the therapeutic vectors, then prepared for transplantation by standard methods, with or without HLA typing and matching.


Example 21

Umbilical cord blood samples are obtained from umbilical blood cord bank. The cells are then transfected/contacted with the therapeutic vector of beneficial sequences, then prepared for transplantation by standard methods, with or without HLA typing and matching. Example 22: Examples of Synthetic oligonucleotide sequences suitable for inclusion in the therapeutic vector.


Any synthetic oligonucleotide sequences that successfully reduce the protein expression of targeted sequences>70% is covered by the present invention.


Any synthetic oligonucleotide sequences that successfully reduce the ability of target cells to sustain HIV replication by >70% or to a lesser but therapeutic degree or HIV viral activity by >70% or to a lesser but therapeutic degree are also covered by this invention.


Examples of miRNA sequences include miRNA sequences derived by IVGN algorithm(Invitrogen). miRNA sequences targeting the CXCR4 gene include top strand: 5′-TGCTGATACCAGGCAGGATAAGGCCAGTTTTGGCCACTGACTGACTGGCCT TACTGCCT GGTAT-3′ (SEQ ID NO: 4) and bottom strand: 5′-CCTGATACCAGGCAGTAAGGCCAGTCAGTCAGTGGCCAAAACTGGCCTTA TCCTGCCTG GTATC-3′ (SEQ ID NO: 5); as well as top strand: 5′-TGCTGTGACCAGGATGACCAATCCATGTTTTGGCCACTGACTGACATGGAT TGCATCCTG GTCA-3′ (SEQ ID NO: 6) and bottom strand: 5′-CCTGTGACCAGGATGCAATCCATGTCAGTCAGTGGCCAAAACATGGATTG GTCATCCTG GTCAC-3′ (SEQ ID NO: 7).


Similarly, miRNA sequences targeting the CCR5 gene include top strand: 5′-TGCTGATCGGGTGTAAACTGAGCTTGGTTTTGGCCACTGACTGACCAAGCT CATTACACCCGAT-3′ (SEQ ID NO: 8) and bottom strand: 5′-CCTGATCGGGTGTAATGAGCTTGGTCAGTCAGTGGCCAAAACCAAGCTCA GTTTACACCCGATC-3′; (SEQ ID NO: 9) as well as top strand 5′-TGCTGATAGCTTGGTCCAACCTGTTAGTTTTGGCCACTGACTGACTAACAG GTGACCAAGCTAT-3′ (SEQ ID NO: 10) and bottom strand: 5′-CCTGATAGCTTGGTCACCTGTTAGTCAGTCAGTGGCCAAAACTAACAGGTT GGACCAAGCTATC-3′ (SEQ ID NO: 11).


Example 23: Examples of Decoy RNA Suitable for Inclusion in the Therapeutic Vector

Any decoy sequences that successfully reduce the ability of target cells to sustain ITIV replication by >70% or to a lesser but therapeutic degree or HIV viral activity by >70% or to a lesser but therapeutic degree are covered by this invention.


An example TAR decoy sequence is









(SEQ ID NO: 12)


gtcgctctgcggagaggctggcagattgagccctgggaggttctctccag





cactagcaggtagagcctgggtgttccctgctagactctcaccagtgctt





ggccggcactgggcagacggctccacgcttgcttgcttaaagacctctta





ataaagctgc (Browning et al., 1999)






An example RRE decoy sequence is









(SEQ ID NO: 13)


tgctagggttcttgggttttctcgcaacagcaggttctgcaatgggcgcg





gcgtccctgaccgtgtcggctcagtcccggactttactggccgggatagt





gcagcaacagcaacagctgttggacgtggtcaagagacaacaagaactgt





tgcgactgaccgtctggggaacgaaaaacctccaggcaagagtcactgct





atagagaagtacctacaggaccaggcgcggctaaattcatggggatg





(Dillon et al., 1990).






Example 24: Flanking Sequences Providing Stability for RNA Decoys

Examples of appropriate flanking sequences for RNA decoys are as follows:











(SEQ ID NO: 14)



GUGCUCGCUUCGGCAGCACGTCGAC---TAR







(SEQ ID NO: 15)



DECOY SEQ---UCUAGAGCGGACUUCGGUCCGCUUUU







(SEQ ID NO: 16)



GUGCUCGCUUCGGCAGCACGTCGAC---RRE







(SEQ ID NO: 17)



DECOY SEQ---UCUAGAGCGGACUUCGGUCCGCUUUU






Previously, it was demonstrated that decoy sequences flanked by hairpins on either side, 19 nucleotides (ntds) of the U6 RNA on the 5′ side as well as a 3′ stem immediately preceding a poly U terminator for POEIII, showed greater stability. This arrangement is expected to protect against 3 ′-5′ exonuclease attack, and to reduce the chances of the 3′ trailer interfering with the insert RNA folding. Since only the first 3/4 of the tRNA sequence is present, the 5′ end of the insert should be protected and export from the nucleus should be prevented (Good et al., 1997).


Example 25: Introduction of Therapeutic Vector to the Host

In a preferred embodiment, blood stem/progenitor cells, and target cells are transfected/contacted with the therapeutic vector(s) (or associated therapeutic virus) in vivo by introduction of the therapeutic vector(s) into the host blood, tissues, or bone marrow, etc. The greatest benefit may be achieved by modifying a large number of endogenous target and stem/progenitor cells. This may be accomplished by using an appropriately-sized, catheter-like device, or needle to inject the therapeutic vector(s) into the venous or arterial circulation. In a preferred embodiment, the virus is pseudotyped with VSV-G envelope glycoprotein and native I II V-I env proteins.


Example 26: Introduction of Genetically-Modified Cells into the Host

Blood cells, such as mature peripheral blood T lymphocytes, monocytes, macrophages, T cell progenitors, macrophage-monocyte progenitor cells, and/or pluripotent hematopoietic stem cells (such as those found in umbilical cord blood and occupying bone marrow spaces) as well as other stem/progenitor cells can be transfected/contacted using the therapeutic vector(s) in vitro. Appropriate concentrations of the therapeutic vector(s) may be those consistent with Browning et al., 1999. Subsequently, cells are expanded (propagated) in vitro, and are then transferred to the host via introduction of the cells to the venous or arterial circulation using a intravenous needle or catheter. Subsequently, cells transfected/contacted with the therapeutic vectors are able to “home” to the bone marrow and other tissues.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.


Example 27: Examples of Expressed or Targeted Transgenes/Proteins Utilized in the Present Invention

Any transgene sequences effective in fulfilling the present invention is suitable for use in the present invention. Suitable nucleotide sequences may be drawn from any species so long as the desired cells or behavior is achieved. Likewise the method of naming such sequences, either in lower case or upper case letters herein, does not imply a particular species. The following sequences stored in the NCBI database (listed by accession number) represent examples of sequences referenced above in the present application. They are also examples of specific transgene encoding sequences (cds) suitable for use in the present invention, but do not in any way limit the practice of the invention:










(SEQ ID NO: 18)



cardiotrophin1.U43030: atgagccggagggagggaagtctggaagacccccagactgattcctcagtctcacttct






tccccacttggaggccaagatccgtcagacacacagccttgcgcacctcctcaccaaatacgctgagcagctgctccagga





atatgtgcagctccagggagaccccttcgggctgcccagcttctcgccgccgcggctgccggtggccggcctgagcgcc





ccggctccgagccacgcggggctgccagtgcacgagcggctgcggctggacgcggcggcgctggccgcgctgccccc





gctgctggacgcagtgtgtcgccgccaggccgagctgaacccgcgcgcgccgcgcctgctgcgccgcctggaggacgc





ggcgcgccaggcccgggccctgggcgccgccgtggaggccttgctggccgcgctgggcgccgccaaccgcgggccc





cgggccgagccccccgccgccaccgcctcagccgcctccgccaccggggtcttccccgccaaggtgctggggctccgc





gtttgcggcctctaccgcgagtggctgagccgcaccgagggcgacctgggccagctgctgcccgggggctcggcctga;





NM_001330; NM_013246; BC064416; BC036787; BC049822.





(SEQ ID NO: 19)



CNTF: BC074964: atggctttcacagagcattcaccgctgacccctcaccgtcgggacctctgtagccgctctatctg






gctagcaaggaagattcgttcagacctgactgctcttacggaatcctatgtgaagcatcagggcctgaacaagaacatcaac





ctggactctgcggatgggatgccagtggcaagcactgatcagtggagtgagctgaccgaggcagagcgactccaagaga





accttcaagcttatcgtaccttccatgttttgttggccaggctcttagaagaccagcaggtgcattttaccccaaccgaaggtga





cttccatcaagctatacatacccttcttctccaagtcgctgcctttgcataccagatagaggagttaatgatactcctggaataca





agatcccccgcaatgaggctgatgggatgcctattaatgttggagatggtggtctctttgagaagaagctgtggggcctaaa





ggtgctgcaggagctttcacagtggacagtaaggtccatccatgaccttcgtttcatttcttctcatcagactgggatcccagc





acgtgggagccattatattgctaacaacaagaaaatgtag; NMJ300614; NM147164; NM_001842. 





(SEQ ID NO: 20)



GP130: NM_175767: atgttgacgttgcagacttggctagtgcaagccttgtttattttcctcaccactgaatctacaggt






gaacttctagatccatgtggttatatcagtcctgaatctccagttgtacaacttcattctaatttcactgcagtttgtgtgctaaagg





aaaaatgtatggattattttcatgtaaatgctaattacattgtctggaaaacaaaccaltttactattcctaaggagcaatatactat





cataaacagaacagcatccagtgtcacctttacagatatagcttcattaaatattcagctcacttgcaacattcttacattcggac





agcttgaacagaatgtttatggaatcacaataatttcaggcttgcctccagaaaaacctaaaaatttgagttgcattgtgaacga





ggggaagaaaatgaggtgtgagtgggatggtggaagggaaacacacttggagacaaacttcactttaaaatctgaatggg





caacacacaagtttgctgattgcaaagcaaaacgtgacacccccacctcatgcactgttgattattctactgtgtattttgtcaac





attgaagtctgggtagaagcagagaatgcccttgggaaggttacatcagatcatatcaattttgatcctgtatataaagtgaag





cccaatccgccacataatttatcagtgatcaactcagaggaactgtctagtatcttaaaattgacatggaccaacccaagtatta





agagtgttataatactaaaatataacattcaatataggaccaaagatgcctcaacttggagccagattcctcctgaagacacag





catccacccgatcttcattcactgtccaagaccttaaaccttttacagaatatgtgtttaggattcgctgtatgaaggaagatggt





aagggatactggagtgactggagtgaagaagcaagtgggatcacctatgaagataacattgcctcctttlga; NM_002184;





EF442778.





(SEQ ID NO: 21)



IL6: BC015511:



atgaactccttctccacaagcgccttcggtccagttgccttctccctggggctgctcctggtgttgcctgctgccttccctgccc





cagtacccccaggagaagattccaaagatgtagccgccccacacagacagccactcacctcttcagaacgaattgacaaa





caaattcggtacatcctcgacggcatctcagccctgagaaaggagacatgtaacaagagtaacatgtgtgaaagcagcaaa





gaggcactggcagaaaacaacctgaaccttccaaagatggctgaaaaagatggatgcttccaatctggattcaatgaggag





acttgcctggtgaaaatcatcactggtcttttggagtttgaggtatacctagagtacctccagaacagatttgagagtagtgag





gaacaagccagagctgtgcagatgagtacaaaagtcctgatccagttcctgcagaaaaaggcaaagaatctagatgcaata





accacccctgacccaaccacaaatgccagcctgctgacgaagctgcaggcacagaaccagtggctgcaggacatgacaa





ctcatctcattctgcgcagctttaaggagttcctgcagtccagcctgagggctcttcggcaaatgtag; AB 107656.





(SEQ ID NO: 22)



HOXB4: NM_024015: atggctatgagttcttttttgatcaactcaaactatgtcgaccccaagttccctccatgcgagg






aatattcacagagcgaltacctacccagcgaccactcgcccgggtactacgccggcggccagaggcgagagagcagctt





ccagccggaggcgggctlcgggcggcgcgcggcgtgcaccgtgcagcgctacgcggcctgccgggaccctgggccc





ccgccgcctccgccaccacccccgccgcccccgccaccgcccggtctgtcccctcgggctcctgcgccgccacccgcc





ggggccctcctcccggagcccggccagcgctgcgaggcggtcagcagcagccccccgccgcctccctgcgcccagaa





ccccctgcaccccagcccgtcccactccgcgtgcaaagagcccgtcgtctacccctggatgcgcaaagttcacgtgagca





cggtaaaccccaattacgccggcggggagcccaagcgctctcggaccgcctacacgcgccagcaggtcttggagctgga





gaaggaatttcactacaaccgctacctgacacggcgccggagggtggagatcgcccacgcgctctgcctctccgagcgcc





agatcaagatctggttccagaaccggcgcatgaagtggaaaaaagaccacaagttgcccaacaccaagatccgctcgggt





ggtgcggcaggctcagccggagggccccctggccggcccaatggaggcccccgcgcgctctag; NM_010459.





(SEQ ID NO: 23)



IL6R: NM_000565: atgctggccgtcggctgcgcgctgctggctgccctgctggccgcgccgggagcggcgctgg






ccccaaggcgctgccctgcgcaggaggtggcgagaggcgtgctgaccagtctgccaggagacagcgtgactctgacct





gcccgggggtagagccggaagacaatgccactgttcactgggtgctcaggaagccggctgcaggctcccaccccagca





gatgggctggcatgggaaggaggctgctgctgaggtcggtgcagctccacgactctggaaactattcatgctaccgggcc





ggccgcccagctgggactgtgcacttgctggtggatgttccccccgaggagccccagctctcctgcttccggaagagccc





cctcagcaatgttgtttgtgagtggggtcctcggagcaccccatccctgacgacaaaggctgtgctcttggtgaggaagtltc





agaacagtccggccgaagacttccaggagccgtgccagtattcccaggagtcccagaagtlctcctgccagttagcagtcc





cggagggagacagctctttctacatagtgtccatgtgcgtcgccagtagtgtcgggagcaagttcagcaaaactcaaaccttt





cagggttgtggaatcttgcagcctgatccgcctgccaacatcacagtcactgccgtggccagaaacccccgctggctcagt





gtcacctggcaagacccccactcctggaactcatctttctacagactacggtttgagctcagatatcgggctgaacggtcaaa





gacattcacaacatggatggtcaaggacctccagcatcactgtgtcatccacgacgcctggagcggcctgaggcacgtggl





gcagcttcgtgcccaggaggagttcgggcaaggcgagtggagcgagtggagcccggaggccatgggcacgccttgga





cagaatccaggagtcctccagctgagaacgaggtgtccacccccatgcaggcacttactactaataaagacgatgataatat





tctcttcagagattctgcaaatgcgacaagcctcccagtgcaagattcttcttcagtaccactgcccacattcctggttgctgga





gggagcctggccttcggaacgctcctctgcattgccattgttctgaggttcaagaagacgtggaagctgcgggctctgaagg





aaggcaagacaagcatgcatccgccgtactctttggggcagctggtcccggagaggcctcgacccaccccagtgcttgttc





ctctcatctccccaccggtgtcccccagcagcctggggtctgacaatacctcgagccacaaccgaccagatgccagggac





ccacggagcccttatgacatcagcaatacagactacttcttccccagatag; NM_181359.





(SEQ ID NO: 24)



IL11: NM_133519:



atgaactgtgtttgtcgcctggtcctggtggtgctgagcctctggccagatagagtcgttgcccctgggccaccagctggctc





ccctcgagtgtcttcagaccctcgtgcagatctggatagcgctgtcctcttgaccaggtccctcctggcagacacacggcaa





ctagctgcacagatgagagacaaattcccagctgatggagaccacaatctggactccctacctaccttggccatgagcgctg





ggacactgggatctttgcagcttcctggagtgctgacaaggcttcgagtagacttaatgtcctacttccgacatgtacagtggt





tgcgccgggcagctggtccttccctaaagactctggagccagagctgggtgccctgcaagcccgactggaacggctactt





cgtcgcttacagctcttgatgtctcgcctagccttgccccaggcagccccggaccaacctgcggtccctctgggccctcctg





cctcggcctggggaagcatccgggcagctcatgccatcctaggagggctgcacctgaccttggactgggccgtgcgggg





cctgctgttgttaaagactcggctgtaa; NM_008350.





(SEQ ID NO: 25)



LIF: NM_002309: atgaaggtcttggcggcaggagttgtgcccctgctgttggttctgcactggaaacatggggcggg






gagccccctccccatcacccctgtcaacgccacctgtgccatacgccacccatgtcacaacaacctcatgaaccagatcag





gagccaactggcacagctcaatggcagtgccaatgccctctttattctctattacacagcccagggggagccgttccccaac





aacctggacaagctatgtggccccaacgtgacggacttcccgcccttccacgccaacggcacggagaaggccaagctgg





tggagctgtaccgcatagtcgtgtaccttggcacctccctgggcaacatcacccgggaccagaagatcctcaaccccagtg





ccctcagcctccacagcaagctcaacgccaccgccgacatcctgcgaggcctccttagcaacgtgctgtgccgcctgtgca





gcaagtaccacgtgggccatgtggacgtgacctacggccctgacacctcgggtaaggatgtcttccagaagaagaagctg





ggctgtcaactcctggggaagtataagcagatcatcgccgtgttggcccaggccttctag; NM_008501; BB235045.





(SEQ ID NO: 26)



LIFR: NM_ 002310: atgatggatatttacgtatgtttgaaacgaccatcctggatggtggacaataaaagaatgaggac



tgcttcaaatttccagtggctgttatcaacatttattcttctatatctaatgaatcaagtaaatagccagaaaaagggggctcctca





tgatttgaagtgtgtaactaacaatttgcaagtgtggaactgttcttggaaagcaccctctggaacaggccgtggtactgattat





gaagtttgcattgaaaacaggtcccgttcttgttatcagttggagaaaaccagtattaaaattccagctctttcacatggtgattat





gaaataacaataaattctctacatgattttggaagttctacaagtaaattcacactaaatgaacaaaacgtttccttaattccagat





actccagagatcttgaatttgtctgctgatttctcaacctctacattatacctaaagtggaacgacaggggttcagtttttccacac





cgctcaaatgttatctgggaaattaaagttctacgtaaagagagtatggagctcgtaaaattagtgacccacaacacaactctg





aatggcaaagatacacttcatcactggagttgggcctcagatatgcccttggaatgtgccattcattttgtggaaattagatgct





acattgacaatcttcatttttctggtctcgaagagtggagtgactggagccctgtgaagaacatttcttggatacctgattctcag





actaaggtttttcctcaagataaagtgatacttgtaggctcagacataacattttgttgtgtgagtcaagaaaaagtgttatcagc





actgattggccatacaaactgccccttgatccatcttgatggggaaaatgttgcaatcaagattcgtaatatttctgtttctgcaa





gtagtggaacaaatgtagtttttacaaccgaagataacatatttggaaccgttatttttgctggatatccaccagatactcctcaa





caactgaattgtgagacacatgatttaaaagaaattatatgtagttggaatccaggaagggtgacagcgttggtgggcccac





gtgctacaagctacactttagttgaaagtttttcaggaaaatatgttagacttaaaagagctgaagcacctacaaacgaaagct





atcaattattatttcaaatgcttccaaatcaagaaatatataattttactttgaatgctcacaatccgctgggtcgatcacaatcaac





aattttagttaatataactgaaaaagtttatccccatactcctacttcattcaaagtgaaggatattaattcaacagctgttaaacttt





cttggcatttaccaggcaactttgcaaagattaatlttttatgtgaaattgaaattaagaaatctaattcagtacaagagcagcgg





aatgtcacaatcaaaggagtagaaaattcaagttatcttgttgctctggacaagttaaatccatacactctatatacttttcggatt





cgttgttctactgaaactttctggaaatggagcaaatggagcaataaaaaacaacatttaacaacagaagccagtccttcaaa





ggggcctgatacttggagagagtggagttctgatggaaaaaatttaataatctattggaagcctttacccattaatgaagctaat





ggaaaaatactttcctacaatgtatcgtgttcatcagatgaggaaacacagtccctttctgaaatccctgatcctcagcacaaag





cagagatacgacttgataagaatgactacatcatcagcgtagtggctaaaaattctgtgggctcatcaccaccttccaaaatag





cgagtatggaaattccaaatgatgatctcaaaatagaacaagttgttgggatgggaaaggggattctcctcacctggcattac





gaccccaacatgacttgcgactacgtcattaagtggtgtaactcgtctcggtcggaaccatgccttatggactggagaaaagt





tccctcaaacagcactgaaactgtaatagaatctgatgagtttcgaccaggtataagatataattttttcctgtatggatgcagaa





atcaaggatatcaattattacgctccatgattggatatatagaagaattggctcccattgttgcaccaaattttactgttgaggata





cttctgcagattcgatattagtaaaatgggaagacattcctgtggaagaacttagaggctttttaagaggatatttgttttactttg





gaaaaggagaaagagacacatctaagatgagggttttagaatcaggtcgttctgacataaaagttaagaatattactgacata





tcccagaagacactgagaattgctgatcttcaaggtaaaacaagttaccacctggtcttgcgagcctatacagatggtggagt





gggcccggagaagagtatgtatgtggtgacaaaggaaaattctgtgggattaattattgccattctcatcccagtggcagtgg





ctgtcattgttggagtggtgacaagtatccttlgctatcggaaacgagaatggattaaagaaaccttctaccctgatattccaaa





tccagaaaactgtaaagcattacagtttcaaaagagtgtctgtgagggaagcagtgctcttaaaacattggaaatgaatccttg





taccccaaataatgttgaggttctggaaactcgatcagcatttcctaaaatagaagatacagaaataatttccccagtagctga





gcgtcctgaagatcgctctgatgcagagcctgaaaaccatgtggttgtgtcctattgtccacccatcattgaggaagaaatac





caaacccagccgcagatgaagctggagggactgcacaggttatttacattgatgttcagtcgatgtatcagcctcaagcaaa





accagaagaagaacaagaaaatgaccctgtaggaggggcaggctataagccacagatgcacctccccattaattctactgt





ggaagatatagctgcagaagaggacttagataaaactgcgggttacagacctcaggccaatgtaaatacatggaatttagtg





tctccagactctcctagatccatagacagcaacagtgagattgtctcatttggaagtccatgctccattaatlcccgacaattttt





gattcctcctaaagatgaagactctcctaaatctaatggaggagggtggtcctttacaaacttttttcagaacaaaccaaacgat





taa; NM 013584; NM_031048.





(SEQ ID NO: 27)



STAT3: NM_003 150:



atggcccaatggaatcagctacagcagcttgacacacggtacctggagcagctccatcagctctacagtgacagcttccca





atggagctgcggcagtttctggccccttggattgagagtcaagattgggcatatgcggccagcaaagaatcacatgccactt





tggtgtttcataatctcctgggagagattgaccagcagtatagccgcttcctgcaagagtcgaatgttctctatcagcacaatct





acgaagaatcaagcagtttcttcagagcaggtatcttgagaagccaatggagattgcccggattgtggcccggtgcctgtgg





gaagaatcacgccttctacagactgcagccactgcggcccagcaagggggccaggccaaccaccccacagcagccgtg





gtgacggagaagcagcagatgctggagcagcaccttcaggatgtccggaagagagtgcaggatctagaacagaaaatga





aagtggtagagaatctccaggatgactttgatttcaactataaaaccctcaagagtcaaggagacatgcaagatctgaatgga





aacaaccagtcagtgaccaggcagaagatgcagcagctggaacagatgctcactgcgctggaccagatgcggagaagc





atcgtgagtgagctggcggggcttttgtcagcgatggagtacgtgcagaaaactctcacggacgaggagctggctgactg





gaagaggcggcaacagattgcctgcattggaggcccgcccaacatctgcctagatcggctagaaaactggataacgtcatt





agcagaatctcaacttcagacccgtcaacaaattaagaaactggaggagttgcagcaaaaagtttcctacaaaggggaccc





cattgtacagcaccggccgatgctggaggagagaatcgtggagctgtttagaaacttaatgaaaagtgcctttgtggtggag





cggcagccctgcatgcccatgcatcctgaccggcccctcgtcatcaagaccggcgtccagttcactactaaagtcaggttgc





tggtcaaattccctgagttgaattatcagcttaaaattaaagtgtgcattgacaaagactctggggacgttgcagctctcagag





gatcccggaaatttaacattctgggcacaaacacaaaagtgatgaacatggaagaatccaacaacggcagcctctctgcag





aattcaaacacttgaccctgagggagcagagatgtgggaatgggggccgagccaattgtgatgcttccctgattgtgactga





ggagctgcacctgatcacctttgagaccgaggtgtatcaccaaggcctcaagattgacctagagacccactccttgccagtt





gtggtgatctccaacatctgtcagatgccaaatgcctgggcgtccatcctgtggtacaacatgctgaccaacaatcccaaga





atgtaaacttttttaccaagcccccaattggaacctgggatcaagtggccgaggtcctgagctggcagttctcctccaccacc





aagcgaggactgagcatcgagcagctgactacactggcagagaaactcttgggacctggtgtgaattattcagggtgtcag





atcacatgggctaaattttgcaaagaaaacatggctggcaagggcttctccttctgggtctggctggacaatatcattgacctt





gtgaaaaagtacatcctggccctttggaacgaagggtacatcatgggctttatcagtaaggagcgggagcgggccatcttg





agcactaagcctccaggcacctlcctgctaagattcagtgaaagcagcaaagaaggaggcgtcactttcacttgggtggag





aaggacatcagcggtaagacccagatccagtccgtggaaccatacacaaagcagcagctgaacaacatgtcatttgctgaa





atcatcatgggctataagatcatggatgctaccaatatcctggtgtctccactggtctatctctatcctgacattcccaaggagg





aggcattcggaaagtattgtcggccagagagccaggagcatcctgaagctgacccaggcgctgccccatacctgaagacc





aagtttatctgtgtgacaccaacgacctgcagcaataccattgacctgccgatgtccccccgcactttagattcattgatgcagt





ttggaaataatggtgaaggtgctgaaccctcagcaggagggcagtttgagtccctcacctttgacatggagttgacctcgga





gtgcgctacctcccccatgtga; NMJ 13662; NM_139276.





(SEQ ID NO: 28)



NUMB: AF171938:



atgaacaaattacggcaaagttttaggagaaagaaggatgtttatgttccagaggccagtcgtccacatcagtggcagacag





atgaagaaggcgttcgcaccggaaaatgtagcttcccggttaagtaccttggccatgtagaagttgatgaatcaagaggaat





gcacatctgtgaagatgctgtaaaaagattgaaagctgaaaggaagttcttcaaaggcttctttggaaaaactggaaagaaa





gcagttaaagcagttctgtgggtctcagcagatggactcagagttgtggatgaaaaaactaaggacctcatagttgaccaga





cgatagagaaagtttctttctgtgccccagacaggaactttgatagagccttttcttacatatgccgtgatggcaccactcgtcg





ctggatctgtcactgcttcatggctgtcaaggacacaggtgaaaggttgagccatgcagtaggctgtgcttttgcagcctgttt





agagcgcaagcagaagcgggagaaggaatgtggagtgactgctacttttgatgctagtcggaccacttttacaagagaagg





atcattccgtgtcacaacagccactgaacaagcagaaagagaggagatcatgaaacaaatgcaagatgccaagaaagctg





aaacagataagatagtcgttggttcatcagttgcccctggcaacactgccccatccccatcctctcccacctctcctacttctga





tgccacgacctctctggagatgaacaatcctcatgccatcccacgccggcatgctccaattgaacagcttgctcgccaaggc





tctttccgaggttttcctgctcttagccagaagatgtcaccctttaaacgccaactatccctacgcatcaatgagttgccttccac





tatgcagaggaagactgatttccccattaaaaatgcagtgccagaagtagaaggggaggcagagagcatcagctccctgtg





ctcacagatcaccaatgccttcagcacacctgaggaccccttctcatctgctccgatgaccaaaccagtgacagtggtggca





ccacaatctcctaccttccaagctaatggcactgactcagccttccatgtgcttgctaagccagcccatactgctctagcaccc





gtagcaatgcctgtgcgtgaaaccaacccttgggcccatgcccctgatgctgctaacaaggaaattgcagccacatgttcgg





ggaccgagtggggtcaatcttctggtgctgcctctccaggtctcttccaggccggtcatagacgtactccctctgaggccga





ccgatggttagaagaggtgtctaagagcgtccgggctcagcagccccaggcctcagctgctcctctgcagccagttctcca





gcctcctccacccactgccatctcccagccagcatcacctttccaagggaatgcattcctcacctctcagcctgtgccagtgg





gtgtggtcccagccctgcaaccagcctttgtccctgcccagtcctatcctgtggccaatggaatgccctatccagcccctaat





gtgcctgtggtgggcatcactccctcccagatggtggccaacgtatttggcactgcaggccaccctcaggctgcccatcccc





atcagtcacccagcctggtcaggcagcagacattccctcactacgaggcaagcagtgctaccaccagtcccttctttaagcc





tcctgctcagcacctcaacggttctgcagctttcaatggtgtagatgatggcaggttggcctcagcagacaggcatacagag





gttcctacaggcacctgcccagtggatccttttgaagcccagtgggctgcattagaaaataagtccaagcagcgtactaatcc





ctcccctaccaaccctttctccagtgacttacagaagacgtttgaaattgaactttaa;





(SEQ ID NO: 29)



AF171939: atgaacaaattacggcaaagttttaggagaaagaaggatgtttatgttccagaggccagtcgtccacatcag






tggcagacagatgaagaaggcgttcgcaccggaaaatgtagcttcccggttaagtaccttggccatgtagaagttgatgaat





caagaggaatgcacatctgtgaagatgctgtaaaaagattgaaagctgaaaggaagttcttcaaaggcttctttggaaaaact





ggaaagaaagcagttaaagcagttctgtgggtctcagcagatggactcagagttgtggatgaaaaaactaaggacctcata





gttgaccagacgatagagaaagtttctttctgtgccccagacaggaactttgatagagccttttcttacatatgccgtgatggca





ccactcgtcgctggatctgtcactgcttcatggctgtcaaggacacaggtgaaaggttgagccatgcagtaggctgtgctttt





gcagcctgtttagagcgcaagcagaagcgggagaaggaatgtggagtgactgctacttttgatgctagtcggaccactttta





caagagaaggatcattccgtgtcacaacagccactgaacaagcagaaagagaggagatcatgaaacaaatgcaagatgc





caagaaagctgaaacagataagatagtcgttggttcatcagttgcccctggcaacactgccccatccccatcctctcccacct





ctcctacttctgatgccacgacctctctggagatgaacaatcctcatgccatcccacgccggcatgctccaattgaacagcttg





ctcgccaaggctctttccgaggttttcctgctcttagccagaagatgtcaccctttaaacgccaactatccctacgcatcaatga





gttgccttccactatgcagaggaagactgatttccccattaaaaatgcagtgccagaagtagaaggggaggcagagagcat





cagctccctgtgctcacagatcaccaatgccttcagcacacctgaggaccccttctcatctgctccgatgaccaaaccagtga





cagtggtggcaccacaatctcctaccttccaagggaccgagtggggtcaatcttctggtgctgcctctccaggtctcttccag





gccggtcatagacgtactccctctgaggccgaccgatggttagaagaggtgtctaagagcgtccgggctcagcagcccca





ggcctcagctgctcctctgcagccagttctccagcctcctccacccactgccatctcccagccagcatcacctttccaaggga





atgcattcctcacctctcagcctgtgccagtgggtgtggtcccagccctgcaaccagcctttgtccctgcccagtcctatcctg





tggccaatggaatgccctatccagcccctaatgtgcctgtggtgggcatcactccctcccagatggtggccaacgtatttggc





actgcaggccaccctcaggctgcccatccccatcagtcacccagcctggtcaggcagcagacattccctcactacgaggc





aagcagtgctaccaccagtcccttctttaagcctcctgctcagcacctcaacggttctgcagctttcaatggtgtagatgatgg





caggttggcctcagcagacaggcatacagaggttcctacaggcacctgcccagtggatccttttgaagcccagtgggctgc





attagaaaataagtccaagcagcgtactaatccctcccctaccaaccctttctccagtgacttacagaagacgtttgaaattga





actttaa;





(SEQ ID NO: 30)



AF171940:



atgaacaaattacggcaaagttttaggagaaagaaggatgtttatgttccagaggccagtcgtccacatcagtggcagacag





atgaagaaggcgttcgcaccggaaaatgtagcttcccggttaagtaccttggccatgtagaagttgatgaatcaagaggaat





gcacatctgtgaagatgctgtaaaaagattgaaagctactggaaagaaagcagttaaagcagttctgtgggtctcagcagat





ggactcagagttgtggatgaaaaaactaaggacctcatagttgaccagacgatagagaaagtttctttctgtgccccagaca





ggaactttgatagagccttttcttacatatgccgtgatggcaccactcgtcgctggatctgtcactgcttcatggctgtcaagga





cacaggtgaaaggttgagccatgcagtaggctgtgcttttgcagcctgtttagagcgcaagcagaagcgggagaaggaat





gtggagtgactgctacttttgatgctagtcggaccacttttacaagagaaggatcattccgtgtcacaacagccactgaacaa





gcagaaagagaggagatcatgaaacaaatgcaagatgccaagaaagctgaaacagataagatagtcgttggttcatcagtt





gcccctggcaacactgccccatccccatcctctcccacctctcctacttctgatgccacgacctctctggagatgaacaatcct





catgccatcccacgccggcatgctccaattgaacagcttgctcgccaaggctctttccgaggttttcctgctcttagccagaag





atgtcaccctttaaacgccaactatccctacgcatcaatgagttgccttccactatgcagaggaagactgatttccccattaaaa





atgcagtgccagaagtagaaggggaggcagagagcatcagctccctgtgctcacagatcaccaatgccttcagcacacct





gaggaccccttctcatctgctccgatgaccaaaccagtgacagtggtggcaccacaatctcctaccttccaagctaatggca





ctgactcagccttccatgtgcttgctaagccagcccatactgctctagcacccgtagcaatgcctgtgcgtgaaaccaaccctt





gggcccatgcccctgatgctgctaacaaggaaattgcagccacatgttcggggaccgagtggggtcaatcttctggtgctg





cctctccaggtctcttccaggccggtcatagacgtactccctctgaggccgaccgatggttagaagaggtgtctaagagcgt





ccgggctcagcagccccaggcctcagctgctcctctgcagccagttctccagcctcctccacccactgccatctcccagcc





agcatcacctttccaagggaatgcattcctcacctctcagcctgtgccagtgggtgtggtcccagccctgcaaccagcctttg





tccctgcccagtcctatcctgtggccaatggaatgccctatccagcccctaatgtgcctgtggtgggcatcactccctcccag





atggtggccaacgtatttggcactgcaggccaccctcaggctgcccatccccatcagtcacccagcctggtcaggcagcag





acattccctcactacgaggcaagcagtgctaccaccagtcccttctltaagcctcctgctcagcacctcaacggttctgcagct





ttcaatggtgtagatgatggcaggttggcctcagcagacaggcatacagaggtlcctacaggcacctgcccagtggatcctt





ttgaagcccagtgggctgcattagaaaataagtccaagcagcgtactaatccctcccctaccaaccctttctccagtgacttac





agaagacgtttgaaattgaactttaa;





(SEQ ID NO: 31)



AF171941:



atgaacaaattacggcaaagttttaggagaaagaaggatgtttatgttccagaggccagtcgtccacatcagtggcagacag





atgaagaaggcgttcgcaccggaaaatgtagcttcccggttaagtaccttggccatgtagaagttgatgaatcaagaggaat





gcacatctgtgaagatgctgtaaaaagattgaaagctactggaaagaaagcagttaaagcagttctgtgggtctcagcagat





ggactcagagttgtggatgaaaaaactaaggacctcatagttgaccagacgatagagaaagtttctttctgtgccccagaca





ggaactttgatagagccttttcttacatatgccgtgatggcaccactcgtcgctggatctgtcactgcttcatggctgtcaagga





cacaggtgaaaggttgagccatgcagtaggctgtgcttttgcagcctgtttagagcgcaagcagaagcgggagaaggaat





gtggagtgactgctacttttgatgctagtcggaccacttttacaagagaaggatcattccgtgtcacaacagccactgaacaa





gcagaaagagaggagatcatgaaacaaatgcaagatgccaagaaagctgaaacagataagatagtcgttggttcatcagtt





gcccctggcaacactgccccatccccatcctctcccacctctcctacttctgatgccacgacctctctggagatgaacaatcct





catgccatcccacgccggcatgctccaattgaacagcttgctcgccaaggctctttccgaggttttcctgctcttagccagaag





atgtcaccctttaaacgccaactatccctacgcatcaatgagttgccttccactatgcagaggaagactgatttccccattaaaa





atgcagtgccagaagtagaaggggaggcagagagcatcagctccctgtgctcacagatcaccaatgccttcagcacacct





gaggaccccttctcatctgctccgatgaccaaaccagtgacagtggtggcaccacaatctcctaccttccaagggaccgagt





ggggtcaatcttctggtgctgcctctccaggtctcttccaggccggtcatagacgtactccctctgaggccgaccgatggtta





gaagaggtgtctaagagcgtccgggctcagcagccccaggcctcagctgctcctctgcagccagttctccagcctcctcca





cccactgccatctcccagccagcatcacctttccaagggaatgcattcctcacctctcagcctgtgccagtgggtgtggtccc





agccctgcaaccagcctttgtccctgcccagtcctatcctgtggccaatggaatgccctatccagcccctaatgtgcctgtggt





gggcatcactccctcccagatggtggccaacgtatttggcactgcaggccaccctcaggctgcccatccccatcagtcacc





cagcctggtcaggcagcagacattccctcactacgaggcaagcagtgctaccaccagtcccttctttaagcctcctgctcag





cacctcaacggttctgcagctttcaatggtgtagatgatggcaggttggcctcagcagacaggcatacagaggttcctacag





gcacctgcccagtggatccttttgaagcccagtgggctgcattagaaaataagtccaagcagcgtactaatccctcccctacc





aaccctttctccagtgacttacagaagacgtttgaaattgaactttaa; NMJ 10949; NMJ 33287;





BB483123; NM 010950; NM_010949; NM 004756; DQ022744.





(SEQ ID NO: 32)



Numblike: NM 00475:



atgtcccgcagcgcggcggccagcggcggaccccggaggcctgagcggcacctgcccccagccccctgtggggcccc





ggggcccccagaaacctgcaggacggagccagacggggcgggcaccatgaacaagttacggcagagcctgcggcgg





aggaagccagcctacgtgcccgaggcgtcgcgcccgcaccagtggcaggcagacgaggacgcggtgcggaagggca





cgtgcagcttcccggtcaggtacctgggtcacgtggaggtagaggagtcccggggaatgcacgtgtgtgaagatgcggtg





aagaagctgaaggcgatgggccgaaagtccgtgaagtctgtcctgtgggtgtcagccgatgggctccgagtggtggacga





caaaaccaaggatcttctggtcgaccagaccatcgaaaaggtctccttttgtgctcctgaccgcaacctggacaaggctttct





cctatatctgtcgtgacgggactacccgccgctggatctgccactgttttctggcactgaaggactccggcgagaggctgag





ccacgctgtgggctgtgcttttgccgcctgcctggagcgaaaacagcgacgggagaaggaatgtggggtcacggccgcc





ttcgatgccagccgcaccagcttcgcccgcgagggctccttccgcctgtctgggggtgggcggcctgctgagcgagagg





ccccggacaagaagaaagcagaggcagcagctgcccccactgtggctcctggccctgcccagcctgggcacgtgtcccc





gacaccagccaccacatcccctggtgagaagggtgaggcaggcacccctgtggctgcaggcaccactgcggccgccat





cccccggcgccatgcacccctggagcagctggttcgccagggctccttccgtgggttcccagcactcagccagaagaact





cgcctttcaaacggcagctgagcctacggctgaatgagctgccatccacgctgcagcgccgcactgacttccaggtgaag





ggcacagtgcctgagatggagcctcctggtgccggcgacagtgacagcatcaacgctctgtgcacacagatcagttcatct





tttgccagtgctggagcgccagcaccagggccaccacctgccacaacagggacttctgcctggggtgagccctccgtgcc





ccctgcagctgccttccagcctgggcacaagcggacaccttcagaggctgagcgatggctggaggaggtgtcacaggtg





gccaaggcccagcagcagcagcagcagcaacagcaacagcagcagcagcagcagcagcaacagcagcaagcagcct





cagtggccccagtgcccaccatgcctcctgccctgcagcctltccccgcccccgtggggccctttgacgctgcacctgccc





aagtggccgtgttcctgccacccccacacatgcagcccccttttgtgcccgcctacccgggcttgggctacccaccgatgcc





ccgggtgcccgtggtgggcatcacaccctcacagatggtggcaaacgccttctgctcagccgcccagctccagcctcagc





ctgccactctgcttgggaaagctggggccttcccgccccctgccatacccagtgcccctgggagccaggcccgccctcgc





cccaatggggccccctggccccctgagccagcgcctgccccagctccagagttggacccctttgaggcccagtgggcgg





cattagaaggcaaagccactgtagagaaaccctccaaccccttttctggcgacctgcaaaagacattcgagattgaactgta





g; U96441; NM O 10950; DQ022744.





(SEQ ID NO: 33)



NANOG: NM 024865:



atgagtgtggatccagcttgtccccaaagcttgccttgctttgaagcatccgactgtaaagaatcttcacctatgcctgtgatttg





tgggcctgaagaaaactatccatccttgcaaatgtcttctgctgagatgcctcacacggagactgtctctcctcttccttcctcc





atggatctgcttattcaggacagccctgattcttccaccagtcccaaaggcaaacaacccacttctgcagagaagagtgtcgc





aaaaaaggaagacaaggtcccggtcaagaaacagaagaccagaactgtgttctcttccacccagctgtgtgtactcaatgat





agatttcagagacagaaatacctcagcctccagcagatgcaagaactctccaacatcctgaacctcagctacaaacaggtga





agacctggttccagaaccagagaatgaaatctaagaggtggcagaaaaacaactggccgaagaatagcaatggtgtgacg





cagaaggcctcagcacctacctaccccagcctttactcttcctaccaccagggatgcctggtgaacccgactgggaaccttc





caatgtggagcaaccagacctggaacaattcaacctggagcaaccagacccagaacatccagtcctggagcaaccactcc





tggaacactcagacctggtgcacccaatcctggaacaatcaggcctggaacagtcccttctataactgtggagaggaatctc





tgcagtcctgcatgcagttccagccaaattctcctgccagtgacttggaggctgccttggaagctgctggggaaggccttaat





gtaatacagcagaccactaggtattttagtactccacaaaccatggatttattcctaaactactccatgaacatgcaacctgaag





acgtgtga; BC 137873; NM 028016; NM_013633; BC160187.





(SEQ ID NO: 34)



OncostatinM(OSM): NM_020530: atgggggtactgctcacacagaggacgctgctcagtctggtccttgcact






cctgtttccaagcatggcgagcatggcggctataggcagctgctcgaaagagtaccgcgtgctccttggccagctccagaa





gcagacagatctcatgcaggacaccagcagactcctggacccctatatacgtatccaaggcctggatgttcctaaactgaga





gagcactgcagggagcgccccggggccttccccagtgaggagaccctgagggggctgggcaggcggggcttcctgca





gaccctcaatgccacactgggctgcgtcctgcacagactggccgacttagagcagcgcctccccaaggcccaggatttgg





agaggtctgggctgaacatcgaggacttggagaagctgcagatggcgaggccgaacatcctcgggctcaggaacaacat





ctactgcatggcccagctgctggacaactcagacacggctgagcccacgaaggctggccggggggcctctcagccgccc





acccccacccctgcctcggatgcttttcagcgcaagctggagggctgcaggttcctgcatggctaccatcgcttcatgcactc





agtggggcgggtcttcagcaagtggggggagagcccgaaccggagccggagacacagcccccaccaggccctgagg





aagggggtgcgcaggaccagaccctccaggaaaggcaagagactcatgaccaggggacagctgccccggtag;





NM_001013365; NP_065391; NP_001013383.





(SEQ ID NO: 35)



OSMR: NM_003999: atggctctatttgcagtctttcagacaacattcttcttaacattgctgtccttgaggacttaccag






agtgaagtcttggctgaacgtttaccattgactcctgtatcacttaaagtttccaccaattctacgcgtcagagtttgcacttacaa





tggactgtccacaaccttccttatcatcaggaattgaaaatggtatttcagatccagatcagtaggattgaaacatccaatgtca





tctgggtggggaattacagcaccactgtgaagtggaaccaggttctgcattggagctgggaatctgagctccctttggaatgt





gccacacactttgtaagaataaagagtttggtggacgatgccaagttccctgagccaaatttctggagcaactggagttcctg





ggaggaagtcagtgtacaagattctactggacaggatatattgttcgttttccctaaagataagctggtggaagaaggcacca





atgttaccatttgttacgtttctaggaacattcaaaataatgtatcctgttatttggaagggaaacagattcatggagaacaacttg





atccacatgtaactgcattcaacttgaatagtgtgcctttcattaggaataaagggacaaatatctattgtgaggcaagtcaagg





aaatgtcagtgaaggcatgaaaggcatcgttctttttgtctcaaaagtacttgaggagcccaaggacttttcttgtgaaaccga





ggacttcaagactttgcactgtacttgggatcctgggacggacactgccttggggtggtctaaacaaccttcccaaagctaca





ctttatttgaatcattttctggggaaaagaaactttgtacacacaaaaactggtgtaattggcaaataactcaagactcacaaga





aacctataacttcacactcatagctgaaaattacttaaggaagagaagtgtcaatatcctttttaacctgactcatcgagtttattt





aatgaatccttttagtgtcaactttgaaaatgtaaatgccacaaatgccatcatgacctggaaggtgcactccataaggaataat





ttcacatatttgtgtcagattgaactccatggtgaaggaaaaatgatgcaatacaatgtttccatcaaggtgaacggtgagtact





tcttaagtgaactggaacctgccacagagtacatggcgcgagtacggtgtgctgatgccagccacttctggaaatggagtga





atggagtggtcagaacttcaccacacttgaagctgctccctcagaggcccctgatgtctggagaattgtgagcttggagcca





ggaaatcatactgtgaccttattctggaagccattatcaaaactgcatgccaatggaaagatcctgttctataatgtagttgtaga





aaacctagacaaaccatccagttcagagctccattccattccagcaccagccaacagcacaaaactaatccttgacaggtgtt





cctaccaaatctgcgtcatagccaacaacagtgtgggtgcttctcctgcttctgtaatagtcatctctgcagaccccgaaaaca





aagaggttgaggaagaaagaattgcaggcacagagggtggattctctctgtcttggaaaccccaacctggagatgttatag





gctatgttgtggactgglgtgaccatacccaggatgtgctcggtgatttccagtggaagaatgtaggtcccaataccacaagc





acagtcattagcacagatgcttttaggccaggagttcgatatgacttcagaatttatgggttatctacaaaaaggattgcttgttt





attagagaaaaaaacaggatactctcaggaacttgctccttcagacaaccctcacgtgctggtggatacattgacatcccact





ccttcactctgagttggaaagattactctactgaatctcaacctggttttatacaagggtaccatgtctatctgaaatccaaggcg





aggcagtgccacccacgatttgaaaaggcagttctttcagatggttcagaatgttgcaaatacaaaattgacaacccggaag





aaaaggcattgattgtggacaacctaaagccagaatccttctatgagtttttcatcactccattcactagtgctggtgaaggccc





cagtgctacgttcacgaaggtcacgactccggatgaacactcctcgatgctgattcatatcctactgcccatggttttctgcgtc





ttgctcatcatggtcatgtgctacttgaaaagtcagtggatcaaggagacctgttatcctgacatccctgacccttacaagagc





agcatcctgtcattaataaaattcaaggagaaccctcacctaataataatgaatgtcagtgactgtatcccagatgctattgaag





ttgtaagcaagccagaagggacaaagatacagttcctaggcactaggaagtcactcacagaaaccgagttgactaagccta





actacctttatctccttccaacagaaaagaatcactctggccctggcccctgcatctgttttgagaacttgacctataaccaggc





agcttctgactctggctcttgtggccatgttccagtatccccaaaagccccaagtatgctgggactaatgacctcacctgaaaa





tgtactaaaggcactagaaaaaaactacatgaactccctgggagaaatcccagctggagaaacaagtttgaattatgtgtccc





agttggcttcacccatgtttggagacaaggacagtctcccaacaaacccagtagaggcaccacactgttcagagtataaaat





gcaaatggcagtctccctgcgtcttgccttgcctcccccgaccgagaatagcagcctctcctcaattacccttttagatccagg





tgaacactactgctaa; NP_003990.1.





(SEQ ID NO: 36)



OCT3/4(POU5F1): NIVI_203289: atgcacttctacagactattccttggggccacacgtaggttcttgaatcccg






aatggaaaggggagattgataactggtgtgtttatgttcttacaagtcttctgccttttaaaatccagtcccaggacatcaaagct





ctgcagaaagaactcgagcaatttgccaagctcctgaagcagaagaggatcaccctgggatatacacaggccgatgtggg





gctcaccctgggggttctatttgggaaggtattcagccaaacgaccatctgccgctltgaggctctgcagcttagcttcaaga





acatgtgtaagctgcggcccttgctgcagaagtgggtggaggaagctgacaacaatgaaaatcttcaggagatatgcaaag





cagaaaccctcgtgcaggcccgaaagagaaagcgaaccagtatcgagaaccgagtgagaggcaacctggagaatttgtt





cctgcagtgcccgaaacccacactgcagcagatcagccacatcgcccagcagcttgggctcgagaaggatgtggtccga





gtgtggttctgtaaccggcgccagaagggcaagcgatcaagcagcgactatgcacaacgagaggattttgaggctgctgg





gtctcctttctcagggggaccagtgtcctttcctctggccccagggccccattttggtaccccaggctatgggagccctcactt





cactgcactgtactcctcggtccctttccctgagggggaagcctttccccctgtctccgtcaccactctgggctctcccatgca





ttcaaactga;





(SEQ ID NO: 37)



NM_002701: atggcgggacacctggcttcggatttcgccttctcgccccctccaggtggtggaggtgatgggccagg






ggggccggagccgggctgggttgatcctcggacctggctaagcttccaaggccctcctggagggccaggaatcgggcc





gggggttgggccaggctctgaggtgtgggggattcccccatgccccccgccgtatgagttctgtggggggatggcgtact





gtgggccccaggttggagtggggctagtgccccaaggcggcttggagacctctcagcctgagggcgaagcaggagtcg





gggtggagagcaactccgatggggcctccccggagccctgcaccgtcacccctggtgccgtgaagctggagaaggaga





agctggagcaaaacccggaggagtcccaggacatcaaagctctgcagaaagaactcgagcaatttgccaagctcctgaag





cagaagaggatcaccctgggatatacacaggccgatgtggggctcaccctgggggttctatttgggaaggtattcagccaa





acgaccatctgccgctttgaggctctgcagcttagcttcaagaacatgtgtaagctgcggcccttgctgcagaagtgggtgg





aggaagctgacaacaatgaaaatcttcaggagatatgcaaagcagaaaccctcgtgcaggcccgaaagagaaagcgaac





cagtatcgagaaccgagtgagaggcaacctggagaatttgttcctgcagtgcccgaaacccacactgcagcagatcagcc





acatcgcccagcagcttgggctcgagaaggatgtggtccgagtgtggttctgtaaccggcgccagaagggcaagcgatca





agcagcgactatgcacaacgagaggattttgaggctgctgggtctcctttctcagggggaccagtgtcctttcctctggcccc





agggccccattttggtaccccaggctatgggagccctcacttcactgcactgtactcctcggtccctttccctgagggggaag





cctttccccctgtctccgtcaccactctgggctctcccatgcattcaaactga; NM 013633; EF032593; NM 





131112; NM001114955.





(SEQ ID NO: 38)



SOX2: NM_003106: tgtacaacatgatggagacggagctgaagccgccgggcccgcagcaaacttcggggggc






ggcggcggcaactccaccgcggcggcggccggcggcaaccagaaaaacagcccggaccgcgtcaagcggcccatga





atgccttcatggtgtggtcccgcgggcagcggcgcaagatggcccaggagaaccccaagatgcacaactcggagatcag





caagcgcctgggcgccgagtggaaacttttgtcggagacggagaagcggccgttcatcgacgaggctaagcggctgcga





gcgctgcacatgaaggagcacccggattataaataccggccccggcggaaaaccaagacgctcatgaagaaggataagt





acacgctgcccggcgggctgctggcccccggcggcaatagcatggcgagcggggtcggggtgggcgccggcctggg





cgcgggcgtgaaccagcgcatggacagttacgcgcacatgaacggctggagcaacggcagctacagcatgatgcagga





ccagctgggctacccgcagcacccgggcctcaatgcgcacggcgcagcgcagatgcagcccatgcaccgctacgacgt





gagcgccctgcagtacaactccatgaccagctcgcagacctacatgaacggctcgcccacctacagcatgtcctactcgca





gcagggcacccctggcatggctcttggctccatgggttcggtggtcaagtccgaggccagctccagcccccctgtggttac





ctcttcctcccactccagggcgccctgccaggccggggacctccgggacatgatcagcatgtatctccccggcgccgagg





tgccggaacccgccgcccccagcagacttcacatgtcccagcactaccagagcggcccggtgcccggcacggccattaa





cggcacactgcccctctcacacatgtga; NM 011443; NM 00110918.





(SEQ ID NO: 39)



FGF4: NM_002007:  atgtcggggcccgggacggccgcggtagcgctgctcccggcggtcctgctggccttgctgg






cgccctgggcgggccgagggggcgccgccgcacccactgcacccaacggcacgctggaggccgagctggagcgccg





ctgggagagcctggtggcgctctcgttggcgcgcctgccggtggcagcgcagcccaaggaggcggccgtccagagcg





gcgccggcgactacctgctgggcatcaagcggctgcggcggctctactgcaacgtgggcatcggcttccacctccaggc





gctccccgacggccgcatcggcggcgcgcacgcggacacccgcgacagcctgctggagctctcgcccgtggagcggg





gcgtggtgagcatcttcggcgtggccagccggttcttcgtggccatgagcagcaagggcaagctctatggctcgcccttctt





caccgatgagtgcacgttcaaggagattctccttcccaacaactacaacgcctacgagtcctacaagtaccccggcatgttca





tcgccctgagcaagaatgggaagaccaagaaggggaaccgagtgtcgcccaccatgaaggtcacccacttcctccccag





gctgtga; NM 010202; NM 004380; NM 001025432; NM 004379.2;





NP 004370; NM 134442; NP 604391.





(SEQ ID NO: 40)



Gata2: NM_032638: atggaggtggcgccggagcagccgcgctggatggcgcacccggccgtgctgaatgcgca






gcaccccgactcacaccacccgggcctggcgcacaactacatggaacccgcgcagctgctgcctccagacgaggtgga





cgtcttcttcaatcacctcgactcgcagggcaacccctactatgccaaccccgctcacgcgcgggcgcgcgtctcctacagc





cccgcgcacgcccgcctgaccggaggccagatgtgccgcccacacttgttgcacagcccgggtttgccctggctggacg





ggggcaaagcagccctctctgccgctgcggcccaccaccacaacccctggaccgtgagccccttctccaagacgccact





gcacccctcagctgctggaggccctggaggcccactctctgtgtacccaggggctgggggtgggagcgggggaggcag





cgggagctcagtggcctccctcacccctacagcagcccactctggctcccaccttttcggcttcccacccacgccacccaaa





gaagtgtctcctgaccctagcaccacgggggctgcgtctccagcctcatcttccgcggggggtagtgcagcccgaggaga





ggacaaggacggcgtcaagtaccaggtgtcactgacggagagcatgaagatggaaagtggcagtcccctgcgcccagg





cctagctactatgggcacccagcctgctacacaccaccccatccccacctacccctcctatgtgccggcggctgcccacga





ctacagcagcggactcttccaccccggaggcttcctggggggaccggcctccagcttcacccctaagcagcgcagcaag





gctcgttcctgttcagaaggccgggagtgtgtcaactgtggggccacagccacccctctctggcggcgggacggcaccgg





ccactacctgtgcaatgcctgtggcctctaccacaagatgaatgggcagaaccgaccactcatcaagcccaagcgaagact





gtcggccgccagaagagccggcacctgttgtgcaaattgtcagacgacaaccaccaccttatggcgccgaaacgccaacg





gggaccctgtctgcaacgcctgtggcctctactacaagctgcacaatgttaacaggccactgaccatgaagaaggaaggg





atccagactcggaaccggaagatgtccaacaagtccaagaagagcaagaaaggggcggagtgcttcgaggagctgtcaa





agtgcatgcaggagaagtcatcccccttcagtgcagctgccctggctggacacatggcacctgtgggccacctcccgccct





tcagccactccggacacatcctgcccactccgacgcccatccacccctcctccagcctctccttcggccacccccacccgtc





cagcatggtgaccgccatgggctag; AB 102789; AB 102790; NM 008090.





(SEQ ID NO: 41)



Gata3: NM 001002295:



atggaggtgacggcggaccagccgcgctgggtgagccaccaccaccccgccgtgctcaacgggcagcacccggacac





gcaccacccgggcctcagccactcctacatggacgcggcgcagtacccgctgccggaggaggtggatgtgctttttaacat





cgacggtcaaggcaaccacgtcccgccctactacggaaactcggtcagggccacggtgcagaggtaccctccgacccac





cacgggagccaggtgtgccgcccgcctctgcttcatggatccctaccctggctggacggcggcaaagccctgggcagcc





accacaccgcctccccctggaatctcagccccttctccaagacgtccatccaccacggctccccggggcccctctccgtcta





ccccccggcctcgtcctcctccttgtcggggggccacgccagcccgcacctcttcaccttcccgcccaccccgccgaagg





acgtctccccggacccatcgctgtccaccccaggctcggccggctcggcccggcaggacgagaaagagtgcctcaagta





ccaggtgcccctgcccgacagcatgaagctggagtcgtcccactcccgtggcagcatgaccgccctgggtggagcctcct





cgtcgacccaccaccccatcaccacctacccgccctacgtgcccgagtacagctccggactcttcccccccagcagcctgc





tgggcggctcccccaccggcttcggatgcaagtccaggcccaaggcccggtccagcacagaaggcagggagtgtgtga





actgtggggcaacctcgaccccactgtggcggcgagatggcacgggacactacctgtgcaacgcctgcgggctctatcac





aaaatgaacggacagaaccggcccctcattaagcccaagcgaaggctgtctgcagccaggagagcagggacgtcctgtg





cgaactgtcagaccaccacaaccacactctggaggaggaatgccaatggggaccctgtctgcaatgcctgtgggctctact





acaagcttcacaatattaacagacccctgactatgaagaaggaaggcatccagaccagaaaccgaaaaatgtctagcaaat





ccaaaaagtgcaaaaaagtgcatgactcactggaggacttccccaagaacagctcgtttaacccggccgccctctccagac





acatgtcctccctgagccacatctcgcccttcagccactccagccacatgctgaccacgcccacgccgatgcacccgccat





ccagcctgtcctttggaccacaccacccctccagcatggtcaccgccatgggttag; NM 





008091; AM392688; AM392571; NM 001002295; NM 002051.





(SEQ ID NO: 42)



Gata4: BC101580:



atgtatcagagcttggccatggccgccaaccacgggccgccccccggtgcctacgaggcgggcggccccggcgccttc





atgcacggcgcgggcgccgcgtcctcgccagtctacgtgcccacaccgcgggtgccctcctccgtgctgggcctgtccta





cctccagggcggaggcgcgggctctgcgtccggaggcgcctcgggcggcagctccggtggggccgcgtctggtgcgg





ggcccgggacccagcagggcagcccgggatggagccaggcgggagccgacggagccgcttacaccccgccgccggt





gtcgccgcgcttctccttcccggggaccaccgggtccctggcggccgccgccgccgctgccgcggcccgggaagctgc





ggcctacagcagtggcggcggagcggcgggtgcgggcctggcgggccgcgagcagtacgggcgcgccggcttcgcg





ggctcctactccagcccctacccggcttacatggccgacgtgggcgcgtcctgggccgcagccgccgccgcctccgccg





gccccttcgacagcccggtcctgcacagcctgcccggccgggccaacccggccgcccgacaccccaatctcgatatgttt





gacgacttctcagaaggcagagagtgtgtcaactgtggggctatgtccaccccgctctggaggcgagatgggacgggtca





ctatctgtgcaacgcctgcggcctctaccacaagatgaacggcatcaaccggccgctcatcaagcctcagcgccggctgtc





cgcctcccgccgagtgggcctctcctgtgccaactgccagaccaccaccaccacgctgtggcgccgcaatgcggagggc





gagcctgtgtgcaatgcctgcggcctctacatgaagctccacggggtccccaggcctcttgcaatgcggaaagaggggat





ccaaaccagaaaacggaagcccaagaacctgaataaatctaagacaccagcagctccttcaggcagtgagagccttcctc





ccgccagcggtgcttccagcaactccagcaacgccaccaccagcagcagcgaggagatgcgtcccatcaagacggagc





ctggcctgtcatctcactacgggcacagcagctccgtgtcccagacgttctcagtcagtgcgatgtctggccatgggccctc





catccaccctgtcctctcggccctgaagctctccccacaaggctatgcgtctcccgtcagccagtctccacagaccagctcc





aagcaggactcttggaacagcctggtcttggccgacagtcacggggacataatcactgcgtaa;





AF179424; DQ666280.





(SEQ ID NO: 43)



Gata5: BC117356:



atgtaccagagcctggcgctggccgcgagcccccgccaggccgcctacgccgactcgggctccttcctgcacgctccgg





gcgccggctctccgatgtttgtgccgccggcgcgcgtcccctcgatgctgtcctacctgtccgggtgtgagccgagcccgc





agccccccgagctcgctgcgcgccccggctgggcgcagacagccaccgcggattcgtcggccttcggcccgggcagtc





cgcaccccccagccgcgcacccgcccggggccaccgccttccctttcgcgcacagcccctcggggcccggcagcggc





ggcagcgcggggggccgagacggcagtgcctaccagggcgcgctgttgcctcgagaacagttcgcggccccgcttggg





cggccggtggggacctcgtactccgccacctacccggcctacgtgagccccgacgtggcccagtcctggactgccgggc





ccttcgatggcagcgtcctgcacggcctcccaggccgcaggcccaccttcgtgtccgacttcttggaggagttcccgggtg





agggtcgtgagtgtgtcaactgcggggccctgtccacaccgctgtggcgccgagatggcaccggccactacctgtgcaat





gcctgcggcctctaccacaagatgaatggcgtcaaccggccgctcgttcggcctcagaagcgcctgtcctcgtcccgccg





cgccggcctctgctgcaccaactgccacacgaccaacaccacgctgtggcggcggaactcggagggggagcccgtgtg





caatgcctgcggcctctacatgaagctgcacggggtgccgcggcctctggctatgaagaaagaaagcatccagacacgg





aagcggaagccaaagaccatcgccaaggccaggggctcctcaggatccacaaggaatgcctcggcctccccatctgctgt





cgccagcactgacagctcagcagccacttccaaagccaagcccagcctggcgtccccagtgtgccctgggcccagcatg





gccccccaggcctctggccaggaggatgactctcttgcccccggccacttggagttcaagttcgagcctgaggactttgcct





tcccctccacggccccgagcccccaggctggcctcaggggggctctgcgccaagaggcctggtgtgcgctggccttggc





ctag; BC 105654.





(SEQ ID NO: 44)



Gata6: NM_005257: atggccttgactgacggcggctggtgcttgccgaagcgcttcggggccgcgggtgcggacg






ccagcgactccagagcctttccagcgcgggagccctccacgccgccttcccccatctcttcctcgtcctcctcctgctcccg





gggcggagagcggggccccggcggcgccagcaactgcgggacgcctcagctcgacacggaggcggcggccggacc





cccggcccgctcgctgctgctcagttcctacgcttcgcatcccttcggggctccccacggaccttcggcgcctggggtcgc





gggccccgggggcaacctgtcgagctgggaggacttgctgctgttcactgacctcgaccaagccgcgaccgccagcaag





ctgctgtggtccagccgcggcgccaagctgagccccttcgcacccgagcagccggaggagatgtaccagaccctcgccg





ctctctccagccagggtccggccgcctacgacggcgcgcccggcggcttcgtgcactctgcggccgcggcggcagcag





ccgcggcggcggccagctccccggtctacgtgcccaccacccgcgtgggttccatgctgcccggcctaccgtaccacctg





caggggtcgggcagtgggccagccaaccacgcgggcggcgcgggcgcgcaccccggctggcctcaggcctcggccg





acagccctccatacggcagcggaggcggcgcggctggcggcggggccgcggggcctggcggcgctggctcagccgc





ggcgcacgtctcggcgcgcttcccctactctcccagcccgcccatggccaacggcgccgcgcgggagccgggaggcta





cgcggcggcgggcagtgggggcgcgggaggcgtgagcggcggcggcagtagcctggcggccatgggcggccgcga





gccccagtacagctcgctgtcggccgcgcggccgctgaacgggacgtaccaccaccaccaccaccaccaccaccaccat





ccgagcccctactcgccctacgtgggggcgccactgacgcctgcctggcccgccggacccttcgagaccccggtgctgc





acagcctgcagagccgcgccggagccccgctcccggtgccccggggtcccagtgcagacctgctggaggacctgtccg





agagccgcgagtgcgtgaactgcggctccatccagacgccgctgtggcggcgggacggcaccggccactacctgtgca





acgcctgcgggctctacagcaagatgaacggcctcagccggcccctcatcaagccgcagaagcgcgtgccttcatcacg





gcggcttggattgtcctgtgccaactgtcacaccacaactaccaccttatggcgcagaaacgccgagggtgaacccgtgtg





caatgcttgtggactctacatgaaactccatggggtgcccagaccacttgctatgaaaaaagagggaattcaaaccaggaaa





cgaaaacctaagaacataaataaatcaaagacttgctctggtaatagcaataattccattcccatgactccaacttccacctctt





ctaactcagatgattgcagcaaaaatacttcccccacaacacaacctacagcctcaggggcgggtgccccggtgatgactg





gtgcgggagagagcaccaatcccgagaacagcgagctcaagtattcgggtcaagatgggctctacataggcgtcagtctc





gcctcgccggccgaagtcacgtcctccgtgcgaccggattcctggtgcgccctggccctggcctga;





AF179425; EF444980; NM 005257; NP 005248.





(SEQ ID NO: 45)



HNF1: NM_000458: atggtgtccaagctcacgtcgctccagcaagaactcctgagcgccctgctgagctccggggt






caccaaggaggtgctggttcaggccttggaggagttgctgccatccccgaacttcggggtgaagctggagacgctgcccc





tgtcccctggcagcggggccgagcccgacaccaagccggtcttccatactctcaccaacggccacgccaagggccgctt





gtccggcgacgagggctccgaggacggcgacgactatgacacacctcccatcctcaaggagctgcaggcgctcaacacc





gaggaggcggcggagcagcgggcggaggtggaccggatgctcagtgaggacccttggagggctgctaaaatgatcaa





gggttacatgcagcaacacaacatcccccagagggaggtggtcgatgtcaccggcctgaaccagtcgcacctctcccagc





atctcaacaagggcacccctatgaagacccagaagcgtgccgctctgtacacctggtacgtcagaaagcaacgagagatc





ctccgacaattcaaccagacagtccagagttctggaaatatgacagacaaaagcagtcaggatcagctgctgtttctctttcca





gagttcagtcaacagagccatgggcctgggcagtccgatgatgcctgctctgagcccaccaacaagaagatgcgccgcaa





ccggttcaaatgggggcccgcgtcccagcaaatcttgtaccaggcctacgatcggcaaaagaaccccagcaaggaagag





agagaggccttagtggaggaatgcaacagggcagaatgtttgcagcgaggggtgtccccctccaaagcccacggcctgg





gctccaacttggtcactgaggtccgtgtctacaactggtttgcaaaccgcaggaaggaggaggcattccggcaaaagctgg





ccatggacgcctatagctccaaccagactcacagcctgaaccctctgctctcccacggctccccccaccaccagcccagct





cctctcctccaaacaagctgtcaggagtgcgctacagccagcagggaaacaatgagatcacttcctcctcaacaatcagtca





ccatggcaacagcgccatggtgaccagccagtcggttttacagcaagtctccccagccagcctggacccaggccacaatct





cctctcacctgatggtaaaatgatctcagtctcaggaggaggtttgcccccagtcagcaccttgacgaatatccacagcctct





cccaccataatccccagcaatctcaaaacctcatcatgacacccctctctggagtcatggcaattgcacaaagcctcaacacc





tcccaagcacagagtgtccctgtcatcaacagtgtggccggcagcctggcagccctgcagcccgtccagttctcccagcag





ctgcacagccctcaccagcagcccctcatgcagcagagcccaggcagccacatggcccagcagcccttcatggcagctg





tgactcagctgcagaactcacacatgtacgcacacaagcaggaacccccccagtattcccacacctcccggtttccatctgc





aatggtggtcacagataccagcagcatcagtacactcaccaacatgtcttcaagtaaacagtgtcctctacaagcctggtga;





NM_013103; NM 000545; NM 009327;





(SEQ ID NO: 46)



NM 012669:



atggtttctaagttgagccagctgcagacggagctcctggctgctctgctcgagtcgggcctgagcaaagaggctctgatcc





aggctctgggggagcccgggccctacctgatggttggagatggtcccctggacaagggggagtcctgcggtgggactcg





aggggacctgaccgagctgcccaatggcctgggggagacgcgtggctcggaagatgacacggatgacgatggggaag





acttcgcgccacccattctgaaagagctggagaacctcagcccagaggaggcagcccaccagaaagccgtggtggagtc





acttcttcaggaggacccatggcgcgtggcaaagatggtcaagtcgtacctgcagcaacacaacatcccccagcgggagg





tggtggacactacgggtctcaaccagtcccacctgtcccagcacctcaacaagggcacccccatgaagacgcagaagcg





ggccgcgctgtacacctggtacgtccgcaagcagcgagaggtggctcagcaattcacccacgcggggcagggcggact





gattgaagagcccacaggtgatgagctgccaaccaaaaaggggcggaggaaccggttcaagtggggccccgcatccca





gcagatcctgttccaggcttacgagaggcagaagaaccccagcaaggaagagcgagagaccttggtggaggagtgcaat





agggcggagtgcatccagagaggggtgtcaccatcgcaggcccaggggctaggctccaaccttgtcaccgaggtgcgtg





tctacaactggtttgccaaccggcgcaaggaagaagcctttcggcataagctggccatggacacgtataacgggcctccac





ccgggccaggccccggccctgcgctacctgcccacagttccccgggcctgcccacaaccaccctctctcccagtaaggtc





cacggtgtgcggtatggacagtctgcaaccagcgaggcagctgaggtgccctccagcagcggaggtcccttagtcacagt





gtctgcggccttacaccaagtgtcccccacaggcttggagcccagcagcctgctgagcaccgaggccaagctggtctcag





ccacggggggtcccctgcctcccgtcagcaccctgacagcactgcacagcttggagcagacgtctccaggtctcaaccag





cagccgcagaaccttatcatggcctcgctgcctggggtcatgaccatcggcccaggggagcccgcctccctgggtcccac





gttcactaacacgggtgcctctaccctggtcattggtctggcctccacacaggcacagagcgtgccagtcatcaacagcatg





gggagcagcctgaccaccctgcagccggtccagttttcccagccactgcacccttcctatcagcagcctctcatgccccctg





tacagagccacgtggcccagagtcccttcatggcaaccatggcccagctgcagagcccccacgccctgtacagccacaa





gcctgaggtggcccagtacacgcatacaagcctgcttccgcagaccatgctgatcacagacaccaacctcagcacccttgc





cagcctcacgcccaccaagcaggtcttcacctcagacacagaggcctccagtgagcctgggcttcatgagccgtcgtctcc





agccacaaccattcacatccccagccaggacccgtcaaacatccagcacctgcagcctgctcaccggctcagcaccagtc





ccacagtgtcctccagcagcctggtgttgtaccagagttctgactccaacgggcacagccacctgctgccatccaaccacg





gtgtcatcgagacttttatctccacccagatggcctcctcctcccagtaa; NM_009330.





(SEQ ID NO: 47)



HNF3: X74936: atgttagggactgtgaagatggaagggcatgagagcaacgactggaacagctactacgcggacac






gcaggaggcctactcctctgtccctgtcagcaacatgaactccggcctgggctctatgaactccatgaacacctacatgacc





atgaacaccatgaccacgagcggcaacatgaccccggcttccttcaacatgtcctacgccaacacgggcttaggggccgg





cctgagtcccggtgctgtggctggcatgccaggggcctctgcaggcgccatgaacagcatgactgcggcgggcgtcacg





gccatgggtacggcgctgagcccgggaggcatgggctccatgggcgcgcagcccgtcacctccatgaacggcctgggt





ccctacgccgccgccatgaacccgtgcatgagtcccatggcgtacgcgccgtccaacctgggccgcagccgcgcgggg





ggcggcggcgacgccaagacattcaagcgcagctaccctcacgccaagccgccttactcctacatctcgctcatcacgatg





gccatccagcaggcgcccagcaagatgctcacgctgagcgagatctaccagtggatcatggacctcttcccctattaccgc





cagaaccagcagcgctggcagaactccatccgccactcgctgtccttcaacgattgtttcgtcaaggtggcacgatccccag





acaagccaggcaagggctcctactggacgctgcacccggactccggcaacatgttcgagaacggctgctacttgcgccgc





caaaagcgcttcaagtgtgagaagcagccgggggccggaggtgggagtgggggcggcggctccaaagggggcccag





aaagtcgcaaggacccctcaggcccggggaaccccagcgccgagtcaccccttcattggggtgtgcacggaaaggctag





ccagctagagggcgcgccggcccccgggcccgccgccagcccccagactctggaccacagcggggccacggcgaca





gggggcgcttcggagttgaagtctccagcgtcttcatctgcgccccccataagctccgggccaggggcgctggcatctgta





cccccctctcacccggctcacggcctggcaccccacgaatctcagctgcatctgaaaggggatccccactactcctttaatc





accccttctccatcaacaacctcatgtcctcctccgagcaacagcacaagctggacttcaaggcatacgagcaggcgctgc





agtactctccttatggcgctaccttgcccgccagtctgccccttggcagcgcctcagtggccacgaggagccccatcgagc





cctcagccctggagccagcctactaccaaggtgtgtattccagacccgtgctaaatacttcctag;





(SEQ ID NO: 48)



HNF3gammaX74938M: atgctgggctcagtgaagatggaggctcatgacctggccgagtggagctactacccg






gaggcgggcgaggtgtattctccagtgaatcctgtgcccaccatggcccctctcaactcctacatgaccttgaacccactca





gctctccctaccctcccggagggcttcaggcctccccactgcctacaggacccctggcacccccagcccccactgcgccct





tggggcccaccttcccaagcttgggcactggtggcagcaccggaggcagtgcttccgggtatgtagccccagggcccgg





gcttgtacatggaaaagagatggcaaaggggtaccggcggccactggcccacgccaaaccaccatattcctacatctctct





cataaccatggctattcagcaggctccaggcaagatgctgaccctgagtgaaatctaccaatggatcatggacctcttcccgt





actaccgggagaaccagcaacgttggcagaactccatccggcattcgctgtccttcaatgactgcttcgtcaaggtggcacg





ctccccagacaagccaggcaaaggctcctactgggccttgcatcccagctctgggaacatgtttgagaacggatgctatctc





cgccggcagaagcgcttcaagctggaggagaaggcaaagaaaggaaacagcgccacatcggccagcaggaatggtac





tgcggggtcagccacctctgccaccactacagctgccactgcagtcacctccccggctcagccccagcctacgccatctga





gcccgaggcccagagtggggatgatgtggggggtctggactgcgcctcacctccttcgtccacaccttatttcagcggcct





ggagctcccgggggaactaaagttggatgcgccctataacttcaaccaccctttctctatcaacaacctgatgtcagaacaga





catcgacaccttccaaactggatgtggggtttgggggctacggggctgagagtggggagcctggagtctactaccagagc





ctctattcccgctctctgcttaatgcatcctag;





(SEQ ID NO: 49)



HNF3betaX74937: atgctgggagccgtgaagatggaagggctcgagccatccgactggagcagctactacgcgg






agcccgagggctactcttccgtgagcaacatgaacgccggcctggggatgaatggcatgaacacatacatgagcatgtcc





gcggctgccatgggcggcggttccggcaacatgagcgcgggctccatgaacatgtcatcctatgtgggcgctggaatgag





cccgtcgctagctggcatgtccccgggcgccggcgccatggcgggcatgagcggctcagccggggcggccggcgtgg





cgggcatgggacctcacctgagtccgagtctgagcccgctcgggggacaggcggccggggccatgggtggccttgccc





cctacgccaacatgaactcgatgagccccatgtacgggcaggccggcctgagccgcgctcgggaccccaagacataccg





acgcagctacacacacgccaaacctccctactcgtacatctcgctcatcaccatggccatccagcagagccccaacaagat





gctgacgctgagcgagatctatcagtggatcatggacctcttccctttctaccggcagaaccagcagcgctggcagaactcc





atccgccactctctctccttcaacgactgctttctcaaggtgccccgctcgccagacaagcctggcaagggctccttctggac





cctgcacccagactcgggcaacatgttcgagaacggctgctacctgcgccgccagaagcgcttcaagtgtgagaagcaac





tggcactgaaggaagccgcgggtgcggccagtagcggaggcaagaagaccgctcctgggtcccaggcctctcaggctc





agctcggggaggccgcgggctcggcctccgagactccggcgggcaccgagtccccccattccagcgcttctccgtgtca





ggagcacaagcgaggtggcctaagcgagctaaagggagcacctgcctctgcgctgagtcctcccgagccggcgccctc





gcctgggcagcagcagcaggctgcagcccacctgctgggcccacctcaccacccaggcctgccaccagaggcccacct





gaagcccgagcaccattacgccttcaaccaccccttctctatcaacaacctcatgtcgtccgagcagcaacatcaccacagc





caccaccaccatcagccccacaaaatggacctcaaggcctacgaacaggtcatgcactacccagggggctatggttcccc





catgccaggcagcttggccatgggcccagtcacgaacaaagcgggcctggatgcctcgcccctggctgcagacacttcct





actaccaaggagtgtactccaggcctattatgaactcatcctaa;





(SEQ ID NO: 50)



HNF3G: AH008133: atgctgggctcagtgaagatggaggcccatgacctggccgagtggagctactacccggag






gcgggcgaggtctactcgccggtgaccccagtgcccaccatggcccccctcaactcctacatgaccctgaatcctctaagc





tctccctatccccctggggggctccctgcctccccactgccctcaggacccctggcacccccagcacctgcagcccccctg





gggcccactttcccaggcctgggtgtcagcggtggcagcagcagctccgggtacggggccccgggtcctgggctggtgc





acgggaaggagatgccgaaggggtatcggcggcccctggcacacgccaagccaccgtattcctatatctcactcatcacc





atggccatccagcaggcgccgggcaagatgctgaccttgagtgaaatctaccagtggatcatggacctcttcccttactacc





gggagaatcagcagcgctggcagaactccattcgccactcgctgtctttcaacgactgcttcgtcaaggtggcgcgttcccc





agacaagcctggcaagggctcctactgggccctacaccccagctcagggaacatgtttgagaatggctgctacctgcgcc





gccagaaacgcttcaagctggaggagaaggtgaaaaaagggggcagcggggctgccaccaccaccaggaacgggac





agggtctgctgcctcgaccaccacccccgcggccacagtcacctccccgccccagcccccgcctccagcccctgagcct





gaggcccagggcggggaagatgtgggggctctggactgtggctcacccgcttcctccacaccctatttcactggcctgga





gctcccaggggagctgaagctggacgcgccctacaacttcaaccaccctttctccatcaacaacctaatgtcagaacagac





accagcacctcccaaactggacgtggggtttgggggctacggggctgaaggtggggagcctggagtctactaccagggc





ctctattcccgctctttgcttaatgcatcctag;





(SEQ ID NO: 51)



HNF3A: AH008132: atgttaggaactgtgaagatggaagggcatgaaaccagcgactggaacagctactacgcag






acacgcaggaggcctactcctcggtcccggtcagcaacatgaactcaggcctgggctccatgaactccatgaacacctaca





tgaccatgaacaccatgactacgagcggcaacatgaccccggcgtccttcaacatgtcctatgccaacccggccttagggg





ccggcctgagtcccggcgcagtagccggcatgccggggggctcggcgggcgccatgaacagcatgactgcggccggc





gtgacggccatgggtacggcgctgagcccgagcggcatgggcgccatgggtgcgcagcaggcggcctccatgatgaat





ggcctgggcccctacgcggccgccatgaacccgtgcatgagccccatggcgtacgcgccgtccaacctgggccgcagc





cgcgcgggcggcggcggcgacgccaagacgttcaagcgcagttacccgcacgccaagccgccctactcgtacatctcg





ctcatcaccatggccatccagcgggcgcccagcaagatgctcacgctgagcgagatctaccagtggatcatggacctcttc





ccctattaccggcagaaccagcagcgctggcagaactccatccgccactcgctgtccttcaatgactgcttcgtcaaggtgg





cacgctccccggacaagccgggcaagggctcctactggacgctgcacccggactccggcaacatgttcgagaacggctg





ctacttgcgccgccagaagcgcttcaagtgcgagaagcagccgggggccggcggcgggggcgggagcggaagcggg





ggcagcggcgccaagggcggccctgagagccgcaaggacccctctggcgcctctaaccccagcgccgactcgcccctc





catcggggtgtgcacgggaagaccggccagctagagggcgcgccggccccgggcccggccgccagcccccagactct





ggaccacagtggggcgacggcgacagggggcgcctcggagttgaagactccagcctcctcaactgcgccccccataag





ctccgggcccggggcgctggcctctgtgcccgcctctcacccggcacacggcttggcaccccacgagtcccagctgcac





ctgaaaggggacccccactactccttcaaccacccgttctccatcaacaacctcatgtcctcctcggagcagcagcataagc





tggacttcaaggcatacgaacaggcactgcaatactcgccttacggctctacgttgcccgccagcctgcctctaggcagcg





cctcggtgaccaccaggagccccatcgagccctcagccctggagccggcgtactaccaaggtgtgtattccagacccgtc





ctaaacacttcctag;





(SEQ ID NO: 52)



HNF4alpha: NM_008261: atgcgactctctaaaacccttgccggcatggatatggccgactacagcgctgccctg






gacccagcctacaccaccctggagtttgaaaatgtgcaggtgttgaccatgggcaatgacacgtccccatctgaaggtgcc





aacctcaattcatccaacagcctgggcgtcagtgccctgtgcgccatclgtggcgaccgggccaccggcaaacactacgg





agcctcgagctgtgacggctgcaaggggttcttcaggaggagcgtgaggaagaaccacatgtactcctgcaggtttagcc





gacaalgtgtggtagacaaagataagaggaaccagtgtcgttactgcaggcttaagaagtgcttccgggctggcatgaaga





aggaagclgtccaaaatgagcgggaccggatcagcacgcggaggtcaagctacgaggacagcagcctgccctccatca





acgcgctcclgcaggcagaggttctgtcccagcagatcacctctcccalctclgggatcaatggcgacattcgggcaaaga





agattgccaacatcacagacgtgtgtgagtctatgaaggagcagctgctggtcctggtcgagtgggccaagtacalcccgg





ccttctgcgaactccttctggatgaccaggtggcgctgctcagggcccacgccggtgagcatctgctgcttggagccacca





agaggtccatggtgtttaaggacgtgctgctcctaggcaatgactacatcgtccctcggcactgtccagagctagcggagat





gagccgtgtgtccatccgcatcctcgatgagctggtcctgccctlccaagagctgcagattgatgacaatgaatatgcctgcc





tcaaagccalcatcttctttgatccagatgccaaggggctgagtgacccgggcaagatcaagcggctgcggtcacaggtgc





aagtgagcctggaggattacalcaacgaccggcagtacgactctcggggccgctttggagagctgctgctgctgttgccca





cgctgcagagcatcacctggcagatgatcgaacagatccagttcatcaagctcttcggcatggccaagattgacaacctgct





gcaggagatgcttctcggaggglctgccagtgatgcaccccacacccaccaccccctgcaccctcacctgatgcaagaac





acatgggcaccaatgtcattgttgctaacacgatgccctctcacctcagcaatggacagatgtgtgaglggccccgacccag





ggggcaggcagccactcccgagactccacagccatcaccaccaagtggctcgggatctgaatcclacaagctcctgccag





gagccatcaccaccatcgtcaagcclccctctgccattccccagccaacgatcaccaagcaagaagccatctag;





(SEQ ID NO: 53)



I1NF4a: NM022180: atggacatggctgactacagtgctgccttggacccagcclacaccaccctggagtttgaaaat






gtgcaggtgttgaccatgggcaatgacacatccccatctgaaggtgccaacctcaactcatccaacagcctgggtgtcagtg





ccctgtgtgccatctgtggcgatcgggccactggcaaacactacggagcctcaagctglgacggclgcaagggattcltca





ggaggagcgtgaggaagaaccacatgtactcctgcaggtttagcaggcagtgcgtggtagacaaagalaagaggaacca





gtgtcgttactgcaggctcaagaagtgcttccgggctggcatgaagaaagaagccgtccaaaatgagcgggatcggatca





gcacgcggaggtcaagctacgaggacagcagcctaccctccattaatgcgctcctgcaggcagaggtcctgtctcagcag





atcacctcccccatctctgggatcaatggcgacattcgggccaagaagattgccaacatcacggatglgtgtgagtctatgaa





ggagcagctgctggttctgglcgaatgggccaagtacatcccggccttctgtgaacttcttctggatgaccaggtggcgclg





clcagagcccacgctggtgagcacctgctgctlggagccaccaagaggtccatggtgttcaaggatglgctgctcclaggc





aatgactacatcgtccctcggcactgtccagagctagcagagatgagccgtgtgtccattcgcatcctcgatgagctggtctt





gcccttccaagagctgcagalcgatgataatgaatacgcctgcctcaaagccatcatcttctltgacccagatgccaagggg





ctgagtgacccaggcaagatcaagcggctgcggtcacaggtgcaggtgagcctggaggattacatcaacgaccggcagt





atgactctcggggtcgttltggagagctgctgctgctcctgcccactctgcagagcattacclggcagatgatcgagcagatc





cagttcatcaagctctttggcatggccaagattgacaacctgctgcaggagatgctgcttggagggtctgccagtgacgcgc





cccacgcccaccaccccctgcaccctcacctgatgcaagaacacatgggcaccaatgtcatagttgccaacacgatgccct





ctcacctcagcaatggacagatgtgtgagtggccccggcccagggggcaggcagccacccctgagactccacagccatc





accaccaagtggctctggatctgaatcctacaagctcctgccaggagccatcaccaccatcgtcaagcctccctctgccatc





ccccagccaacgatcaccaagcaggaagccatclag;





(SEQ ID NO: 54)



HNF6: U95945: atgaacgcacagctgaccatggaggcgatcggcgagctgcacggggtgagccatgagccggtgc






ccgcccctgctgacctgctgggcggcagccctcacgcgcgcagctccgtgggacaccgcggcagccacctgcctcccg





cgcacccgcgttccatgggcatggcgtccctgctggacggcggcagcggaggcagcgattaccaccaccaccaccgcg





cccctgagcacagcttggctggccccctgcaccccaccatgaccatggcctgtgaaactcccccaggtatgagcatgccca





ccacctacactaccttaacccclclgcagccgclgccgcccatctccaccgtgtccgacaagttccctcaccatcatcaccac





caccatcaccaccaccacccacaccaccaccagcgcctggcgggcaacgtgagcggtagtttcacacttatgcgggatga





gcgcgggctggcctctatgaataacctctataccccctaccacaaggacgtggctggcatgggccagagcctctcgcccct





ctctggctccggtctgggcagcattcacaactcccagcaaggacttccccactatgctcatcccggcgcggctatgcccacc





gacaagatgctcaccccaaatggctttgaagcccaccaccctgccatgctcggtcgccacggggagcagcacctcacgcc





cacctcggccggcatggtacccatcaacggccttcctccgcaccatcctcatgcccacctgaatgcccagggccacggac





agctcctgggcacagcccgagagcccaacccttcggtgaccggcgcgcaggtcagcaatggaagtaattcagggcagat





ggaagagatcaataccaaagaggtggcgcagcgtatcaccaccgagctcaaacgttacagcatcccacaggccatcttcg





cgcagagggtgctctgccgttcccaggggaccctttcggacctgctgcgaaaccccaagccctggagcaaactcaagtcg





ggtcgggagaccttccggaggatgtggaagtggctgcaggagccggagttccagcgcatgtcggcgctccgcttagcag





cctgcaaacggaaagagcaagaacatgggaaggacagaggcaacacccccaaaaagcccaggctggtcttcacagacg





tccaacgtcgaactctacatgcaatattcaaggaaaataagcgtccgtccaaagaattacaaatcaccatctcccagcagctg





gggttggagctgagcactgtcagcaacttcttcatgaatgccagaaggaggagtctggacaagtggcaggacgagggcg





gctccaactcaggcagttcatcgtcctcatcgagcacttgtaccaaagcatga;





(SEQ ID NO: 55)



IILXB9: NM001096823:



atggagaagtccaagaatttcaggattgacgctctcctggcgatagatccccccaaggctcagacctccccattggctctggt





cacctcgctgtcctcctcgtctctctccgggagccccccgtccgagcacactgacagcctcaggactgactccccctcccct





ccaaggacttgtggactggtccctaaaccaggtttcctgagcagccaccagcaccccccaaacatgatgtcattgcaccccc





aggctgctccagggatcccccctcaggccctgtatggacacccgatgtacagctacttggcagcggggcagcacccagct





ctgtcctacccctactcccagatgcagagcagccaccacccccaccccatggaccccatcaagatcagcgctggcaccttc





caactggaccagtggctcagagcctccactgccggcatgatgctgcccaaaatggcagactttaactcccaggcccaatcc





aacctgctgggaaagtgcagaagaccaaggacagcgtttaccagtcagcagctgttggaactggagcaccaattcaagct





gaacaagtacctctccaggccgaaacgctttgaagtggccacttccctgatgctcactgagacgcaggtgaagatctggttc





cagaacaggcgcatgaaatggaagaggagtaagaaagccaaggagcaggcggcgcaggactcagcagagaaacagc





agagggcaggcaagggcagcagcgaggagaagtgctcggatgagctgcaggaagagaagaaatcctaccatctccatc





ccaggggggagcccatcaaagggaacggccgcctgcagcccagagactatacagacagcgaagaggacgaggagga





ggacagggaagaggaggaagaggaagatcacagaggggaggggaagcggttttaccatcattcttctgactgcacatcc





gaggaagaggagaacagccacaataagcagagcggccactga;





(SEQ ID NO: 56)



NM 019944.



atggaaaaatccaaaaatttccgcatcgacgccctgctggccgtggatcccccgcgagccgcctccacgcagagcgcgcc





tctggccttggtcacttccctcgcgactacagtatctggtcccggccgcggcggcagcggcggcggggggaccagtagc





ggggcgagccgtagctgcagtcccgcatcctcggaggccactgcagcgcccggtgaccggctgagagctgagagcccg





tcgcccccacgcttgctggctgcacactgcgcgctgctgcccaagcccggattcctgggcgccggaggaggcggcggc





gcggcgggtgggccgggcactccccaccaccacgcgcaccctggtgcagcagccgccgcggctgccgctgccgctgc





cgcggctgccggtggcctggcactggggctgcacccggggggcgcacagggcggcgcgggcctccctgcacaggcg





gctctctatggacacccggtctacagttattcggcagcagctgcagcggccgcgctagctggccagcacccggcgctttcc





tactcataccctcaggtgcagggcgcgcaccctgcgcaccctgccgaccccatcaagctgggtgccagcaccttccaactg





gaccagtggctgcgcgcgtctactgcgggcatgatcctgcccaagatgccggacttcagctgtcaggcgcagtcgaacct





cttggggaagtgccgaaggcctcgcacggccttcaccagccagcagctgttggagctggaacaccagttcaagctcaaca





agtacctgtctcgacccaagcgttttgaggtggctacctcgctcatgctcaccgagactcaggtgaagatttggttccagaac





cgccgaatgaaatggaaacgcagcaaaaaggccaaagagcaggctgcgcaggaggcggagaagcagaagggcggc





ggcgggggcaccggcaaaggcggcagtgaggagaagacggaagaggagctgatggggcctccggtttcgggggaca





aggcaagcggccgtcgcctgcgggacttgcgggacagtgaccctgatgaggacgaggatgatgaagaagaggacaact





tcccgtacagcaatggtgccggtgcccatgctgcctcatccgactgctcatctgaggacgactcgcctcctccaagactagg





cgggcctggacaccaacctctgccccagtag;





(SEQ ID NO: 57)



NM_005515: atggaaaaatccaaaaatttccgcatcgacgccctgctggccgtggatcccccgcgagccgcctccac






gcagagcgcgcctctggccttggtcacttccctcgcgactacagtatctggtcccggccgcggcggcagcggcggcggg





gggaccagtagcggggcgagccgtagctgcagtcccgcatcctcggaggccactgcagcgcccggtgaccggctgaga





gctgagagcccgtcgcccccacgcttgctggctgcacactgcgcgctgctgcccaagcccggattcctgggcgccggag





gaggcggcggcgcggcgggtgggccgggcactccccaccaccacgcgcaccctggtgcagcagccgccgcggctgc





cgctgccgctgccgcggctgccggtggcctggcactggggctgcacccggggggcgcacagggcggcgcgggcctcc





ctgcacaggcggctctctatggacacccggtctacagttattcggcagcagctgcagcggccgcgctagctggccagcac





ccggcgctttcctactcataccctcaggtgcagggcgcgcaccctgcgcaccctgccgaccccatcaagctgggtgccag





caccttccaactggaccagtggctgcgcgcgtctactgcgggcatgatcctgcccaagatgccggacttcagctgtcaggc





gcagtcgaacctcttggggaagtgccgaaggcctcgcacggccttcaccagccagcagctgttggagctggaacaccagt





tcaagctcaacaagtacctgtctcgacccaagcgttttgaggtggctacctcgctcatgctcaccgagactcaggtgaagatt





tggttccagaaccgccgaatgaaatggaaacgcagcaaaaaggccaaagagcaggctgcgcaggaggcggagaagca





gaagggcggcggcgggggcaccggcaaaggcggcagtgaggagaagacggaagaggagctgatggggcctccggt





ttcgggggacaaggcaagcggccgtcgcctgcgggacttgcgggacagtgaccctgatgaggacgaggatgatgaaga





agaggacaacttcccgtacagcaatggtgccggtgcccatgctgcctcatccgactgctcatctgaggacgactcgcctcct





ccaagactaggcgggcctggacaccaacctctgcc;





(SEQ ID NO: 58)



Lbx1: NM_006562:



atgacttccaaggaggacggcaaggcggcgccgggggaggagcggcggcgcagcccgctggaccacctgcctccgc





ctgccaactccaacaagccactgacgccgttcagcatcgaggacatcctcaacaagccgtctgtgcggagaagttactcgc





tgtgcggggcggcgcacctgctggccgccgcggacaagcacgcgcagggcggcttgcccctggcgggccgcgcgctg





ctctcgcagacctcgccgctgtgcgcgctggaggagctcgccagcaagacgtttaaggggctggaggtcagcgttctgca





ggcagccgaaggccgcgacggtatgaccatctttgggcagcggcagacccctaagaagcggcgaaagtcgcgcacgg





ccttcaccaaccaccagatctatgaattggaaaagcgctttctataccagaagtacctgtcccccgccgatcgcgaccaaatc





gcgcagcagctgggcctcaccaacgcgcaagtcatcacctggttccagaatcggcgcgctaagctcaagcgggacctgg





aggagatgaaggccgacgtagagtccgccaagaaactgggccccagcgggcagatggacatcgtggcgctggccgaa





ctcgagcagaactcggaggccacagccggcggtggcggcggctgcggcagggccaagtcgaggcccggctctccggt





cctccccccaggcgccccgaaggccccgggcgctggcgccctgcagctctcgcctgcctctccgctcacggaccagccg





gccagcagccaggactgctcggaggacgaggaagacgaagagatcgacgtggacgattga; NM_010691.





(SEQ ID NO: 59)



Lmx1b:



atgttggacggcatcaagatggaggagcacgccctgcgccccgggcccgccactctgggggtgctgctgggctccgact





gcccgcatcccgccgtctgcgagggctgccagcggcccatctccgaccgcttcctgatgcgagtcaacgagtcgtcctgg





cacgaggagtgtttgcagtgcgcggcgtgtcagcaagccctcaccaccagctgctacttccgggatcggaaactgtactgc





aaacaagactaccaacagctcttcgcggccaagtgcagcggctgcatggagaagatcgcccccaccgagttcgtgatgcg





ggcgctggagtgcgtgtaccacctgggctgcttctgctgctgcgtgtgtgaacggcagctacgcaagggcgacgaattcgt





gctcaaggagggccagctgctgtgcaagggtgactacgagaaggagaaggacctgctcagctccgtgagccccgacga





gtccgactccgtgaagagcgaggatgaagatggggacatgaagccggccaaggggcagggcagtcagagcaagggca





gcggggatgacgggaaggacccgcggaggcccaagcgaccccggaccatcctcaccacgcagcagcgaagagccttc





aaggcctccttcgaggtctcgtcgaagccttgccgaaaggtccgagagacactggcagctgagacgggcctcagtgtgcg





cgtggtccaggtctggtttcagaaccaaagagcaaagatgaagaagctggcgcggcggcaccagcagcagcaggagca





gcagaactcccagcggctgggccaggaggtcctgtccagccgcatggagggcatgatggcttcctacacgccgctggcc





ccaccacagcagcagatcgtggccatggaacagagcccctacggcagcagcgaccccttccagcagggcctcacgccg





ccccaaatgccagggaacgactccatcttccatgacatcgacagcgatacctccttaaccagcctcagcgactgcttcctcg





gctcctcagacgtgggctccctgcaggcccgcgtggggaaccccatcgaccggctctactccatgcagagttcctacttcg





cctcctga; NM 010725.





(SEQ ID NO: 60)



Neurogenin(NEUROG1): NM_006161:



atgccagcccgccttgagacctgcatctccgacctcgactgcgccagcagcagcggcagtgacctatccggcttcctcacc





gacgaggaagactgtgccagactccaacaggcagcctccgcttcggggccgcccgcgccggcccgcaggggcgcgcc





caatatctcccgggcgtctgaggttccaggggcacaggacgacgagcaggagaggcggcggcgccgcggccggacgc





gggtccgctccgaggcgctgctgcactcgctgcgcaggagccggcgcgtcaaggccaacgatcgcgagcgcaaccgc





atgcacaacttgaacgcggccctggacgcactgcgcagcgtgctgccctcgttccccgacgacaccaagctcaccaaaat





cgagacgctgcgcttcgcctacaactacatctgggctctggccgagacactgcgcctggcggatcaagggctgcccggag





gcggtgcccgggagcgcctcctgccgccgcagtgcgtcccctgcctgcccggtcccccaagccccgccagcgacgcgg





agtcctggggctcaggtgccgccgccgcctccccgctctctgaccccagtagcccagccgcctccgaagacttcacctacc





gccccggcgaccctgttttctccttcccaagcctgcccaaagacttgctccacacaacgccctgtttcattccttaccactag;





BQ169355.





(SEQ ID NO: 61)



Neurogenin2(NEUROG2): NM024019: atgttcgtcaaatccgagaccttggagttgaaggaggaagagga






cgtgttagtgctgctcggatcggcctcccccgccttggcggccctgaccccgctgtcatccagcgccgacgaagaagagg





aggaggagccgggcgcgtcaggcggggcgcgtcggcagcgcggggctgaggccgggcagggggcgcggggcggc





gtggctgcgggtgcggagggctgccggcccgcacggctgctgggtctggtacacgattgcaaacggcgcccttcccggg





cgcgggccgtctcccgaggcgccaagacggccgagacggtgcagcgcatcaagaagacccgtagactgaaggccaac





aaccgcgagcgaaaccgcatgcacaacctcaacgcggcactggacgcgctgcgcgaggtgctccccacgttccccgag





gacgccaagctcaccaagatcgagaccctgcgcttcgcccacaactacatctgggcactcaccgagaccctgcgcctggc





ggatcactgcgggggcggcggcgggggcctgccgggggcgctcttctccgaggcagtgtlgctgagcccgggaggcg





ccagcgccgccctgagcagcagcggagacagcccctcgcccgcctccacgtggagttgcaccaacagccccgcgccgt





cctcctccgtglcctccaattccacctccccctacagctgcactttatcgcccgccagcccggccgggtcagacatggactat





tggcagcccccacctcccgacaagcaccgctatgcacctcacctccccatagccagggattgtatctag; DR001447.





(SEQ ID NO: 62)



Neurogenin3(NEUROG3): atgacgcctcaaccctcgggtgcgcccactgtccaagtgacccgtgagacggagc






ggtccttccccagagcctcggaagacgaagtgacctgccccacgtccgccccgcccagccccactcgcacacggggga





actgcgcagaggcggaagagggaggctgccgaggggccccgaggaagctccgggcacggcgcgggggacgcagcc





ggcctaagagcgagttggcactgagcaagcagcgacggagtcggcgaaagaaggccaacgaccgcgagcgcaatcga





atgcacaacctcaactcggcactggacgccctgcgcggtgtcctgcccaccttcccagacgacgcgaagctcaccaagat





cgagacgctgcgcttcgcccacaactacatctgggcgctgactcaaacgctgcgcatagcggaccacagcttgtacgcgct





ggagccgccggcgccgcactgcggggagctgggcagcccaggcggttcccccggggactgggggtccctctactccc





cagtctcccaggctggcagcctgagtcccgccgcgtcgctggaggagcgacccgggctgctgggggccaccttttccgc





ctgcttgagcccaggcagtctggctttctcagattttctgtga; NM 009719.





(SEQ ID NO: 63)



MASH1: NM_004316:



atggaaagctctgccaagatggagagcggcggcgccggccagcagccccagccgcagccccagcagcccttcctgcc





gcccgcagcctgtttctttgccacggccgcagccgcggcggccgcagccgccgcagcggcagcgcagagcgcgcagc





agcagcagcagcagcagcagcagcagcagcaggcgccgcagctgagaccggcggccgacggccagccctcagggg





gcggtcacaagtcagcgcccaagcaagtcaagcgacagcgctcgtcttcgcccgaactgatgcgctgcaaacgccggct





caacttcagcggctttggctacagcctgccgcagcagcagccggccgccgtggcgcgccgcaacgagcgcgagcgcaa





ccgcgtcaagttggtcaacctgggctttgccacccttcgggagcacgtccccaacggcgcggccaacaagaagatgagta





aggtggagacactgcgctcggcggtcgagtacatccgcgcgctgcagcagctgctggacgagcatgacgcggtgagcg





ccgccttccaggcaggcgtcctgtcgcccaccatctcccccaactactccaacgacttgaactccatggccggctcgccggt





ctcatcctactcgtcggacgagggctcttacgacccgctcagccccgaggagcaggagcttctcgacttcaccaactggttc





tga; NM 008553.





(SEQ ID NO: 64)



MyoD: NM010866: atggagcttctatcgccgccactccgggacatagacttgacaggccccgacggctctctctgct






cctttgagacagcagacgacttctatgatgacccgtgtttcgactcaccagacctgcgcttttttgaggacctggacccgcgc





ctggtgcacatgggagccctcctgaaaccggaggagcacgcacacttccctactgcggtgcacccaggcccaggcgctc





gtgaggatgagcatgtgcgcgcgcccagcgggcaccaccaggcgggtcgctgcttgctgtgggcctgcaaggcgtgca





agcgcaagaccaccaacgctgatcgccgcaaggccgccaccatgcgcgagcgccgccgcctgagcaaagtgaatgag





gccttcgagacgctcaagcgctgcacgtccagcaacccgaaccagcggctacccaaggtggagatcctgcgcaacgcca





tccgctacatcgaaggtctgcaggctctgctgcgcgaccaggacgccgcgccccctggcgccgctgccttctacgcacct





ggaccgctgcccccaggccgtggcagcgagcactacagtggcgactcagatgcatccagcccgcgctccaactgctctg





atggcatgatggattacagcggccccccaagcggcccccggcggcagaatggctacgacaccgcctactacagtgaggc





ggcgcgcgagtccaggccagggaagagtgcggctgtgtcgagcctcgactgcctgtccagcatagtggagcgcatctcc





acagacagccccgctgcgcctgcgctgcttttggcagatgcaccaccagagtcgcctccgggtccgccagagggggcat





ccctaagcgacacagaacagggaacccagaccccgtctcccgacgccgcccctcagtgtcctgcaggctcaaaccccaa





tgcgatttatcaggtgctttga;





(SEQ ID NO: 65)



NM002478: atggagctactgtcgccaccgctccgcgacgtagacctgacggcccccgacggctctctctgctcctttg






ccacaacggacgacttctatgacgacccgtgtttcgactccccggacctgcgcttcttcgaagacctggacccgcgcctgat





gcacgtgggcgcgctcctgaaacccgaagagcactcgcacttccccgcggcggtgcacccggccccgggcgcacgtga





ggacgagcatgtgcgcgcgcccagcgggcaccaccaggcgggccgctgcctactgtgggcctgcaaggcgtgcaagc





gcaagaccaccaacgccgaccgccgcaaggccgccaccatgcgcgagcggcgccgcctgagcaaagtaaatgaggcc





tttgagacactcaagcgctgcacgtcgagcaatccaaaccagcggttgcccaaggtggagatcctgcgcaacgccatccg





ctatatcgagggcctgcaggctctgctgcgcgaccaggacgccgcgccccctggcgccgcagccgccttctatgcgccg





ggcccgctgcccccgggccgcggcggcgagcactacagcggcgactccgacgcgtccagcccgcgctccaactgctc





cgacggcatgatggactacagcggccccccgagcggcgcccggcggcggaactgctacgaaggcgcctaclacaacg





agactgcccgccctcctgctggcggacgtgccttctgagtcgcctccgcgcaggcaagaggctgccgcccccagcgagg





gagagagcagcggcgaccccacccagtcaccggacgccgccccgcagtgccctgcgggtgcgaaccccaacccgata





taccaggtgctctga.





(SEQ ID NO: 66)



Myf5: NM_005593: atggacgtgatggatggctgccagttctcaccttctgagtacttctacgacggctcctgcatacc






gtcccccgagggtgaatttggggacgagtttgtgccgcgagtggctgccttcggagcgcacaaagcagagctgcagggct





cagatgaggacgagcacgtgcgagcgcctaccggccaccaccaggctggtcactgcctcatgtgggcctgcaaagcctg





caagaggaagtccaccaccatggatcggcggaaggcagccactatgcgcgagcggaggcgcctgaagaaggtcaacc





aggctttcgaaaccctcaagaggtgtaccacgaccaaccccaaccagaggctgcccaaggtggagatcctcaggaatgcc





atccgctacatcgagagcctgcaggagttgctgagagagcaggtggagaactactatagcctgccgggacagagctgctc





ggagcccaccagccccacctccaactgctctgatggcatgcccgaatgtaacagtcctgtctggtccagaaagagcagtac





ttttgacagcatctactgtcctgatgtatcaaatgtatatgccacagataaaaactccttatccagcttggattgcttatccaacat





agtggaccggatcacctcctcagagcaacctgggttgcctctccaggatctggcttctctctctccagttgccagcaccgatt





cacagcctgcaactccaggggcttctagttccaggcttatctatcatgtgctatga; NM  131576; NM_008656.





(SEQ ID NO: 67)



Myf6: NM_002469: atgatgatggacctttttgaaactggctcctatttcttctacttggatggggaaaatgttactctgca






gccattagaagtggcagaaggctctcctttgtatccagggagtgatggtaccttgtccccctgccaggaccaaatgcccccg





gaagcggggagcgacagcagcggagaggaacatgtcctggcgcccccgggcctgcagcctccacactgccccggcca





gtgtctgatctgggcttgcaagacctgcaagagaaaatctgcccccactgaccggcgaaaagccgccaccctgcgcgaaa





ggaggaggctaaagaaaatcaacgaggccttcgaggcactgaagcggcgaactgtggccaaccccaaccagaggctgc





ccaaggtggagattctgcggagcgccatcagctatattgagcggctgcaggacctgctgcaccggctggatcagcaggag





aagatgcaggagctgggggtggaccccttcagctacagacccaaacaagaaaatcttgagggtgcggatttcctgcgcac





ctgcagctcccagtggccaagtgtttccgatcattccagggggctcgtgataacggctaaggaaggaggagcaagtattga





ttcgtcagcctcgagtagccttcgatgcctttcttccatcgtggacagtatttcctcggaggaacgcaaactcccctgcgtgga





ggaagtggtggagaagtaa; NM_008657; NM_008657; NMJ) 13172.





(SEQ ID NO: 68)



Ifrd1: NM_001007245:



atgccgaagaacaagaagcggaacactccccaccgcggtagcagtgctggcggcggcgggtcaggagcagccgcagc





gacggcggcgacagcaggtggccagcatcgaaatgttcagccttttagtgatgaagatgcatcaattgaaacaatgagcca





ttgcagtggttatagcgatccttccagttttgctgaagatggaccagaagtccttgatgaggaaggaactcaagaagacctag





agtacaagttgaagggattaattgacctaaccctggataagagtgcgaagacaaggcaagcagctcttgaaggtattaaaaa





tgcactggcttcaaaaatgctgtatgaatttattctggaaaggagaatgactttaactgatagcattgaacgctgcctgaaaaaa





ggtaagagtgatgagcaacgtgcagctgcagcgttagcatctgttctttgtattcagctgggccctggaattgaaagtgaaga





gattttgaaaactcttggaccaatcctaaagaaaatcatttgtgatgggtcagctagtatgcaggctaggcaaacttgtgcaact





tgctttggtgtttgctgttttattgccacagatgacattactgaactatactcaactctggaatgtttggaaaatatcttcactaaatc





ctatctcaaagagaaagacactactgttatttgcagcactcctaatacagtgcttcatatcagctctcttcttgcatggacactact





gctgaccatatgcccaatcaatgaagtgaagaaaaagcttgagatgcatttccataagcttccaagcctcctctcttgtgatgat





gtaaacatgagaatagctgctggtgaatctttggcacttctctttgaattggccagaggaatagagagtgactttttttatgaaga





catggagtccttgacgcagatgcttagggccttggcaacagatggaaataaacaccgggccaaagtggacaagagaaag





cagcggtcagttttcagagatgtcctgagggcagtggaggaacgggattttccaacagaaaccattaaatttggtcctgaac





gcatgtatattgattgctgggtaaaaaaacacacctatgacacctttaaggaggttcttggatcagggatgcagtaccacttgc





agtcaaatgaattccttcgaaatgtatttgaacttggacccccagtgatgcttgatgctgcaacgcttaaaacgatgaagatttct





cgtttcgaaaggcatttatataactctgcagccttcaaagctcgaaccaaagctagaagcaaatgtcgagataagagagcag





atgttggagaattcttctag.





(SEQ ID NO: 69)



MeGA: NM_013172: atggggcggaagaaaatacaaatcacacgcataatggatgaaaggaaccgacaggtcact






tttacaaagagaaagtttggattaatgaagaaagcctatgaacttagtgtgctctgtgactgtgaaatagcactcatcattttcaa





cagctctaacaaactgtttcaatatgctagcactgatatggacaaagttcttctcaagtatacagaatataatgaacctcatgaaa





gcagaaccaactcggatattgttgaggctctgaacaagaaggaacacagagggtgcgacagcccagaccctgatacttcat





atgtgctaactccacatacagaagaaaaatataaaaaaattaatgaggaatttgataatatgatgcggaatcataaaatcgcac





ctggtctgccacctcagaacttttcaatgtctgtcacagttccagtgaccagccccaatgctttgtcctacactaacccaggga





gttcactggtgtccccatctttggcagccagctcaacgttaacagattcaagcatgctctctccacctcaaaccacattacatag





aaatgtgtctcctggagctcctcagagaccaccaagtactggcaatgcaggtgggatgttgagcactacagacctcacagtg





ccaaatggagctggaagcagtccagtggggaatggatttgtaaactcaagagcttctccaaatttgattggagctactggtgc





aaatagcttaggcaaagtcatgcctacaaagtctccccctccaccaggtggtggtaatcttggaatgaacagtaggaaacca





gatcttcgagttgtcatccccccttcaagcaagggcatgatgcctccactatcggaggaagaggaattggagttgaacaccc





aaaggatcagtagttctcaagccactcaacctcttgctaccccagtcgtgtctgtgacaaccccaagcttgcctccgcaagga





cttgtgtactcagcaatgccgactgcctacaacactgattattcactgaccagcgctgacctgtcagcccttcaaggcttcaac





tcgccaggaatgctgtcgctgggacaggtgtcggcctggcagcagcaccacctaggacaagcagccctcagctctcttgtt





gctggagggcagttatctcagggttccaatttatccattaataccaaccaaaacatcagcatcaagtccgaaccgatttcacct





cctcgggatcgtatgaccccatcgggcttccagcagcagcagcagcagcagcagcagcagcagccgccgccaccaccg





cagccccagccacaacccccgcagccccagccccgacaggaaatggggcgctcccctgtggacagtctgagcagctcta





gtagctcctatgatggcagtgatcgggaggatccacggggcgacttccattctccaattgtgcttggccgacccccaaacac





tgaggacagagaaagcccttctgtaaagcgaatgaggatggacgcgtgggtgacctaa.





(SEQ ID NO: 70)



Myogenin: NM_002479: atggagctgtatgagacatccccctacttctaccaggaaccccgcttctatgatgggga






aaactacctgcctgtccacctccagggcttcgaaccaccaggctacgagcggacggagctcaccctgagccccgaggcc





ccagggccccttgaggacaaggggctggggacccccgagcactgtccaggccagtgcctgccgtgggcgtgtaaggtgt





gtaagaggaagtcggtgtccgtggaccggcggcgggcggccacactgagggagaagcgcaggctcaagaaggtgaat





gaggccttcgaggccctgaagagaagcaccctgctcaaccccaaccagcggctgcccaaggtggagatcctgcgcagtg





ccatccagtacatcgagcgcctccaggccctgctcagctccctcaaccaggaggagcgtgacctccgctaccggggcgg





gggcgggccccagccaggggtgcccagcgaatgcagctctcacagcgcctcctgcagtccagagtggggcagtgcact





ggagttcagcgccaacccaggggatcatctgctcacggctgaccctacagatgcccacaacctgcactccctcacctccat





cgtggacagcatcacagtggaagatgtgtctgtggccttcccagatgaaaccatgcccaactga;





BC053899; BC068019; AB257560.





(SEQ ID NO: 71)



Nkx2.2: NM_002509: atgtcgctgaccaacacaaagacggggttttcggtcaaggacatcttagacctgccggaca






ccaacgatgaggagggctctgtggccgaaggtccggaggaagagaacgaggggcccgagccagccaagagggccgg





gccgctggggcagggcgccctggacgcggtgcagagcctgcccctgaagaaccccttctacgacagcagcgacaaccc





gtacacgcgctggctggccagcaccgagggccttcagtactccctgcacggtctggctgccggggcgccccctcaggact





caagctccaagtccccggagccctcggccgacgagtcaccggacaatgacaaggagaccccgggcggcggggggga





cgccggcaagaagcgaaagcggcgagtgcttttctccaaggcgcagacctacgagctggagcggcgctttcggcagcag





cggtacctgtcggcgcccgagcgcgaacacctggccagcctcatccgcctcacgcccacgcaggtcaagatctggttcca





gaaccaccgctacaagatgaagcgcgcccgggccgagaaaggtatggaggtgacgcccctgccctcgccgcgccgggt





ggccgtgcccgtcttggtcagggacggcaaaccatgtcacgcgctcaaagcccaggacctggcagccgccaccttccag





gcgggcattcccttttctgcctacagcgcgcagtcgctgcagcacatgcagtacaacgcccagtacagctcggccagcacc





ccccagtacccgacagcacaccccctggtccaggcccagcagtggacttggtga; NM  001077632; NMJ) 10919.





Notch


(SEQ ID NO: 72)



Notch1: NM_017617:



atgccgccgctcctggcgcccctgctctgcctggcgctgctgcccgcgctcgccgcacgaggcccgcgatgctcccagc





ccggtgagacctgcctgaatggcgggaagtgtgaagcggccaatggcacggaggcctgcgtctgtggcggggccttcgt





gggcccgcgatgccaggaccccaacccgtgcctcagcaccccctgcaagaacgccgggacatgccacgtggtggaccg





cagaggcgtggcagactatgcctgcagctgtgccctgggcttctctgggcccctctgcctgacacccctggacaatgcctg





cctcaccaacccctgccgcaacgggggcacctgcgacctgctcacgctgacggagtacaagtgccgctgcccgcccggc





tggtcagggaaatcgtgccagcaggctgacccgtgcgcctccaacccctgcgccaacggtggccagtgcctgcccttcga





ggcctcctacatctgccactgcccacccagcttccatggccccacctgccggcaggatgtcaacgagtgtggccagaagc





ccgggctttgccgccacggaggcacctgccacaacgaggtcggctcctaccgctgcgtctgccgcgccacccacactgg





ccccaactgcgagcggccctacgtgccctgcagcccctcgccctgccagaacgggggcacctgccgccccacgggcga





cgtcacccacgagtgtgcctgcctgccaggcttcaccggccagaactgtgaggaaaatatcgacgattgtccaggaaacaa





ctgcaagaacgggggtgcctgtgtggacggcgtgaacacctacaactgccgctgcccgccagagtggacaggtcagtac





tgtaccgaggatgtggacgagtgccagctgatgccaaatgcctgccagaacggcgggacctgccacaacacccacggtg





gctacaactgcgtgtgtgtcaacggctggactggtgaggactgcagcgagaacattgatgactgtgccagcgccgcctgcl





tccacggcgccacctgccatgaccgtgtggcctccttctactgcgagtgtccccatggccgcacaggtctgctgtgccaccl





caacgacgcatgcatcagcaacccctgtaacgagggctccaactgcgacaccaaccctgtcaatggcaaggccatctgca





cctgcccctcggggtacacgggcccggcctgcagccaggacgtggatgagtgctcgctgggtgccaacccctgcgagca





tgcgggcaagtgcatcaacacgctgggctccttcgagtgccagtgtctgcagggctacacgggcccccgatgcgagatcg





acgtcaacgagtgcgtctcgaacccgtgccagaacgacgccacctgcctggaccagattggggagttccagtgcatctgc





atgcccggctacgagggtgtgcactgcgaggtcaacacagacgagtgtgccagcagcccctgcctgcacaatggccgct





gcctggacaagatcaatgagttccagtgcgagtgccccacgggcttcactgggcatctgtgccagtacgatgtggacgagt





gtgccagcaccccctgcaagaatggtgccaagtgcctggacggacccaacacttacacctgtgtgtgcacggaagggtac





acggggacgcactgcgaggtggacatcgatgagtgcgaccccgacccctgccactacggctcctgcaaggacggcgtc





gccaccttcacctgcctctgccgcccaggctacacgggccaccaclgcgagaccaacatcaacgagtgctccagccagcc





ctgccgccacgggggcacctgccaggaccgcgacaacgcctacctctgcltctgcctgaaggggaccacaggacccaac





tgcgagatcaacctggatgactgtgccagcagcccctgcgactcgggcacctgtctggacaagatcgatggctacgagtgt





gcctgtgagccgggctacacagggagcatgtgtaacatcaacatcgatgagtgtgcgggcaacccctgccacaacgggg





gcacctgcgaggacggcatcaatggcttcacctgccgctgccccgagggctaccacgaccccacctgcctgtctgagglc





aatgagtgcaacagcaacccctgcgtccacggggcctgccgggacagcctcaacgggtacaagtgcgactgtgaccctg





ggtggagtgggaccaactgtgacatcaacaacaatgagtgtgaatccaacccttgtgtcaacggcggcacctgcaaagac





atgaccagtggctacgtgtgcacctgccgggagggcttcagcggtcccaactgccagaccaacatcaacgagtgtgcgtc





caacccatgtctgaaccagggcacgtgtattgacgacgttgccgggtacaagtgcaactgcctgctgccctacacaggtgc





cacgtgtgaggtgglgctggccccgtgtgcccccagcccctgcagaaacggcggggagtgcaggcaatccgaggactat





gagagcttctcctgtgtctgccccacgggctggcaagggcagacctgtgagglcgacatcaacgagtgcgttctgagcccg





tgccggcacggcgcatcctgccagaacacccacggcggctaccgclgccactgccaggccggctacagtgggcgcaac





tgcgagaccgacatcgacgactgccggcccaacccgtgtcacaacgggggctcctgcacagacggcatcaacacggcct





tclgcgactgcctgcccggcttccggggcactttctgtgaggaggacatcaacgagtgtgccagtgacccctgccgcaacg





gggccaactgcacggactgcgtggacagctacacgtgcacctgccccgcaggcttcagcgggatccactgtgagaacaa





cacgcctgactgcacagagagctcctgcttcaacggtggcacctgcgtggacggcatcaactcgttcacctgcctgtgtcca





cccggcttcacgggcagctactgccagcacgatgtcaatgagtgcgactcacagccctgcctgcatggcggcacctgtca





ggacggctgcggctcctacaggtgcacctgcccccagggctacactggccccaactgccagaaccttgtgcactggtgtg





actcctcgccctgcaagaacggcggcaaatgctggcagacccacacccagtaccgctgcgagtgccccagcggctggac





cggcctttactgcgacgtgcccagcgtgtcctgtgaggtggctgcgcagcgacaaggtgttgacgttgcccgcctgtgcca





gcatggagggctctgtgtggacgcgggcaacacgcaccactgccgctgccaggcgggctacacaggcagctactgtga





ggacctggtggacgagtgctcacccagcccctgccagaacggggccacctgcacggactacctgggcggctactcctgc





aagtgcgtggccggctaccacggggtgaactgctctgaggagatcgacgagtgcctctcccacccctgccagaacgggg





gcacctgcctcgacctccccaacacctacaagtgctcctgcccacggggcactcagggtgtgcactgtgagatcaacgtgg





acgactgcaatccccccgttgaccccgtgtcccggagccccaagtgctttaacaacggcacctgcgtggaccaggtgggc





ggctacagctgcacctgcccgccgggcttcgtgggtgagcgctgtgagggggatgtcaacgagtgcctgtccaatccctg





cgacgcccgtggcacccagaactgcgtgcagcgcgtcaatgacttccactgcgagtgccgtgctggtcacaccgggcgc





cgctgcgagtccgtcatcaatggctgcaaaggcaagccctgcaagaatgggggcacctgcgccgtggcctccaacaccg





cccgcgggttcatctgcaagtgccctgcgggcttcgagggcgccacgtgtgagaatgacgctcgtacctgcggcagcctg





cgctgcctcaacggcggcacatgcatctccggcccgcgcagccccacctgcctgtgcctgggccccttcacgggccccg





aatgccagttcccggccagcagcccctgcctgggcggcaacccctgctacaaccaggggacctgtgagcccacatccga





gagccccttctaccgttgcctgtgccccgccaaattcaacgggctcttgtgccacatcctggactacagcttcgggggtggg





gccgggcgcgacatccccccgccgctgatcgaggaggcgtgcgagctgcccgagtgccaggaggacgcgggcaaca





aggtclgcagcctgcagtgcaacaaccacgcgtgcggctgggacggcggtgactgctccctcaacttcaatgacccctgg





aagaactgcacgcagtctctgcagtgctggaagtacttcagtgacggccactgtgacagccagtgcaactcagccggctgc





ctcttcgacggctttgactgccagcgtgcggaaggccagtgcaaccccctgtacgaccagtactgcaaggaccacttcagc





gacgggcactgcgaccagggctgcaacagcgcggaglgcgagtgggacgggctggactgtgcggagcatgtacccga





gaggctggcggccggcacgctggtggtggtggtgctgatgccgccggagcagctgcgcaacagclccttccacttcctgc





gggagctcagccgcgtgctgcacaccaacgtggtcttcaagcgtgacgcacacggccagcagatgatcttcccctactac





ggccgcgaggaggagctgcgcaagcaccccatcaagcgtgccgccgagggctgggccgcacctgacgccctgctggg





ccaggtgaaggcctcgctgctccctggtggcagcgagggtgggcggcggcggagggagctggaccccatggacgtcc





gcggctccatcgtctacctggagattgacaaccggcagtgtgtgcaggcctcctcgcagtgcttccagagtgccaccgacg





tggccgcattcctgggagcgctcgcctcgctgggcagcctcaacatcccctacaagatcgaggccgtgcagagtgagacc





gtggagccgcccccgccggcgcagctgcacttcatgtacgtggcggcggccgcctttgtgcttctgttcttcgtgggctgcg





gggtgctgctgtcccgcaagcgccggcggcagcatggccagctctggttccctgagggcttcaaagtgtctgaggccagc





aagaagaagcggcgggagcccctcggcgaggactccgtgggcctcaagcccctgaagaacgcttcagacggtgccctc





atggacgacaaccagaatgagtggggggacgaggacctggagaccaagaagttccggttcgaggagcccgtggttctgc





ctgacctggacgaccagacagaccaccggcagtggactcagcagcacctggatgccgctgacctgcgcatgtctgccatg





gcccccacaccgccccagggtgaggttgacgccgactgcatggacgtcaatgtccgcgggcctgatggcttcaccccgct





catgatcgcctcctgcagcgggggcggcctggagacgggcaacagcgaggaagaggaggacgcgccggccgtcatct





ccgacttcatctaccagggcgccagcctgcacaaccagacagaccgcacgggcgagaccgccttgcacctggccgccc





gctactcacgctctgatgccgccaagcgcctgctggaggccagcgcagatgccaacatccaggacaacatgggccgcac





cccgctgcatgcggctgtgtctgccgacgcacaaggtgtcttccagatcctgatccggaaccgagccacagacctggatgc





ccgcatgcatgatggcacgacgccactgatcctggctgcccgcctggccgtggagggcatgctggaggacctcatcaact





cacacgccgacgtcaacgccgtagatgacctgggcaagtccgccctgcactgggccgccgccgtgaacaatgtggatgc





cgcagttgtgctcctgaagaacggggctaacaaagatatgcagaacaacagggaggagacacccctgtttctggccgccc





gggagggcagctacgagaccgccaaggtgctgctggaccactttgccaaccgggacatcacggatcatatggaccgcct





gccgcgcgacatcgcacaggagcgcatgcatcacgacatcgtgaggctgctggacgagtacaacctggtgcgcagccc





gcagctgcacggagccccgctggggggcacgcccaccctgtcgcccccgctctgctcgcccaacggctacctgggcag





cctcaagcccggcgtgcagggcaagaaggtccgcaagcccagcagcaaaggcctggcctgtggaagcaaggaggcca





aggacctcaaggcacggaggaagaagtcccaggacggcaagggctgcctgctggacagctccggcatgctctcgcccg





tggactccctggagtcaccccatggctacctgtcagacgtggcctcgccgccactgctgccctccccgttccagcagtctcc





gtccgtgcccctcaaccacctgcctgggatgcccgacacccacctgggcatcgggcacctgaacgtggcggccaagccc





gagatggcggcgctgggtgggggcggccggctggcctttgagactggcccacctcgtctctcccacctgcctgtggcctct





ggcaccagcaccgtcctgggctccagcagcggaggggccctgaatttcactgtgggcgggtccaccagtttgaatggtca





atgcgagtggctgtcccggctgcagagcggcatggtgccgaaccaatacaaccctctgcgggggagtgtggcaccaggc





cccctgagcacacaggccccctccctgcagcatggcatggtaggcccgctgcacagtagccttgctgccagcgccctgtc





ccagatgatgagctaccagggcctgcccagcacccggctggccacccagcctcacctggtgcagacccagcaggtgcag





ccacaaaacttacagatgcagcagcagaacctgcagccagcaaacatccagcagcagcaaagcctgcagccgccacca





ccaccaccacagccgcaccttggcgtgagctcagcagccagcggccacctgggccggagcttcctgagtggagagccg





agccaggcagacgtgcagccactgggccccagcagcctggcggtgcacactattctgccccaggagagccccgccctg





cccacgtcgctgccatcctcgctggtcccacccgtgaccgcagcccagttcctgacgcccccctcgcagcacagctactcc





tcgcctgtggacaacacccccagccaccagctacaggtgcctgagcaccccttcctcaccccgtcccctgagtcccctgac





cagtggtccagctcgtccccgcattccaacgtctccgactggtccgagggcgtctccagccctcccaccagcatgcagtcc





cagatcgcccgcattccggaggccttcaagtaa; AFI 59231.





NOTCH2: NM 024408; NMJ) 10928.





(SEQ ID NO: 73)



NOTCH3: NM000435: atggggccgggggcccgtggccgccgccgccgccgtcgcccgatgtcgccgccacc






gccaccgccacccgtgcgggcgctgcccctgctgctgctgctagcggggccgggggctgcagcccccccttgcctggac





ggaagcccgtgtgcaaatggaggtcgttgcacccagctgccctcccgggaggctgcctgcctgtgcccgcctggctgggt





gggtgagcggtgtcagctggaggacccctgtcactcaggcccctgtgctggccgtggtgtctgccagagttcagtggtggc





tggcaccgcccgattctcatgccggtgcccccgtggcttccgaggccctgactgctccctgccagatccctgcctcagcag





cccttgtgcccacggtgcccgctgctcagtggggcccgatggacgcttcctctgctcctgcccacctggctaccagggccg





cagctgccgaagcgacgtggatgagtgccgggtgggtgagccctgccgccatggtggcacctgcctcaacacacctggc





tccttccgctgccagtgtccagctggctacacagggccactatgtgagaaccccgcggtgccctgtgcaccctcaccatgc





cgtaacgggggcacctgcaggcagagtggcgacctcacttacgactgtgcctgtcttcctgggtttgagggtcagaattgtg





aagtgaacgtggacgactgtccaggacaccgatgtctcaatggggggacatgcgtggatggcgtcaacacctataactgc





cagtgccctcctgagtggacaggccagttctgcacggaggacgtggatgagtgtcagctgcagcccaacgcctgccacaa





tgggggtacctgcttcaacacgctgggtggccacagctgcgtgtgtgtcaatggctggacaggcgagagctgcagtcaga





atatcgatgactgtgccacagccgtgtgcttccatggggccacctgccatgaccgcgtggcttctttctactgtgcctgcccca





tgggcaagactggcctcctgtgtcacctggatgacgcctgtgtcagcaacccctgccacgaggatgctatctgtgacacaaa





tccggtgaacggccgggccatttgcacctgtcctcccggcttcacgggtggggcatgtgaccaggatgtggacgagtgctc





tatcggcgccaacccctgcgagcacttgggcaggtgcgtgaacacgcagggctccttcctgtgccagtgcggtcgtggcta





cactggacctcgctgtgagaccgatgtcaacgagtgtctgtcggggccctgccgaaaccaggccacgtgcctcgaccgca





taggccagttcacctgtatctgtatggcaggcttcacaggaacctattgcgaggtggacattgacgagtgtcagagtagccc





ctgtgtcaacggtggggtctgcaaggaccgagtcaatggcttcagctgcacctgcccctcgggcttcagcggctccacgtg





tcagctggacgtggacgaatgcgccagcacgccctgcaggaatggcgccaaatgcgtggaccagcccgatggctacga





gtgccgctgtgccgagggctttgagggcacgctgtgtgatcgcaacgtggacgactgctcccctgacccatgccaccatgg





tcgctgcgtggatggcatcgccagcttctcatgtgcctgtgctcctggctacacgggcacacgctgcgagagccaggtgga





cgaatgccgcagccagccctgccgccatggcggcaaatgcctagacctggtggacaagtacctctgccgctgcccttctg





ggaccacaggtgtgaactgcgaagtgaacattgacgactgtgccagcaacccctgcacctttggagtctgccgtgatggca





tcaaccgctacgactgtgtctgccaacctggcttcacagggcccctttgtaacgtggagatcaatgagtgtgcttccagccca





tgcggcgagggaggttcctgtgtggatggggaaaatggcttccgctgcctctgcccgcctggctccttgcccccactctgcc





tccccccgagccatccctgtgcccatgagccctgcagtcacggcatctgctatgatgcacctggcgggttccgctgtgtgtgt





gagcctggctggagtggcccccgctgcagccagagcctggcccgagacgcctgtgagtcccagccgtgcagggccggt





gggacatgcagcagcgatggaatgggtttccactgcacctgcccgcctggtgtccagggacgtcagtgtgaactcctctcc





ccctgcaccccgaacccctgtgagcatgggggccgctgcgagtctgcccctggccagctgcctgtctgctcctgccccca





gggctggcaaggcccacgatgccagcaggatgtggacgagtgtgctggccccgcaccctgtggccctcatggtatctgca





ccaacctggcagggagtttcagctgcacctgccatggagggtacactggcccttcctgcgatcaggacatcaatgactgtg





accccaacccatgcctgaacggtggctcgtgccaagacggcgtgggctccttttcctgctcctgcctccctggtttcgccgg





cccacgatgcgcccgcgatgtggatgagtgcctgagcaacccctgcggcccgggcacctgtaccgaccacgtggcctcc





ttcacctgcacctgcccgccaggctacggaggcttccactgcgaacaggacctgcccgactgcagccccagctcctgcttc





aatggcgggacctgtgtggacggcgtgaactcgttcagctgcctgtgccgtcccggctacacaggagcccactgccaaca





tgaggcagacccctgcctctcgcggccctgcctacacgggggcgtctgcagcgccgcccaccctggcttccgctgcacct





gcctcgagagcttcacgggcccgcagtgccagacgctggtggattggtgcagccgccagccttgtcaaaacgggggtcg





ctgcgtccagactggggcctattgcctttgtccccctggatggagcggacgcctctgtgacatccgaagcttgccctgcagg





gaggccgcagcccagatcggggtgcggctggagcagctgtgtcaggcgggtgggcagtgtgtggatgaagacagctcc





cactactgcgtgtgcccagagggccgtactggtagccactgtgagcaggaggtggacccctgcttggcccagccctgcca





gcatggggggacctgccgtggctatatggggggctacatgtgtgagtgtcttcctggctacaatggtgataactgtgaggac





gacgtggacgagtgtgcctcccagccctgccagcacgggggttcatgcattgacctcgtggcccgctatctctgctcctgtc





ccccaggaacgctgggggtgctctgcgagattaatgaggatgactgcggcccaggcccaccgctggactcagggccccg





gtgcctacacaatggcacctgcgtggacctggtgggtggtttccgctgcacctgtcccccaggatacactggtttgcgctgc





gaggcagacatcaatgagtgtcgctcaggtgcctgccacgcggcacacacccgggactgcctgcaggacccaggcgga





ggtttccgttgcctttgtcatgctggcttctcaggtcctcgctgtcagactgtcctgtctccctgcgagtcccagccatgccagc





atggaggccagtgccgtcctagcccgggtcctgggggtgggctgaccttcacctgtcactgtgcccagccgttctggggtc





cgcgttgcgagcgggtggcgcgctcctgccgggagctgcagtgcccggtgggcgtcccatgccagcagacgccccgcg





ggccgcgctgcgcctgccccccagggttgtcgggaccctcctgccgcagcttcccggggtcgccgccgggggccagca





acgccagctgcgcggccgccccctgtctccacgggggctcctgccgccccgcgccgctcgcgcccttcttccgctgcgct





tgcgcgcagggctggaccgggccgcgctgcgaggcgcccgccgcggcacccgaggtctcggaggagccgcggtgcc





cgcgcgccgcctgccaggccaagcgcggggaccagcgctgcgaccgcgagtgcaacagcccaggctgcggctggga





cggcggcgactgctcgctgagcgtgggcgacccctggcggcaatgcgaggcgctgcagtgctggcgcctcttcaacaac





agccgctgcgaccccgcctgcagctcgcccgcctgcctctacgacaacttcgactgccacgccggtggccgcgagcgca





cttgcaacccggtgtacgagaagtactgcgccgaccactttgccgacggccgctgcgaccagggctgcaacacggagga





gtgcggctgggatgggctggattgtgccagcgaggtgccggccctgctggcccgcggcgtgctggtgctcacagtgctgc





tgccgccagaggagctactgcgttccagcgccgactttctgcagcggctcagcgccatcctgcgcacctcgctgcgcttcc





gcctggacgcgcacggccaggccatggtcttcccttaccaccggcctagtcctggctccgaaccccgggcccgtcggga





gctggcccccgaggtgatcggctcggtagtaatgctggagattgacaaccggctctgcctgcagtcgcctgagaatgatca





ctgcttccccgatgcccagagcgccgctgactacctgggagcgttgtcagcggtggagcgcctggacttcccgtacccact





gcgggacgtgcggggggagccgctggagcctccagaacccagcgtcccgctgctgccactgctagtggcgggcgctgt





cttgctgctggtcattctcgtcctgggtgtcatggtggcccggcgcaagcgcgagcacagcaccctctggttccctgagggc





ttctcactgcacaaggacgtggcctctggtcacaagggccggcgggaacccgtgggccaggacgcgctgggcatgaag





aacatggccaagggtgagagcctgatgggggaggtggccacagactggatggacacagagtgcccagaggccaagcg





gctaaaggtagaggagccaggcatgggggctgaggaggctgtggattgccgtcagtggactcaacaccatctggttgctg





ctgacatccgcgtggcaccagccatggcactgacaccaccacagggcgacgcagatgctgatggcatggatgtcaatgtg





cgtggcccagatggcttcaccccgctaatgctggcttccttctgtgggggggctctggagccaatgccaactgaagaggat





gaggcagatgacacatcagctagcatcatctccgacctgatctgccagggggctcagcttggggcacggactgaccgtact





ggcgagactgctttgcacctggctgcccgttatgcccgtgctgatgcagccaagcggctgctggatgctggggcagacac





caatgcccaggaccactcaggccgcactcccctgcacacagctgtcacagccgatgcccagggtgtcttccagattctcatc





cgaaaccgctctacagacttggatgcccgcatggcagatggctcaacggcactgatcctggcggcccgcctggcagtaga





gggcatggtggaagagctcatcgccagccatgctgatgtcaatgctgtggatgagcttgggaaatcagccttacactgggct





gcggctgtgaacaacgtggaagccactttggccctgctcaaaaatggagccaataaggacatgcaggatagcaaggagg





agacccccctattcctggccgcccgcgagggcagctatgaggctgccaagctgctgttggaccactttgccaaccgtgaga





tcaccgaccacctggacaggctgccgcgggacgtagcccaggagagactgcaccaggacatcgtgcgcttgctggatca





acccagtgggccccgcagcccccccggtccccacggcctggggcctctgctctgtcctccaggggccttcctccctggcc





tcaaagcggcacagtcggggtccaagaagagcaggaggccccccgggaaggcggggctggggccgcaggggcccc





gggggcggggcaagaagctgacgctggcctgcccgggccccctggctgacagctcggtcacgctgtcgcccgtggact





cgctggactccccgcggcctttcggtgggccccctgcttcccctggtggcttcccccttgaggggccctatgcagctgccac





tgccactgcagtgtctctggcacagcttggtggcccaggccgggcgggtctagggcgccagccccctggaggatgtgtac





tcagcctgggcctgctgaaccctgtggctgtgcccctcgattgggcccggctgcccccacctgcccctccaggcccctcgtt





cctgctgccactggcgccgggaccccagctgctcaacccagggacccccgtctccccgcaggagcggcccccgccttac





ctggcagtcccaggacatggcgaggagtacccggcggctggggcacacagcagccccccaaaggcccgcttcctgcgg





gttcccagtgagcacccttacctgaccccatcccccgaatcccctgagcactgggccagcccctcacctccctccctctcag





actggtccgaatccacgcctagcccagccactgccactggggccatggccaccaccactggggcactgcctgcccagcc





acttcccttgtctgttcccagctcccttgctcaggcccagacccagctggggccccagccggaagttacccccaagaggca





agtgttggcctga.





(SEQ ID NO: 74)



Nurr1: NM_006186: atgccttgtgttcaggcgcagtatgggtcctcgcctcaaggagccagccccgcttctcagagc






tacagttaccactcttcgggagaatacagctccgatttcttaactccagagtttgtcaagtttagcatggacctcaccaacactg





aaatcactgccaccacttctctccccagcttcagtacctttatggacaactacagcacaggctacgacgtcaagccaccttgct





tgtaccaaatgcccctgtccggacagcagtcctccattaaggtagaagacattcagatgcacaactaccagcaacacagcc





acctgcccccccagtctgaggagatgatgccgcactccgggtcggtttactacaagccctcctcgcccccgacgcccacca





ccccgggcttccaggtgcagcacagccccatgtgggacgacccgggatctctccacaacttccaccagaactacgtggcc





actacgcacatgatcgagcagaggaaaacgccagtctcccgcctctccctcttctcctttaagcaatcgccccctggcaccc





cggtgtctagttgccagatgcgcttcgacgggcccctgcacgtccccatgaacccggagcccgccggcagccaccacgt





ggtggacgggcagaccttcgctgtgcccaaccccattcgcaagcccgcgtccatgggcttcccgggcctgcagatcggcc





acgcgtctcagctgctcgacacgcaggtgccctcaccgccgtcgcggggctccccctccaacgaggggctgtgcgctgtg





tgtggggacaacgcggcctgccaacactacggcgtgcgcacctgtgagggctgcaaaggcttctttaagcgcacagtgca





aaaaaatgcaaaatacgtgtgtttagcaaataaaaactgcccagtggacaagcgtcgccggaatcgctgtcagtactgccga





tttcagaagtgcctggctgttgggatggtcaaagaagtggttcgcacagacagtttaaaaggccggagaggtcgtttgccct





cgaaaccgaagagcccacaggagccctctcccccttcgcccccggtgagtctgatcagtgccctcgtcagggcccatgtc





gactccaacccggctatgaccagcctggactattccaggttccaggcgaaccctgactatcaaatgagtggagatgacacc





cagcatatccagcaattctatgatctcctgactggctccatggagatcatccggggctgggcagagaagatccctggcttcg





cagacctgcccaaagccgaccaagacctgctttttgaatcagctttcttagaactgtttgtccttcgattagcatacaggtccaa





cccagtggagggtaaactcatcttttgcaatggggtggtcttgcacaggttgcaatgcgttcgtggctttggggaatggattga





ttccattgttgaattctcctccaacttgcagaatatgaacatcgacatttctgccttctcctgcattgctgccctggctatggtcac





agagagacacgggctcaaggaacccaagagagtggaagaactgcaaaacaagattgtaaattgtctcaaagaccacgtga





ctttcaacaatggggggttgaaccgccccaattatttgtccaaactgttggggaagctcccagaacttcgtaccctttgcacac





aggggctacagcgcattttctacctgaaattggaagacttggtgccaccgccagcaataattgacaaacttttcctggacactt





tacctttctaa; NMO19328.





(SEQ ID NO: 75)



NOV(CCN3): NM_002514: atgcagagtgtgcagagcacgagcttttgtctccgaaagcagtgcctttgcctgac






cttcctgcttctccatctcctgggacaggtcgctgcgactcagcgctgccctccccagtgcccgggccggtgccctgcgac





gccgccgacctgcgcccccggggtgcgcgcggtgctggacggctgctcatgctgtctggtgtgtgcccgccagcgtggc





gagagctgctcagatctggagccatgcgacgagagcagtggcctctactgtgatcgcagcgcggaccccagcaaccaga





ctggcatctgcacggcggtagagggagataactgtgtgttcgatggggtcatctaccgcagtggagagaaatttcagccaa





gctgcaaattccagtgcacctgcagagatgggcagattggctgtgtgccccgctgtcagctggatgtgctactgcctgagcc





taactgcccagctccaagaaaagttgaggtgcctggagagtgctgtgaaaagtggatctgtggcccagatgaggaggattc





actgggaggccttacccttgcagcttacaggccagaagccaccctaggagtagaagtctctgactcaagtgtcaactgcatt





gaacagaccacagagtggacagcatgctccaagagctgtggtatggggttctccacccgggtcaccaataggaaccgtca





atgtgagatgctgaaacagactcggctctgcatggtgcggccctgtgaacaagagccagagcagccaacagataagaaa





ggaaaaaagtgtctccgcaccaagaagtcactcaaagccatccacctgcagttcaagaactgcaccagcctgcacacctac





aagcccaggttctgtggggtctgcagtgatggccgctgctgcactccccacaataccaaaaccatccaggcagagtttcagt





gctccccagggcaaatagtcaagaagccagtgatggtcattgggacctgcacctgtcacaccaactgtcctaagaacaatg





aggccttcctccaggagctggagctgaagactaccagagggaaaatgtaa; NM_010930; NM030868; BCO15028.





(SEQ ID NO: 76)



OLIG1:NM_138983: atgctgcggccacagcggcccggagacttgcagctcggggcctccctctacgagctggtg






ggctacaggcagccgccctcctcctcctcctcctccacctcctccacctcctccacttcctcctcctccacgacggcccccct





cctccccaaggctgcgcgcgagaagccggaggcgccggccgagcctccaggccccgggcccgggtcaggcgcgcac





ccgggcggcagcgcccggccggacgccaaggaggagcagcagcagcagctgcggcgcaagatcaacagccgcgag





cggaagcgcatgcaggacctgaacctggccatggacgccctgcgcgaggtcatcctgccctactcagcggcgcactgcc





agggcgcgcccggccgcaagctctccaagatagccacgctgctgctcgcccgcaactacatcctactgctgggcagctcg





ctgcaggagctgcgccgcgcgctgggcgagggcgccgggcccgccgcgccgcgcctgctgctggccgggctgcccct





gctcgccgccgcgcccggctccgtgttgctggcgcccggcgccgtaggaccccccgacgcgctgcgccccgccaagta





cctgtcgctggcgctggacgagccgccgtgcggccagttcgctctccccggcggcggcgcaggcggccccggcctctg





cacctgcgccgtgtgcaagttcccgcacctggtcccggccagcctgggcctggccgccgtgcaggcgcaattctccaagt





ga; NM016968; NMJ)01020796.





(SEQ ID NO: 77)



OLIGiNM{circumflex over ( )}OSδOóiatggactcggacgccagcctggtgtccagccgcccgtcgtcgccagagcccgatgaccttt






ttctgccggcccggagtaagggcagcagcggcagcgccttcactgggggcaccgtgtcctcgtccaccccgagtgactg





cccgccggagctgagcgccgagctgcgcggcgctatgggctctgcgggcgcgcatcctggggacaagctaggaggca





gtggcttcaagtcatcctcgtccagcacctcgtcgtctacgtcgtcggcggctgcgtcgtccaccaagaaggacaagaagc





aaatgacagagccggagctgcagcagctgcgtctcaagatcaacagccgcgagcgcaagcgcatgcacgacctcaacat





cgccatggatggcctccgcgaggtcatgccgtacgcacacggcccttcggtgcgcaagctttccaagatcgccacgctgct





gctggcgcgcaactacatcctcatgctcaccaactcgctggaggagatgaagcgactggtgagcgagatctacgggggcc





accacgctggcttccacccgtcggcctgcggcggcctggcgcactccgcgcccctgcccgccgccaccgcgcacccgg





cagcagcagcgcacgccgcacatcaccccgcggtgcaccaccccatcctgccgcccgccgccgcagcggctgctgccg





ccgctgcagccgcggctgtgtccagcgcctctctgcccggatccgggctgccgtcggtcggctccatccgtccaccgcac





ggcctactcaagtctccgtctgctgccgcggccgccccgctggggggcgggggcggcggcagtggggcgagcggggg





cttccagcactggggcggcatgccctgcccctgcagcatgtgccaggtgccgccgccgcaccaccacgtgtcggctatgg





gcgccggcagcctgccgcgcctcacctccgacgccaagtga.





(SEQ ID NO: 78)



PcIxI: NM000209: atgaacggcgaggagcagtactacgcggccacgcagctttacaaggacccatgcgcgttcca






gcgaggcccggcgccggagttcagcgccagcccccctgcgtgcctgtacatgggccgccagcccccgccgccgccgc





cgcacccgttccctggcgccctgggcgcgctggagcagggcagccccccggacatctccccgtacgaggtgccccccct





cgccgacgaccccgcggtggcgcaccttcaccaccacctcccggctcagctcgcgctcccccacccgcccgccgggcc





cttcccggagggagccgagccgggcgtcctggaggagcccaaccgcgtccagctgcctttcccatggatgaagtctacca





aagctcacgcgtggaaaggccagtgggcaggcggcgcctacgctgcggagccggaggagaacaagcggacgcgcac





ggcctacacgcgcgcacagctgctagagctggagaaggagttcctattcaacaagtacatctcacggccgcgccgggtgg





agctggctgtcatgttgaacttgaccgagagacacatcaagatctggttccaaaaccgccgcatgaagtggaaaaaggagg





aggacaagaagcgcggcggcgggacagctgtcgggggtggcggggtcgcggagcctgagcaggactgcgccgtgac





ctccggcgaggagcttctggcgctgccgccgccgccgccccccggaggtgctgtgccgcccgctgcccccgttgccgcc





cgagagggccgcctgccgcctggccttagcgcgtcgccacagccctccagcgtcgcgcctcggcggccgcaggaacca





cgatga; NM008814; NM022852.





(SEQ ID NO: 79)



Pet1(FEV):BC138435; NM017521: atgagacagagcggcgcctcccagcccctgctgatcaacatgtacctg






ccagatcccgtcggagacggtctcttcaaggacgggaagaacccgagctgggggccgctgagccccgcggttcagaaa





ggcagcggacagatccagctgtggcagtttctgctggagctgctggctgaccgcgcgaacgccggctgcatcgcgtggg





agggcggtcacggcgagttcaagctcacggacccggacgaggtggcgcggcggtggggcgagcgcaagagcaagcc





caacatgaactacgacaagctgagccgcgccctgcgctactactacgacaagaacatcatgagcaaggtgcatggcaagc





gctacgcctaccgcttcgacttccagggcctggcgcaggcctgccagccgccgcccgcgcacgctcatgccgccgccgc





agctgctgccgccgccgcggccgcccaggacggcgcgctctacaagctgcccgccggcctcgccccgctgcccttcccc





ggcctctccaaactcaacctcatggccgcctcggccggggtcgcgcccgccggcttctcctactggccgggcccgggcc





ccgccgccaccgctgccgccgccaccgccgcgctctaccccagtcccagcttgcagcccccgcccgggcccttcgggg





ccgtggccgcagcctcgcacttggggggccattaccactag; NG_002690; NP059991.





(SEQ ID NO: 80)



Phox2a: NM_005169: atggactactcctacctcaattcgtacgactcgtgcgtggcggccatggaggcgtccgccta






cggcgactttggcgcctgcagccagcccggcggcttccaatacagccccctgcggcccgctttccccgcggcagggccg





ccctgccccgcgctcggctcctccaactgcgcacttggcgccctacgcgaccaccagcccgcgccctactcggcagtgcc





ctacaagttcttcccagagccatccggcctgcacgagaagcgcaagcagcggcgcatccgcaccacgttcaccagcgcg





cagctcaaggagctggagcgcgttttcgctgagacccactaccccgacatttacacgcgtgaggagctggcgctcaagatc





gacctcactgaggctcgcgtgcaggtctggttccagaaccgccgggccaagttccgcaaacaggagcgcgcggccagc





gccaagggcgcggcgggcgcggcgggcgccaaaaagggcgaggcgcgctgctcctccgaggacgacgattccaagg





agtccacgtgcagccccacgcccgatagcaccgcctcgctgccgccgccgcctgcgcccggcctggccagcccgcgcc





tgagccccagcccgctgcccgtcgcactgggctccgggccgggacctgggccggggccacagccgctcaagggcgca





ctgtgggccggtgtggcgggcggtgggggcggcgggcctggcgcgggagcggccgaactacttaaggcttggcagcc





ggcggagtccggccccgggcccttctccggggttctgtcctcctttcaccggaagcccggccccgccctgaagaccaatct





cttctag; AJ320270; AY371497; AY371496.





(SEQ ID NO: 81)



Phox2b: NM_003924: atgtataaaatggaatattcttacctcaattcctctgcctacgagtcctgtatggctgggatgg






acacctcgagcctggcttcagcctatgctgacttcagttcctgcagccaggccagtggcttccagtataacccgataaggac





cacttttggggccacgtccggctgcccttccctcacgccgggatcctgcagcctgggcaccctcagggaccaccagagca





gtccgtacgccgcagttccttacaaactcttcacggaccacggcggcctcaacgagaagcgcaagcagcggcgcatccgc





accactttcaccagtgcccagctcaaagagctggaaagggtcttcgcggagactcactaccccgacatctacactcgggag





gagctggccctgaagatcgacctcacagaggcgcgagtccaggtgtggttccagaaccgccgcgccaagtttcgcaagc





aggagcgcgcagcggcagccgcagcggccgcggccaagaacggctcctcgggcaaaaagtctgactcttccagggac





gacgagagcaaagaggccaagagcactgacccggacagcactgggggcccaggtcccaatcccaaccccacccccag





ctgcggggcgaatggaggcggcggcggcgggcccagcccggctggagctccgggggcggcggggcccgggggcc





cgggaggcgaacccggcaagggcggcgcagcagcagcggcggcggccgcggcagcggcggcggcggcagcggc





agcggcggcagctggaggcctggctgcggctgggggccctggacaaggctgggctcccggccccggccccatcacct





ccatcccggattcgcttgggggtcccttcgccagcgtcctatcttcgctccaaagacccaacggtgccaaagccgccttagt





gaagagcagtatgttctga; NM008888; AY371498; Y14493.





(SEQ ID NO: 82)



Pit1: NM_000306: atgagttgccaagcttttacttcggctgatacctttatacctctgaattctgacgcctctgcaactctg






cctctgataatgcatcacagtgctgccgagtgtctaccagtctccaaccatgccaccaatgtgatgtctacagcaacaggactt





cattattctgttccttcctgtcattatggaaaccagccatcaacctatggagtgatggcaggtagtttaaccccttgtctttataaat





ttcctgaccacaccttgagtcatggatttcctcctatacaccagcctcttctggcagaggaccccacagctgctgatttcaagc





aggaactcaggcggaaaagtaaattggtggaagagccaatagacatggattctccagaaatcagagaacttgaaaagtttg





ccaatgaatttaaagtgagacgaattaaattaggatacacccagacaaatgttggggaggccctggcagctgtgcatggctc





tgaattcagtcaaacaacaatctgccgatttgaaaatctgcagctcagctttaaaaatgcatgcaaactgaaagcaatattatcc





aaatggctggaggaagctgagcaagtaggagctttgtacaatgaaaaagtgggagcaaatgaaaggaaaagaaaacgaa





gaacaactataagcattgctgctaaagatgctctggagagacactttggagaacagaataaaccttcttctcaagagatcatg





aggatggctgaagaactgaatctggagaaagaagtagtaagagtttggttttgcaaccggaggcagagagaaaaacgggt





gaaaacaagtctgaatcagagtttattttctatttctaaggaacatcttgagtgcagataa; M23253.





(SEQ ID NO: 83)



PITX3: NM_005029: atggagttcggcctgctcagcgaggcagaggcccggagccctgccctgtcgctgtcagac






gctggcactccgcacccccagctcccagagcacggctgcaagggccaggagcacagcgactcagaaaaggcctcggct





tcgctgcccggcggctccccagaggacggttcgctgaaaaagaagcagcggcggcagcgcacgcacttcaccagccag





cagctacaggagctagaggcgaccttccagaggaaccgctaccccgacatgagcacgcgcgaggagatcgccgtgtgg





accaacctcaccgaggcccgcgtgcgggtgtggttcaagaaccggcgcgccaaatggcggaagcgcgagcgcagcca





gcaggccgagctatgcaaaggcagcttcgcggcgccgctcggggggctggtgccgccctacgaggaggtgtaccccgg





ctactcgtacggcaactggccgcccaaggctcttgccccgccgctcgccgccaagacctttccattcgccttcaactcggtc





aacgtggggcctctggcttcgcagcccgtcttctcgccacccagctccatcgccgcctccatggtgccctccgccgcggct





gccccgggcaccgtgccagggcctggggccctgcagggcctgggcgggggcccccccgggctggctccggccgccg





tgtcctccggggccgtgtcctgcccttatgcctcggccgccgccgccgccgcggctgccgcctcttccccctacgtctatcg





ggacccgtgtaactcgagcctggccagcctgcggctcaaagccaaacagcacgcctccttcagctaccccgctgtgcacg





ggccgcccccggcagccaaccttagtccgtgccagtacgccgtggaaaggcccgtatga; NM008852; NM008987;





(SEQ ID NO: 84)



RUNX1: NM001001890: atgcgtatccccgtagatgccagcacgagccgccgcttcacgccgccttccaccgcg






ctgagcccaggcaagatgagcgaggcgttgccgctgggcgccccggacgccggcgctgccctggccggcaagctgag





gagcggcgaccgcagcatggtggaggtgctggccgaccacccgggcgagctggtgcgcaccgacagccccaacttcct





ctgctccgtgctgcctacgcactggcgctgcaacaagaccctgcccatcgctttcaaggtggtggccctaggggatgttcca





gatggcactctggtcactgtgatggctggcaatgatgaaaactactcggctgagctgagaaatgctaccgcagccatgaag





aaccaggttgcaagatttaatgacctcaggtttgtcggtcgaagtggaagagggaaaagcttcactctgaccatcactgtcttc





acaaacccaccgcaagtcgccacctaccacagagccatcaaaatcacagtggatgggccccgagaacctcgaagacatc





ggcagaaactagatgatcagaccaagcccgggagcttgtccttttccgagcggctcagtgaactggagcagctgcggcgc





acagccatgagggtcagcccacaccacccagcccccacgcccaaccctcgtgcctccctgaaccactccactgcctttaac





cctcagcctcagagtcagatgcaggatacaaggcagatccaaccatccccaccgtggtcctacgatcagtcctaccaatac





ctgggatccattgcctctccttctgtgcacccagcaacgcccatttcacctggacgtgccagcggcatgacaaccctctctgc





agaactttccagtcgactctcaacggcacccgacctgacagcgttcagcgacccgcgccagttccccgcgctgccctccat





ctccgacccccgcatgcactatccaggcgccttcacctactccccgacgccggtcacctcgggcatcggcatcggcatgtc





ggccatgggctcggccacgcgctaccacacctacctgccgccgccctaccccggctcgtcgcaagcgcagggaggccc





gttccaagccagctcgccctcctaccacctgtactacggcgcctcggccggctcctaccagttctccatggtgggcggcga





gcgctcgccgccgcgcatcctgccgccctgcaccaacgcctccaccggctccgcgctgctcaaccccagcctcccgaac





cagagcgacgtggtggaggccgagggcagccacagcaactcccccaccaacatggcgccctccgcgcgcctggagga





ggccgtgtggaggccctactga; AY509916; AY509915; NM_001001890.2; NP001001890.1;





NM001122607.1; NP001116079.1; NM001754.4; NPJ)01745.2





(SEQ ID NO: 85)



Runx2: NMJ)01015051: atgcttcattcgcctcacaaacaaccacagaaccacaagtgcggtgcaaactttctccag






gaggacagcaagaagtctctggtttttaaatggttaatctccgcaggtcactaccagccaccgagaccaacagagtcatttaa





ggctgcaagcagtatttacaacagagggtacaagttctatctgaaaaaaaaaggagggactatggcatcaaacagcctcttc





agcacagtgacaccatgtcagcaaaacttcttttgggatccgagcaccagccggcgcttcagccccccctccagcagcctg





cagcccggcaaaatgagcgacgtgagcccggtggtggctgcgcaacagcagcagcaacagcagcagcagcaacagca





gcagcagcagcagcaacagcagcagcagcagcaggaggcggcggcggcggctgcggcggcggcggcggctgcgg





cggcggcagctgcagtgccccggttgcggccgccccacgacaaccgcaccatggtggagatcatcgccgaccacccgg





ccgaactcgtccgcaccgacagccccaacttcctgtgctcggtgctgccctcgcactggcgctgcaacaagaccctgcccg





tggccttcaaggtggtagccctcggagaggtaccagatgggactgtggttactgtcatggcgggtaacgatgaaaattattct





gctgagctccggaatgcctctgctgttatgaaaaaccaagtagcaaggttcaacgatctgagatttgtgggccggagtggac





gaggcaagagtttcaccttgaccataaccgtcttcacaaatcctccccaagtagctacctatcacagagcaattaaagttacag





tagatggacctcgggaacccagaaggcacagacagaagcttgatgactctaaacctagtttgttctctgaccgcctcagtgat





ttagggcgcattcctcatcccagtatgagagtaggtgtcccgcctcagaacccacggccctccctgaactctgcaccaagtc





cttttaatccacaaggacagagtcagattacagaccccaggcaggcacagtcttccccgccgtggtcctatgaccagtcttac





ccctcctacctgagccagatgacgtccccgtccatccactctaccaccccgctgtcttccacacggggcactgggcttcctg





ccatcaccgatgtgcctaggcgcatttcaggtgcttcagaactgggccctttttcagaccccaggcagttcccaagcatttcat





ccctcactgagagccgcttctccaacccacgaatgcactatccagccacctttacttacaccccgccagtcacctcaggcatg





tccctcggtatgtccgccaccactcactaccacacctacctgccaccaccctaccccggctcttcccaaagccagagtggac





ccttccagaccagcagcactccatatctctactatggcacttcgtcaggatcctatcagtttcccatggtgccggggggagac





cggtctccttccagaatgcttccgccatgcaccaccacctcgaatggcagcacgctattaaatccaaatttgcctaaccagaat





gatggtgttgacgctgatggaagccacagcagttccccaactgttttgaattctagtggcagaatggatgaatctgtttggcga





ccatattga; NM001015051.2; NP001015051.2; NM001015051; NM001024630.2;





NP001019801.2; NM004348.3; NP004339.3.





(SEQ ID NO: 86)



Shh: NM_000193: atgctgctgctggcgagatgtctgctgctagtcctcgtctcctcgctgctggtatgctcgggactg






gcgtgcggaccgggcagggggttcgggaagaggaggcaccccaaaaagctgacccctttagcctacaagcagtttatcc





ccaatgtggccgagaagaccctaggcgccagcggaaggtatgaagggaagatctccagaaactccgagcgatttaagga





actcacccccaattacaaccccgacatcatatttaaggatgaagaaaacaccggagcggacaggctgatgactcagaggtg





taaggacaagttgaacgctttggccatctcggtgatgaaccagtggccaggagtgaaactgcgggtgaccgagggctggg





acgaagatggccaccactcagaggagtctctgcactacgagggccgcgcagtggacatcaccacgtctgaccgcgaccg





cagcaagtacggcatgctggcccgcctggcggtggaggccggcttcgactgggtgtactacgagtccaaggcacatatcc





actgctcggtgaaagcagagaactcggtggcggccaaatcgggaggctgcttcccgggctcggccacggtgcacctgga





gcagggcggcaccaagctggtgaaggacctgagccccggggaccgcgtgctggcggcggacgaccagggccggctg





ctctacagcgacttcctcactttcctggaccgcgacgacggcgccaagaaggtcttctacgtgatcgagacgcgggagccg





cgcgagcgcctgctgctcaccgccgcgcacctgctctttgtggcgccgcacaacgactcggccaccggggagcccgag





gcgtcctcgggctcggggccgccttccgggggcgcactggggcctcgggcgctgttcgccagccgcgtgcgcccgggc





cagcgcgtgtacgtggtggccgagcgtgacggggaccgccggctcctgcccgccgctgtgcacagcgtgaccctaagc





gaggaggccgcgggcgcctacgcgccgctcacggcccagggcaccattctcatcaaccgggtgctggcctcgtgctacg





cggtcatcgaggagcacagctgggcgcaccgggccttcgcgcccttccgcctggcgcacgcgctcctggctgcactggc





gcccgcgcgcacggaccgcggcggggacagcggcggcggggaccgcgggggcggcggcggcagagtagccctaa





ccgctccaggtgctgccgacgctccgggtgcgggggccaccgcgggcatccactggtactcgcagctgctctaccaaata





ggcacctggctcctggacagcgaggccctgcacccgctgggcatggcggtcaagtccagctga;





NP000184; NM_009170; NP033196; NM20482]; NP_990152.





(SEQ ID NO: 87)



Sox9: NM_000346: atgaatctcctggaccccttcatgaagatgaccgacgagcaggagaagggcctgtccggcgc






ccccagccccaccatgtccgaggactccgcgggctcgccctgcccgtcgggctccggctcggacaccgagaacacgcg





gccccaggagaacacgttccccaagggcgagcccgatctgaagaaggagagcgaggaggacaagttccccgtgtgcat





ccgcgaggcggtcagccaggtgctcaaaggctacgactggacgctggtgcccatgccggtgcgcgtcaacggctccagc





aagaacaagccgcacgtcaagcggcccatgaacgccttcatggtgtgggcgcaggcggcgcgcaggaagctcgcgga





ccagtacccgcacttgcacaacgccgagctcagcaagacgctgggcaagctctggagacttctgaacgagagcgagaag





cggcccttcgtggaggaggcggagcggctgcgcgtgcagcacaagaaggaccacccggattacaagtaccagccgcg





gcggaggaagtcggtgaagaacgggcaggcggaggcagaggaggccacggagcagacgcacatctcccccaacgcc





atcttcaaggcgctgcaggccgactcgccacactcctcctccggcatgagcgaggtgcactcccccggcgagcactcggg





gcaatcccagggcccaccgaccccacccaccacccccaaaaccgacgtgcagccgggcaaggctgacctgaagcgag





aggggcgccccttgccagaggggggcagacagccccctatcgacttccgcgacgtggacatcggcgagctgagcagcg





acgtcatctccaacatcgagaccttcgatgtcaacgagtttgaccagtacctgccgcccaacggccacccgggggtgccgg





ccacgcacggccaggtcacctacacgggcagctacggcatcagcagcaccgcggccaccccggcgagcgcgggccac





gtgtggatgtccaagcagcaggcgccgccgccacccccgcagcagcccccacaggccccgccggccccgcaggcgcc





cccgcagccgcaggcggcgcccccacagcagccggcggcacccccgcagcagccacaggcgcacacgctgaccacg





ctgagcagcgagccgggccagtcccagcgaacgcacatcaagacggagcagctgagccccagccactacagcgagca





gcagcagcactcgccccaacagatcgcctacagccccttcaacctcccacactacagcccctcctacccgcccatcacccg





ctcacagtacgactacaccgaccaccagaactccagctcctactacagccacgcggcaggccagggcaccggcctctact





ccaccttcacctacatgaaccccgctcagcgccccatgtacacccccatcgccgacacctctggggtcccttccatcccgca





gacccacagcccccagcactgggaacaacccgtctacacacagctcactcgaccttga





NM000346; NP000337; NM011448; NP035578; XM_343981; XP_343982.





(SEQ ID NO: 88)



sox17: NM_022454: atgagcagcccggatgcgggatacgccagtgacgaccagagccagacccagagcgcgct






gcccgcggtgatggccgggctgggcccctgcccctgggccgagtcgctgagccccatcggggacatgaaggtgaaggg





cgaggcgccggcgaacagcggagcaccggccggggccgcgggccgagccaagggcgagtcccgtatccggcggcc





gatgaacgctttcatggtgtgggctaaggacgagcgcaagcggctggcgcagcagaatccagacctgcacaacgccgag





ttgagcaagatgctgggcaagtcgtggaaggcgctgacgctggcggagaagcggcccttcgtggaggaggcagagcgg





ctgcgcgtgcagcacatgcaggaccaccccaactacaagtaccggccgcggcggcgcaagcaggtgaagcggctgaa





gcgggtggagggcggcttcctgcacggcctggctgagccgcaggcggccgcgctgggccccgagggcggccgcgtg





gccatggacggcctgggcctccagttccccgagcagggcttccccgccggcccgccgctgctgcctccgcacatgggcg





gccactaccgcgactgccagagtctgggcgcgcctccgctcgacggctacccgttgcccacgcccgacacgtccccgct





ggacggcgtggaccccgacccggctttcttcgccgccccgatgcccggggactgcccggcggccggcacctacagcta





cgcgcaggtctcggactacgctggccccccggagcctcccgccggtcccatgcacccccgactcggcccagagcccgc





gggtccctcgattccgggcctcctggcgccacccagcgcccttcacgtgtactacggcgcgatgggctcgcccggggcg





ggcggcgggcgcggcttccagatgcagccgcaacaccagcaccagcaccagcaccagcaccaccccccgggccccg





gacagccgtcgccccctccggaggcactgccctgccgggacggcacggaccccagtcagcccgccgagctcctcggg





gaggtggaccgcacggaatttgaacagtatctgcacttcgtgtgcaagcctgagatgggcctcccctaccaggggcatgac





tccggtgtgaatctccccgacagccacggggccatttcctcggtggtgtccgacgccagctccgcggtatattactgcaact





atcctgacgtgtga; BC140307; NM_011441.





(SEQ ID NO: 89)



DLX2: NM004405: atgactggagtctttgacagtctagtggctgatatgcactcgacccagatcgccgcctccagca






cgtaccaccagcaccagcagcccccgagcggcggcggcgccggcccgggtggcaacagcagcagcagcagcagcct





ccacaagccccaggagtcgcccacccttccggtgtccaccgccaccgacagcagctactacaccaaccagcagcacccg





gcgggcggcggcggcggcgggggctcgccctacgcgcacatgggttcctaccagtaccaagccagcggcctcaacaa





cgtcccttactccgccaagagcagctatgacctgggctacaccgccgcctacacctcctacgctccctatggaaccagttcg





tccccagccaacaacgagcctgagaaggaggaccttgagcctgaaattcggatagtgaacgggaagccaaagaaagtcc





ggaaaccccgcaccatctactccagtttccagctggcggctcttcagcggcgtttccaaaagactcaatacttggccttgccg





gagcgagccgagctggcggcctctctgggcctcacccagactcaggtcaaaatctggttccagaaccgccggtccaagtt





caagaagatgtggaaaagtggtgagatcccctcggagcagcaccctggggccagcgcttctccaccttgtgcttcgccgcc





agtctcagcgccggcctcctgggactttggtgtgccgcagcggatggcgggcggcggtggtccgggcagtggcggcag





cggcgccggcagctcgggctccagcccgagcagcgcggcctcggcttttctgggcaactacccctggtaccaccagacc





tcgggatccgcctcacacctgcaggccacggcgccgctgctgcaccccactcagaccccgcagccgcatcaccaccacc





accatcacggcggcgggggcgccccggtgagcgcggggacgattttctaa; NP_004396.1; NM010054.





(SEQ ID NO: 90)



DLX5: NM_005221: atgacaggagtgtttgacagaagggtccccagcatccgatccggcgacttccaagctccgtt






ccagacgtccgcagctatgcaccatccgtctcaggaatcgccaactttgcccgagtcttcagctaccgattctgactactaca





gccctacggggggagccccgcacggctactgctctcctacctcggcttcctatggcaaagctctcaacccctaccagtatca





gtatcacggcgtgaacggctccgccgggagctacccagccaaagcttatgccgactatagctacgctagctcctaccacca





gtacggcggcgcctacaaccgcgtcccaagcgccaccaaccagccagagaaagaagtgaccgagcccgaggtgagaa





tggtgaatggcaaaccaaagaaagttcgtaaacccaggactatttattccagctttcagctggccgcattacagagaaggttt





cagaagactcagtacctcgccttgccggaacgcgccgagctggccgcctcgctgggattgacacaaacacaggtgaaaat





ctggtttcagaacaaaagatccaagatcaagaagatcatgaaaaacggggagatgcccccggagcacagtcccagctcca





gcgacccaatggcgtgtaactcgccgcagtctccagcggtgtgggagccccagggctcgtcccgctcgctcagccacca





ccctcatgcccaccctccgacctccaaccagtccccagcgtccagctacctggagaactctgcatcctggtacacaagtgca





gccagctcaatcaattcccacctgccgccgccgggctccttacagcacccgctggcgctggcctccgggacactctattag;;





NM005221; NP005212.





(SEQ ID NO: 91)



HES1: NM_005524: atgccagctgatataatggagaaaaattcctcgtccccggtggctgctaccccagccagtgtca






acacgacaccggataaaccaaagacagcatctgagcacagaaagtcatcaaagcctattatggagaaaagacgaagagc





aagaataaatgaaagtctgagccagctgaaaacactgattttggatgctctgaagaaagatagctcgcggcattccaagctg





gagaaggcggacattctggaaatgacagtgaagcacctccggaacctgcagcgggcgcagatgacggctgcgctgagc





acagacccaagtgtgctggggaagtaccgagccggcttcagcgagtgcatgaacgaggtgacccgcttcctgtccacgtg





cgagggcgttaataccgaggtgcgcactcggctgctcggccacctggccaactgcatgacccagatcaatgccatgacct





accccgggcagccgcaccccgccttgcaggcgccgccaccgcccccaccgggacccggcggcccccagcacgcgcc





gttcgcgccgccgccgccactcgtgcccatccccgggggcgcggcgccccctcccggcggcgccccctgcaagctggg





cagccaggctggagaggcggctaaggtgtttggaggcttccaggtggtaccggctcccgatggccagtttgctttcctcatt





cccaacggggccttcgcgcacagcggccctgtcatccccgtctacaccagcaacagcggcacctccgtgggccccaacg





cagtgtcaccttccagcggcccctcgcttacggcggactccatgtggaggccgtggcggaactga;





NP005515.1; NM008235; NP032261.





(SEQ ID NO: 92)



FGF8: NM_006119: atgggcagcccccgctccgcgctgagctgcctgctgttgcacttgctggtcctctgcctccaa






gcccaggtaactgttcagtcctcacctaattttacacagcatgtgagggagcagagcctggtgacggatcagctcagccgcc





gcctcatccggacctaccaactctacagccgcaccagcgggaagcacgtgcaggtcctggccaacaagcgcatcaacgc





catggcagaggacggcgaccccttcgcaaagctcatcgtggagacggacacctttggaagcagagttcgagtccgagga





gccgagacgggcctctacatctgcatgaacaagaaggggaagctgatcgccaagagcaacggcaaaggcaaggactgc





gtcttcacggagattgtgctggagaacaactacacagcgctgcagaatgccaagtacgagggctggtacatggccttcacc





cgcaagggccggccccgcaagggctccaagacgcggcagcaccagcgtgaggtccacttcatgaagcggctgccccg





gggccaccacaccaccgagcagagcctgcgcttcgagttcctcaactacccgcccttcacgcgcagcctgcgcggcagc





cagaggacttgggcccccgagccccgatag; NM010205; NP034335; NM010205; NP034335; NP006110





NM033163; NPJ49353; NM033164; NP149354; NM033165; NPJ49355.





(SEQ ID NO: 93)



PITX2: NM_000325: atgaactgcatgaaaggcccgcttcacttggagcaccgagcagcggggaccaagctgtcg






gccgtctcctcatcttcctgtcaccatccccagccgttagccatggcttcggttctggctcccggtcagccccggtcgctgga





ctcctccaagcacaggctggaggtgcacaccatctccgacacctccagcccggaggccgcagagaaagataaaagccag





caggggaagaatgaggacgtgggcgccgaggacccgtctaagaagaagcggcaaaggcggcagcggactcactttac





cagccagcagctccaggagctggaggccactttccagaggaaccgctacccggacatgtccacacgcgaagaaatcgct





gtgtggaccaaccttacggaagcccgagtccgggtttggttcaagaatcgtcgggccaaatggagaaagagggagcgca





accagcaggccgagctatgcaagaatggcttcgggccgcagttcaatgggctcatgcagccctacgacgacatgtaccca





ggctattcctacaacaactgggccgccaagggccttacatccgcctccctatccaccaagagcttccccttcttcaactctatg





aacgtcaaccccctgtcatcacagagcatgttttccccacccaactctatctcgtccatgagcatgtcgtccagcatggtgccc





tcagcagtgacaggcgtcccgggctccagtctcaacagcctgaataacttgaacaacctgagtagcccgtcgctgaattcc





gcggtgccgacgcctgcctgtccttacgcgccgccgactcctccgtatgtttatagggacacgtgtaactcgagcctggcca





gcctgagactgaaagcaaagcagcactccagcttcggctacgccagcgtgcagaacccggcctccaacctgagtgcttgc





cagtatgcagtggaccggcccgtgtga; NM000325; NP000316; NM153426; NP700475; NMJ53427;





NP700476; NM001042502; NP001035967; NM001042504; NP001035969.





(SEQ ID NO: 94)



REST4: DQ644039: atggccacccaggtgatggggcagtcttctggaggaggcagtctcttcaacaacagtgccaa






catgggcatggccttaaccaacgacatgtacgacctgcacgagctctcgaaagctgaactggcagcccctcagctcatcat





gttagccaacgtggccctgacgggggaggcaagcggcagctgctgcgattacctggtcggtgaagagaggcagatggc





cgaattgatgcccgtgggagacaaccacttctcagaaagtgaaggagaaggcctggaagagtcggctgacctcaaaggg





ctggaaaacatggaactgggaagtttggagctaagtgctgtagaaccccagcccgtatttgaagcctcagctgccccagaa





atatacagcgccaataaagatcccgctccagaaacacccgtggcggaagacaaatgcaggagttctaaggccaagccctt





ccggtgtaagccttgccagtacgaagccgaatctgaagagcagtttgtgcatcacatccggattcacagcgctaagaagttc





tttgtggaggaaagtgcagagaaacaggccaaagcctgggagtcggggtcgtctccggccgaagagggcgagttctcca





aaggccccatccgctgtgaccgctgtggctacaataccaaccggtatgaccactacatggcacacctgaagcaccacctgc





gagctggcgagaacgagcgcatctacaagtgcatcatctgcacgtacacgacggtcagcgagtaccactggaggaaaca





cctgagaaaccatttccccaggaaagtctacacctgcagcaagtgcaactacttctcagacagaaaaaataactacgttcag





cacgtgcgaactcacacaggagaacgcccgtataaatgtgaactttgtccttactcaagctctcagaagactcatctaacgcg





acacatgcggactcattcagagtgtgatctagctgggtga.





(SEQ ID NO: 95)



CREBbindingprotein: NM_134442: atgaccatggaatctggagccgagaaccagcagagtggagatgcag






ctgtaacagaagctgaaaaccaacaaatgacagttcaagcccagccacagattgccacattagcccaggtatctatgccag





cagctcatgcaacatcatctgctcccaccgtaactctagtacagctgcccaatgggcagacagttcaagtccatggagtcatt





caggcggcccagccatcagttattcagtctccacaagtccaaacagttcagtcttcctgtaaggacttaaaaagacttttctcc





ggaacacagatttcaactattgcagaaagtgaagattcacaggagtcagtggatagtgtaactgattcccaaaagcgaaggg





aaattctttcaaggaggccttcctacaggaaaattttgaatgacttatcttctgatgcaccaggagtgccaaggattgaagaag





agaagtctgaagaggagacttcagcacctgccatcaccactgtaacggtgccaactccaatttaccaaactagcagtggaca





gtatattgccattacccagggaggagcaatacagctggctaacaatggtaccgatggggtacagggcctgcaaacattaac





catgaccaatgcagcagccactcagccgggtactaccattctacagtatgcacagaccactgatggacagcagatcttagtg





cccagcaaccaagttgttgttcaagctgcctctggagacgtacaaacataccagattcgcacagcacccactagcactattgc





ccctggagttgttatggcatcctccccagcacttcctacacagcctgctgaagaagcagcacgaaagagagaggtccgtct





aatgaagaacagggaagcagctcgagagtgtcgtagaaagaagaaagaatatgtgaaatgtttagaaaacagagtggcag





tgcttgaaaatcaaaacaagacattgattgaggagctaaaagcacttaaggacctttactgccacaaatcagatta;





NM004379; NP004370; NP604391.





(SEQ ID NO: 96)



ZFp488: NM001013777:



atggctgagggcaaaggggctcctctgaggccttcagttgagaagagatggaagctcatggaacccaagcagacccagg





cagggatgttcaagaaaatgagccttgtggactctgacactgctgcaggaaagggtagccaagatgaggcctatactgaac





tgagcctgccaacagcaccgaacaagcctcgactggacaggcctcgggcctgcaaggcatacacagagcagaggcaca





ataccttcacagagctatcatgtctccaggagaggccaggggacatccaggcccagacgaggaagctggagaacccaga





aggccagctcggccctcagcagctgccctcgagtttcctcagagcctcaggtgatggcacagtgtgttcagcatggccagg





tgccccccggagtgagcagaaaagtgctttcagcaagccagccaaacgcccagcagagaaacctaagcgctctcccatg





cttctggctggtggaagtgcagagggctcatgggagctctcaggactcatcaccactgtggacatcccatattgggctcatct





gtcaactttcaagttcatgggtgatttctggaaattgcacacattgtcacagaacattctcctctgcaatgctttccagggggctc





ccacaccatggctggagcatacccaggtacaagcccccacatcctcagctccttcctccacagcctcccgggctctcttgcc





gcccacactctcctccttgggcttgtctactcagaactggtgtgcgaagtgcaacctagcctttcgcctgacagctgacctggt





cttccacatgcggtcacatcacaaaagggaacacgtgggccctgacccacattctaagaaacgaagagaggaagttctcac





ttgccccgtttgccacgagtacttccgggagcgccaccatctgtccaggcatatggcttcacatagttag; BC089025;





XM_224697; XP224697.





(SEQ ID NO: 97)



Foxa2: NM_021784: atgctgggagcggtgaagatggaagggcacgagccgtccgactggagcagctactatgca






gagcccgagggctactcctccgtgagcaacatgaacgccggcctggggatgaacggcatgaacacgtacatgagcatgt





cggcggccgccatgggcagcggctcgggcaacatgagcgcgggctccatgaacatgtcgtcgtacgtgggcgctggcat





gagcccgtccctggcggggatgtcccccggcgcgggcgccatggcgggcatgggcggctcggccggggcggccggc





gtggcgggcatggggccgcacttgagtcccagcctgagcccgctcggggggcaggcggccggggccatgggcggcct





ggccccctacgccaacatgaactccatgagccccatgtacgggcaggcgggcctgagccgcgcccgcgaccccaagac





ctacaggcgcagctacacgcacgcaaagccgccctactcgtacatctcgctcatcaccatggccatccagcagagcccca





acaagatgctgacgctgagcgagatctaccagtggatcatggacctcttccccttctaccggcagaaccagcagcgctggc





agaactccatccgccactcgctctccttcaacgactgtttcctgaaggtgccccgctcgcccgacaagcccggcaagggct





ccttctggaccctgcaccctgactcgggcaacatgttcgagaacggctgctacctgcgccgccagaagcgcttcaagtgcg





agaagcagctggcgctgaaggaggccgcaggcgccgccggcagcggcaagaaggcggccgccggagcccaggcct





cacaggctcaactcggggaggccgccgggccggcctccgagactccggcgggcaccgagtcgcctcactcgagcgcct





ccccgtgccaggagcacaagcgagggggcctgggagagctgaaggggacgccggctgcggcgctgagccccccaga





gccggcgccctctcccgggcagcagcagcaggccgcggcccacctgctgggcccgccccaccacccgggcctgccgc





ctgaggcccacctgaagccggaacaccactacgccttcaaccacccgttctccatcaacaacctcatgtcctcggagcagc





agcaccaccacagccaccaccaccaccaaccccacaaaatggacctcaaggcctacgaacaggtgatgcactaccccgg





ctacggttcccccatgcctggcagcttggccatgggcccggtcacgaacaaaacgggcctggacgcctcgcccctggcc





gcagatacctcctactaccagggggtgtactcccggcccattatgaactcctcttaa; NP_068556; NM_012743;





NP036875; NMO10446; NP034576.





Rnx


(SEQ ID NO: 98)



REN: NM_000537: atggatggatggagaaggatgcctcgctggggactgctgctgctgctctggggctcctgtacct






ttggtctcccgacagacaccaccacctttaaacggatcttcctcaagagaatgccctcaatccgagaaagcctgaaggaacg





aggtgtggacatggccaggcttggtcccgagtggagccaacccatgaagaggctgacacttggcaacaccacctcctccg





tgatcctcaccaactacatggacacccagtactatggcgagattgggatcgggaccccaccccaaaccttcaaagtcgtcttt





gacactggttcgtccaatgtttgggtgccctcctccaagtgcagccgtctctacactgcctgtgtgtatcacaagctcttcgatg





cttcggattcctccagctacaagcacaatggaacagaactcaccctccgctattcaacagggacagtcagtggctttctcagc





caggacatcatcaccgtgggtggaatcacggtgacacagatgtttggagaggtcacggagatgcccgccttacccttcatg





ctggccgagtttgatggggttgtgggcatgggcttcattgaacaggccattggcagggtcacccctatcttcgacaacatcat





ctcccaaggggtgctaaaagaggacgtcttctctttctactacaacagagattccgagaattcccaatcgctgggaggacag





attgtgctgggaggcagcgacccccagcattacgaagggaatttccactatatcaacctcatcaagactggtgtctggcaga





ttcaaatgaagggggtgtctgtggggtcatccaccttgctctgtgaagacggctgcctggcattggtagacaccggtgcatc





ctacatctcaggttctaccagctccatagagaagctcatggaggccttgggagccaagaagaggctgtttgattatgtcgtga





agtgtaacgagggccctacactccccgacatctattccacctgggaggcaaagaatacacgctcaccagcgcggactatg





tatttcaggaatcctacagtagtaaaaagctgtgcacactggccatccacgccatggatatcccgccacccactggacccac





ctgggccctgggggccaccttcatccgaaagttctacacagagtttgatcggcgtaacaaccgcattggcttcgccttggcc





cgctga;





(SEQ ID NO: 99)



dL1AND(HAND2): NM_021973:



atgagtctggtaggtggttttccccaccacccggtggtgcaccacgagggctacccgtttgccgccgccgccgccgcagct





gccgccgccgccgccagccgctgcagccatgaggagaacccctacttccatggctggctcatcggccaccccgagatgt





cgccccccgactacagcatggccctgtcctacagccccgagtatgccagcggcgccgccggcctggaccactcccattac





gggggggtgccgccgggcgccgggcccccgggcctgggggggccgcgcccggtgaagcgccgaggcaccgccaa





ccgcaaggagcggcgcaggactcagagcatcaacagcgccttcgccgaactgcgcgagtgcatccccaacgtacccgc





cgacaccaaactctccaaaatcaagaccctgcgcctggccaccagctacatcgcctacctcatggacctgctggccaagga





cgaccagaatggcgaggcggaggccttcaaggcagagatcaagaagaccgacgtgaaagaggagaagaggaagaag





gagctgaacgaaatcttgaaaagcacagtgagcagcaacgacaagaaaaccaaaggccggacgggctggccgcagca





cgtctgggccctggagctcaagcagtga; NMO10402; aspartoacylase (Canavan disease)(ASPA):





NM_000049;





(SEQ ID NO: 100)



atgacttcttgtcacattgctgaagaacatatacaaaaggttgctatctttggaggaacccatgggaatgagctaaccggagta






tltctggttaagcattggctagagaatggcgctgagattcagagaacagggctggaggtaaaaccatttattactaaccccag





agcagtgaagaagtgtaccagatatattgactgtgacctgaatcgcatttttgaccttgaaaatcttggcaaaaaaatgtcaga





agatttgccatatgaagtgagaagggctcaagaaataaatcatttatttggtccaaaagacagtgaagattcctatgacattattt





ttgaccttcacaacaccacctctaacatggggtgcactcttattcttgaggattccaggaataactttttaattcagatgtttcatta





cattaagacttctctggctccactaccctgctacgtttatctgattgagcatccttccctcaaatatgcgaccactcgttccatagc





caagtatcctgtgggtatagaagttggtcctcagcctcaaggggttctgagagctgatatcttggatcaaatgagaaaaatgat





taaacatgctcttgattttatacatcatttcaatgaaggaaaagaatttcctccctgcgccattgaggtctataaaattatagagaa





agttgattacccccgggatgaaaatggagaaattgctgctatcatccatcctaatctgcaggatcaagactggaaaccactgc





atcctggggatcccatgtttttaactcttgatgggaagacgatcccactgggcggagactgtaccgtgtaccccgtgtttgtga





atgaggccgcatattacgaaaagaaagaagcttttgcaaagacaactaaactaacgctcaatgcaaaaagtattcgctgctgt





ttacattag; NM 023113.





(SEQ ID NO: 101)



hexosaminidaseA(HEXA): NM_000520: atgacaagctccaggctttggttttcgctgctgctggcggcagc






gttcgcaggacgggcgacggccctctggccctggcctcagaacttccaaacctccgaccagcgctacgtcctttacccgaa





caactttcaattccagtacgatgtcagctcggccgcgcagcccggctgctcagtcctcgacgaggccttccagcgctatcgt





gacctgcttttcggttccgggtcttggccccgtccttacctcacagggaaacggcatacactggagaagaatgtgttggttgtc





tctgtagtcacacctggatgtaaccagcttcctactttggagtcagtggagaattataccctgaccataaatgatgaccagtgtt





tactcctctctgagactgtctggggagctctccgaggtctggagacttttagccagcttgtttggaaatctgctgagggcacatt





ctttatcaacaagactgagattgaggactttccccgctttcctcaccggggcttgctgttggatacatctcgccattacctgcca





ctctctagcatcctggacactctggatgtcatggcgtacaataaattgaacgtgttccactggcatctggtagatgatccttcctt





cccatatgagagcttcacttttccagagctcatgagaaaggggtcctacaaccctgtcacccacatctacacagcacaggat





gtgaaggaggtcattgaatacgcacggctccggggtatccgtgtgcttgcagagtttgacactcctggccacactttgtcctg





gggaccaggtatccctggattactgactccttgctactctgggtctgagccctctggcacctttggaccagtgaatcccagtct





caataatacctatgagttcatgagcacattcttcttagaagtcagctctgtcttcccagatttttatcttcatcttggaggagatgag





gttgatttcacctgctggaagtccaacccagagatccaggactttatgaggaagaaaggcttcggtgaggacttcaagcagc





tggagtccttctacatccagacgctgctggacatcgtctcttcttatggcaagggctatgtggtgtggcaggaggtgtttgata





ataaagtaaagattcagccagacacaatcatacaggtgtggcgagaggatattccagtgaactatatgaaggagctggaact





ggtcaccaaggccggcttccgggcccttctctctgccccctggtacctgaaccgtatatcctatggccctgactggaaggatt





tctacgtagtggaacccctggcatttgaaggtacccctgagcagaaggctctggtgattggtggagaggcttgtatgtgggg





agaatatgtggacaacacaaacctggtccccaggctctggcccagagcaggggctgttgccgaaaggctgtggagcaac





aagttgacatctgacctgacatttgcctatgaacgtttgtcacacttccgctgtgagttgctgaggcgaggtgtccaggcccaa





cccctcaatgtaggcttctgtgagcaggagtttgaacagacctga.





(SEQ ID NO: 102)



Lesch_Nyhan_syndromc(HRPT): NM_000194: atggcgacccgcagccctggcgtcgtgattagtgatg






atgaaccaggttatgaccttgatttattttgcatacctaatcattatgctgaggatttggaaagggtgtttattcctcatggactaat





tatggacaggactgaacgtcttgctcgagatgtgatgaaggagatgggaggccatcacattgtagccctctgtgtgctcaag





gggggctataaattctttgctgacctgctggattacatcaaagcactgaatagaaatagtgatagatccattcctatgactgtag





attttatcagactgaagagctattgtaatgaccagtcaacaggggacataaaagtaattggtggagatgatctctcaactttaac





tggaaagaatgtcttgattgtggaagatataattgacactggcaaaacaatgcagactttgctttccttggtcaggcagtataat





ccaaagatggtcaaggtcgcaagcttgctggtgaaaaggaccccacgaagtgttggatataagccagactttgttggatttg





aaattccagacaagtttgttgtaggatatgcccttgactataatgaatacttcagggatttgaatcatgtttgtgtcattagtgaaa





ctggaaaagcaaaatacaaagcctaa; NM_204848.





Huntingtin; NM_10414;





(SEQ ID NO: 103)



GUSB; NM_000181: atggcccgggggtcggcggttgcctgggcggcgctcgggccgttgttgtggggctgcgcg






ctggggctgcagggcgggatgctgtacccccaggagagcccgtcgcgggagtgcaaggagctggacggcctctggag





cttccgcgccgacttctctgacaaccgacgccggggcttcgaggagcagtggtaccggcggccgctgtgggagtcaggc





cccaccgtggacatgccagttccctccagcttcaatgacatcagccaggactggcgtctgcggcattttgtcggctgggtgt





ggtacgaacgggaggtgatcctgccggagcgatggacccaggacctgcgcacaagagtggtgctgaggattggcagtg





cccattcctatgccatcgtgtgggtgaatggggtcgacacgctagagcatgaggggggctacctccccttcgaggccgaca





tcagcaacctggtccaggtggggcccctgccctcccggctccgaatcactatcgccatcaacaacacactcacccccacca





ccctgccaccagggaccatccaatacctgactgacacctccaagtatcccaagggttactttgtccagaacacatattttgact





ttttcaactacgctggactgcagcggtctgtacttctgtacacgacacccaccacctacatcgatgacatcaccgtcaccacca





gcgtggagcaagacagtgggctggtgaattaccagatctctgtcaagggcagtaacctgttcaagttggaagtgcgtcttttg





gatgcagaaaacaaagtcgtggcgaatgggactgggacccagggccaacttaaggtgccaggtgtcagcctctggtggc





cgtacctgatgcacgaacgccctgcctatctgtattcattggaggtgcagctgactgcacagacgtcactggggcctgtgtct





gacttctacacactccctgtggggatccgcactgtggctgtcaccaagagccagttcctcatcaatgggaaacctttctatttc





cacggtgtcaacaagcatgaggatgcggacatccgagggaagggcttcgactggccgctgctggtgaaggacttcaacct





gcttcgctggcttggtgccaacgctttccgtaccagccactacccctatgcagaggaagtgatgcagatgtgtgaccgctatg





ggattgtggtcatcgatgagtgtcccggcgtgggcctggcgctgccgcagttcttcaacaacgtttctctgcatcaccacatg





caggtgatggaagaagtggtgcgtagggacaagaaccaccccgcggtcgtgatgtggtctgtggccaacgagcctgcgt





cccacctagaatctgctggctactacttgaagatggtgatcgctcacaccaaatccttggacccctcccggcctgtgacctttg





tgagcaactctaactatgcagcagacaagggggctccgtatgtggatgtgatctgtttgaacagctactactcttggtatcacg





actacgggcacctggagttgattcagctgcagctggccacccagtttgagaactggtataagaagtatcagaagcccattatt





cagagcgagtatggagcagaaacgattgcagggtttcaccaggatccacctctgatgttcactgaagagtaccagaaaagt





ctgctagagcagtaccatctgggtctggatcaaaaacgcagaaaatacgtggttggagagctcatttggaattttgccgatttc





atgactgaacagtcaccgacgagagtgctggggaataaaaaggggatcttcactcggcagagacaaccaaaaagtgcag





cgttccttttgcgagagagatactggaagattgccaatgaaaccaggtatccccactcagtagccaagtcacaatgtttggaa





aacagcccgtttacttga; NM_010368.





NPC1: NMJ)00271;NM_006432.





(SEQ ID NO: 104)



hexosaminidaseB: NM_000521; atggagctgtgcgggctggggctgccccggccgcccatgctgctggcgct






gctgttggcgacactgctggcggcgatgttggcgctgctgactcaggtggcgctggtggtgcaggtggcggaggcggctc





gggccccgagcgtctcggccaagccggggccggcgctgtggcccctgccgctctcggtgaagatgaccccgaacctgct





gcatctcgccccggagaacttctacatcagccacagccccaattccacggcgggcccctcctgcaccctgctggaggaag





cgtttcgacgatatcatggctatatttttggtttctacaagtggcatcatgaacctgctgaattccaggctaaaacccaggttcag





caacttcttgtctcaatcacccttcagtcagagtgtgatgctttccccaacatatcttcagatgagtcttatactttacttgtgaaag





aaccagtggctgtccttaaggccaacagagtttggggagcattacgaggtttagagacctttagccagttagtttatcaagatt





cttatggaactttcaccatcaatgaatccaccattattgattctccaaggttttctcacagaggaattttgattgatacatccagac





attatctgccagttaagattattcttaaaactctggatgccatggcttttaataagtttaatgttcttcactggcacatagttgatgac





cagtctttcccatatcagagcatcacttttcctgagttaagcaataaaggaagctattctttgtctcatgtttatacaccaaatgatg





tccgtatggtgattgaatatgccagattacgaggaattcgagtcctgccagaatttgatacccctgggcatacactatcttggg





gaaaaggtcagaaagacctcctgactccatgttacagtagacaaaacaagttggactcttttggacctataaaccctactctga





atacaacatacagcttccttactacatttttcaaagaaattagtgaggtgtttccagatcaattcattcatttgggaggagatgaa





gtggaatttaaatgttgggaatcaaatccaaaaattcaagatttcatgaggcaaaaaggctttggcacagattttaagaaacta





gaatctttctacattcaaaaggttttggatattattgcaaccataaacaagggatccattgtctggcaggaggtttttgatgataaa





gcaaagcttgcgccgggcacaatagttgaagtatggaaagacagcgcatatcctgaggaactcagtagagtcacagcatct





ggcttccctgtaatcctttctgctccttggtacttagatttgattagctatggacaagattggaggaaatactataaagtggaacc





tcttgattttggcggtactcagaaacagaaacaacttttcattggtggagaagcttgtctatggggagaatatgtggatgcaact





aacctcactccaagattatggcctcgggcaagtgctgttggtgagagactctggagttccaaagatgtcagagatatggatg





acgcctatgacagactgacaaggcaccgctgcaggatggtcgaacgtggaatagctgcacaacctctttatgctggatattg





taaccatgagaacatgtaa.





(SEQ ID NO: 105)



galactosidase, alpha(GLA): NM000169:



atgcagctgaggaacccagaactacatctgggctgcgcgcttgcgcttcgcttcctggccctcgtttcctgggacatccctgg





ggctagagcactggacaatggattggcaaggacgcctaccatgggctggctgcactgggagcgcttcatgtgcaaccttga





ctgccaggaagagccagattcctgcatcagtgagaagctcttcatggagatggcagagctcatggtctcagaaggctggaa





ggatgcaggttatgagtacctctgcattgatgactgttggatggctccccaaagagattcagaaggcagacttcaggcagac





cctcagcgctttcctcatgggattcgccagctagctaattatgttcacagcaaaggactgaagctagggatttatgcagatgtt





ggaaataaaacctgcgcaggcttccctgggagttttggatactacgacattgatgcccagacctttgctgactggggagtag





atctgctaaaatttgatggttgttactgtgacagtttggaaaatttggcagatggttataagcacatgtccttggccctgaatagg





actggcagaagcattgtgtactcctgtgagtggcctctttatatgtggccctttcaaaagcccaattatacagaaatccgacagt





actgcaatcactggcgaaattttgctgacattgatgattcctggaaaagtataaagagtatcttggactggacatcttttaacca





ggagagaattgttgatgttgctggaccagggggttggaatgacccagatatgttagtgattggcaactttggcctcagctgga





atcagcaagtaactcagatggccctctgggctatcatggctgctcctttattcatgtctaatgacctccgacacatcagccctca





agccaaagctctccttcaggataaggacgtaattgccatcaatcaggaccccttgggcaagcaagggtaccagcttagaca





gggagacaactttgaagtgtgggaacgacctctctcaggcttagcctgggctgtagctatgataaaceggcaggagattggt





ggacctcgctcttataccatcgcagttgcttccctgggtaaaggagtggcctgtaatcctgcctgcttcatcacacagctcctc





cctgtgaaaaggaagctagggttctatgaatggacttcaaggttaagaagtcacataaatcccacaggcactgttttgcttcag





ctagaaaatacaatgcagatgtcattaaaagacttactttaa





(SEQ ID NO: 106)



glucosidasE beta_acid(GBA): NM_000157:



atggagttttcaagtccttccagagaggaatgtcccaagcctttgagtagggtaagcatcatggctggcagcctcacaggatt





gcttctacttcaggcagtgtcgtgggcatcaggtgcccgcccctgcatccctaaaagcttcggctacagctcggtggtgtgtg





tctgcaatgccacatactgtgactcctttgaccccccgacctttcctgcccttggtaccttcagccgctatgagagtacacgca





gtgggcgacggatggagctgagtatggggcccatccaggctaatcacacgggcacaggcctgctactgaccctgcagcc





agaacagaagttccagaaagtgaagggatttggaggggccatgacagatgctgctgctctcaacatccttgccctgtcaccc





cctgcccaaaatttgctacttaaatcgtacttctctgaagaaggaatcggatataacatcatccgggtacccatggccagctgt





gacttctccatccgcacctacacctatgcagacacccctgatgatttccagttgcacaacttcagcctcccagaggaagatac





caagctcaagatacccctgattcaccgagccctgcagttggcccagcgtcccgtttcactccttgccagcccctggacatca





cccacttggctcaagaccaatggagcggtgaatgggaaggggtcactcaagggacagcccggagacatctaccaccaga





cctgggccagatactttgtgaagttcctggatgcctatgctgagcacaagttacagttctgggcagtgacagctgaaaatgag





ccttctgctgggctgttgagtggataccccttccagtgcctgggcttcacccctgaacatcagcgagacttcattgcccgtgac





ctaggtcctaccctcgccaacagtactcaccacaatgtccgcctactcatgctggatgaccaacgcttgctgctgccccactg





ggcaaaggtggtactgacagacccagaagcagctaaatatgttcatggcattgctgtacattggtacctggactttctggctc





cagccaaagccaccctaggggagacacaccgcctgttccccaacaccatgctctttgcctcagaggcctgtgtgggctcca





agttctgggagcagagtgtgcggctaggctcctgggatcgagggatgcagtacagccacagcatcatcacgaacctcctgt





accatgtggtcggctggaccgactggaaccttgccctgaaccccgaaggaggacccaattgggtgcgtaactttgtcgaca





gtcccatcattgtagacatcaccaaggacacgttttacaaacagcccatgttctaccaccttggccacttcagcaagttcattcc





tgagggctcccagagagtggggctggttgccagtcagaagaacgacctggacgcagtggcactgatgcatcccgatggct





ctgctgttgtggtcgtgctaaaccgctcctctaaggatgtgcctcttaccatcaaggatcctgctgtgggcttcctggagacaat





ctcacctggctactccattcacacctacctgtggcgtcgccagtga; NM_008094.





(SEQ ID NO: 107)



von_Hippel_Lindau_tumor_suppressor(VHL): NM_000551:



atgccccggagggcggagaactgggacgaggccgaggtaggcgcggaggaggcaggcgtcgaagagtacggccctg





aagaagacggcggggaggagtcgggcgccgaggagtccggcccggaagagtccggcccggaggaactgggcgccg





aggaggagatggaggccgggcggccgcggcccgtgctgcgctcggtgaactcgcgcgagccctcccaggtcatcttctg





caatcgcagtccgcgcgtcgtgctgcccgtatggctcaacttcgacggcgagccgcagccctacccaacgctgccgcctg





gcacgggccgccgcatccacagctaccgaggtcacctttggctcttcagagatgcagggacacacgatgggcttctggtta





accaaactgaattatttgtgccatctctcaatgttgacggacagcctatttttgccaatatcacactgccagtgtatactctgaaa





gagcgatgcctccaggttgtccggagcctagtcaagcctgagaattacaggagactggacatcgtcaggtcgctctacgaa





gatctggaagaccacccaaatgtgcagaaagacctggagcggctgacacaggagcgcattgcacatcaacggatgggag





attga.





(SEQ ID NO: 108)



Beta_globin(HBB): NM_000518: atggtgcatctgactcctgaggagaagtctgccgttactgccctgtggggc






aaggtgaacgtggatgaagttggtggtgaggccctgggcaggctgctggtggtctacccttggacccagaggttctttgagt





cctttggggatctgtccactcctgatgctgttatgggcaaccctaaggtgaaggctcatggcaagaaagtgctcggtgccttta





gtgatggcctggctcacctggacaacctcaagggcacctttgccacactgagtgagctgcactgtgacaagctgcacgtgg





atcctgagaacttcaggctcctgggcaacgtgctggtctgtgtgctggcccatcactttggcaaagaattcaccccaccagtg





caggctgcctatcagaaagtggtggctggtgtggctaatgccctggcccacaagtatcactaa.





(SEQ ID NO: 109)



PARK2: NM_013988: atgatagtgtttgtcaggttcaactccagccatggtttcccagtggaggtcgattctgacacc






agcatcttccagctcaaggaggtggttgctaagcgacagggggttccggctgaccagttgcgtgtgattttcgcagggaag





gagctgaggaatgactggactgtgcaggaatttttctttaaatgtggagcacaccccacctctgacaaggaaacatcagtag





ctttgcacctgatcgcaacaaatagtcggaacatcacttgcattacgtgcacagacgtcaggagccccgtcctggttttccagt





gcaactcccgccacgtgatttgcttagactgtttccacttatactgtgtgacaagactcaatgatcggcagtttgttcacgaccct





caacttggctactccctgccttgtgtggctggctgtcccaactccttgattaaagagctccatcacttcaggattctgggagaa





gagcagtacaaccggtaccagcagtatggtgcagaggagtgtgtcctgcagatggggggcgtgttatgcccccgccctgg





ctgtggagcggggctgctgccggagcctgaccagaggaaagtcacctgcgaagggggcaatggcctgggctgtgggttt





gccttctgccgggaatgtaaagaagcgtaccatgaaggggagtgcagtgccgtatttgaagcctcaggaacaactactcag





gcctacagagtcgatgaaagagccgccgagcaggctcgttgggaagcagcctccaaagaaaccatcaagaaaaccacca





agccctgtccccgctgccatgtaccagtggaaaaaaatggaggctgcatgcacatgaagtgtccgcagccccagtgcagg





ctcgagtggtgctggaactgtggctgcgagtggaaccgcgtctgcatgggggaccactggttcgacgtgtag;





NM 004562; NM 020093.






The contents of all parenthetically cited publications and the following United States Patents, are noted and incorporated by reference in their entireties: U.S. Pat. Nos. 7,211,247, 5,677,139, 6,432,711 and 5,453,357, 5,593,875, 5,783,566, 5,928,944, 5,910,488, 5,824,547.

Claims
  • 1. A cell culture dish made of non media-permeable material and having a base and a plurality of separate juxtaposed side-by-side wells having common interior well walls preventing physical contact or movement of chemical factors between the separated cell or tissue cultures, the walls having different heights and defining an outer “surround” cell or tissue culture and one or more inner “center” cell or tissue cultures to enable contained cell or tissue communication between the well spaces, the wells configured to comprise two or more cell or tissue cultures, the wells permitting signal communication between the cells or tissues situated within said wells, and further comprising wall material, electrodes and/or electrode contacts, and well dimensions suitable for facilitating electroporation.
  • 2. The method inducing cellular behavior displayed in a first cell population that is displayed in a second cell population wherein the method comprises culturing the cells in the cell culture dish of claim 1.
  • 3. The method of claim 2 where the desired induced behavior comprises one or more changes in signal transduction.
  • 4. The method of claim 2 where the desired induced behavior comprises one or more changes in ion current flows.
  • 5. The method of claim 2 where the desired induced behavior comprises a change in gene expression.
  • 6. The method of claim 2 where the desired induced behavior comprises a change in protein expression.
  • 7. The method of claim 2 where the desired induced behavior comprises a change in cellular markers.
  • 8. The method of claim 2 where the desired induced behavior comprises a change in cellular phenotype.
  • 9. The method of claim 2 where the desired induced behavior comprises a change in antibody reactivity.
  • 10. The method of claim 2 where the desired induced behavior comprises a change allowing differential cell sorting.
  • 11. The method of claim 2 where the desired induced behavior comprises a change in potency.
  • 12. The method of claim 2 wherein cells of the first cell population are induced to greater potency.
  • 13. The method of claim 2 wherein cells of the first cell population are induced to a new, differentiated cell phenotype.
  • 14. The method of claim 2 wherein cells of the first cell population are further cultured in a 2 Dimensional or 3 Dimensional format.
  • 15. The method of claim 2 wherein cells of the first cell population are genetically-modified.
  • 16. The method of claim 2 wherein cells of the first cell population are contacted with agents further promoting the desired induced behavior.
  • 17. The method of claim 2 wherein the first and/or second cell population is a somatic cell population.
  • 18. The method of claim 2 wherein the first and/or second cell population is stem cell population.
  • 19. The method of claim 2. wherein the first and/or second cell population displays multipotent, pluripotent or totipotent stem cell behavior.
  • 20. The method of claim 2 wherein the medium comprises agents promoting cellular differentiation.
  • 21. The method of claim 2 wherein the medium comprises nucleic acids or proteins.
  • 22. The method of claim 2 wherein the medium comprises non-nucleic acids and non-proteins.
  • 23. The method of claim 21 wherein cells of the first cell population are contacted with nucleic acid or protein transcription factors or other cell fate determinants.
  • 24. The cells, vectors, agents, proteins, nucleic acids, transcription factors, and other cell fate determinants of claims 1-23.
  • 25. The method of treatment comprising administering to a subject, the cells, agents, nucleic acids or proteins of claims 1-24.
Continuation in Parts (2)
Number Date Country
Parent 14764195 Jul 2015 US
Child 16171420 US
Parent 12601819 May 2011 US
Child 14764195 US