Human mesenchymal stem cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and being tested in clinical trials for a wide range of diseases. The pro-regenerative and therapeutic properties of hMSCs are largely attributed to their trophic effects that coordinately modulate the progression of inflammation and enhance the endogenous tissue repair by host progenitor cells. However, after isolation in vitro culture expansion, hMSCs lose their in vivo quiescent state and start to accumulate genetic and phenotypic changes that significantly alter their phenotypic properties with reduced therapeutic potential. Due to the Hayfilck limit, hMSCs went into cellular senescence after replicative culture expansion in vitro. Within the senescent state, the proliferation rate was significantly reduced and hMSCs can only maintain the basic cellular function and lose cellular homeostasis. During replicative senescence, DNA damage, cell cycle arrest, and dysfunction of cellular compartments would occur and further influence hMSC stemness and therapeutic potency. Since large-scale production of hMSCs is a basic requirement in clinical or industrial application, maintaining cellular function and homeostasis during replicative culture expansion of hMSCs becomes the major barrier for hMSC large-scale manufacturing. Thus, what is needed is culture methods and reagents that reduce culture induced senescence of hMSC and further preserve cellular homeostasis during culture expansion.
Disclosed are methods and compositions related to culturing in a manner that rescues, inhibits, prevents, or reduces culture induced senescence.
In one aspect, disclosed herein are methods of culturing and/or expanding cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts); preventing, inhibiting, and/or reducing culture induced senescence of a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts); and/or rescuing a cell or cell line such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts) from senescence during culture and expansion, said methods comprising placing cell or cell line in a media comprising a nicotinamide adenine dinucleotide (NAD+) precursor (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)). In one aspect, the NAD+ precursor can be added to the culture media after culture induced senescence has been detected. In some aspect, the glycolysis in the culture is enhanced.
Also disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the NAD precursor is added to the culture after passage (P) 1 (P1), P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P35, P40, P45, P50, P55, P60, P65, P70, P75, P80, P85, P90, P95, or P100.
In one aspect, disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the NAD precursor is added to the culture at least one time every 12, 24, 36, 48, 60, 72 hours, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 60 days. For example, disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the NAD precursor is added to the culture at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 times per week. In some aspects, the NAD precursor is added to the culture at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 times per passage of culture.
Also disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the cells are passaged at least once every 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168 hours.
In one aspect, disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the media is a Xeno-free culture medium.
Also disclosed herein is culture media comprising one or more NAD precursors (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)).
In one aspect, disclosed herein is NAD precursor comprising culture media of any preceding aspect, wherein the media comprises Roswell Park Memorial Institute (RPMI) 1640, complete culture medium (CCM), Minimal Essential Medium (MEM), Dulbecco's Modified Eagle Medium (DMEM), Iscove's Modified Dulbecco's Medium (IMDM), Eagle's mimumal essential medium (EMEM), Cell Therapy systems (CTS) essential 8 medium, Medium 199, essential 8 medium, StemFlex medium, and AdvanceSTEM cell culture media. In some aspects, the media is a Xeno-free culture medium.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments and together with the description illustrate the disclosed compositions and methods.
Before the present compounds, compositions, articles, devices, and/or methods are disclosed and described, it is to be understood that they are not limited to specific synthetic methods or specific recombinant biotechnology methods unless otherwise specified, or to particular reagents unless otherwise specified, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a pharmaceutical carrier” includes mixtures of two or more such carriers, and the like.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “10” is disclosed the “less than or equal to 10” as well as “greater than or equal to 10” is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point 15 are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The term “administering” refers to an administration that is oral, topical, intravenous, subcutaneous, transcutaneous, transdermal, intramuscular, intra joint, parenteral, intra-arteriole, intradermal, intraventricular, intracranial, intraperitoneal, intralesional, intranasal, rectal, vaginal, by inhalation or via an implanted reservoir. The term “parenteral” includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, and intracranial injections or infusion techniques.
As used herein, the term “comprising” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives, and the like. Embodiments defined by each of these transition terms are within the scope of this invention.
An “effective amount” is an amount sufficient to effect beneficial or desired results. An effective amount can be administered in one or more administrations, applications or dosages.
The term “inhibit” refers to a decrease in an activity, response, condition, disease, or other biological parameter. This can include but is not limited to the complete ablation of the activity, response, condition, or disease. This can also include, for example, a 10% reduction in the activity, response, condition, or disease as compared to the native or control level. Thus, the reduction can be a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between as compared to native or control levels.
By “reduce” or other forms of the word, such as “reducing” or “reduction,” is meant lowering of an event or characteristic (e.g., tumor growth). It is understood that this is typically in relation to some standard or expected value, in other words it is relative, but that it is not always necessary for the standard or relative value to be referred to. For example, “reduces tumor growth” means reducing the rate of growth of a tumor relative to a standard or a control.
By “prevent” or other forms of the word, such as “preventing” or “prevention,” is meant to stop a particular event or characteristic, to stabilize or delay the development or progression of a particular event or characteristic, or to minimize the chances that a particular event or characteristic will occur. Prevent does not require comparison to a control as it is typically more absolute than, for example, reduce. As used herein, something could be reduced but not prevented, but something that is reduced could also be prevented. Likewise, something could be prevented but not reduced, but something that is prevented could also be reduced. It is understood that where reduce or prevent are used, unless specifically indicated otherwise, the use of the other word is also expressly disclosed.
Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this pertains. The references disclosed are also individually and specifically incorporated by reference herein for the material contained in them that is discussed in the sentence in which the reference is relied upon.
In the past decades, human mesenchymal stem/stromal cells (hMSCs) have become attractive candidate for cell therapy, in the context of multilinage differentiation, paracrine effect, and immunomodulation. For clinical applications, preparation of hMSCs has to meet high-dosage requirement in industrial manufacturing as translational and therapeutic products. Large-scale production of hMSC represents the first major effort to expand adherent cells as transfusion therapeutics in cell therapy with promising resulting cell numbers. However, inconsistency of preclinical results of hMSCs makes its further elevated application unsure, possible due to donor age or morbidity, isolation difference and extensive in vitro culture expansion. hMSCs from aged or disease donor exhibit reduced stemness and altered therapeutic efficacy including paracrine and immunomodulatory functions. Studies have shown culture-induced decline of hMSC functional properties under artificial environment. Expanded hMSC passaging reduces CFU-F and proliferation rate corresponding with increased senescence and enlarged cell size. Extended passaging of hMSC also reduced therapeutic potency in preclinical and clinical studies. Although the increased senescent population and altered secretory profile have been postulated as the major factor, the mechanism underpins the culture-induced senescence in hMSC is not well understood.
In its nature, hMSCs exert heterogeneity not only at phenotype level, but also at primary metabolic state. Upon isolation of hMSCs from in vivo niche for expansion, in vitro nutrient rich environment induces rapid cell proliferation which requires energy and anabolic macromolecules for daughter cell replication. Catabolic and anabolic pathways are interconnected and together play active role in providing energetic sources and macromolecules to maintain cellular homeostasis. Under this context, hMSCs exhibit metabolic plasticity and can adopt their metabolic profile towards efficient oxidative phosphorylation (OXPHOS), that is drastically different from their in vivo quiescent glycolysis. Beyond a role in energetic support, metabolic circuits engage master genetic programs, and intermediate metabolites mediate cell signaling and regulatory pathways. Thus, metabolic plasticity allows hMSCs to match divergent demand of stem cell properties including self-renewal and differentiation. Specific connections between hMSC phenotype and metabolism are also illustrated. However, prior to the present disclosure, detailed metabolic profile and alterations that regulate hMSC fate during culture expansion are yet to be identified.
As hMSCs utilized both glycolysis and OXPHOS (specifically, TCA cycle) to proliferate and drive other cellular events, intermediate metabolites can play a role in specific singling pathways or events. NAD+/NADH redox cycle has been shown to participate energy metabolism extensively including glycolysis, pyruvate dehydrogenase complex, tricarboxylic acid (TCA) cycle and OXPHOS. NAD+(the oxidized form of nicotinamide adenine dinucleotide), as an intermediate metabolite, is also a co-substrate for enzymes such as Sirtuins that regulate cellular homeostasis and lifespan of organism, connecting energy metabolism to cellular homeostasis. Sirtuins (Sirt-1 as best-characterized in mammalian) are enzyme family utilizing NAD+ as co-substrates to catalyze the deacetylation of histones in target proteins involved in aging process, including P53, PARP, FOXOs, nuclear factor-kB (NF-kB), PGC-1a, and Ku70. Sirtuin-reaction is NAD+ dependent and thus makes NAD+a rate-limiting substrate in these pathways. Alteration of intracellular NAD+ level has been shown to influence cellular metabolism along with reduced sirtuin activity. Besides, other signaling pathways in non-redox reactions also consume NAD+ to activate downstream functions, such as ADP-ribosyltransferases, including poly(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose synthases (cADPRSs) including CD38/CD157, which appear to be the major enzymes to reduce NAD+ level. Increasing body of evidence in recent studies indicated that decreasing intracellular NAD+ level and Sirt-1 activity is associated with metabolic diseases and aging. Strategies targeting NAD metabolism on majoring pathways in cells, such as NAMPT, CD38, and CD73 demonstrate promising results to perturb NAD+ biosynthesis and consumption. Yet, loss of NAD+/NADH balance along with aging is still under investigation. Moreover, prior to the present disclosure, the role of NAD/NADH redox balance and sirt-1 function in hMSC with culture-induced senescence under in vitro expansion is yet to be studied and understood.
As is shown herein, restoring NAD+ level in a cell can reduce and/or inhibit the cellular events leading to cultural induced senescence. Accordingly, in one aspect, disclosed herein are methods of culturing and/or expanding a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts) said method comprising placing cell or cell line in a media comprising a nicotinamide adenine dinucleotide (NAD+) precursor (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR). It is understood and herein contemplated that by adding a NAD+ precursor (such as, for example NAM, NMN, and/or NR) cell culture induced senescence is prevented, inhibited, and/or reduced. Thus, disclosed herein are methods of preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts) said method comprising placing cell or cell line in a media comprising a nicotinamide adenine dinucleotide (NAD+) precursor (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)). In one aspect, the media does not need to comprise the NAD+ precursor, but the NAD+ precursor can be added to the media before or after the addition of the cell or cell lines.
In one aspect, the NAD+ precursor (such as, for example, NAM, NMN, and/or NR) can be added to the media prior to adding the cells for culturing and/or expansion. In one aspect, the NAD+ precursor (such as, for example, NAM, NMN, and/or NR) can be added after or concurrently with the addition of the cells or cell line(s) for culturing and/or expansion, but prior to the potential for any culture induced senescence. For example, the NAD+ precursor can be added during the initial culture or any passage after that including, but not limited to passage (P) 1 (P1), P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P35, P40, P45, P50, P55, P60, P65, P70, P75, P80, P85, P90, P95, or P100. In one aspect, the NAD+ precursor (such as, for example, NAM, NMN, and/or NR) is added to the culture at a passage closer when culture induced senescence is typically observed in the cell or cell line being propagated. In one aspect, the NAD+ precursor is added after P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P35, P40, P45, P50, P55, P60, P65, P70, P75, P80, P85, P90, P95, or P100.
However, it is also understood and herein contemplated that the effects that the addition of NAD+ precursors has on the cells to inhibit, reduces, and/or prevent culture induced senescence can also have a therapeutic effect on a cell culture already showing indications of senescence or having become senescent. Accordingly, disclosed herein are methods of rescuing a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts) from senescence during culture and expansion said method comprising placing cell or cell line in a media comprising a nicotinamide adenine dinucleotide (NAD+) precursor (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)) or adding said precursor to the culture media before or after the addition of the cells or cell lines. It is understood and herein contemplated that to rescue a cell or cell line for culture induced senescence, the cell or cell line must already have become senescent or showing indication of becoming senescent. Thus, in one aspect, the NAD+ precursor (such as, for example, NAM, NMN, and/or NR) to the culture media after culture induced senescence has been detected. As with the methods of culturing and/or expanding cell or cell line and methods of preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line, for the disclosed methods of rescuing a cell or cell line from senescence during culture and expansion, the NAD+ precursors can be added at any passage once signs of senescence have commenced. For example, the NAD+ precursor can be added following passage (P) 1 (P1), P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P35, P40, P45, P50, P55, P60, P65, P70, P75, P80, P85, P90, P95, or P100.
Passaging can take place at a rate sufficient to have cells reach the desired level of confluency or expansion in the culture media (including attachment time where appropriate) before the culture must be transferred to a new culture vessel (i.e., passaged). The amount of time required for the cells to have obtained the appropriate degree of expansion can depend on the cell type, media, culture vessel size, and culture conditions. Thus, disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the cells are passaged at least once every 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, or 168 hours.
Once administration of the NAD+ precursor begins, the NAD+ precursors can be added at a rate effective to reduce, inhibit, or prevent senescence or to rescue the cell or cell line from senescence. For example, the NAD+ precursor (such as, for example, NAM, NMN, and/or NR) can be added at least once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 passages. In some instances that rate administration of the NAD+ precursor (such as, for example, NAM, NMN, and/or NR) can be different for rescue and subsequence culture to prevent, inhibit, and/or reduce future senescence once the cell or cell line has been rescued. In other words, there can be a first rate of administration and a second rate of administration. For example, disclosed herein are methods of methods of rescuing a cell or cell line from senescence during culture and expansion comprising adding NAD+ precursors (or media comprising said precursors) to a cell culture at a first administration rate of at least once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 and then, once rescued continuing to culture and/or expand the cells or cell lines comprising placing cell or cell line in a media comprising a nicotinamide adenine dinucleotide (NAD+) precursor (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)) or adding said precursor to the culture media before or after the addition of the cells or cell lines, wherein NAD+ precursors (or media comprising said precursors) to a cell culture at a second administration rate of at least once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 passages thereafter, wherein the rate of administration is faster, slower, or the same as the first rate of administration, but is independent of the first rate of administration.
It is further understood and herein contemplated that there are situations where the time between passages is such that a single application of NAD+ precursor (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)) is not sufficient to maintain effective amounts or concentrations of NAD+ precursors. Thus, in one aspect, disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the NAD precursor is added to the culture at least one time every 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, hours, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 60 days. For example, disclosed herein are methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line from senescence during culture and expansion of any preceding aspect, wherein the NAD precursor is added to the culture at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 times per week. In some aspects, the NAD precursor is added to the culture at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 times per passage. In one aspect, the appropriate concentration of NAM, NMN, and/or NR to prevent, inhibit, reduce, or rescue culture induced senescence can be between 0.1 mM and 100 mM, preferably between 1 mM and 20 mM. For example, the concentration of NAM, NMN, and/or NR when added to the media can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 mM.
In some aspects, senescence, pluripotency, mitochondrial fitness, metabolism, cellular homeostasis, NAD+ Sirt axis, immunomodulation, and/or therapeutic effect is assessed before NAD+ precursors are added to a media or media comprising NAD+ precursors are used to culture the cells or cell lines.
It is understood and herein contemplated that the disclosed methods involve culturing cells and that the particular culture conditions such as the presence of serum, media supplements, CO2 percentage, temperature, O2 percentage, and/or shaking can vary between cell types. In some aspects, it is specifically understood that the Oxygen tension of the culture is NOT reduced. In some aspect glycolysis of the culture is enhanced.
It is understood that the methods of culturing and/or expanding cell or cell line; preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line; and/or rescuing a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts) from senescence during culture and expansion can be effective with any cell or cell line where culture induced senescence has been observed, including, but not limited to a stem cell or stem cell cell line, such as, for example, human mesenchymal stem cells or cell lines (hMSC), bone marrow mesenchymal stem cells or cell lines, and fibroblast cell s or cell lines.
The disclosed methods involve supplementing culture media with NAD+ precursors (such as, for example, nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR)) to prevent, inhibit, reduce, and/or rescue cells or cell lines from culture induced senescence. In one aspect, also disclosed herein is culture media comprising one or more NAD precursors (such as, for example, NAM, NMN, and/or NR). In one aspect, the media used in any of the disclosed methods or to which NAD+ precursors are added can be any media known in the art appropriate for growing and expanding the disclosed cells, for example, the media can comprise Roswell Park Memorial Institute (RPMI) 1640, complete culture medium (CCM), Minimal Essential Medium (MEM), Dulbecco's Modified Eagle Medium (DMEM), Iscove's Modified Dulbecco's Medium (IMDM), Eagle's mimumal essential medium (EMEM), Cell Therapy systems (CTS) essential 8 medium, Medium 199, essential 8 medium, StemFlex medium, and AdvanceSTEM cell culture media. In some aspects, the culture media can comprise a Xeno-free culture medium.
Disclosed herein are media comprising NAD+ precursors and methods of culturing and/or expanding cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts); preventing, inhibiting, and/or reducing cell culture induced senescence of a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts); and/or rescuing a cell or cell line (such as, for example a stem cell or stem cell cell line including but not limited to human mesenchymal stem cells (hMSC), bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ASCs), umbilical cord derived stem cells (UC-MSCs); human progenitor cell line including but not limited to human endothelial progenitor cells, neuronal progenitor cells and human fibroblasts) from senescence during culture and expansion comprising adding cells to said media or supplementing media with NAD+ precursors during culture/expansion of the cells. It is understood and herein contemplated that the NAD+ precursors used in said media and/or methods can comprise any NAD+ precursor that has the desired effect of restoring NAD+ levels such that culture induced senescence is prevented, reduced, inhibited, or rescued. As used herein NAD+ precursors include, but are not limited to nicotinamide (NAM), nicotinamide mononucleotide (NMN), and/or nicotinamide riboside (NR).
The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to limit the disclosure. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.
Considering the evidence of hMSC acquire metabolic plasticity and the role of NAD+/NADH in metabolism, the hypothesis that hMSC under in vitro expansion exhibit metabolic shift from aerobic glycolysis to OXPHOS and a corresponding decline in intracellular NAD+ level was tested, resulting in reduced Sirt-1 signaling and a breakdown of cellular homeostasis. Repletion of NAD+ in senescent hMSCs recovers mitochondrial fitness and stem cell properties. Moreover, it was also shown that stem cells with definite life span and ability in senescence exhibited different NAD+ metabolism compare to other primary cells such as fibroblast. Together, the results reveal a novel metabolic and biochemical marker in hMSC fate which can be used to evaluate hMSC cellular homeostasis and stem cell quality in biomanufacturing.
(1) hMSCs Exhibit Senescence and Functional Decline During In Vitro Replicative Expansion.
Culture-expansion of hMSCs in vitro is essential for application of hMSCs. The isolation and culture condition for MSC expansion follows the most widely applied method with standardized medium. hMSCs exhibited significant morphological change from spindle-shape to flat-shape along with enlarged cell size during in vitro expansion from early passage (P5) to late passage (P12) (
(2) Culture Expansion Induces Mitochondrial Dysfunction in Senescent hMSCs.
Culture expansion of hMSCs not only alters basic cellular events, but also influence the function of cellular organelle. As mitochondria plays the most important role in regulating energy homeostasis and cell function, a set of mitochondrial characteristics was screened to evaluate the fitness of hMSC mitochondria during in vitro culture expansion. Not surprisingly, mitochondrial morphology is significantly altered during culture expansion of P5 to P12, from fragmented morphology to fused-elongated shape (with circularity 0.73 vs 0.24)(
(3) Culture Expansion Induces Metabolic Reconfiguration in hMSCs.
As mitochondrial plays the key role in energy metabolism, hMSC metabolic state was further characterized during culture expansion. Glycolytic ATP production was found to be significantly reduced in hMSCs at passage 12 compared to passage 5 (
(4) Culture Expansion Induces NAD+/NADH Redox Cycle Imbalance inhMSCs with Replicative Senescence.
NAD+/NADH redox cycle in hMSCs connects glycolysis and TCA cycle in energy metabolism and participates in aging-related signaling pathways and functions. Since culture expansion induces metabolic reconfiguration in hMSCs, the redox cycle can also be influenced. It was found that cellular NAD+ level declines, while the reduced form of NAD+, NADH level, elevated during hMSC expansion (P4, P9, and P12), which results in the decreased ratio of NAD+/NADH (
(5) NAD+ Biogenesis and Metabolism are Altered During In Vitro Culture Expansion of hMSCs.
Since intracellular level of NAD+ of hMSCs declines during in vitro expansion, the major pathway of NAD+ biosynthesis and consumption was further investigated. As a rate-limiting step of salvage pathway for maintaining NAD+ level, micotinamide phosphoribosyltransferase (NAMPT) was significantly increased at late passage of hMSCs (passage 10-12) compared to hMSCs of P6-7, both at molecular level determined by RT-PCR and at protein level determined by flow cytometry (
(6) Re-Balancing NAD+/NADH Redox Cycle Restores Mitochondrial Fitness and Cellular Homeostasis in hMSCs with Replicative Senescence.
With the potential relation between NAD+ level and stem cell functions and fate, the effects of repletion of NAD+ in late passage of hMSCs with culture-induced senescence was investigated via adding NAD+ precursor NAM. Cellular NAD+ level and the ratio of NAD/NADH significantly increased after 96 h of NAM treatment (
(7) NAD+/NADH Redox Cycle and Mitochondrial Fitness are Relatively Stable During Replicative Expansion of Human Fibroblast.
Since hMSCs exhibit significant change induced by replicative culture expansion, it was examined whether culture expansion also influence mature adult cells on their senescence and mitochondrial fitness. Here, human dermal fibroblasts were cultured up to passage 15 (P15) and their NAD+/NADH redox cycle was examined as the regulator for the mitochondrial functions. As hFBs were cultured, there was no significant difference for the population doubling time between low and high passage cells (
Beyond the multi-lineage differentiation, hMSCs exhibited paracrine and immunomodulatory potentials that facilitate endogenous tissue regeneration, thus are acknowledged as a potential therapeutic candidate. In order to move forward to clinical applications, in vitro large-scale expansion of hMSCs is in demand to meet clinical required cell number, with genetic stability and therapeutic efficacy. However, progressive loss of stem cell properties and genetic alterations during in vitro culture expansion of hMSCs has been widely reported as replicative senescence. In detail, loss of colony forming ability and stem cell genes in hMSCs with replicative senescence indicated the loss of their therapeutic efficacy (
In vitro culture conditions have been shown to significantly impact cellular behaviors. For hMSCs, a similar hayflick limit was observed by these studies with reduced proliferation and altered morphology. In fact, ultra-structure of cellular organelles such as endoplasmic reticulum and matrix vesicles, was also dysregulated via replicative expansion observed under TEM. Cell cycle arrest in senescent hMSCs can be confirmed by the gradually increase of p53, p21 and p15 mRNA expressions in the results. Though DNA damage was considered as the trigger of p53/p21 signaling pathway to initiate DNA repair, independent activation of p53, p21 and p16 mRNA via metabolic regulation through AMPK and autophagy that associated with cellular homeostasis was also proposed. Loss of autophagy has been attributed to age-related stem cells functional decline. Aged muscle stem cells (muscle-SCs) and hematopoietic stem cells (HSC) acquired from rodent model revealed the impairment of autophagy in stem cell activity with chorological aging. Functionally, autophagy is protective for stem cells under internal or external stress and maintains cellular homeostasis. Muscle-SCs and HSCs lose their regenerative abilities when aged and autophagy was deficient, characterized by accumulation of autophagic vesicles, increased intracellular p62 protein levels, increased LC3II expression and ubiquitin-positive inclusions. Restoring autophagy via rapamycin and spermidine treatment also restored stem cell functions in vivo. An interesting phenomenon is the heterogeneity of aged stem cells also exhibit differential autophagy activity, which can be the similar scenario in hMSC heterogeneity. For the first time, the results demonstrated a close link between gradually loss of basal autophagy/mitophagy during culture expansion of hMSCs (
The metabolic plasticity of hMSCs has been demonstrated under artificial culture conditions. Upon removal from their in vivo niche, hMSCs start to adapt in vitro environment via utilizing both glycolysis and OXPHOS for ATP production. The pluripotency and clonal phenotype contribute to the cellular homeostasis and are maintained by this low-level of glycolytic metabolism. As metabolic shift from glycolysis towards OXPHOS was well observed in current study, breakdown of cellular homeostasis is expected due to the accumulation of damaged organelles and ROS (
NAD+ has been reported to be a regulatory intermediate metabolite associated with aging in yeast and rodent, but few studies focus on in vitro expansion of human cells with senescence. The results firstly demonstrated progressive decrease of intracellular NAD+ level along with extended culture expansion of hMSCs (
Imai et al. proposed two major mechanisms in aging related NAD+ decline that 1) NAD+ biosynthetic pathways decline or 2) several NAD+ consumption enzymes are competing each other for the cellular NAD+ pool and culture or chronological aging induced enzymatic dysfunctions. To glance the metabolic network of NAD+ in senescent hMSCs, several key pathways for NAD+ biosynthesis and consumption were determined (
Based on the results, the NAD+/Sirt-1 axis can be a checkpoint for the loss of cellular function and breakdown of homeostasis. Also examined was whether human dermal fibroblasts exhibited similar mechanism during culture expansion. Surprisingly, within same population doublings (or culture period according to hMSC expansion), hFBs exhibited relative consistence in PD time and β-gal activity (
(1) hMSCs and hFBs Culture
Frozen hMSCs from passage 0 to 2 were acquired from Tulane Center for Gene Therapy. The MSCs were isolated from the bone marrow of healthy donors ranging in age from 19 to 49 years based on plastic adherence, negative for CD34, CD45, CD117 (all less than 2%) and positive for CD29, CD44, CD49c, CD90, CD105 and CD147 markers (all greater than 95%) and possess tri-lineage differentiation potential upon in vitro induction (Munoz 2014). hMSCs (1×106 cells/ml/vial) in freezing media contains a-MEM, 2 mM L-glutamine, 30% fetal bovine serum (FBS) and 5% dimethyl sulfoxide (DMSO) were thawed and cultured following the method. Briefly, hMSCs were expanded and maintained in complete culture media (CCM) containing a-MEM supplemented with 10% FBS (Atlanta Biologicals, Lawrenceville, Ga.) and 1% Penicillin/Streptomycin (Life Technologies, Carlsbad, Calif.) with media changed every 3 days. Cells were grown to 70%-80% confluence and then harvested by incubation with 0.25% trypsin/ethylenediaminetetraacetic acid (EDTA) (Invitrogen, Grand Island, N.Y.). Harvested cells were re-plated at a density of 1,500 cells/cm2 and sub-cultured up to Passage 15.
Primary human dermal fibroblasts (hFBs, PCS-201-012™) were purchased from American Type Culture Collection (ATCC, Manassas, Va.) and subcultured in CCM up to 15 passage. All reagents were purchased from Sigma Aldrich (St. Louis, Mo.) unless otherwise noted.
(2) Cell Number, Growth, CFU-F Assay, SA-B-Gal Activity, Comet Assay and Glucose/Lactate Measurement
Cell number was determined by Quant-iT™ PicoGreen kit (Invitrogen, Grand Island, N.Y.). Briefly, cells were harvested and lysed over-night using proteinase K (VWR, Radnor, Pa.) and stained with Picogreen to allow quantitation of cellular DNA. Fluorescence signals were read using a Fluror Count (PerkinElmer, Boston, Mass.). Population doubling time (mean PD time) was determined through culture in each passage:
where t is culture period, n is the cell number fold increase during culture time t.
Colony forming unit-fibroblast (CFU-F) were determined as following: hMSCs were harvested and re-plated at the density of 15 cells/cm2 on 60 cm2 culture dish and cultured for another 14 days in CCM. Cells were then stained with 20% crystal violet solution in methanol for 15 minutes at room temperature (RT) and washed with phosphate-buffered saline (PBS) wash, the numbers of individual colonies were counted manually.
Cellular senescence was evaluated by SA-β-Gal activity assay kit (Sigma, St. Louis, Mo.) as described in manufacture instructions.
Glucose consumption and lactate production was determined by YSI 2500 Biochemistry Select Analyzer (Yellow Spring, Ohio). Cellular DNA damage was measured by comet assay (Cell Biolabs, Inc. San Diego, Calif.), followed the manufacture instructions.
(3) Mitochondrial Morphology, Mitochondrial Mass and Membrane Potential (MMP), ROS Level Via Flow Cytometry.
For mitochondrial morphology, hMSCsc were incubated with 100 nM MitoTracker Red CMXRos (Molecular Probe, Eugene, Oreg.) in complete culture medium at 37° C. for 30 minutes. After washing, cells were then incubated with 3.7% formaldehyde at 37° C. for 15 minutes. Imaging was performed using Olympus IX70 microscope. Mitochondrial shape factors, including circularity (4×π area)/perimeter), aspect ratio (largest diameter/smallest diameter), and nucleus to cytoplasm ratio were quantified using Image J (NIH software).
For MMP measurement, trypsinized MSCs were washed by centrifugation in warm Hank's Balanced Salt Solution (HBSS). Cell suspension was incubated with tetramethylrhodamine, methyl ester (TMRM) (Molecular Probe, Eugene, Oreg.) at 37° C., washed with HBSS, and analyzed by flow cytometry (BD Biosciences, San Jose, Calif.).
For ROS measurement, aliquots of cell suspension were incubated with 25 μM carboxy-H2DCFDA (Molecular Probe, Eugene, Oreg.) at 37° C. for 30 minutes. The intracellular ROS levels were determined using flow cytometry (BD Biosciences, San Jose, Calif.). For mitochondrial ROS measurement, aliquots of cell suspension were incubated with 5 μM MitoSOX Red (Molecular Probe, Eugene, Oreg.) at 37° C. for 10 minutes and analyzed using flow cytometry (BD Biosciences, San Jose, Calif.).
(4) Immunocytochemistry, Cell Cycle, Autophagy and Mitophagy Measurement
Cells were dissociated from monolayer MSCs or MSC aggregates by incubation with 0.25% trypsin-EDTA solution for 10-15 min at 37° C. Suspended MSCs were washed in phosphate-buffered saline (PBS), and fixed at 4% paraformaldehyde (PFA) at room temperature for 15 minutes. Cells were then permeabilized in 0.2% triton X-100 PBS for 10 min at room temperature (RT). Non-specific binding sites were blocked in PBS with 1% bovine serum albumin, 10% goat serum, 4% nonfat dry milk for 15 min at RT. After washing with PBS, cells were incubated with specific primary antibodies for human Sirt-1, Sirt-3, NAMPT, CD38, CD73 (Santa Cruz Biotechnology, Dallas, Tex.) at RT for 2 h, following with 1 h incubation with FITC conjugated secondary antibody (Molecular Probe, Eugene, Oreg.) at RT. Labeled samples were washed in PBS followed by flow cytometry analysis with isotype control run in parallel.
For autophagy measurement, aliquots of cell suspension were incubated with 20 μM Cyto-ID Green (Enzo Life Sciences, Farmingdale, N.Y.), a fluorescent dye that selectively labels accumulated autophagic vacuoles, at 37° C. for 30 minutes, and analyzed by flow cytometry (BD Biosciences, San Jose, Calif.). For mitophagy measurement,
(5) Intracellular ATP Content and Mitochondrial Complex I Activity
hMSCs were centrifuged, re-suspended in DI water, and heated immediately in a boiling water bath for 15 minutes. The mixture was centrifuged and ATP containing supernatant was collected. Upon measurement, 10 μL of ATP solution was mixed with 100 μL of the luciferin-luciferase reagent, and the bioluminescent signal was measured using an Orion Microplate Luminometer (Bad Wildbad, Deutschland) after 15 min incubation at room temperature. Activity of mitochondrial complex I was determined using the Complex I Enzyme Activity Microplate Assay Kit (Abcam, Cambridge, Mass.) according to the kit instructions.
(6) Real-time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)
Total RNA was isolated using the RNeasy Plus kit (Qiagen) following vendor's instructions. Reverse transcription was carried out using 2 μg of total RNA, anchored oligo-dT primers (Operon) and Superscript III (Invitrogen). Primers for specific target genes were designed using the software Oligo Explorer 1.2 (Genelink). β-actin was used as an endogenous control for normalization. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) reactions were performed on an ABI7500 instrument (Applied Biosystems), using SYBR Green PCR Master Mix. The amplification reactions were performed and the quality and primer specificity were verified. hMSCs without any treatment were used as control group to determine relative fold-increase. Fold variation in gene expressions were quantified using the comparative Ct method: 2−(CtTreatment−CtControl), which is based on the comparison of the expression of the target gene (normalized to β-actin).
(7) Proteomic Analysis
Cells were harvested when reached 80% confluency from 2D planer culture. hMSC pellets were washed with cold PBS for three times for complete removal of medium. Cell pellets were resuspended in protein extracting buffer supplied with protease inhibitor. 2-min ultra-sonication was used to extract proteins of cells on ice. Protein concentration was determined by Bradford assay (Bio-Rad, Hercules, Calif.). Extracted proteins were digested by modified Filter Aided Sample Prep (FASP) method. Briefly, 100 μg protein was vacuum-dried and resuspended in 8 M urea solution to a final volume of 200 μL, then 10 mM dithiothreitol (DTT) and 50 mM iodoacetamide (IAA) were added for reduction and alkylation respectively. Samples were transferred to a 10 kDa filter and centrifuged with 14000 g for 30 minutes to eliminate solvent. Two times of wash was performed with 200 μL 8 M urea and 200 μL ammonium bicarbonate and the extracts were centrifuged at 14000 g for 30 minutes to remove solvent. Then 2 μg trypsin was added for digestion under 37° C. overnight. After that, peptides were collected and vacuum-dried. An externally calibrated Thermo Q Exactive HF (high-resolution electrospray tandem mass spectrometer, MS, Thermo Scientific) was used in conjunction with Dionex UltiMate3000 RSLCnano System. 1 mg microgram of peptides resuspended in 0.1% formic acid was injected into a 50 μL loop and loaded onto the trap column (Thermo μ-Precolumn 5 mm, with nanoViper tubing 30 μm i.d.×10 cm). The flow rate was set to 300 nL/min for separation on the analytical column (Acclaim pepmap RSLC 75 μM×15 cm nanoviper). Mobile phase A was composed of 99.9% H2O (EMD Omni Solvent) with 0.1% formic acid and mobile phase B was composed of 99.9% acetonitrile with 0.1% formic acid. A 120 mins stepped gradient from 3% to 45% phase B was performed. The LC eluent was directly nano-sprayed into Q Exactive HF MS. During the chromatographic separation, the Q Exactive HF was operated in a data-dependent mode and under direct control of the Thermo Excalibur 3.1.66 (Thermo Scientific). The MS data were acquired using the following parameters: 20 data-dependent collisional-induced-dissociation (CID) MS/MS scans per full scan (350 to 1700 m/z). The spray voltage for Thermo Scientific™ LTQ was 2.0 kV and the capillary temperature was set at 200° C. A survey full scan (m/z=350-1700) and the five most intense ions were selected for a zoom scan to determine the charge state, after which MS/MS was triggered in Pulsed-Q Dissociation mode (PQD) with minimum signal required (1000), isolation width 2.0, normalized collision energy 27.0. All measurements were performed at room temperature. Raw files were analyzed by Maxquant 1.6 followed protein identification and relative comparison in Scaffold 4.4. Gene ontology (GO) annotation was carried out by WebGestalt while canonical pathway, diseases and functions analysis was performed by Ingenuity Pathway Analysis (IPA, Qiagen).
(8) Statistics/Data Analysis
Unless otherwise noted, all experiments were performed at least in triplicate (n=3), and representative data are reported. Experimental results are expressed as means±standard deviation (SD) of the samples. Statistical comparisons were performed by one-way ANOVA and Tukey's post hoc test for multiple comparisons, and significance was accepted at p<0.05.
The objective of this study is to investigate long-term culture-induced changes of hMSCs which leads to cellular senescence and metabolic alteration, resulting in reduced stem cell properties; and to understand the key regulatory role of NAD+/NADH redox cycle and mitochondria in maintaining energy, metabolic profile, and preserving cellular homeostasis during hMSCs in vitro expansion. As shown in
a) Methods
hMSCs at passage 2 were expanded and cultured in complete culture medium(CCM). Cells were grown to 70-80% confluence and then harvested by incubation with 0.25% trypsin/EDTA. Harvested cells were re-plated at a density of 2,000 cells/cm2 and sub-cultured up to Passage 12 in a standard CO2 incubator. hMSC sat Passage 5 (P5) and passage 12 (P12) were used for experiments. Stem cell properties including senescence, stem cell gene, cell cycle, proliferation rate were determined. Gas chromatography-mass spectrometry (GC-MS) and seahorse flux analyzer were used for characterization of energy metabolism phenotype. Mitochondrial functions were assessed by mitochondrial mass, membrane potential, electron transport complex activity and biogenesis. NAD+/NADH and Sirt-1 and -3 level was also measured in P5 and P12 hMSCs. NAD+ precursor nicotinamide (NAM) was used in CCM to adjust NAD+ level intracellularly.
b) Results
(1) Decline of Stem Cell Properties of hMSCs Due to Replicative Culture Expansion In Vitro
(2) Metabolic Reconfiguration of hMSCs During Replicative Culture Expansion In Vitro
(3) Mitochondrial Dysfunction of hMSCs During In Vitro Culture Expansion
(4) NAD+ Decline in Culture-Induced Senescent hMSCs and NAD+/Sirtuin Axis Regulates hMSC Cellular Homeostasis
This application claims the benefit of U.S. Provisional Application No. 62/961,281, filed on Jan. 15, 2020, which is incorporated herein by reference in its entirety.
This invention was made with government support under Grant No. CBET 1743426 awarded by the National Science Foundation. The Government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/13554 | 1/15/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62961281 | Jan 2020 | US |