CELL PRODUCTION DEVICE

Information

  • Patent Application
  • 20220356436
  • Publication Number
    20220356436
  • Date Filed
    May 28, 2020
    4 years ago
  • Date Published
    November 10, 2022
    2 years ago
Abstract
This cell production device comprises: a cell production plate with a first side and a second side, comprising a cell induction and culture tank configured to perform at least one of induction and culture of cells, and a culture medium reservoir tank configured to store a culture medium to be supplied to the cell induction and culture tank; a warming element that is arranged at or near the first side of the cell production plate and that warms the cell induction and culture tank; and a cooling element that is arranged at or near the second side of the cell production plate and that cools the culture medium reservoir tank.
Description
FIELD

The present invention relates to a cell production device, and particularly to a cell production device that simultaneously performs warming needed for culture and cooling needed for culture medium in a cell production plate that integrates a plurality of functional sites.


BACKGROUND

Embryonic stem cells (ES cells) are stem cells established from early embryos of human or mouse, and they have the pluripotency to differentiate into all cells present in the body. Human ES cells are considered to be applicable for cell transplantation for many diseases such as Parkinson's disease, juvenile diabetes, and leukemia. However, ES cell transplantation, like organ transplantation, has a problem of inducing rejection. From an ethical standpoint, there are many objections to the utilization of ES cells, which are established by destroying human embryos.


To address this issue, Professor Shinya Yamanaka of Kyoto University succeeded in establishing induced pluripotent stem cells (iPS cells) by introducing four genes: Oct3/4, Klf4, c-Myc, and Sox2 into somatic cells, and was awarded the 2012 Nobel Prize in Physiology or Medicine (see, for example, Patent literature 1). iPS cells are ideal pluripotent cells with no rejection or ethical issues, and are expected to be utilized in cell transplantation methods.


Induced stem cells, such as iPS cells, are established by introducing an inducing factor, such as a gene, into the cells, which are expansively cultured and cryopreserved. However, for preparing iPS cells for clinical use (GLP, GMP grade) or the like, for example, a clean room that is kept very clean is required, which involves high maintenance costs. For industrialization, how to improve the efficiency of clean room operation methods to reduce costs has been a problem.


Although preparation of iPS cells is mostly performed manually, few technicians are capable of producing iPS cells for clinical use. The series of operations from establishment to storage of stem cells are complicated, which is a problem. Cell culture for clinical use requires three steps: confirmation of standard of process (SOP), manipulation according to SOP, and confirmation whether or not the manipulation was performed according to SOP, and it is very unproductive for a person to perform these steps. Cell culture needs to be managed 24 hours a day, every day, and stem cells can be stored for decades, which is beyond the capacity of human resources alone to manage.


Therefore, closed system cell production devices that do not require a highly clean room and can be operated in a normally controlled area (for example, grade D level or higher for at least one of microorganisms and particulates in WHO-GMP standards) have been developed (see, for example, Patent literature 2). In order to automate complex cell production processes by also eliminating human resources, cell production systems equipped with robots to assist in cell production have also been developed. The following documents are known as prior art concerning such cell production devices.


Patent literature 3 discloses a somatic cell production system that packages a pre-introduction cell delivery channel, a factor introduction device that prepares inducing factor-introduced cells by introducing somatic cell inducing factors into pre-introduction cells, and a cell production device that prepares somatic cells by culturing inducing factor-introduced cells in a single housing.


Patent literature 4 discloses a cell culture container with a closed system of culture containers and flow paths, in which the growth state of the cell culture can be clearly observed because the cell culture container holds the second container eccentrically inside the first container.


Patent literature 5 discloses a cell culture device in which a culture medium storing means, a cell inoculation means, and a culture container are configured in a closed system. The cell culture device determines the culture status of cells based on images of cells in the culture container, and performs culture operations based on this determination, which saves the operator's labor.


Patent literature 6 discloses a cell culture device comprising a transparent conductive film heater that controls the temperature of a culture solution in a culture dish to a desired temperature, for example 37° C., a Peltier element that controls the temperature of the culture solution in a reservoir tank to a desired temperature, for example from 5 to 20° C., and a temperature control unit that controls the temperature of the transparent conductive film heater and the Peltier element. Patent literature 6 describes that the temperature of the culture solution flowing out of the reservoir tank becomes close to room temperature by passing through a flow path until the solution reaches a supply port of the culture dish.


Patent literature 7 discloses an automated cell culture device comprising a temperature control system that controls a cell culture chamber, a buffer culture medium reservoir tank, a piping system, and the like to an optimum temperature (37° C.), and a temperature control system that controls an external fresh culture medium reservoir, and a separating agent to about 4° C.-8° C.


Patent literature 8 discloses a cell/tissue culture device comprising a cylindrically formed object to be cultured, a chamber for containing the object to be cultured, and a circulation channel for circulating a culture solution inside the object to be cultured, wherein the object to be cultured is subjected to shear stress in accordance with the flow of the culture solution as a physical stimulus along with necessary nutrients from the inside.


Patent literature 9 discloses a cell culture device comprising a flow path integrated plate and a base plate. The flow path integrated plate includes a flow path plate in which a flow path for a culture solution is formed, and a pump unit in which a group of peristaltic pumps are arranged to supply and discharge the culture solution, and the base plate includes a drive source such as a motor.


CITATION LIST

Patent literature 1: Japanese Patent 4183742


Patent literature 2: Japanese Unexamined Patent Publication No. 2018-019685


Patent literature 3: WO 2018/154788


Patent literature 4: WO 2014/049701


Patent literature 5: WO 2007/052716


Patent literature 6: WO 2016/093321


Patent literature 7: Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 2017-513512


Patent literature 8: Japanese Unexamined Patent Publication No. 2002-315566


Patent literature 9: Japanese Unexamined Patent Publication No. 2017-221166


SUMMARY
Technical Problem

Most of conventional cell culture devices integrate only cell culture functions, such as culture medium storing reservoirs, culture medium supply and discharge flow paths, and cell culture containers, but few integrate also cell induction functions, such as cell initiation, reprogramming, direct reprogramming, differentiation diversion, differentiation induction, fate diversion, and transformation by introducing an inducing factor. When these various functional sites are integrated into a single plate, it is more likely that heat will be transferred between a culture site, which is warmed (heated and kept warm), and a culture medium site, which is cooled, making it difficult to simultaneously perform warming needed for culture and cooling needed for culture medium.


Therefore, there is a need for a technique that simultaneously performs warming needed for culture and cooling needed for culture medium in a cell production plate that integrates a plurality of functional sites.


Solution to Problem

One aspect of the present disclosure provides a cell production device, comprising: a cell production plate with a first side and a second side, comprising a cell induction and culture tank configured to perform at least one of induction and culture of cells, and a culture medium reservoir tank configured to store a culture medium to be supplied to the cell induction and culture tank; a warming element that is arranged at or near the first side of the cell production plate and that warms the cell induction and culture tank; and a cooling element that is arranged at or near the second side of the cell production plate and that cools the culture medium reservoir tank.


Another aspect of the present disclosure provides a cell production device, comprising: a cell production plate with a first side and a second side, comprising a cell induction and culture tank configured to perform at least one of induction and culture of cells, and a culture medium circulation path configured to circulate a culture medium to be supplied to the cell induction and culture tank; a warming element that is arranged at or near the first side of the cell production plate and that warms the cell induction and culture tank; and a cooling element that is arranged at or near the second side of the cell production plate and that cools the culture medium circulation path.


Advantageous Effects of Invention

According to an aspect of the present disclosure, since a warming element and a cooling element are mutually spaced apart and are arranged in a cell production plate, sufficient insulation can be provided between both elements. This makes it possible to simultaneously perform warming needed for culture and cooling needed for a circulating culture medium even in a cell production plate that integrates a plurality of functional sites.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a configuration diagram of a cell production device in one embodiment.



FIG. 2 is an exploded perspective view of one example of a cell production plate.



FIG. 3A is an enlarged sectional view of one example of a method of fixing a flat plate and a lid.



FIG. 3B is an enlarged sectional view of one example of a method of fixing a flat plate and a lid.



FIG. 4A is an exploded perspective view of one example of a cell induction and culture tank and a warming element.



FIG. 4B is a perspective sectional view of one example of a cell induction and culture tank and a warming element.



FIG. 5 is an enlarged perspective view of one example of a culture medium circulation path and a cooling element.



FIG. 6A is a frontal perspective view illustrating one example of a base plate.



FIG. 6B is a back perspective view illustrating one example of a base plate.





DESCRIPTION OF EMBODIMENTS

Embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In each drawing, the same or similar symbols are assigned to the same or similar components. The embodiments described below are not intended to limit the technical scope of the invention and the meaning of the terms in claims. The term “closed” in this document means that sources of contamination, such as microorganisms or viruses, do not enter the device and cause biological contamination, and/or that fluids (including substances such as cells, microorganisms, viral particles, proteins, and nucleic acids) inside the device does not leak and cause cross-contamination, and/or that handling donor fluids infected with pathogens inside the device does not create a biohazard. Note, however, that the device herein may be configured to allow fluids that are not sources of contamination, such as carbon dioxide, nitrogen, or oxygen, to enter or leak outside the device.



FIG. 1 illustrates the configuration of a cell production device 1 in the present embodiment. The cell production device 1 is a cell conversion device with a cell induction function that performs cell initialization, reprogramming, direct reprogramming, differentiation diversion, differentiation induction, fate diversion, transformation, or the like by introducing an inducing factor, or may be a cell culture device that only has a cell culture function merely performing culture, expansion culture, or the like. The cell production device 1 injects a fluid containing source cells (for example, somatic cells such as blood cells or fibroblasts, or stem cells such as ES cells or iPS cells), produces target cells (for example, stem cells, progenitor cells, or final differentiated cells) from the source cells, and discharges the fluid containing the target cells. As the target cells, differentiated cells such as fibroblasts, neural cells, retinal epithelial cells, hepatocytes, β cells, renal cells, mesenchymal stem cells, blood cells, megakaryocytes, T cells, chondrocytes, cardiomyocytes, myocytes, vascular cells, epithelial cells, or other somatic cells may be prepared. The cell production device 1 is a closed system cell processing device that integrates all parts that should be highly clean inside, and can be used in normally controlled areas. The closed space inside the device is preferably configured in such a manner that gases, viruses, microorganisms, impurities, or the like are not exchanged with the outside. Note, however, that the device may be configured to allow exchange of non-contaminant fluids between the inside and outside of the device by additionally providing the device with a fluid exchange filter, or the like, as described below.


As illustrated in FIG. 1, the cell production device 1 includes a cell production plate 2 and a closed type connector 3. The cell production plate 2 includes a fluid circuit 4 in a closed system that is shut off from an external space S, and the fluid circuit 4 includes a flow path that highly integrates a plurality of functional sites. The closed type connector 3 is a connector for injecting a fluid into the fluid circuit 4 or for discharging a fluid from the fluid circuit 4, and is attached to the cell production plate 2. The closed type connector 3 is a connector that connects the fluid circuit 4 and a fluid container to the external space S in a closed manner, and may be, for example, a sterile connection connector, a needleless connector, a needle connector, or a heat-fused tube. The needleless connector may be a split septum type or a mechanical valve type. The fluid container is a syringe, variable volume bag, or the like, and when the closed type connector 3 is connected to the fluid container, the fluid circuit 4 is in fluid communication with the fluid container, while when the closed type connector 3 is not connected to the fluid container, the fluid circuit 4 is shut off from the external space S. This prevents biological contamination, cross-contamination, and biohazard of the fluid circuit 4. In order to enable injection or discharge of a plurality of types of fluids, the cell production device 1 preferably includes a plurality of closed type connectors 3.



FIG. 2 illustrates one example of a cell production plate 2. As illustrated in FIG. 2, the cell production plate 2 includes a flat plate 20 and a lid 21. The flat plate 20 can be molded from, for example, a biologically safe resin or metal. The flat plate 20 is preferably molded by a molding process using a mold, such as injection molding or compression molding, and the flat plate 20 may also be molded using a 3D printer or the like. A 3D printer can employ a variety of molding methods, such as optical molding, thermal dissolution layering, powder sintering, or inkjet. On at least one of the surface and the back of the flat plate 20, a groove 20a is provided as a flow path for fluid flow, and a plurality of grooves 20a are combined to form the fluid circuit 4. A portion of the fluid circuit 4 is provided with a groove 20a that is relatively larger in width or depth to form a reservoir tank 20b for temporary storage of fluid. Walls of the groove 20a and reservoir tank 20b may be coated with poly-HEMA (poly 2-hydroxyethyl methacrylate) to make the walls non-adhesive to cells. Conversely, when cells have difficulty entering the groove 20a or reservoir tank 20b, walls of the groove 20a and reservoir tank 20b may be made low protein adsorbent. At least a portion of the grooves 20a and reservoir tanks 20b are preferably white or black in order to observe changes over time in fluid, cells, cell masses, or the like by image recognition sensors, ultrasonic recognition sensors, or the like.


The lid 21 may be made of, for example, a biologically safe resin, quartz glass, or the like. The lid 21 (or at least a portion of the cell production plate 2) is preferably transparent in order to observe changes over time of fluid, cells, cell masses, or the like in the fluid circuit 4 by image recognition sensors, ultrasonic recognition sensors, or the like. This observation enables transition to the next cell production process when appropriate. The lid 21 is fixed to the flat plate 20 in such a manner that the lid covers the fluid circuit 4 by a biologically safe fixing method, such as chemical bonding, weld bonding, or adhesive bonding, in order to shut off the fluid circuit 4 from the external space. For chemical bonding, silane coupling agents, plasma irradiation, or the like may be used. For weld bonding, laser welding, ultrasonic welding, or the like may be used, and for adhesive bonding, UV-curing adhesives or the like may be used. After fixing the flat plate 20 and the lid 21, the cell production plate 2 is subjected to sterilization, such as heat sterilization, gamma ray sterilization, UV sterilization, or electron beam sterilization, to make the fluid circuit 4 highly clean.



FIG. 3A and FIG. 3B illustrate one example of a method of fixing a flat plate and a lid. In order to shut off the fluid circuit 4 from the external space, banks 20c may be formed in advance on both sides of the groove 20a and the reservoir tank 20b, the flat plate 20 may be covered with the lid 21, and the groove 20a and the reservoir tank 20b may be sealed by heating the banks 20c by irradiating or applying laser light, ultrasonic waves, or the like to at least the banks 20c and welding the flat plate 20 and the lid 21. Alternatively, the lid 21 may be applied to the flat plate 20 including the groove 20a and the reservoir tank 20b, and at least the portions other than the groove 20a and the reservoir tank 20b may be heated by irradiating or applying laser light, ultrasonic waves, or the like, and the groove 20a and the reservoir tank 20b may be sealed by welding the flat plate 20 and the lid 21. In this case, all portions other than the groove 20a and the reservoir tank 20b are fixed, thus increasing the strength of the fixation.


Referring again to FIG. 1, the fluid circuit 4 includes at least an injection and discharge unit 10 and a cell induction and culture unit 13 as a plurality of functional sites. The fluid circuit 4 may optionally include a variable volume unit 11, a transfer unit 12, a fluid reservoir unit 14, a fluid mixing unit 15, a cell separation unit 16, and a cell mass disruption unit 17. Since these plurality of functional sites are integrated in one cell production plate 2, manufacturing processes such as closed connection of separate parts via tubes, pumps, connectors, and the like are unnecessary, thereby reducing the man-hours and manufacturing cost of the cell production device 1.


The injection and discharge unit 10 includes an injection and discharge channel that injects or discharges fluid into or out of the fluid circuit 4 via the closed type connector 3. In order to enable a plurality of types of fluids to be injected or discharged, the injection and discharge unit 10 includes a plurality of injection and discharge channels 10a-10f. For example, the first injection and discharge channel 10a is capable of injecting or discharging fluids containing source cells and the like, while the second injection and discharge channel 10b is capable of injecting or discharging fluids such as reagents for source cell separation, anticoagulants, or phosphate-buffered saline. A third injection and discharge channel 10c is capable of injecting or discharging fluids such as inducing factor introduction reagents, and a fourth injection and discharge channel 10d is capable of injecting or discharging a variety of culture mediums such as initialization or induction medium, cell detachment reagents such as trypsin alternative recombinant enzymes, or single cell separation reagents. Examples of culture mediums for induction includes initialization medium, reprogramming medium, fate diversion medium, direct programming medium, differentiation diversion medium, differentiation induction medium, and transformation medium. Furthermore, a fifth injection and discharge channel 10e is capable of discharging or injecting fluid containing culture cells that have undergone at least one of induction and culture into the fluid container 19 as a sample, and a sixth injection and discharge channel 10f is capable of discharging or injecting fluid containing target cells into the fluid container. The fluid container 19 for sample discharge may be a closed type connector 3, such as a variable volume bag that connects to a heat-fused tube. When discharging a fluid containing target cells, a refrigerant such as liquid nitrogen may be supplied around the sixth injection and discharge channel 10f to freeze the fluid containing the target cells and seal the cell production plate, or the fluid container into which the fluid is discharged from the sixth injection and discharge channel 10f via the closed type connector 3 may be frozen with a refrigerant such as liquid nitrogen.


The variable volume unit 11 includes a physical or chemical variable volume material that stores a fluid that is extruded or withdrawn by injected or discharged fluid. A fluid relief flow path is provided to allow a fluid originally contained in the fluid circuit 4 to escape, and either a physical variable volume material is connected to the fluid relief flow path or a chemical variable volume material is placed in a reservoir tank with a pressure valve that opens and closes at a certain pressure in the fluid relief flow path, to allow fluid movement while keeping the fluid circuit 4 sealed. The physical variable volume material may be, for example, a flexible bag, or a syringe. The chemical variable volume material may include, for example, a fluid absorbent such as soda lime, or silica gel, and a fluid releaser that is placed in a different reservoir tank than the reservoir tank in which the fluid absorbent is placed. The variable volume material keeps the internal pressure of the closed fluid circuit 4 approximately constant, and the fluid extruded or withdrawn by the injected or discharged fluid is confined in the cell production plate 2. Therefore, there is no need to release fluid outside the cell production plate 2 or to take in fluid from outside, and the cell production plate 2 can be formed into a plate while maintaining sealability of the fluid circuit 4. Such a cell production plate 2 is easy for a robot to handle.


The transfer unit 12 includes a pump that transfers a fluid in the fluid circuit 4. The pump can be a flow-controllable positive displacement pump, such as a rotary pump or a reciprocating pump. As the rotary pump, a peristaltic pump is preferred. In the case of a peristaltic pump, flexible tubing is hermetically connected to a connector at the end of the flow path, and fluid is transferred by squeezing the tubing with rollers. Since the tubing is blocked by the rollers, when the pump is stopped, the fluid flow is blocked and the flow rate can be controlled. As the reciprocating pump, a diaphragm pump is desirable. Note, however, that in the case of a diaphragm pump, since the diaphragm does not shut off the flow path, flow control is possible by using a flow shutoff valve in combination.


In order to transfer a fluid to an appropriate functional site at an appropriate time, the transfer unit 12 preferably includes a plurality of pumps P1-P8. For example, the first pump P1—the third pump P3 transfer a fluid stored in the fluid reservoir units A1-A3 at an appropriate timing, and the fourth pump P4 and the eighth pump P8 transfer the fluid stored in the cell separation unit 16 at an appropriate timing. The fifth pump P5 transfers a fluid stored in the fluid reservoir unit A4 at an appropriate timing, and the sixth pump P6—the seventh pump P7 transfer a fluid stored in the cell induction and culture unit 13 at an appropriate timing. When, for example, a peristaltic pump is used as a pump, a rotary encoder capable of detecting the amount of rotation may be provided on the rotation main shaft of the pump in order to obtain information on whether the pump is operating properly, such as whether the pump has reliably rotated or has rotated by an appropriate angle. Alternatively, for example, a visual mark may be provided at the end of the rotation main shaft of the pump, and the rotational movement of the mark may be captured directly in an image by an image recognition sensor. A flow rate measurement unit (not illustrated) may be further provided in the stage before or after the pump to confirm that the pump is pumping reliably. The flow rate measurement unit may be, for example, a flow rate sensor provided adjacent to at least one of a flow path and a reservoir tank connected to a transfer unit, or an image recognition sensor that captures images of fluid changes over time in at least one of a flow path and a reservoir tank connected to the transfer unit. The flow rate sensor can employ a variety of measurement methods that do not adversely affect cells, such as the Kalman vortex type, impeller type, or diaphragm type, and directly obtains flow rate information of the fluid. The image recognition sensor obtains flow rate information from the movement of the fluid by image recognition from an external camera or the like via the transparent lid 21. The image recognition sensor may be diverted from other image recognition sensors herein, which reduces the number of parts and production cost.


The cell induction and culture unit 13 includes a cell induction and culture tank 13a that performs at least one of cell induction and culture based on the transferred fluid. The cell induction and culture unit 13 preferably includes either a culture medium reservoir tank A4, which stores a culture medium to be supplied to the cell induction and culture tank 13a, or a culture medium circulation path 13b, which circulates the culture medium to be supplied to the cell induction and culture tank 13a. In the former case, the cell induction and culture unit 13 may include a one-way path (not illustrated) composed of a culture medium supply path that supplies the culture medium to the cell induction and culture tank 13a and a culture medium discharge path that discharges the culture medium from the cell induction and culture tank 13a, instead of the culture medium circulation path 13b. The cell induction and culture tank 13a is warmed to a predetermined culture temperature, for example 37° C., by a warming element 40. The culture medium reservoir tank A4 or the culture medium circulation path 13b is cooled to a predetermined culture medium quality maintenance temperature, for example 4° C.-8° C., by a cooling element 41. The cell production plate 2 includes a first side and a second side, and the warming element 40 is arranged at or near the first side of the cell production plate 2, and the cooling element 41 is arranged at or near the second side of the cell production plate 2. The first side and the second side may be the first surface and the second surface of the cell production plate 2, or the first edge and the second edge of the cell production plate 2. For example, the first side and the second side include a front surface and a rear surface, a top surface and a bottom surface, a left side surface and a right side surface, a front top edge and a front bottom edge, a front left edge and a front right edge, a front top edge and a rear bottom edge, a front left edge and a rear right edge, and the like of the cell production plate 2. Accordingly, for example, an aspect in which the warming element 40 is arranged at or near the front surface of the cell production plate 2 and the cooling element 41 is arranged at or near the rear surface of the cell production plate 2, or an aspect in which the warming element 40 is arranged at or near the front top edge of the cell production plate 2 and the cooling element 41 is arranged at or near the rear bottom edge of the cell production plate 2 is included. This allows the warming element 40 and the cooling element 41 to be arranged on the cell production plate 2 mutually spaced apart, and therefore, sufficient insulation can be provided between both elements. Therefore, even in the cell production plate 2 that integrates a plurality of functional sites, it is possible to simultaneously perform warming needed for culture and cooling needed for the circulating medium.


The cell induction and culture tank 13a may be sealed and may not be supplied with fluids such as carbon dioxide, nitrogen, and oxygen, but at least one of the cell induction and culture tank 13a and the culture medium circulation path 13b may further include a fluid exchange filter that exchanges fluids such as carbon dioxide, nitrogen, and oxygen inside and outside the device. The cell induction and culture tank 13a may be a three-dimensional culture tank configured to perform cell suspension culture, or may be a two-dimensional culture tank configured to perform adhesion culture. For adhesion culture, the cell induction and culture tank 13a may be coated with a cell adhesion coating such as matrigel, collagen, polylysine, fibronectin, vitronectin, gelatin, and laminin, laminin fragments, or may be filled with hollow fibers.



FIG. 4A and FIG. 4B illustrate one example of the cell induction and culture tank 13a and the warming element 40. The cell induction and culture tank 13a may integrally include a culture tank 30 and a culture medium tank 31 that supplies culture medium to the culture tank 30. In this case, the cell induction and culture tank 13a preferably includes a specific component-permeable member 32, for example, a semipermeable membrane, which allows only specific components to pass between the culture tank 30 and the culture medium tank 31. The specific component-permeable member 32 permeates, for example, specific components such as a variety of culture media, coating agents for cell adhesion, and reagents for cell separation. In this example, the culture tank 30 is composed of a culture tank frame 30a, a culture side mesh 30b, culture side sealing members 30c-30d, and a cover frame 30e, a culture medium tank 31 is composed of a culture medium tank frame 31a, a culture medium side mesh 31b, and a culture medium side sealing member 31c, and the components of the culture tank 30 and the culture medium tank 31 may be integrally formed in the cell production plate 2. The warming element 40 is a glass heater, for example, and includes a transparent plate arranged in the cell induction and culture tank 13a, and a transparent conductive film fixed to the transparent plate. As an alternative embodiment, the warming element 40 may be composed of a transparent lid 21 covering the flat plate 20 of the cell production plate 2, and a transparent conductive film fixed to the lid 21. In order to make it easier to transfer heat generated from the warming element 40 to the culture tank 30 and the culture medium tank 31, the culture tank 30 and the culture medium tank 31 are preferably in proximity to each other. The culture medium supplied to the cell induction and culture tank 13a is warmed by the warming element 40, and since the warming accelerates deterioration of the culture medium, the culture medium circulation path 13b is cooled when circulating the culture medium to inhibit deterioration of the culture medium.



FIG. 5 illustrates one example of the culture medium circulation path 13b and the cooling element 41. At least a portion of the culture medium circulation path 13b is provided with a flow path concentrated unit 42 with a relatively large flow path area per unit area of the cell production plate 2, for example, a flow path with repeated S-shaped corners, and the flow path concentrated unit 42 is cooled by the cooling element 41, thereby further increasing the heat dissipation efficiency of the culture medium. Furthermore, in order to insulate the space between the cell induction and culture tank 13a, which is to be warmed, and the culture medium circulation path 13b, which is to be cooled, a heat insulator (not illustrated) such as a fiber-based heat insulator or a foamed plastic-based heat insulator may be further provided between the cell induction and culture tank 13a and the flow path concentrated unit 42. This makes it possible to simultaneously perform warming needed for culture and cooling needed for the circulating culture medium even in the cell production plate 2 that integrates a plurality of functional sites. In addition, as described below, when a base plate that is detachably connected to the cell production plate 2 is provided, the cell production plate 2 can be disposable and the base plate can be used and reused, and thus the cooling element 41 can be reused by arranging the cooling element 41 on the base plate side. The cooling element 41 may be a Peltier element including a cooling side and a heating side, and heat can be effectively utilized by further including a thermal conduction member (for example, a copper wire with high thermal conductivity) that conducts heat generated on the heating side of the cooling element 41 to the warming element 40.


Referring again to FIG. 1, the cell induction and culture unit 13 may further include a pH measurement unit 13c for measuring the pH value of culture medium used. The pH measurement unit 13c is preferably provided in the culture medium circulation path 13b or the cell induction and culture tank 13a for measuring the pH value of culture medium used. The pH measurement unit 13c may be, for example, an image recognition sensor or an electrode measurement sensor. The image recognition sensor is used for hue measurement for pH values with an external camera or the like via a transparent lid. The electrode measurement sensor measures the pH value by the glass electrode method. In the case of hue measurement, at least a portion of the culture medium circulation path 13b or the cell induction and culture tank 13a (for example, the bottom of the hue measurement point) can be made white to allow accurate detection of the hue. This pH value makes it possible to quantitatively grasp the condition of the culture medium. In order to sharpen the contour of cell images on the image, the cell induction and culture tank 13a preferably further includes an illumination unit that illuminates the cell induction and culture tank 13a from at least one of the following directions: a front, a surround (for example, a direction perpendicular to an observation plane), and a rear of the cell induction and culture tank. The illumination unit includes, for example, LED illumination, and may be embedded inside the cell production plate 2, or may be provided outside the cell production plate 2 by making the cell induction and culture tank 13a more convex than the cell production plate 2. To allow illumination to reach cells, the culture tank 30 may be covered with a transparent material that allows light to pass through.


The fluid reservoir unit 14 includes a reservoir tank for storing a fluid to be injected into or discharged out of the fluid circuit 4. In order to enable storage of a plurality of types of fluids, the fluid reservoir unit 14 preferably includes a plurality of reservoir tanks A1-A4. The reservoir tanks A1-A4 are formed as locations where the width or depth of the flow path is relatively increased, enabling a variety of fluids to be utilized in predetermined amounts at appropriate timing. For example, the first reservoir tank A1 stores fluid containing source cells and the like, the second reservoir tank A2 stores fluids such as reagents for cell separation, anticoagulants, and phosphate-buffered saline, the third reservoir tank A3 stores fluids such as reagents for inducing factors, and the fourth reservoir tank A4 stores fluids such as a variety of culture media, cell adhesion coating agents, and reagents for cell detachment. A reservoir tank for storing fluids containing target cells, or the like, may also be provided.


The fluid mixing unit 15 includes a mixing flow path that mixes a plurality of mutually immiscible fluids. The mixing flow path preferably includes a fluid merging path and a mixed flow generation path. The fluid merging path is a path that merges mutually immiscible fluids into a single path, and the mixed flow generation path is a path that generates a mixed flow in the merged fluids. For example, the mixed flow generation path may be a spiral flow path that passes from the front side to the back side of the flat plate. In order to return the fluid from the back side of the flat plate to the front side, two spiral flow paths penetrating the flat plate are provided, and a communication path in fluid communication between these spiral flow paths is provided on the back side of the flat plate.


The cell separation unit 16 includes separation tanks D1-D2 for separating cells or cell masses. For example, the separation tanks D1-D2 are reservoir tanks formed by relatively increasing the width or depth of the flow paths, and the first separation tank D1 separates fluid containing only source cells from fluid containing source cells, and the second separation tank D2 allows only relatively large cell masses to settle and separate from the rest of the cell masses. As a method of separating the source cells, reagents for source cell separation, panning, magnetic cell separation (MACS), flow cytometry, or the like can be used.


The cell mass disruption unit 17 includes a disruption flow path that further disrupts separated cell masses (mass of one or more cells). The disruption flow path has a relatively small flow path area compared to the upstream flow path, and is preferably meandering. By meandering the flow path, a latent flow is generated, which applies shearing stress to the cell mass and breaks up a large growing cell mass into smaller cell masses. Latent flow is, for example, any of the following: flow that produces whirlpools, turbulence, reverse flow, flow that produces portions with different flow speeds, flow that produces shearing forces, and flow that produces portions where flows with different directions of travel collide.


The cell production device 1 preferably further includes a base plate that is removably connected to the cell production plate 2. FIG. 6A and FIG. 6B illustrate one example of the base plate. The base plate 5 provides fluid control, temperature control, and the like for the cell production plate 2. The cell production plate 2 is arranged to face a dangerous area side 70 where robots and the like act, whereas the base plate 5 is arranged to face a safe area side 71 opposite to the dangerous area side 70. From the viewpoint of preventing biological contamination, the cell production plate 2 may be disposable and the base plate 5 may be reusable. The cell production device 1 is configured to be maintainable from the safety area side 71. When the cell production device 1 has such a two-sided structure, robots and the like can engage with a plurality of cell production devices 1 on a one-to-many basis.


The cell production device 1 may further include a positioning member 72 and a plate sealing member 73 on connecting surfaces of the cell production plate 2 and the base plate 5. The positioning member 72 may be a convex portion and a concave portion that fit each other, and positions the connection position of the cell production plate 2 and the base plate 5. The plate sealing member 73 may be a gasket, packing, or the like attached to the outer circumference of the connecting surface, and by connecting the cell production plate 2 and the base plate 5, the inside of the plate sealing member 73 is shut off from the external space and gas permeation from the back side of the cell production plate 2 is inhibited. The base plate 5 includes a drive unit 74 that drives the transfer unit 12. The drive unit 74 includes a motor that drives a peristaltic pump, for example. Furthermore, the connecting surface of the cell production plate 2 and the base plate 5 preferably includes electrical contacts 75 that supply power to electrical elements to be placed on the cell production plate 2, such as heating elements, cooling elements, flow sensors, and the like.


According to the above-described embodiment, since the warming element 40 and the cooling element 41 are mutually spaced apart and arranged on the cell production plate 2, sufficient insulation can be provided between both elements. This makes it possible to simultaneously perform warming (heating and keeping warm) needed for culture and cooling needed for the circulating culture medium, even in the cell production plate 2 that integrates a plurality of functional sites.


Although various embodiments have been described herein, it is to be recognized that the present invention is not limited to the various embodiments described above, and that various changes can be made within the scope of the following claims.


REFERENCE SIGNS LIST


1 Cell production device



2 Cell preparation plate



3 Closed type connector



4 Fluid circuit



5 Base plate



10 Injection and discharge unit



10
a-10f First-sixth injection and discharge channel



11 Variable volume unit



12 Transfer unit



13 Cell induction and culture unit



13
a Cell induction culture tank



13
b Culture medium circulation path



13
c pH measure unit



14 Fluid reservoir unit



15 Fluid mixing unit



16 Cell separation unit



17 Cell mass disruption unit



19 Fluid container



20 Flat plate



20
a Groove



20
b Reservoir tank



20
c Bank



21 Lid



21
a Front lid



21
b Back lid



30 Culture tank



30
a Culture tank frame



30
b Culture side mesh



30
c-30d Culture side sealing member



30
e Cover frame



31 Culture medium tank



31
a Culture medium tank frame



31
b Culture medium side mesh



31
c Culture medium side sealing member



32 Specific component-permeable member



40 Warming element



41 Cooling element



42 Flow path concentrated unit



70 Dangerous area side



71 Safe area side



72 Positioning member



73 Plate sealing member



74 Drive unit



75 Electrical contact


A1-A4 First-fourth reservoir tank


D1-D2 First-second separation tank


P1-P8 First-eighth pump


S External space

Claims
  • 1. A cell production device, comprising: a cell production plate with a first side and a second side, comprising a cell induction and culture tank configured to perform at least one of induction and culture of cells, and a culture medium reservoir tank configured to store a culture medium to be supplied to the cell induction and culture tank, wherein the cell induction and culture tank and the culture medium reservoir tank are integrally formed;a warming element that is arranged at or near the first side of the cell production plate and that warms the cell induction and culture tank; anda cooling element that is arranged at or near the second side of the cell production plate and that cools the culture medium reservoir tank.
  • 2. A cell production device, comprising: a cell production plate with a first side and a second side, comprising a cell induction and culture tank configured to perform at least one of induction and culture of cells, and a culture medium circulation path configured to circulate a culture medium to be supplied to the cell induction and culture tank, wherein the cell induction and culture tank and the culture medium circulation path are integrally formed;a warming element that is arranged at or near the first side of the cell production plate and that warms the cell induction and culture tank; anda cooling element that is arranged at or near the second side of the cell production plate and that cools the culture medium circulation path.
  • 3. The cell production device according to claim 1, wherein the first side and the second side are the first surface and the second surface of the cell production plate, or the first edge and the second edge of the cell production plate.
  • 4. The cell production device according to claim 2, wherein the culture medium circulation path comprises a flow path concentrated unit with a relatively large flow path area per unit area of the cell production plate, andthe cooling element cools the flow path concentrated unit.
  • 5. The cell production device according to claim 4, further comprising an insulation material between the cell induction and culture tank and the flow path concentrated unit.
  • 6. The cell production device according to claim 1, wherein the cell induction and culture tank is a three-dimensional culture tank configured to perform cell suspension culture or a two-dimensional culture tank configured to perform adhesion culture.
  • 7. The cell production device according to claim 1, wherein the cell induction and culture tank integrally comprises a culture tank and a culture medium tank that supplies the culture medium to the culture tank, andthe culture tank and the culture medium tank are in proximity to each other.
  • 8. The cell production device according to claim 7, wherein the cell induction and culture tank further comprises a specific component-permeable member that permits passage of a specific component between the culture tank and the culture medium tank.
  • 9. The cell production device according to claim 8, wherein the specific component-permeable member allows the culture medium to pass.
  • 10. The cell production device according to claim 1, wherein the warming element comprises a transparent plate arranged in the cell induction and culture tank and a transparent conductive film fixed to the transparent plate.
  • 11. The cell production device according to claim 1, wherein the cooling element is a Peltier element with a cooling side and a heating side, and which further comprises a heat conduction member that conducts heat generated on the heating side of the cooling element to the warming element.
  • 12. The cell production device of claim 1, further comprising a base plate detachably connected to the cell production plate, wherein the cooling element is arranged on the base plate.
  • 13. The cell production device according to claim 1, further comprising an illumination unit that illuminates the cell induction and culture tank from at least one of the following directions: a front, a surround, and a rear of the cell induction and culture tank.
  • 14. The cell production device according to claim 1, wherein the cell induction and culture tank or the culture medium circulation path that circulates a culture medium to be supplied to the cell induction and culture tank comprises a pH measurement unit that measures the pH value of the culture medium used.
  • 15. The cell production device according to claim 1, wherein at least a portion of the cell induction and culture tank or the culture medium circulation path that circulates the culture medium to be supplied to the cell induction and culture tank is white or black.
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2020/021241 5/28/2020 WO
Provisional Applications (1)
Number Date Country
62893578 Aug 2019 US