The present invention relates to a cell electrode plate and a process for producing the same.
Conventionally, in production of a cell electrode such as lithium-cell positive pole member, electrode mixture or positive pole active material such as LiCoO2 is applied and dried on a core member or collector made of metal foil such as aluminum foil and is pressed by a roll press machine with press rolls so as to enhance bulk density of the positive pole active material.
The cell electrode plate thus produced by applying and drying electrode active material such as positive pole active material on the core member is shown in
Pressing of the cell electrode plate 3 shown in
A prior document on application of electrode active material on a core member made of metal foil is, for example, Reference 1; and a prior document on pressing of electrode active material by press rolls of a roll press machine for enhancement of its bulk density is, for example, Reference 2.
The sheets of electrode active material 2 applied discontinuously on and longitudinally of the core member 1 have uniform width W0 in a lot and the widthwise ends of the sheets of electrode active material 2 are substantially aligned with each other longitudinally of the cell electrode plate 3. As a result, when pressed by the roll press machine 4, the widthwise ends of the sheets of electrode active material 2 abut at substantially the same positions on the press rolls 5 and 6 which are adjacent to the widthwise ends of the rolls.
However, the electrode active material 2 dried is hard in hardness so that pressing of the cell electrode plate 3 by the roll press machine 4 causes the surfaces of the press rolls 5 and 6 at positions X (see
In view of the above, the invention has its object to make it possible to press by roll press machine a cell electrode plate comprising a core member made of metal foil and electrode active material applied and dried thereon, without causing the surfaces of the press rolls at positions adjacent to axial ends thereof to be worn greatly, so as to prolong a service life of the press rolls, whereby the number and/or amount of grinding the press rolls is reduced to reduce the roll maintenance cost and enhance the product ion efficiency.
The invention is directed to a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that at least one of the sheets of electrode active material has end positions widthwise of the core member which are different from end positions of the other sheets of electrode active material widthwise of the core member.
The invention is directed also to a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that the mutually adjacent sheets of electrode active material have mutually different end positions widthwise of the core member.
In a cell electrode plate according to the invention, the sheets of electrode active material may have substantially uniform width or different widths. Alternatively, some of the sheets may have substantially uniform width and the other sheets may have different widths.
The invention is directed also to a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that a predetermined sheet or sheets of electrode active material respectively has one and the other ends longitudinally of the core member which have different widths.
The invention is directed also to a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of upper and lower surfaces of the core member, characterized in that the sheets of electrode active material oppositely on the upper and lower surfaces of the core member have different end positions widthwise of the core member.
In a cell electrode plate according to the invention, the sheets of electrode active material oppositely on the upper and lower surface of the core member may have substantially uniform width or may have different widths.
The invention is directed to a process for producing a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that at least one of the sheets of electrode active material has end positions widthwise of the core member which are different from end positions of the other sheets of electrode active material widthwise of the core member to thereby provide the sheets of electrode active material on said core member.
The invention is directed also to a process for producing a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that the mutually adjacent sheets of electrode active material have mutually different end positions widthwise of the core member to thereby provide the sheets of electrode active material on said core member.
The invention is directed also to a process for producing a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that a predetermined sheet or sheets of electrode active material respectively has one and the other ends longitudinally of the core member which have different widths to thereby provide the sheets of electrode active material on said core member.
The invention is directed also to a process for producing a cell electrode plate comprising a band-like core member made of metal foil and a plurality of sheets of electrode active material applied discontinuously on and longitudinally of at least one of upper and lower surfaces of the core member, characterized in that the sheets of electrode active material oppositely on the upper and lower surfaces of the core member have different end positions widthwise of the core member to thereby provide the sheets of electrode active material on said core member.
According to a cell electrode plate and a process for producing the same of the invention, the following excellent effects and advantages may be obtained. When a cell electrode plate comprising a core member made of metal foil and sheets of electrode active material applied on the core member is pressed by a roll press machine, the respective widthwise ends on sheets of electrode active material abut at different positions on press rolls, so that the worn amount of surfaces of the press rolls by the widthwise ends of the sheets of electrode active material is not great. As a result, the service life of the press rolls can be prolonged to reduce the number and amount of grinding the press rolls, thereby reducing the roll maintenance cost and enhancing the production efficiency.
Embodiments of the invention will be disclosed in conjunction with attached drawings.
In
In
The distances between the widthwise ends of the core member 1 and the corresponding widthwise ends of the sheets of electrode active material 2 may be different all over the sheets of electrode active material 2 in a lot; alternatively, a group of sheets of electrode active material 2 with different distances between their widthwise ends and corresponding widthwise ends of the core member 1 may be repeatedly arranged longitudinally of the core member 1. Alternatively, the respective sheets of electrode active material 2 may have different widths W0 so as to differentiate the distances between the widthwise ends of the core member 1 and the corresponding widthwise ends of the sheets of electrode active material 2.
According to the embodiment, when the cell electrode plate 3 with the core member 1 made of metal foil and electrode active material 2 applied thereon is pressed by the roll press machine, the widthwise ends of the sheets of electrode active material 2 abut on the press rolls at positions different along the axes of the press rolls. As a result, the worn amount of the press rolls by the widthwise ends of the sheets of electrode active material 2 become less, so that the service life of the press rolls can be prolonged. Thus, the number and/or amount of grinding the press rolls is reduced to reduce the roll maintenance cost and enhance the production efficiency.
Also in this embodiment, the electrode active material 2 may be applied one or both of the upper and lower surfaces of the core member 1. The embodiment has the similar effects and advantages as those in the above-mentioned embodiment.
It is to be understood that a cell electrode plate and a process for producing the same according to the invention are not limited to the embodiments mentioned above and that various changes and modifications may be made without departing from the gist of the invention. For example, the invention may be applied to either of cell positive and negative electrodes.
A cell electrode plate and a process for producing the same according to the invention may be applied to production of cell electrode plates in such a manner that maintenance cost for rolls may be decreased and that production efficiency is improved.
Number | Date | Country | Kind |
---|---|---|---|
2004-019415 | Jan 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/000895 | 1/25/2005 | WO | 00 | 7/7/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/074057 | 8/11/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5448901 | Yu et al. | Sep 1995 | A |
6027835 | Fukumura et al. | Feb 2000 | A |
6146694 | Reimers et al. | Nov 2000 | A |
6416904 | Reimers et al. | Jul 2002 | B1 |
6423446 | Miyazaki et al. | Jul 2002 | B1 |
20010012588 | Kaido et al. | Aug 2001 | A1 |
20050008778 | Utsugi et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
59-183910 | Oct 1984 | JP |
8 287953 | Nov 1996 | JP |
9 274909 | Oct 1997 | JP |
10 12220 | Jan 1998 | JP |
11 3701 | Jan 1999 | JP |
11 176424 | Jul 1999 | JP |
11 185737 | Jul 1999 | JP |
2000 208134 | Jul 2000 | JP |
2003 162999 | Jun 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20090148768 A1 | Jun 2009 | US |