Bedford et al., “A Functional Chimeric Modular Polyketide Synthase Generated via Domain Replacement,” Chemistry & Biology (1996) 3(10):827-831. |
Cane et al., “Macrolide Biosynthesis. 7. Incorporation of Polyketide Chain Elongation Intermediates into Methymycin,” J Am Chem Soc (1993) 115:522-526. |
Cortes et al., “Repositioning of a Domain in a Modular Polyketide Synthase to Promote Specific Chain Cleavage,” Science (1995) 268:1487-1489. |
Daum et al., “Mutational Biosynthesis of New Antibiotics,” Ann Rev Microbiol (1979) 33:241-265. |
Donadio et al., “Biosynthesis of the Erythromycin Macrolactone and a Rational Approach for Producing Hybrid Macrolides,” Gene (1992) 115:97-103. |
Donadio et al., “An Erythromycin Analog Produced by Reprogramming of Polyketide Synthesis,” Proc Natl Acad Sci USA (1993) 90:7119-7123. |
Dutton et al., “Avermectin Biosynthesis. Intact Incorporation of a Diketide Chain-Assembly Intermediate into the Polyketide Macrocycle Ring,” Tetrahedron Letters (1994) 35(2):327-330. |
Dutton et al., “Novel Avermectins Produced by Mutational Biosynthesis,” J Antibiot (1991) 44(3):357-365. |
Gokhale et al., “Functional Orientation of the Acyltransferase Domain in a Module of the Erythromycin Polyketide Synthase,” Biochemistry (1998) 37:2524-2528. |
Kao et al., “Gain of Function Mutagenesis of the Erythromycin Polyketide Synthase. 2. Engineered Biosynthesis of an Eight-Membered Ring Tetraketide Lactone,” J Am Chem Soc (1997) 119(46):11339-11340. |
Kao et al., “Manipulation of Macrolide Ring Size by Directed Mutagenesis of a Modular Polyketide Synthase,” J Am Chem Soc (1995) 117(35):9105-9106. |
Kao et al., “Evidence for Two Catalytically Independent Clusters of Action Sites in a Functional Modular Polyketide Synthase,” Biochemistry (1996) 35(38):12363-12368. |
Kao et al., “Engineered Biosynthesis of Structurally Diverse Tetraketides by a Trimodular Polyketide Synthase,” J Am Chem Soc (1996) 118(38):9184-9185. |
Kramer et al., “Rational Design and Engineered Biosynthesis of a Novel 18-Carbon Aromatic Polyketide,” J Am Chem Soc (1997) 119(4):635-639. |
Kuhstoss et al., “Production of a Novel Polyketide Through the Construction of a Hybrid Polyketide Synthase,” Gene (1996) 183:231-236. |
McDaniel et al., “Gain-of-Function Mutagenesis of a Modular Polyketide Synthase,” J Am Chem Soc (1997) 119(18):4309-4310. |
Oliynyk et al., “A Hybrid Modular Polyketide Synthase Obtained by Domain Swapping,” Chem Biol (1996) 3(10):833-839. |
Pereda et al., “The Loading Domain of the Erythromycin Polyketide Synthase is not Essential for Erythromycin Biosynthesis in Saccharopolyspora erythraea,” Microbiology (1998) 144:543-553. |
Pieper et al., “Remarkably Broad Substrate Specificity of a Modular Polyketide Synthase in a Cell-Free System,” J Am Chem Soc (1995) 117(45):11373-11374. |
Pieper et al., “Cell-Free Synthesis of Polyketides by Recombinant Erythromycin Polyketide Synthesis,” Nature (1995) 378:263-266. |
Pieper et al., “Purification and Characterization of Bimodular and Trimodular Derivatives of the Erythromycin Polyketide Synthase,” Biochemistry (1997) 36(7):1846-1851. |
Pieper et al., “Erythromycin Biosynthesis: Kinetic Studies on a Fully Active Modular Polyketide Synthase Using Natural and Unnatural Substrates,” Biochemistry (1996) 35:2054-2060. |
Wiesmann et al., “Polyketide Synthesis In Vitro on a Modular Polyketide Synthase,” Chem Biol (1995) 2(9):583-589. |
Aparicio et al., J. of Biol. Chem. (1994), 269(11):8524-8528. |
Bartel et al., J. Bacteriol (1990), 172(9):4816-4826. |
Beck et al., Eur. J. Biochem. (1990), 192:487-498. |
Bevitt et al., Eur. J. Biochem. (1992), 204:39-49. |
Bibb et al., EMBO J. (1989), 8(9):2727-2736. |
Caballero et al., Mol. Gen. Genet. (1991), 230:401-412. |
Caffrey et al., Eur. J. Biochem.(1991), 195:823-830. |
Caffrey et al., FEBS Lett. (1992), 304:225-228. |
Corcoran et al., 5th International Congress of Chemotherapy, Vienna, Abstracts of Communications (1967) pp:35-40. |
Corcoran, ed. in Antibiotics vol. IV Biosynthesis, Springer-Verlag, NY, pp. 145-50 (1982). |
Cortes et al., Nature (1990), 348:176-178. |
Davis et al., Abst. of the Genetics of Industrial Microorganisms Mtg. (1994), P288:192. |
Dimroth et al., Eur. J. Biochem. (1970), 13:98-110. |
Donadio, S., et al., Science (1991), 252:675-679. |
Donadio et al., Gene (1992), 111:51-60. |
Fernandez-Moreno et al., Cell (1991), 66:769-780. |
Fernandez-Moreno et al., J. Biol. Chem. (1992), 267:19278-19290. |
Hallam et al., Gene (1988), 74:305-320. |
Hopwood et al., Nature (1985), 314(6012):642-644. |
Hopwood et al., (1992) Secondary Metabolites: Their Function and Evolution, Wiley Chichester (Ciba Foundation Symposium 171), pp:88-112. |
Hunaiti et al., Antimicrobial Agents and Chemotherapy (1984), 25(2):173-178. |
Kao C.M., et al., Science (1994), 265:509-512. |
Khosla et al., J. Bacteriol. (1993), 175(8):2197-2204. |
Lanz et al., J. of Biol. Chem. (1991), 266(15):9971-9976. |
Leadlay et al., Biochem. Soc. Transactions (1993), 21:218-21222. |
MacNeil et al., Gene (1992), 115:119-125. |
Malpartida et al., Nature (1984), 309:462-464. |
Malpartida et al., Mol. Gen. Genet. (1986), 205:66-73. |
Marsden et al., Science (1994), 263:378-380. |
Omura et al., J. Biochem. (1974), 75:193-195. |
Roberts et al., FEBS Lett. (1983), 1591(1,2):13-16. |
Roberts et al., Biochem. Soc. Transactions (1984), 12:642-3. |
Rudd, et al., J. Gen. Microbiol. (1979), 114:35-43. |
Shen et al., Science (1993), 262:1535-40. |
Sherman et al., EMBO J. (1989), 8(9):2717-25. |
Sherman et al., J. Bacteriol. (1992), 174(19):6184-90. |
Spencer et al., Biochem. J. (1992), 288:839-46. |
Wawszkiewicz et al., Biochemische Zeitschrift (1964), 340:213-27. |