The present disclosure relates to cell expansion systems (CESs) and associated cell growth chambers.
CESs are used to expand, grow, and differentiate cells. The use of stem cells in a variety of potential treatments and therapies have achieved particular attention. Stem cells which are expanded from donor cells can be used to repair or replace damaged or defective tissues and have broad clinical applications for a wide range of diseases. Recent advances in the regenerative medicine field demonstrate that stem cells have unique properties such as high proliferation rates and self-renewal capacity, maintenance of the unspecialized state, and the ability to differentiate into specialized cells under particular conditions.
Cell expansion systems can be used to grow stem cells, as well as other types of cells. There is a need for cell expansion systems that can be used to grow adherent cells, as well as non-adherent cells, and co-cultures of various cell types. The ability to provide sufficient nutrient supply to the cells, remove metabolites, provide sufficient oxygenation to the cells, as well as furnish a physiochemical environment conducive to cell growth in a flexible system is an ongoing challenge.
Many of the cell expansion systems such as the ones discussed above contain both a cell growth module which contains the cells to be expanded, and a separate and distinct oxygenator to supply oxygen to the cells. The cell growth module and the oxygenator are usually separate modules. For ease in manufacturing and use, it would be desirable to have both modules together in one module. The present disclosure addresses these and other needs.
This invention is directed towards a cell growth module which has a housing with first and second ends which define a longitudinal axis through the housing, and a hollow fiber membrane which has interior and exterior surfaces disposed within the housing. The hollow fiber membrane has a hydrophilic interior surface and a hydrophobic exterior surface. There are at least two ports in the housing which define a first fluid flow path through the interior of the fibers, and at least two ports in the housing defining a second fluid flow path along the exterior of the fibers.
This invention also is directed towards a cell expansion system
The present disclosure is generally directed to cell expansion systems and methods of using the same. It should be noted that throughout the description, like elements are depicted by like numerals.
An exemplary schematic of a cell expansion system (CES) is depicted in
A second fluid flow path 34 is fluidly associated with inlet port 42 and outlet port 40 respectively of cell growth chamber 24. Fluid flowing through cell growth chamber 24 in the second fluid flow path 34, flows along the exterior of the hollow fiber membrane 50. A fluid flow controller can optionally be connected to second fluid flow path.
First and second fluid flow paths 16 and 34 are thus separated in cell growth chamber 24 by the hollow fiber membrane 50. Fluid in first fluid flow path 16 flows through the intracapillary (“IC”) space of the hollow fibers in the cell growth chamber and is thus referred to as the “IC space.” Fluid in second fluid flow path 34 flows through the extracapillary (“EC”) space and is thus referred to as the “EC space.” Fluid in first fluid flow path 16 can flow in either a co-current or counter-current direction with respect to flow of fluid in second fluid flow path 34.
Fluid inlet path 44 is fluidly associated with first fluid flow path 16. Fluid inlet path 44 allows fluid into first fluid flow path 16, while fluid outlet path 46 allows fluid to leave the cell growth chamber. Fluid flow controller 48 is operably associated with fluid inlet path 44. Alternatively, fluid flow controller 48 can be associated with first outlet path 46.
Fluid flow controllers as used herein can be a pump, valve, clamp, or combination thereof. Multiple pumps, valves, and clamps can be arranged in any combination. In various embodiments, the fluid flow controller is or includes a peristaltic pump.
Various components are referred to herein as “operably associated.” As used herein, “operably associated” refers to components that are linked together in operable fashion, and encompasses embodiments in which components are linked directly, as well as embodiments in which additional components are placed between the two linked components. “Operably associated” components can be “fluidly associated.” “Fluidly associated” refers to components that are linked together such that fluid can be transported between them. “Fluidly associated” encompasses embodiments in which additional components are disposed between the two fluidly associated components, as well as components that are directly connected. Fluidly associated components can include components that do not contact fluid, but contact other components to manipulate the system (e.g. a peristaltic pump that pumps fluids through flexible tubing by compressing the exterior of the tube).
Cell Growth Chamber
As discussed above, the cell growth chamber of the cell expansion system generally includes a hollow fiber membrane including a plurality of semi-permeable hollow fibers 50 separating first and second fluid flow paths.
An exemplary cell growth chamber is depicted in
Fluid in the first fluid flow path 16 (see
Cells to be expanded are contained within the first fluid flow path 16 on the IC side of the membrane. The term “fluid” may refer to gases and/or liquids. In an embodiment, a fluid containing liquid such as cell growth media is flown into the first fluid flow path 16, while a fluid containing gas such as at least oxygen is flown into the second fluid flow path 34. The gas diffuses through the membrane from the EC space into the IC space. The liquid however, must remain in the IC space and not leak through the membrane into the EC space.
Although cell growth chamber housing 52 is depicted as cylindrical in shape, it can have any other shape known in the art. Cell growth chamber housing 52 can be made of any type of biocompatible polymeric material.
Those of skill in the art will recognize that the term cell growth chamber does not imply that all cells being grown or expanded in a CES are grown in the cell growth chamber. In many embodiments, adherent cells can adhere to membranes disposed in the growth chamber, or may grow within the associated tubing. Non-adherent cells (also referred to as “suspension cells”) can also be grown.
The ends of hollow fibers 50 can be potted to the sides of the cell growth chamber by a connective material (also referred to herein as “potting” or “potting material”). The potting can be any suitable material for binding the hollow fibers 50, provided that the flow of media and cells into the hollow fibers is not obstructed and that liquid flowing into the cell growth chamber through the IC inlet port flows only into the hollow fibers. Exemplary potting materials include, but are not limited to, polyurethane or other suitable binding or adhesive components. In various embodiments, the hollow fibers and potting may be cut through perpendicular to the central axis of the hollow fibers at each end to permit fluid flow into and out of the IC side. End caps 54 and 56 are disposed at the end of the cell growth chamber.
The hollow fibers are configured to allow cells to grow in the IC space of the fibers. The fibers are large enough to allow cell adhesion in the lumen without substantially impeding the flow of media through the hollow fiber lumen.
In various embodiments, cells can be loaded into the hollow fibers by any of a variety of methods, including by syringe. The cells may also be introduced into the cell growth chamber from a fluid container, such as a bag, which may be fluidly associated with the IC side of the cell growth chamber.
Any number of hollow fibers can be used in a cell growth chamber, provided the hollow fibers can be fluidly associated with the inlet and outlet ports of the cell growth chamber.
The hollow fibers may be made of a material which will prevent the liquid contained in the IC space from leaking through the membrane into the EC space, yet must also allow the gasses contained in the EC space to diffuse through the membrane into the IC space. The outside of the fibers therefore may be hydrophobic, while the inside of the fibers may be hydrophilic.
Porous polymeric material which may be used includes polycarbonate, polyethylene sheets containing discrete holes to allow gas through, polypropylene and polytetrafluoroethylene (Teflon). Non-porous material such as silicone may also be used. The material used may be solely of one type, or may be a combination of materials, for example, one type on the inside of the hollow fibers and another type on the outside. The material must be capable of being made into hollow fibers.
In another embodiment, the hollow fibers may be coated with a substance or combinations of substances to make the surfaces hydrophobic and hydrophilic.
The material must also be capable of binding to certain types of cells, such as adherent stem cells (e.g. MSCs). Depending upon the type of cells to be expanded in the oxygenated cell growth chamber, the surface of the fibers in direct contact with the cells to be expanded may be treated with a substance such as fibronectin, platelet lysate or plasma to enhance cell growth and/or adherence of the cells to the membrane.
Cell Expansion Systems
A cell growth chamber such as the one depicted in
Outlet port 28 of cell growth chamber 24 is fluidly associated via tubing with inlet port 22, which together with cell growth chamber 24 form first fluid flow path 12. First fluid flow path 12 is configured to circulate fluid through the IC space of the cell growth chamber 24. First fluid flow path 12 is configured for fluid such as cell growth media to flow through cell growth chamber 24, pump 30, and back through cell growth chamber 24. Cells can be flushed out of cell growth chamber 24 through outlet port 28 to cell harvest bag 140 or can be redistributed back into the IC space via port 22.
CES 10 also includes second fluid flow path 14. Second fluid flow path 14 is configured to flow fluid such as gas through the EC space of the cell growth chamber. The second fluid flow path 14 connects to cell growth chamber 24 by inlet port 42, and departs cell growth chamber 24 via outlet port 40. In the embodiment shown in
The concentration of gases in the cell growth chamber can be at any concentration desired. Gases diffuse across the fibers in the cell growth chamber. Filters 150 and 152 prevent contamination of the cell growth chamber with airborne contaminants as the gas flows through second fluid flow path 14.
In another embodiment (not shown), a pump could be added to the second fluid flow path 14 to pump the gas containing oxygen through the second fluid flow path. The pump could be located any where on second fluid flow path. Another orifice or pressure regulator could also be placed at the end 150 of second fluid flow path to control any drop in pressure which may occur along the bioreactor and to increase the pressure within the bioreactor.
Liquid media contained in first fluid flow path 12 is in equilibrium with the gases flowing across the membrane from second fluid flow path 14. The amount of gas containing oxygen entering the media can be controlled by controlling the concentration of oxygen. The mole percent (also referred to herein as “Molar concentration”) of oxygen in the gas phase before diffusing into the media is typically greater than or equal to 0%, 5%, 10% or 15%. Alternatively, the molar concentration of oxygen in the gas is equal to or less than 20%, 15%, 10% or 5%. In certain embodiments, the molar concentration of oxygen is 5%.
CES 10 includes first fluid inlet path 44. First fluid inlet path 44 includes drip chamber 80 and pump 48. Fluid media and/or cells flow from IC media container 108 and/or cell input bag 112. Each of IC fluid media container 108, vent bag 110, or cell input bag 112 are fluid media containers as discussed herein. IC media refers to media that circulates in first fluid flow path 12.
Drip chamber 80 helps prevent pockets of gas (e.g. air bubbles) from reaching cell growth chamber 24. Ultrasonic sensors (not shown) can be disposed near entrance port and exit port of drip chamber 80. A sensor at entrance port prevents fluids in drip chamber 80 from back-flowing into IC media container 108, vent bag 110, cell input bag 112, or related tubing. A sensor at the exit port stops pump 48 if gas reaches the bottom of the sensor to prevent gas bubbles from reaching the IC side of cell growth chamber 24.
Those of skill in the art will recognize that fluid in first fluid flow path 12 can flow through cell growth chamber 24 in either the same direction as fluid in second fluid flow path 14 (co-current) or in the opposite direction of second fluid flow path 14 (i.e. counter-current).
Cells can be harvested via cell harvest path 46. Cell harvest path 46 is fluidly associated with cell harvest bag 140 and first fluid circulation path 12 at junction 188. Cells from cell growth chamber 24 can be pumped via pump 30 through cell harvest path 46 to cell harvest bag 140.
Various components of the CES can be contained within an incubator (not shown). An incubator would maintain cells and media at a constant temperature.
Fluid outlet path 136 is associated with waste bag 148.
As used herein, the terms “media bag,” “vent bag” and “cell input bag” are arbitrary, in that their positions can be switched relative to other bags. For example, vent bag 110 can be exchanged with IC media container 108, or with cell bag 112. The input and output controls and parameters can then be adjusted to accommodate the changes and other media or components can be added to each bag notwithstanding the designation media bag, vent bag, or cell input bag.
Those of skill in the art will further recognize that the pumps and valves in the CES serve as fluid flow controllers. In various embodiments, fluid flow controllers can be pumps, valves, or combinations thereof in any order, provided that the first fluid circulation path and second fluid circulation path are configured to circulate fluid and fluid input path(s) are configured to add fluid.
The CES can include additional components. For example, one or more pump loops (not shown) can be added at the location of peristaltic pumps on the CES. Peristaltic pumps are operably connected to the exterior of tubing, and pumps liquid through the fluid flow path by constricting the exterior of the tubing to push liquid through the tubing. The pump loops may be made of polyurethane (PU) (available as Tygothane C-210A), neoprene based material (e.g. Armapure, St. Gobain), or any other suitable material. Alternatively, a cassette for organizing the tubing lines and which may also contain tubing loops for the peristaltic pumps may also be included as part of the disposable. One or more of the components of the CES can be contained in a cassette to aid in organizing the tubing.
In various embodiments, the CES can include sensors for detecting media properties such as pH, as well as cellular metabolites such as glucose, lactate, and oxygen. The sensors can be operably associated with the CES at any location in the IC loop. Any commercially available pH, glucose, or lactate sensor can be used.
Detachable Flow circuit
A detachable flow circuit is also provided. The detachable flow circuit is a portion of a cell expansion module configured to attach to a more permanent fixed portion of the CES. Generally, the fixed portions of the CES include peristaltic pumps. In various embodiments, the fixed portions of the CES can include valves and/or clamps.
The detachable flow circuit is detachably and disposably mounted to a fluid flow controller. The detachable flow circuit can include detachable fluid conduits (e.g. flexible tubing) that connect portions of the CES. With reference to
The components can be connected together, or separate. Alternatively, detachable flow circuit can include one or more portions configured to attach to fluid flow controllers, such as valves, pumps, and combinations thereof. In variations where peristaltic pumps are used, the detachable circuit module can include a peristaltic loop configured to fit around a peristaltic portion of the tubing. In various embodiments, the peristaltic loop can be configured to be fluidly associated with the circulations paths, inlet paths, and outlet paths.
The detachable flow circuit can be combined in a kit with instructions for its assembly or attachments to fluid flow controllers, such as pumps and valves.
The present application claims benefit under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/911,601 filed Apr. 13, 2007 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4647539 | Bach | Mar 1987 | A |
4650766 | Harm et al. | Mar 1987 | A |
4722902 | Harm et al. | Feb 1988 | A |
4750918 | Sirkar | Jun 1988 | A |
4804628 | Cracauer et al. | Feb 1989 | A |
4885087 | Kopf | Dec 1989 | A |
4889812 | Guinn et al. | Dec 1989 | A |
4894342 | Guinn et al. | Jan 1990 | A |
4918019 | Guinn | Apr 1990 | A |
4940541 | Aoyagi | Jul 1990 | A |
4973558 | Wilson et al. | Nov 1990 | A |
5079168 | Amiot | Jan 1992 | A |
5126238 | Gebhard et al. | Jun 1992 | A |
5162225 | Sager et al. | Nov 1992 | A |
5202254 | Amiot | Apr 1993 | A |
5330915 | Wilson et al. | Jul 1994 | A |
5399493 | Emerson et al. | Mar 1995 | A |
5416022 | Amiot | May 1995 | A |
5437994 | Emerson et al. | Aug 1995 | A |
5459069 | Palsson et al. | Oct 1995 | A |
5510257 | Sirkar et al. | Apr 1996 | A |
5541105 | Melink et al. | Jul 1996 | A |
5605822 | Emerson et al. | Feb 1997 | A |
5622857 | Goffe | Apr 1997 | A |
5631006 | Melink et al. | May 1997 | A |
5635386 | Palsson et al. | Jun 1997 | A |
5635387 | Fei et al. | Jun 1997 | A |
5643794 | Liu et al. | Jul 1997 | A |
5646043 | Emerson et al. | Jul 1997 | A |
5656421 | Gebhard et al. | Aug 1997 | A |
5670147 | Emerson et al. | Sep 1997 | A |
5670351 | Emerson et al. | Sep 1997 | A |
5688687 | Palsson et al. | Nov 1997 | A |
5763194 | Slowiaczek et al. | Jun 1998 | A |
5763261 | Gruenberg | Jun 1998 | A |
5763266 | Palsson et al. | Jun 1998 | A |
5882918 | Goffe | Mar 1999 | A |
5888807 | Palsson et al. | Mar 1999 | A |
5981211 | Hu et al. | Nov 1999 | A |
5985653 | Armstrong et al. | Nov 1999 | A |
5994129 | Armstrong et al. | Nov 1999 | A |
5998184 | Shi | Dec 1999 | A |
6001585 | Gramer | Dec 1999 | A |
6048721 | Armstrong et al. | Apr 2000 | A |
6096523 | Parrott et al. | Aug 2000 | A |
6096532 | Armstrong et al. | Aug 2000 | A |
6197575 | Griffith et al. | Mar 2001 | B1 |
6228635 | Armstrong et al. | May 2001 | B1 |
6238908 | Armstrong et al. | May 2001 | B1 |
6326198 | Emerson et al. | Dec 2001 | B1 |
6372495 | Flendrig | Apr 2002 | B1 |
6582955 | Martinez et al. | Jun 2003 | B2 |
6616912 | Eddleman et al. | Sep 2003 | B2 |
6667034 | Palsson et al. | Dec 2003 | B2 |
6680166 | Mullon et al. | Jan 2004 | B1 |
6835566 | Smith et al. | Dec 2004 | B2 |
6844187 | Wechsler et al. | Jan 2005 | B1 |
6943008 | Ma | Sep 2005 | B1 |
6969308 | Doi et al. | Nov 2005 | B2 |
6979308 | McDonald et al. | Dec 2005 | B1 |
7033823 | Chang | Apr 2006 | B2 |
7041493 | Rao | May 2006 | B2 |
7172696 | Martinez et al. | Feb 2007 | B1 |
7270996 | Cannon et al. | Sep 2007 | B2 |
20070122904 | Nordon | May 2007 | A1 |
20070231305 | Noll et al. | Oct 2007 | A1 |
20070238169 | Abilez et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
0220650 | May 1987 | EP |
1538196 | Jun 2005 | EP |
WO8602379 | Apr 1986 | WO |
WO8801643 | Mar 1988 | WO |
WO9002171 | Mar 1990 | WO |
WO9107485 | May 1991 | WO |
WO9504813 | Feb 1995 | WO |
WO9521911 | Aug 1995 | WO |
WO0075275 | Dec 2000 | WO |
WO03105663 | Dec 2003 | WO |
WO2004024303 | Mar 2004 | WO |
WO2005087915 | Sep 2005 | WO |
Entry |
---|
International Search Report for PCT/US2008/060209, filed Apr. 14, 2008; Search Report mailed Feb. 17, 2009. |
Chang et al, “Membrane Bioreactors: Present and Prospects”, Advances in Biochemical Engineering, 1991, 44:27-64. |
Chang, Ho Nam, “Membrane Bioreactors: Engineering Aspects”, Biotech. Adv., 1987, vol. 5, pp. 129-145. |
Eddington, Stephen M., “New Horizons for Stem-Cell Bioreactors”, Biotechnology, v. 10, Oct. 1992, pp. 1099-1106. |
Gastens et al, “Good Manufacturing Practice-Compliant Expansion of marrow-Derived Stem and Progenitor Cells for Cell Therapy”, Cell Transplantation, 2007 vol. 16, pp. 685-696. |
Gramer et al, “Screening tool for Hollow-Fiber bioreactor Process Development”, Biotechnol. Prog. 1998, 14, 203-209. |
Hirschel et al, “An Automated Hollow Fiber System for the large Scale manufacture of mammalian Cell Secreted Product”, in Large Scale Cell Culture Technology, ed. Bjorn K. Lydersen, Hanser Publishers, 1987, pp. 113-144. |
Nielsen, Lars Keld, “Bioreactors for Hematopoietic Cell Culture”, Annu. Rev. Biomed: Eng., 1999,1:129-152. |
Pörtner et al, “An Overview on Bioreactor Design, Prototyping and Process Control for Reproducible Three-Dimensional Tissue Culture”, in Drug Testing in Vitro: Breakthroughs and trends in Cell Culture Technology, ed. Uwe Marx and Volker Sandig, Wiley—VCH, 2007, Chapter 2, pp. 53-78. |
Zhao et al, “Perfusion Bioreactor System for Human Mesenchymal Stem Cell Tissue Engineering: Dynamic Cell Seeding and Construct Development”, Biotechnology and Bioengineering, vol. 91, No. 4, Aug. 20, 2005, pp. 482-493. |
Number | Date | Country | |
---|---|---|---|
20080254533 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60911601 | Apr 2007 | US |