The present disclosure is generally directed to systems and methods for controlling modifiable process parameters, and to biological fluid processing systems and methods employing such. More particularly, the present disclosure is directed to the controlled processing of biological fluid using a disposable fluid circuit and a reusable processing machine. The present disclosure is also directed to systems and methods for permitting control of the processing based on a hierarchy of authorizations.
The processing of biological fluid such as blood or blood components typically involves using a reusable processing machine (“hardware”) and a disposable fluid circuit adapted for mounting or other association with the reusable apparatus. The fluid circuit typically includes (plastic) bags and associated tubing that defines a flow path through the circuit. The disposable fluid circuit may also include one or more separation devices where the biological fluid/cells can be separated into two or more components, washed or otherwise processed. Separation devices may separate the biological fluid based on centrifugal separation and/or, as described below, membrane separation.
The reusable processing machine is designed so that many different processes may be carried out on a single machine. These processes may vary in accordance with the nature of the fluid circuit used, but even a single fluid circuit may permit a large number of different processes to be performed on biological fluids disposed therein in conjunction with the processing machine. To maintain maximum flexibility and thereby accommodate the widest variety of processes, the machine is conventionally designed to permit its operation to be varied in literally hundreds of different ways.
In one aspect, a cell washing system includes a fluid circuit, a source container configured to hold a biological cell suspension, the source container including an access site configured to provide access between the source container and the fluid circuit, a source of wash solution configured to hold a wash solution, the source of wash solution including an access site configured to provide access between the source of wash solution and the fluid circuit, wherein the fluid circuit is configured to combine the biological cell suspension and the wash solution, a pump configured to pump the combination of biological cell suspension and wash solution through the fluid circuit, and a separator device including a drive unit and a port, the port configured to receive the combination of biological cell suspension and wash solution, wherein the separator device is configured to separate red cells from a waste solution including free hemoglobin, the separator device to dispense the waste solution to a waste product container. The system also includes a touch screen configured to receive user input and to display data to a user, and a controller coupled to the touch screen and configured to control the separator device and pump to operate a wash procedure, wherein the controller is configured to receive from the touch screen user input data for a plurality of protocols, each protocol including values for a set of process parameters for wash procedures, wherein the controller is configured to store each protocol in a memory, wherein the controller is configured to receive an identifier associated with a user, to apply one of the protocols based at least in part on the identifier, and to operate the wash procedure using the applied protocol.
In another aspect, a cell washing system includes a fluid circuit, a source container configured to hold a biological cell suspension, the source container including an access site configured to provide access between the source container and the fluid circuit, a source of wash solution configured to hold a wash solution, the source of wash solution including an access site configured to provide access between the source of wash solution and the fluid circuit, wherein the fluid circuit is configured to combine the biological cell suspension and the wash solution, a pump configured to pump the combination of biological cell suspension and wash solution through the fluid circuit, and a separator device Including a drive unit and a port, the port configured to receive the combination of biological cell suspension and wash solution, wherein the separator device is configured to separate red blood cells from a waste solution including free hemoglobin, the separator device to dispense the waste solution to a waste product container. The system also includes a touch screen configured to receive user input and to display data to a user, and a controller coupled to the touch screen and configured to control the separator device and pump to operate a wash procedure, wherein the controller is configured to receive from the touch screen user input data for a protocol, the protocol including values for a set of process parameters for the wash procedure, wherein the controller is configured to receive a numeric value between a minimum value and a maximum value for one of the process parameters of the protocol, wherein the controller is configured to store the protocol having the numeric value in a memory, wherein the controller is configured to receive an identifier associated with a user via the touch screen, to apply the stored protocol based at least in part on the identifier, and to process the biological cell suspension employing the wash procedure having the numeric value.
Other aspects include a cell washing system including a fluid circuit, a source container configured to hold a biological fluid including red blood cells, the source container configured to couple to the fluid circuit, a source of wash solution configured to hold a wash solution, the source of wash solution configured to couple to the fluid circuit, wherein the fluid circuit is configured to combine the biological fluid and the wash solution, a pump configured to pump the combination of biological fluid and wash solution through the fluid circuit, and a separator device including a drive unit and a port, the port configured to receive the combination of biological fluid and wash solution, wherein the separator device is configured to separate the red blood cells from a waste solution including free hemoglobin, the separator device to dispense the waste solution to a waste product container. The system also includes a touch screen configured to receive user input and to display data to a user, and a controller coupled to the touch screen and configured to control the separator device and pump to operate a wash procedure, wherein the controller is configured to receive from the touch screen user input data for a protocol, the protocol including values for a set of process parameters for the wash procedure, wherein the controller is configured to receive a numeric value defining a volume to wash for one of the values, wherein the controller is configured to store the protocol having the numeric value in a memory, wherein the controller is configured to receive a password associated with a user via the touch screen, to determine if the password is associated with an authorization that permits the user to modify the protocol, to receive a modification of the protocol from the user based on the determination, wherein the modification includes a modification of the volume to wash, and to process the biological fluid employing a wash procedure having the modified protocol.
The disclosure will be more fully understood from the following description taken in conjunction with the accompanying drawings. Some of the figures may have been simplified by the omission of selected elements for the purpose of more clearly showing other elements. Such omissions of elements in some figures are not necessarily indicative of the presence or absence of particular elements in any of the exemplary embodiments, except as may be explicitly delineated in the corresponding written description. None of the drawings is necessarily to scale.
As illustrated in
As explained in detail below, the processor 100, 200 includes a disposable fluid circuit 100 (see also
The controller 380 may, according to the embodiments, include a programmable microprocessor 304, which microprocessor 304 may be coupled to the at least one input 302 and may be programmed to determine if the identifier is associated with an administrator authorization and to apply the processor parameter control to the at least one process parameter if the identifier is associated with an administrator authorization. The identifier, for example in the form of a password, is received from a user via an input, such as a touchscreen, keyboard, keypad or scanner/reader, and is used to determine if the user has authorization to enter the process parameter control. Given the range of identifiers possible, the at least one input may include a first input for entry of the identifier and a second input for entry of the process parameter control. For example, the process parameter control prevents persons lacking proper authorization from changing the process parameter and/or modifying the process parameter beyond a certain range of process parameter values.
In addition, the embodiments illustrate a method of operating a cell processing system, the cell processing system including a processor 100, 200 to receive a biological fluid to be processed and to be operated according to at least one modifiable process parameter. The method includes receiving an identifier and at least one process parameter control associated with the at least one process parameter that limits modification of the at least one process parameter if applied, determining if the identifier is associated with an administrator authorization, applying the at least one processor control to the at least one process parameter if the identifier is associated with an administrator authorization, and processing the biological fluid employing a process that includes the at least one process parameter.
Consequently, an embodiment of the afore-mentioned system and method may provide one or more of the following advantages. First, the system and method may permit a versatile, highly-adaptable cell processing system to provide reproducible results with lessened concern that individual users will modify the processes carried out on the cell processing system in unexpected or, at least, unknown ways. Furthermore, the system and method may permit greater portability of a procedure found effective to produce a specific product on one system to a large number of other cell processing systems, while still providing the option of addressing local variations in the nature of the biological fluid being processed. Other advantages may also result.
Having thus described the system and method in general terms, the details of the system and method are described in detail.
As mentioned above, the systems disclosed herein typically include a reusable separation apparatus and one or more disposable processing circuits adapted for association with the reusable apparatus, which apparatus and circuit(s) define the processor. The reusable separation apparatus may be any apparatus that can provide for the automated processing of biological fluid. “Biological fluid” includes without limitation blood and blood components, and “cell” or “biological cell” includes without limitation blood cells, such as red cells, white cells and platelets. By “automated,” it is meant that the apparatus can be programmed to carry out the processing steps of a biological fluid processing method without substantial operator involvement. Of course, even in the automated system of the present disclosure, it will be understood that operator activity may be involved, including the loading of the disposable fluid circuits and entering processing parameters. Additional manual steps may be required as well. However, the reusable apparatus can process biological fluid through the disposable circuit(s) described below without substantial operator intervention.
The illustrated processing apparatus is typically capable of effecting the separation of a biological fluid that includes biological cells into two or more components or fractions. Thus, the reusable apparatus may generate conditions that allow for the separation of a biological fluid into selected components or fractions. One preferred machine for separating biological fluid into its constituent components or fractions uses a spinning porous membrane. An example of such machine is the Autopheresis C® sold by Fenwal, Inc. of Lake Zurich, Illinois A detailed description of a spinning membrane may be found in U.S. Pat. No. 5,194,145 to Schoendorfer, which is incorporated by reference herein in its entirety, and in International (PCT) Application No. PCT/US2012/028492, filed Mar. 9, 2012, the contents of which is also incorporated herein in its entirety. In addition, systems and methods that utilize a spinning porous membrane are also disclosed in U.S. Provisional Patent Application No. 61/537,856, filed on Sep. 22, 2011, and International (PCT) Application No. PCT/US2012/028522, filed Mar. 9, 2012, the contents of each are incorporated herein by reference. The references identified above describe a membrane covered spinner having an interior collection system disposed within a stationary shell. While a detailed discussion of the separation device is beyond the scope of this application, the spinning membrane separation device is shown in
Turning now to
As will be seen in the Figures and described in detail below, the disposable fluid processing circuits include tubing that defines flow paths throughout the circuits, as well as access sites for sterile or other connection to containers of processing solutions such as wash solutions, treating agents, or sources of biological fluid. As shown in
As will be apparent from the disclosure herein, source containers may be attached in sterile fashion to the circuit 100. Source containers 102 for connection to one disposable circuit may be the product containers 150 of another circuit used in an earlier step of the overall method of processing. Alternatively, the contents of a product container 150 may be further processed or separated and then transferred in sterile fashion to the source container 102 of a later-in-series fluid circuit.
The biological cell suspension to be washed or otherwise treated is typically provided in a source container 102, shown in
As further shown in
In accordance with the fluid circuit of
Tubing segment 136 defines a flow path connected at one end to branched-connector 126 and to an inlet port 20 of the separator 101. Preferably, in accordance with the present disclosure, separation device 101 is a spinning membrane separator of the type described in U.S. Pat. Nos. 5,194,145 and 5,053,121, which are incorporated by reference, U.S. Provisional Patent Application Ser. No. 61/451,903 and PCT/US2012/028522, also previously incorporated herein by reference.
As shown in
Separation device 101 preferably includes a second outlet 48 that is connected to tubing segment 142 for directing the desired biological cell/fluid product to “final” product container. The other end of tubing segment 142 is connected to branched-connector 144, which branches into and defines a flow path to one or more in-process containers 122 and a flow path to a final product container 150. The final product container 150 may also include a sampling assembly (not shown).
Apparatus 200 also includes several sensors to measure various conditions. The output of the sensors is utilized by device 200 to operate one or more wash or processing cycles. One or more pressure transducer sensor(s) 226 may be provided on apparatus 200 and may be associated with a disposable set 100 at certain points to monitor the pressure during a procedure. Pressure transducer 226 may be integrated into an in-line pressure monitoring site (at, for example, tubing segment 136), to monitor pressure inside separator 101. Air detector sensor 238 may also be associated with the disposable set 100, as necessary. Air detector 238 is optional and may be provided to detect the location of fluid/air interfaces.
Apparatus 200 includes weight scales 240, 242, 244, and 246 from which the final product container, in-process container, source container, and any additional container(s), respectively, may depend and be weighed. The weights of the bags are monitored by weight sensors and recorded during a washing or other procedure. From measurements of the weight sensors, the device determines whether each container is empty, partially full, or full and controls the components of apparatus 200, such as the peristaltic pumps 202, 204 and 206 and clamps 210, 212, 214, 216, 218, 220 and 222.
Apparatus 200 includes at least one drive unit or “spinner” 248, which causes the indirect driving of the spinning membrane separator 101. Spinner 248 may consist of a drive motor connected and operated by apparatus 200, coupled to turn an annular magnetic drive member including at least a pair of permanent magnets. As the annular drive member is rotated, magnetic attraction between corresponding magnets within the housing of the spinning membrane separator cause the spinner within the housing of the spinning membrane separator to rotate.
Turning to
Device 101 includes a generally cylindrical housing 12, mounted concentrically about a longitudinal vertical central axis. An internal member 14 is mounted concentric with the central axis 11. Housing 12 and internal member 14 are relatively rotatable. In the preferred embodiment, as illustrated, housing 12 is stationary and internal member 14 is a rotating spinner that is rotatable concentrically within cylindrical housing 12, as shown by the thick arrow in
The shear gap also may vary along the axial direction, for example preferably an increasing gap width in the direction. Such a gap width may range from about 0.025 to about 0.075 inches (0.06-0.19 cm). The gap width could be varied by varying the outer diameter of the rotor and/or the inner diameter of the facing housing surface. The gap width could change linearly or stepwise or in some other manner as may be desired. In any event, the width dimension of the gap is preferably selected so that at the desired relative rotational speed, Taylor-Couette flow, such as Taylor vortices, are created in the gap.
Biological fluid is fed from an inlet conduit 20 through an inlet orifice 22, which directs the fluid into the fluid flow entrance region in a path tangential to the circumference about the upper end of the spinner 14. At the bottom end of the cylindrical housing 12, the housing inner wall includes an exit orifice 48.
Cylindrical housing 12 is completed by a bottom end housing terminating in an outlet orifice 46 concentric with the central axis.
In the illustrated embodiment, the surface of the rotary spinner 14 is at least partially, and is preferably substantially or entirely, covered by a cylindrical porous membrane 62. The membrane 62 typically has a nominal pore size of 4.0 microns, but other pore sizes, for example, of from 0.8 microns to 30.0 microns, may alternatively be used. Membranes may be fibrous mesh membranes, cast membranes, track-etched membranes or other types of membranes that will be known to those of skill in the art. For example, in one embodiment, the membrane may have a polyester mesh (substrate) with nylon particles solidified thereon, thereby creating a tortuous path through which only certain sized components will pass. In an embodiment, the nylon membrane may have a pore size of approximately 4.0 μm and a thickness of approximately 10 μm or greater. Membranes of this type will typically retain all cellular components (e.g., red blood cells, white blood cells) and certain formed blood components, e.g., platelets. In another embodiment, the membrane may be made of a thin (approximately 10-50 micron (μm) thick) sheet of, for example, polycarbonate. In this embodiment, pores (holes) may be cylindrical and larger than those described above. The pores may be sized to allow small formed components (e.g., platelets, microparticles, etc.) to pass, while the desired cells (e.g., white blood cells and larger red blood) are collected.
Having thus described the processor, including disposable circuit 100 and reusable hardware 200, reference is made to
As is also illustrated in
The at least one input 302 may include a number of different devices according to the embodiments described herein. For example, the input 302 could include a keyboard or keypad by which a user may provide information and/or instructions to the controller 300. Alternatively, the input 302 may be a touch screen, such as may be used in conjunction with a video display 308 that is disposed on the front panel 201 of the device 200, the video display 308 also being coupled to the controller 300. The input could also include a reader or scanner, such as a barcode reader or scanner or an RFID reader. The assembly of the input/touch screen 302 and video display 308 may be one of the afore-mentioned structures to which the controller 300 is coupled from which the controller 300 receives information and to which the controller 300 provides commands. According to still other embodiments, the input 302 may be in the form of computer equipment that permits the cell processing system including the controller 300 to communicate (whether via wires or wirelessly) with other cell processing systems over a local network, or with other cell processing systems or other computer equipment (e.g., a server) over local networks, wide area networks or the Internet. According to such an embodiment, the input may include an internal transmitter/receiver device.
Having discussed the structure of embodiments of the cell processing system disclosed herein, the operation of the cell processing system is now discussed. In this regard, reference is made to U.S. Patent Application Pub. No. US 2013/0092630 the contents of which are incorporated herein by reference, which document discloses methods and systems for washing biological cells using a reusable hardware apparatus and disposable fluid circuit including a spinning membrane separator which may be generally applicable to the cell processing system described herein. The methods disclosed in this document involve the processing, washing, treating and incubating of biological cells, such as mononuclear cells for subsequent therapeutic administration.
In general terms, the apparatus 200 first may be activated (e.g., switched on), at which point the apparatus 200 conducts self-calibration checks, including the checking of the peristaltic pumps 202, 204, 206, clamps 210, 212, 214, 216, 218, 220, 222, and sensors 226, 238. Apparatus 200 may then prompt the user to enter or modify process parameters, such as may be used in a washing procedure, including the amount of cell suspension to be washed, the number of washings to take place, etc. The user's ability to enter or modify process parameters may depend on (i) the authorization associated with the user, which authorization may be determined by the controller 300 according to an identifier that is received by the controller 300 via the input 302, and/or (ii) one or more process parameter controls that may be associated with a specific process parameter at the time the apparatus 200 is activated or thereafter.
As to authorizations, the user may use the input 302 to provide an identifier, which is in turn received by the controller 300 coupled to the input 302. The controller 300 may be configured (in the case of a microprocessor, may be programmed) to determine if the identifier received from the input 302 is associated with an authorization that permits the user (i) to enter and/or modify the process parameters (and/or to enter and/or modify process parameters within a controlled range) and/or (ii) enter and/or modify process parameter controls. This determination may be made any time a user attempts to enter or modify process parameters, or the determination may be made only when a user attempts to enter or modify a process parameter control, according to certain embodiments.
By way of a non-limiting example, a hierarchy of authorizations may exist with at least two different levels of authorization, an administrator authorization and an operator authorization. If the controller 300 determines that the identifier received from input 302 is associated with an administrator authorization, then the user may be permitted to enter or modify process parameter controls and/or to enter or modify process parameters without limitation (which may or may not result in a modification of the process parameter controls already in existence). In fact, the modification of a process parameter control (or unrestricted ability to modify a process parameter) may include removal of a process parameter control. On the other hand, if the controller 300 determines that the received identifier is associated with an operator authorization, the user may only enter or modify the process parameters to the extent permitted by any process parameter controls that may exist relative to the process parameter in question, and the user may not enter or modify the process parameter controls. According to one embodiment, the controller 300 may assume as a default that the user has only operator authorization unless the user attempts to enter an identifier, at which point the controller 300 determines if the user has administrator authorization depending on the identifier received via the input 302.
The identifier may take various forms, and the method by which the controller 300 determines of the authorization associated with the identifier may include various actions. As one example, the identifier may be an alphanumeric password or passcode, which may be entered using an input 302 in the form of a keyboard, keypad, or touchscreen. The controller 300 may compare the password or passcode to a list of passwords or passcodes associated with persons having administrator authorization, which list may be stored in the memory 306 or may be stored remotely relative to the cell processing system (e.g., accessible by the controller 300 over a network). If the password or passcode matches one of the passwords or passcodes in the list, the controller determines that the identifier is associated with an administrator authorization, and determines if additional commands (such as at least one process parameter control) have been received from the user and applies those commands. On the other hand, if the password or passcode does not match one of the passwords or passcodes in the list, the controller determines that the identifier is not associated with an administrator authorization (and optionally that the identifier is associated with another level of authorization), and ignores any additional commands received from the user.
It will be recognized that the use of an alphanumeric password or passcode is only one possible embodiment. According to other embodiments, the identifier may be a two-dimensional or three-dimensional barcode printed on a badge or key that is read by an input 302 in the form of a barcode reader. As another embodiment, the identifier may be stored on a memory storage device, such as may be carried on a badge or card, the input 302 being in the form of a reader than can form an electrical and/or magnetic communication link with the memory storage device to read the identifier stored thereon. Other possible embodiments also exist.
The nature of the process parameter controls that may be entered or modified if the controller 300 determines that the user has a sufficient level of authorization (e.g., administrator authorization) are numerous. As one example, consider a process parameter in the form of a rinse flow rate that is used by the controller 300 in controlling the processor 100, 200 according to the method of operation of the cell processing system, additional details of which are provided below. According to an embodiment, the rinse flow rate process parameter may be a numeric value the controller 300 uses to vary the operation of the pumps 202, 204, 206, for example. In general, the numeric value associated with the rinse flow rate process parameter may have an initial (or default) value, which may be modified to a second value. However, it may be desirable to pace controls on the rinse flow rate process parameter, for example, to ensure that the default value is in keeping with a previously determined value (e.g., which may exist from a single previous procedure run on the system, or may be an empirically-determined value for use according to a particular protocol), and to ensure that the process parameter either is no longer modifiable (i.e., locked) or that the process parameter is modifiable only w thin a range of values (having a minimum and/or a maximum).
According to such an embodiment, a user having an identifier associated with administrator authorization may provide the identifier to the controller 300 along with a process parameter control in the form of, for example:
More than one process parameter control may exist at one time relative to an embodiment of the present cell processing system. A user having administrator authorization may create a protocol that includes a plurality of process parameter controls, and the controller 300 may apply the process parameter controls of the protocol if an identifier associated with an administrator authorization is also received. Further, the process parameter controls that are included in the protocol need not be identical: the controls associated with certain process parameters may prevent modification by a non-administrator user or operator, while other controls may permit modification by an operator relative to a default value within a range of values, which range may or may not have a defined minimum or maximum. Moreover, the administrator may create such a protocol including a plurality of process parameter controls to preserve (i.e., lock) even process parameter settings entered by a non-administrator user. An administrator may enter each process parameter control in the controller 300 via input 302 in the form of a keyboard, keypad, touchscreen, etc., or alternatively, the administrator may transmit, transfer, or otherwise store in the memory 308 of the controller 300 a protocol including a plurality of process parameter controls from another memory storage device, such as may be associated with a portable memory storage device or a remote memory storage device (e.g., server).
As to this latter case,
According to certain embodiments, at least one of (and sometimes all of) the cell processing systems 400 may include the details of the above-mentioned system. That is, the at least one cell processing system 400 may include a processor to receive a biological fluid to be processed, a control unit or controller coupled to the processor, the controller configured to operate the processor according to at least one modifiable process parameter, at least one input coupled to the controller, the at least one input configured to receive an identifier and at least one process parameter control associated with the at least one process parameter that limits modification of the at least one process parameter if applied. The controller may be configured to determine if the identifier is associated with an administrator authorization and to apply the at least one processor parameter control to the at least one process parameter if the identifier is associated with an administrator authorization.
According to other embodiments, the cell processing systems 400 may include a processor to receive a biological fluid to be processed, a controller coupled to the processor, the controller configured to operate the processor according to at least one modifiable process parameter, and at least one input coupled to the controller, the at least one input configured to receive at least one process parameter control associated with the at least one process parameter that limits modification of the at least one process parameter if applied. The controller is also configured to apply the at least one processor parameter control to the at least one process parameter if an identifier associated with an administrator authorization is received.
The memory storage device 402, which may include one or more tangible non-transitory computer-readable memories, has computer executable instructions stored thereon, which when executed by the cell processing systems 400 (or more particularly, the controllers of the cell processing systems 400), may cause the cell processing systems 400 to apply at least one process parameter control to one or more process parameters if an identifier associated with an administrator authorization is received as well. According to one embodiment, the memory storage device 402 has stored thereon a plurality of process parameter controls, which controls may be in the form of one or more protocols according to certain embodiments. The memory storage device 404 may also be configured to transmit one or more process parameter controls to one or more cell processing systems 400.
According to such a network of systems 400, one of (i) the controller of the system 400 and (ii) the memory storage device 402 is configured to receive an identifier and to determine if the identifier is associated with an administrator authorization. For example, the input 302 may be configured to receive an identifier and the controller 300 may be configured to determine if the identifier is associated with an administrator authorization. However, according to a preferred embodiment, the memory storage device 402 may instead be associated with an input 406, which input 406 is configured to receive an identifier and may be similar in structure and operation to the input 302 as described above, and the memory storage device 402 may be configured to determine if the identifier is associated with an administrator authorization. Such an embodiment limits the need to provide and maintain a list or database of administrator authorizations at each of the systems 400, although such an embodiment does not exclude the possibility that the systems 400 include, such a list or database. In either event, an administrator (i.e., a user associated with administrator authorization) may use the input to provide their identifier and to control the memory storage device 404 to download to one of the systems 400 (via the input 302, for example) one or more process parameter controls stored on the memory storage device 404. As a further alternative, the administrator may control the memory storage device 404 to download their identifier and the one or more process parameter controls to one or more of the systems 400, whereupon the system 400 may make the determination as relates to the identifier and apply the one or more process parameter controls accordingly.
After the user has entered and/or modified the process parameters (to the extent permitted by existing process parameter controls), the apparatus 200 may then confirm the parameter entry and prompt the operator to load the disposable set. The operator then loads the disposable set onto the panel 201 of apparatus 200. In one exemplary embodiment, the disposable set may be the fluid circuit 100 of
After the disposable set is mounted, apparatus 200 automatically checks to determine whether the disposable set is properly installed. After apparatus 200 determines that the disposable set is properly installed the controller prompts the operator to connect the biological fluid (e.g., 102 of
After the source of biological fluid and wash medium are connected to the disposable set, the operator confirms that the solutions are connected. The device prompts the operator to take a cell suspension sample. The operator or the device then opens sampling assembly clamp to introduce fluid into the sample chamber of the sampling assembly. Once the sample chamber is sufficiently filled, it is then sealed and removed from the disposable circuit. The operator confirms that a sample has been taken. Following the removal of the sample chamber, the disposable fluid circuit is primed for the wash process. In one embodiment, the circuit may be primed with saline, although other bio-compatible aqueous solutions may also be used.
The controller of separation apparatus then commences the wash process. The biological cells to be washed are transferred from source container (e.g., 102 of
The systems and methods described herein may also be effective in the washing of cells such as red blood cells and/or white blood cells. In one example of red cell washing, stored red blood cells may be washed to remove accumulated free hemoglobin, spent storage solution, or other desirable extracellular components. The solution may be sterile docked or otherwise included in the closed system of the disposable processing sets of the type described above. The treated cells may then be washed with a washing solution such as saline, Adsol or E-Sol (the latter of which are red blood cell storage solutions and generally comprise dextrose, mannitol and a buffer) to reconstitute the red blood cells for subsequent storage and transfusion.
The initial well feed may be diluted by combining the feed from container 102 with diluent (wash solution) from container 135 at branched connector 126. In one embodiment, diluent from container 135 may initially be drawn into separator, followed by the cell feed drawn from container 102 and combined with the diluent, as described.
Thus, an improved method and system have been disclosed for the processing of biological cells. The description provided above is intended for illustrative purposes only and is not intended to limit the scope of the invention to any specific method, system, or apparatus, or device described herein except as may be explicitly delineated above.
In conclusion, according to one aspect, a cell processing system includes a processor to receive a biological fluid to be processed, a controller coupled to the processor, the controller configured to operate the processor according to at least one modifiable process parameter, and at least one input coupled to the controller, the at least one input configured to receive an identifier and at least one process parameter control associated with the at least one process parameter that limits modification of the at least one process parameter if applied. The controller is configured to determine if the identifier is associated with an administrator authorization and to apply the at least one processor parameter control to the at least one process parameter if the identifier is associated with an administrator authorization
In such a system, the identifier may be a password. In addition, the at least one modifiable process parameter may be a numeric value, and the at least one process parameter control comprises at least one of a minimum value and a maximum value. Further, the at least one process parameter control may prevent modification of the at least one process parameter without an identifier associated with an administrator authorization.
The controller may be configured to receive a protocol comprising a plurality of process parameter controls, and the controller may apply the process parameter controls of the protocol if the identifier is associated with an administrator authorization. Indeed, the at least one input may receive the protocol from another cell processing system in communication with the cell processing system.
In addition, the controller may be a microprocessor, and the microprocessor may be programmed to determine if the identifier is associated with an administrator authorization and to apply the processor parameter control to the at least one process parameter if the identifier is associated with an administrator authorization.
According to any of the foregoing, the processor may include a disposable fluid circuit and reusable hardware. The disposable fluid circuit may include a spinning membrane separation device, at least one container, and tubing connecting the spinning membrane and the one or more containers. The reusable hardware may include at least one drive to spin the spinning membrane, at least one scale to weigh the at least container and contents thereof, and at least one pump.
According to another aspect, a method of operating a cell processing system, the cell processing system comprising a processor to receive a biological fluid to be processed and to be operated according to at least one modifiable process parameter. The method includes receiving an identifier and at least one process parameter control associated with the at least one process parameter that limits modification of the at least one process parameter if applied, determining if the identifier is associated with an administrator authorization, applying the at least one processor control to the at least one process parameter if the identifier is associated with an administrator authorization, and processing the biological fluid employing a process that includes the at least one process parameter.
According to such a method, receiving an identifier may include receiving a password. The at least one modifiable process parameter may be a numeric value, and applying the at least one process parameter control may include applying at least one of a minimum value and a maximum value. In addition or in the alternative, the at least one process parameter control may include preventing modification of the at least one process parameter without an identifier associated with an administrator authorization.
According to other aspects of the method, receiving at least one process parameter control includes receiving a protocol comprising a plurality of process parameter controls, and applying at least one process parameter control includes applying the process parameter controls of the protocol if the identifier is associated with an administrator authorization. Receiving the protocol may include receiving the protocol from another cell processing system in communication with the cell processing system.
According to still another aspect, a network of cell processing systems includes at least one cell processing system and a non-transitory computer-readable memory storage device. The at least one cell processing system includes a processor to receive a biological fluid to be processed, a controller coupled to the processor, the controller configured to operate the processor according to at least one modifiable process parameter, and at least one input coupled to the controller, the at least one input configured to receive at least one process parameter control associated with the at least one process parameter that limits modification of the at least one process parameter if applied. The non-transitory computer-readable memory storage device is coupled to the at least one cell processing system, includes a plurality of process parameter controls stored therein and is configured to transmit one or more process parameter controls to the at least one cell processing system. One of the controller and the memory storage device is configured to receive an identifier and to determine if the identifier is associated with an administrator authorization. The controller is also configured to apply the at least one processor parameter control to the at least one process parameter if the identifier is associated with an administrator authorization.
In such a network, one or more protocols are stored in the memory storage device, each protocol comprising a plurality of process parameter controls. The one or more protocols may be transmitted from one or more of the cell processing systems to the memory storage device. The one or more identifiers also may be stored in the memory storage device, and the one or more identifiers may be transmitted from the memory storage device to the at least one cell processing system.
This application is a continuation of U.S. application Ser. No. 15/456,804, filed Mar. 13, 2017, which claims the benefit of U.S. Provisional Application No. 62/308,015, filed Mar. 14, 2016, both of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3877634 | Rohde et al. | Apr 1975 | A |
4835372 | Gombrich et al. | May 1989 | A |
5053121 | Schoendorfer et al. | Oct 1991 | A |
5194145 | Schoendorfer | Mar 1993 | A |
5240856 | Goffe et al. | Aug 1993 | A |
5458566 | Herrig et al. | Oct 1995 | A |
5478479 | Herrig | Dec 1995 | A |
5536475 | Moubayed et al. | Jul 1996 | A |
5573678 | Brown et al. | Nov 1996 | A |
5769811 | Stacey et al. | Jun 1998 | A |
5865718 | Chan | Feb 1999 | A |
5956023 | Lyle et al. | Sep 1999 | A |
6060022 | Pang et al. | May 2000 | A |
6175420 | Barry et al. | Jan 2001 | B1 |
6284142 | Muller | Sep 2001 | B1 |
6325775 | Thom et al. | Dec 2001 | B1 |
6466879 | Cantu et al. | Oct 2002 | B1 |
6605223 | Jorgensen et al. | Aug 2003 | B2 |
6622052 | Rosiello | Sep 2003 | B1 |
6716151 | Panzani et al. | Apr 2004 | B2 |
6730054 | Pierce et al. | May 2004 | B2 |
6736788 | Mongomery et al. | May 2004 | B1 |
7044927 | Mueller et al. | May 2006 | B2 |
7072769 | Fletcher-Haynes et al. | Jul 2006 | B2 |
7363167 | Csore et al. | Apr 2008 | B2 |
7390484 | Fraser et al. | Jun 2008 | B2 |
7430478 | Fletcher-Haynes et al. | Sep 2008 | B2 |
7651474 | Van et al. | Jan 2010 | B2 |
7963901 | Langley et al. | Jun 2011 | B2 |
8150548 | Raghibizadeh et al. | Apr 2012 | B2 |
8357298 | Demers et al. | Jan 2013 | B2 |
8415145 | Fukuda et al. | Apr 2013 | B2 |
8539573 | Newlin et al. | Sep 2013 | B2 |
8883499 | Hedrick et al. | Nov 2014 | B2 |
8900172 | Pohlmeier | Dec 2014 | B2 |
8905959 | Basaglia | Dec 2014 | B2 |
8945376 | Cordisco | Feb 2015 | B1 |
20020179544 | Johnson et al. | Dec 2002 | A1 |
20030018289 | Ng et al. | Jan 2003 | A1 |
20030069480 | Ng et al. | Apr 2003 | A1 |
20030093503 | Yamaki et al. | May 2003 | A1 |
20030199379 | Schneider et al. | Oct 2003 | A1 |
20030208621 | Bowman | Nov 2003 | A1 |
20040248077 | Rodriguez Rilo et al. | Dec 2004 | A1 |
20050070837 | Ferrarini et al. | Mar 2005 | A1 |
20050215937 | Spinale et al. | Sep 2005 | A1 |
20050234381 | Niemetz et al. | Oct 2005 | A1 |
20070219826 | Brodsky et al. | Sep 2007 | A1 |
20070250832 | Rahn et al. | Oct 2007 | A1 |
20080040153 | Davis | Feb 2008 | A1 |
20080124700 | Fortini et al. | May 2008 | A1 |
20080249386 | Besterman et al. | Oct 2008 | A1 |
20090191174 | Boudreau et al. | Jul 2009 | A1 |
20090241184 | Doering | Sep 2009 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20110045959 | Kurihara et al. | Feb 2011 | A1 |
20110078246 | Dittmer-Roche | Mar 2011 | A1 |
20110206643 | Fulga et al. | Aug 2011 | A1 |
20110209212 | Newlin et al. | Aug 2011 | A1 |
20110244443 | Rijn et al. | Oct 2011 | A1 |
20120116347 | Weinert et al. | May 2012 | A1 |
20130092630 | Wegener et al. | Apr 2013 | A1 |
20130102963 | Marsh et al. | Apr 2013 | A1 |
20130222108 | Newlin | Aug 2013 | A1 |
20130267884 | Boggs et al. | Oct 2013 | A1 |
20130299399 | Suffritti et al. | Nov 2013 | A1 |
20130310726 | Miller et al. | Nov 2013 | A1 |
20130317850 | Bene et al. | Nov 2013 | A1 |
20130334139 | Blickhan et al. | Dec 2013 | A1 |
20130341274 | Kusters | Dec 2013 | A1 |
20140081193 | Watters et al. | Mar 2014 | A1 |
20140194817 | Lee et al. | Jul 2014 | A1 |
20140234183 | Kolenbrander et al. | Aug 2014 | A1 |
20140266983 | Christensen et al. | Sep 2014 | A1 |
20140282181 | Declerck et al. | Sep 2014 | A1 |
20160124009 | Wasson et al. | May 2016 | A1 |
20160300028 | Abell et al. | Oct 2016 | A1 |
20170103186 | Mccullough | Apr 2017 | A1 |
20170340783 | Wegener et al. | Nov 2017 | A1 |
20180015418 | Binninger et al. | Jan 2018 | A1 |
20180240322 | Potucek et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
20305506 | Jan 2004 | DE |
2745864 | Jun 2014 | EP |
3188062 | Jul 2017 | EP |
2006167345 | Jun 2006 | JP |
8102979 | Oct 1981 | WO |
0020053 | Apr 2000 | WO |
02062484 | Aug 2002 | WO |
02069793 | Sep 2002 | WO |
02088897 | Nov 2002 | WO |
02089340 | Nov 2002 | WO |
2004032999 | Apr 2004 | WO |
2009072510 | Jun 2009 | WO |
2012021167 | Feb 2012 | WO |
2012125457 | Sep 2012 | WO |
2012125470 | Sep 2012 | WO |
2013025394 | Feb 2013 | WO |
Entry |
---|
CaridianBCT, Trima Accel® Automated Blood Collection System Operator's Manual (Jun. 2010) (296 pages). |
Cell Saver Elite, Autologous Blood Recovery System, (c)2016 Haemonetics Corp, 8 pages. |
Communication, counterpart European Appl. No. 17160555.3, dated Mar. 11, 2019 (17 pages). |
Consultation by telephone with the applicant dated Oct. 7, 2020 in EPA1760555.3, 1 page. |
Decision of the Examining Division dated Mar. 15, 2021 in EPA176055, 19 pages. |
European Patent Office, Communication, counterpart EP Appl. No. 17160555, dated Mar. 11, 2019. |
European Patent Office, European Search Report and Search Opinion, counterpart EP Appl. No. 17160555, dated Jul. 25, 2017. |
Fresenius Kabi, Lovo Cell Processing System Administrator's Guide (Jun. 2014) (32 pages). |
Fresenius Kabi, Lovo Cell Processing System Operator's Manual (Jun. 2014) (124 pages). |
Fresenius Kabi, Lovo Cell Processing System, Choose filtered (2014). |
Fresenius Kabi, Lovo Cell processing system, Filtration Technology Designed for Labs Like Yours (2014). |
Letter dated Sep. 11, 2019 in EPA 17160555.3, 4 pages. |
Letter dated Sep. 18, 2020 in EPA 17160555.3 and claims, 11 pages. |
Summons for Oral Proceedings dated May 19, 2020 in 18 pages. |
Communication and European Search Report and European search opinion in EP21174087 dated Aug. 17, 2021, 14 pages. |
Barker Brettell letter dated Mar. 25, 2022 in EP21174087.3, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20210398664 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62308015 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15456804 | Mar 2017 | US |
Child | 17464325 | US |