The presently disclosed subject matter relates to information management within automated metering infrastructure (AMI) architecture. More particularly, the presently disclosed subject matter relates to improvements in cell router failure detection through provision of a counter functionality within a cell router synchronization signal in an automated metrology infrastructure (AMI) environment.
Automatic meter reading (AMR) systems are generally known in the art. Utility companies, for example, use AMR systems to read and monitor customer meters remotely, typically using radio frequency (RF) communication. AMR systems are favored by utility companies and others who use them because they increase the efficiency and accuracy of collecting readings and managing customer billing. For example, utilizing an AMR system for the monthly reading of residential gas, electric, or water meters eliminates the need for a utility employee to physically enter each residence or business where a meter is located to transcribe a meter reading by hand.
There are several different ways in which some current AMR systems are configured, including fixed network and mobile network systems. In a fixed network, encoder-receiver-transmitter (ERT) type endpoint devices at meter locations communicate with readers that collect readings and data using RF communication. There may be multiple fixed intermediate readers located throughout a larger geographic area on utility poles, for example, with each endpoint device associated with a particular reader and each reader in turn communicating with a central system. Other fixed systems can utilize a system including repeaters or relay devices that expand the coverage area for each reader, cell control units (CCUs) that concentrate data and forward the same on to the system head end using a wide area network (WAN), or other suitable communication infrastructure. In simple fixed systems, only one central reader may be utilized with all of the endpoint devices. In a mobile network AMR environment, a handheld, vehicle-mounted, or otherwise mobile reader device with RF communication capabilities is used to collect data from endpoint devices as the mobile reader is moved from place to place.
One design criterion for utility meter reading systems involves meter data management (MDM) systems that generally involve a centralized processing model. Such centralized processing models, however, are subject to various problems including, but not limited to, system performance, scalability, data latency, fault tolerance, complexity, infrastructure cost, and batch processing issues.
For example, performance throughput and scalability can generally only be maintained by providing parallel processing technology. Data latency is becoming more of an issue as expectations are rapidly approaching real-time. Fault tolerance requirements demand that sufficient computing power, including provision of disaster recovery sites, be provided. A whole host of concerns arise from commonly used centralized solutions including complexity, the high cost of powerful computer infrastructure, and the inherent requirements imposed on centralized solutions from batch processing of data and other infrastructure communications requirements.
In view of such concerns, it would be advantageous, therefore, to provide methodologies and associated apparatuses/devices wherein failure of critical components may be quickly identified.
In view of the recognized features encountered in the prior art and addressed by the presently disclosed subject matter, improved methodology, apparatus, and systems are provided for detecting cell relay failure in a mesh network.
In one present exemplary embodiment, the presently disclosed subject matter broadly speaking relates to methodology for providing cell router failure detection. In such methodology, a value based on a value received from a cell relay is periodically updating, compared to a previously received value, and determines whether communications with the cell relay have failed based on the results of such comparison. In selected embodiments, the value may be a numeric value or a time value. In such exemplary embodiments, the value may be received by the node as a portion of a synchronization frame.
In instances where the value is a numeric value, exemplary present methodology may call for determination of whether communications with the cell relay have failed by determining whether the numerical value has changed within a predetermined period of time.
In other embodiments, the value corresponds to a time value and the exemplary methodology may in those instances determine whether communications with the cell relay have failed by determining whether the time value has changed within a predetermined period of time.
In certain of the foregoing presently disclosed exemplary methodologies, the cell relay may be operative in a mesh network associated with a collection engine, other such cell relays, and a plurality of associated nodes. Still further, in some such methodologies, at least some of the associated nodes may be respectively associated with metering endpoints, and the collection engine may be operative for collecting metering data from such metering endpoints.
The presently disclosed subject matter equally relates to both methodology and associated or corresponding apparatus/device subject matter. For example, another presently disclosed exemplary embodiment may relate to network enabled node devices. In such embodiments, an exemplary such node device may include a counter configured to be updated based on a received network signal, a comparator configured to compare a counter value with a previous counter value, and a processor configured to search for network access based on results of a comparison of the counter value and a previous counter value.
In selected such embodiments, the exemplary counter may be updated based on a portion of a network synchronization frame. In certain embodiments, such portion may contain a numerical value while in other embodiments such portion may contain a time value.
In some presently disclosed exemplary embodiments, the processor may search for network access if the counter fails to be updated within a predetermined time period while in other embodiments, the processor may search for network access if the time value has not changed within a predetermined period of time.
In other presently disclosed exemplary embodiments of the foregoing, such device may be configured for operation with a mesh network having a data collection engine, at least one cell relay, and a plurality of such node devices.
Various presently disclosed exemplary embodiments also may relate to a mesh network. In such embodiments, an exemplary such mesh network may comprise a collection engine, at least two cell relays, and at least one node respectively associated with each of the at least two cell relays. In such embodiments, the at least one node respectively associated with each of the at least two cell relays forms with its associated cell relay a cell within the network. In such arrangements, the cell relays preferably transmit synchronization signals including at least a counter value to nodes within their own cell. Such nodes monitor the counter value and search for network access to the collection engine upon failure to receive updated counter values from its associated cell relay within a predetermined time period.
In selected such embodiments, an exemplary cell relay may transmit a numeric counter value, while in other embodiments an exemplary cell relay may transmit a time counter value. In certain specific embodiments, an exemplary node may be forbidden (or prevented) from searching within the cell of its previously associated cell relay during a predetermined time period.
In still other of the foregoing exemplary embodiments, at least some of the associated nodes may be respectively associated with metering endpoints, and the collection engine may be operative for collecting metering data from such metering endpoints.
Additional objects and advantages of the presently disclosed subject matter are set forth in, or will be apparent to, those of ordinary skill in the art from the detailed description herein. Also, it should be further appreciated that modifications and variations to the specifically illustrated, referred and discussed features, elements, and steps hereof may be practiced in various embodiments and uses of the subject matter without departing from the spirit and scope of the subject matter. Variations may include, but are not limited to, substitution of equivalent means, features, or steps for those illustrated, referenced, or discussed, and the functional, operational, or positional reversal of various parts, features, steps, or the like.
Still further, it is to be understood that different embodiments, as well as different presently preferred embodiments, of the presently disclosed subject matter may include various combinations or configurations of presently disclosed features, steps, or elements, or their equivalents (including combinations of features, parts, or steps or configurations thereof not expressly shown in the figures or stated in the detailed description of such figures). Additional embodiments of the presently disclosed subject matter, not necessarily expressed in the summarized section, may include and incorporate various combinations of aspects of features, components, or steps referenced in the summarized objects above, and/or other features, components, or steps as otherwise discussed in this application. Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the remainder of the specification.
A full and enabling disclosure of the presently disclosed subject matter, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent same or analogous features, elements, or steps of the presently disclosed subject matter.
As discussed in the Summary section, the presently disclosed subject matter is particularly concerned with methodologies (and associated and/or corresponding apparatus/device subject matter) for providing improvements in cell router failure detection through provision of a counter functionality within a cell router synchronization signal in an automated metrology infrastructure (AMI) environment. With initial reference to
In such configuration, the meter data acquisition process begins with the Meter Data Management System 292 initiating a request for data. Such operation is done through a web services call to Collection Engine 290 and may be performed without knowledge of the configured functionality of the variously associated end devices. Collection Engine 290 analyzes the request for data (such as metering data from the respective metering endpoints), and formulates a series of multicast (or broadcast) data requests. Such requests may then be sent out either directly to the device, or to Cell Relay 202 that relays the message out to all appropriate nodes. Broadcast and multicast messages may be sent by Cell Relay 202 to all members of the cell, such as by either an AMS RF LAN-level broadcast, or by the Cell Relay 202 repeating the message.
In instances when a message is broadcast, multicast, or specifically addressed to an individual network node (meter), a protocol stack for the RF LAN may advantageously take the message and construct a node path for the message to take before actually transmitting the packet. Such pre-constructed node path allows Cell Relay 202 to push a message down through the tree of the cell without creating redundant radio messages.
As may be seen from the foregoing, all messages between the various meter devices 210, 220, 230, 232, 240, 242, 250, 252, 254, 256, 260, 262, 264, 266, Cell Relay 202, and Collection Engine 290 may pass in both directions through Cell Relay 202. Thus, it may be seen that any failure occurring at Cell Relay 202 may have a serious impact on communications (in either direction) between the various meter devices and Collection Engine 290.
In accordance with the presently disclosed subject matter, and as more fully explained herein, if Cell Relay 202 fails and there are no other changes, the various meter devices 210, 220, 230, 232, 240, 242, 250, 252, 254, 256, 260, 262, 264, 266 will not be able to communicate with collection engine 290. During normal operation of the various meter devices (nodes), such nodes may not immediately realize that Cell Relay 202 has failed, but when they do so realize, they will try to find alternate routes through other nodes in close proximity to each other.
In the present exemplary configuration and with further reference to
With present reference to subject
As illustrated in
Network nodes, such as node 120, upon receiving a synchronization frame including the associated count value, may have their own counter 124 updated. If such updated counter value is higher than the last count value received by the node, and if the period of time between any currently received count value and the last count value heard does not exceed a predetermined time limit, the node determines that its cell relay (router) is still active. On the other hand, if no update to the counter is received within a predetermined time period, the node will conclude that its Cell Relay (for example, such as Cell Relay 202 of
During such searches, the node associated with the old cell relay (router) is forbidden (prevented) from searching within the cell of its previously associated cell relay during a predetermined time period. Such time period preferably amounts to a window defined such that the window is long enough for all the nodes to realize the counter update has not occurred. Thus, for example, if node (meter) 220 loses contact with its cell relay 202, all nodes associated with cell relay 202 (including meters 210, 230, 232, 240, 242, 250, 252, 254, 256, 260, 262, 264, and 266) are excluded as possible new communications partners. In such way, node 220 is forced to seek out, for example, cell relay 202B or nodes (meters) associated with cell relay 202B including, exemplary node 230B.
With present reference to subject
At step 304 the updated count received is compared to a previously received count (value) and then in step 306 a determination is made as to whether the associated cell relay has failed based on the results of the comparison. Such comparisons may take into consideration the differences in numeric values of the updated and previous counts, and in some instances may consider whether the numeric values have actually changed within a predetermined time period. In some instances, the numeric values may correspond to a time value. In such manner, if the previously stored count is found to not have changed for some predetermined time, or if a time value received from the cell relay differs significantly from a time value stored at the node (meter), a determination may be made in accordance with the presently disclosed subject matter that the cell relay has failed. In such instances, the node (meter) may then attempt to connect with the network by a different path.
In some exemplary configurations, the presently disclosed subject matter may be used to reduce the time required for nodes to associate with a new cell to, for example, about thirty minutes following failure or otherwise loss of contact with their previously associated cell, as compared to as much as several hours absent implementation of the presently disclosed subject matter. It should be appreciated that the time frame to begin a search may be controlled in part based on the count and time comparison conducted by comparator 128, for example, incorporated into node 120.
While the presently disclosed subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the presently disclosed subject matter as would be readily apparent to one of ordinary skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
4799062 | Sanderford, Jr. et al. | Jan 1989 | A |
4977577 | Arthur et al. | Dec 1990 | A |
4998102 | Wyler et al. | Mar 1991 | A |
5067136 | Arthur et al. | Nov 1991 | A |
5095493 | Arthur et al. | Mar 1992 | A |
5119396 | Snderford, Jr. | Jun 1992 | A |
5198796 | Hessling, Jr. | Mar 1993 | A |
5265120 | Sanderford, Jr. | Nov 1993 | A |
5310075 | Wyler | May 1994 | A |
5311541 | Sanderford, Jr. | May 1994 | A |
5377222 | Sanderford, Jr. | Dec 1994 | A |
5377232 | Davidov et al. | Dec 1994 | A |
5457713 | Sanderford, Jr. et al. | Oct 1995 | A |
5486805 | Mak | Jan 1996 | A |
5598427 | Arthur et al. | Jan 1997 | A |
5604768 | Fulton | Feb 1997 | A |
5626755 | Keyser et al. | May 1997 | A |
5661750 | Fulton | Aug 1997 | A |
5666353 | Klausmeier et al. | Sep 1997 | A |
5668828 | Sanderford, Jr. et al. | Sep 1997 | A |
5696441 | Mak et al. | Dec 1997 | A |
RE35829 | Sanderford, Jr. | Jun 1998 | E |
5920589 | Rouquette et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5933072 | Kelley | Aug 1999 | A |
5953368 | Sanderford et al. | Sep 1999 | A |
5987058 | Sanderford et al. | Nov 1999 | A |
6028522 | Petite | Feb 2000 | A |
6031883 | Sanderford, Jr. et al. | Feb 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047016 | Ramberg et al. | Apr 2000 | A |
6100816 | Moore | Aug 2000 | A |
6163276 | Irving et al. | Dec 2000 | A |
6178197 | Froelich et al. | Jan 2001 | B1 |
6181258 | Summers et al. | Jan 2001 | B1 |
6195018 | Ragle et al. | Feb 2001 | B1 |
6204808 | Bloebaum et al. | Mar 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6232885 | Ridenour et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6263009 | Ramberg et al. | Jul 2001 | B1 |
6335953 | Sanderford, Jr. et al. | Jan 2002 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6369769 | Nap et al. | Apr 2002 | B1 |
6377609 | Brennan, Jr. | Apr 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6424270 | Ali | Jul 2002 | B1 |
6426027 | Scarborough, III et al. | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6452986 | Luxford et al. | Sep 2002 | B1 |
6456644 | Ramberg et al. | Sep 2002 | B1 |
6538577 | Ehrke et al. | Mar 2003 | B1 |
6604434 | Hamilton et al. | Aug 2003 | B1 |
6612188 | Hamilton | Sep 2003 | B2 |
6617879 | Chung | Sep 2003 | B1 |
6617976 | Walden et al. | Sep 2003 | B2 |
6617978 | Ridenour et al. | Sep 2003 | B2 |
6618578 | Petite | Sep 2003 | B1 |
6626048 | Dam Es et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6633886 | Chong | Oct 2003 | B1 |
6639939 | Naden et al. | Oct 2003 | B1 |
6650249 | Meyer et al. | Nov 2003 | B2 |
6657552 | Belski et al. | Dec 2003 | B2 |
6671586 | Davis et al. | Dec 2003 | B2 |
6700902 | Meyer | Mar 2004 | B1 |
6704301 | Chari et al. | Mar 2004 | B2 |
6734663 | Fye et al. | May 2004 | B2 |
6747557 | Petite et al. | Jun 2004 | B1 |
6747981 | Ardalan et al. | Jun 2004 | B2 |
6778099 | Meyer et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6816538 | Shuey et al. | Nov 2004 | B2 |
6836108 | Balko et al. | Dec 2004 | B1 |
6836737 | Petite et al. | Dec 2004 | B2 |
6850197 | Paun | Feb 2005 | B2 |
6859186 | Lizalek et al. | Feb 2005 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6867707 | Kelley et al. | Mar 2005 | B1 |
6885309 | Van Heteren | Apr 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6900737 | Ardalan et al. | May 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6918311 | Nathan | Jul 2005 | B2 |
6931445 | Davis | Aug 2005 | B2 |
6940396 | Hammond et al. | Sep 2005 | B2 |
6965575 | Srikrishna et al. | Nov 2005 | B2 |
6972555 | Balko et al. | Dec 2005 | B2 |
6982651 | Fischer | Jan 2006 | B2 |
7046682 | Carpenter et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7126494 | Ardalan et al. | Oct 2006 | B2 |
7251570 | Hancock | Jul 2007 | B2 |
7965758 | Picard | Jun 2011 | B2 |
7995467 | Fitch et al. | Aug 2011 | B2 |
8054821 | Monier et al. | Nov 2011 | B2 |
8059011 | Van Wyk et al. | Nov 2011 | B2 |
8138934 | Veillette | Mar 2012 | B2 |
8301145 | Deivasigamani et al. | Oct 2012 | B2 |
8423637 | Vaswani et al. | Apr 2013 | B2 |
8441987 | Monier et al. | May 2013 | B2 |
20020019725 | Petite | Feb 2002 | A1 |
20020037716 | McKenna et al. | Mar 2002 | A1 |
20020146985 | Naden | Oct 2002 | A1 |
20020169643 | Petite et al. | Nov 2002 | A1 |
20020183070 | Bloebaum et al. | Dec 2002 | A1 |
20020186000 | Briese et al. | Dec 2002 | A1 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20030048199 | Zigdon et al. | Mar 2003 | A1 |
20030063723 | Booth et al. | Apr 2003 | A1 |
20030078029 | Petite | Apr 2003 | A1 |
20030093484 | Petite | May 2003 | A1 |
20030103486 | Salt et al. | Jun 2003 | A1 |
20030179149 | Savage et al. | Sep 2003 | A1 |
20040004555 | Martin | Jan 2004 | A1 |
20040008663 | Srikrishna et al. | Jan 2004 | A1 |
20040040368 | Guckenberger et al. | Mar 2004 | A1 |
20040053639 | Petite et al. | Mar 2004 | A1 |
20040061623 | Tootoonian Mashhad et al. | Apr 2004 | A1 |
20040062224 | Brownrigg et al. | Apr 2004 | A1 |
20040085928 | Chari et al. | May 2004 | A1 |
20040088083 | Davis et al. | May 2004 | A1 |
20040131125 | Sanderford, Jr. et al. | Jul 2004 | A1 |
20040161018 | Maric | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040192415 | Luglio et al. | Sep 2004 | A1 |
20040218616 | Ardalan et al. | Nov 2004 | A1 |
20040264379 | Srikrishna et al. | Dec 2004 | A1 |
20040264435 | Chari et al. | Dec 2004 | A1 |
20050018751 | Roy et al. | Jan 2005 | A1 |
20050024235 | Shuey et al. | Feb 2005 | A1 |
20050030199 | Petite et al. | Feb 2005 | A1 |
20050036487 | Srikrishna | Feb 2005 | A1 |
20050043059 | Petite et al. | Feb 2005 | A1 |
20050043860 | Petite | Feb 2005 | A1 |
20050052290 | Naden et al. | Mar 2005 | A1 |
20050052328 | De Angelis | Mar 2005 | A1 |
20050068970 | Srikrishna et al. | Mar 2005 | A1 |
20050074015 | Chari et al. | Apr 2005 | A1 |
20050088966 | Stewart | Apr 2005 | A9 |
20050129005 | Srikrishna et al. | Jun 2005 | A1 |
20050147097 | Chari et al. | Jul 2005 | A1 |
20050163144 | Srikrishna et al. | Jul 2005 | A1 |
20050169020 | Knill | Aug 2005 | A1 |
20050171696 | Naden et al. | Aug 2005 | A1 |
20050172024 | Cheifot et al. | Aug 2005 | A1 |
20050190055 | Petite | Sep 2005 | A1 |
20050195768 | Petite et al. | Sep 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050218873 | Shuey et al. | Oct 2005 | A1 |
20050226179 | Behroozi | Oct 2005 | A1 |
20050243867 | Petite | Nov 2005 | A1 |
20050251401 | Shuey | Nov 2005 | A1 |
20050251403 | Shuey | Nov 2005 | A1 |
20050270173 | Boaz | Dec 2005 | A1 |
20050271006 | Chari et al. | Dec 2005 | A1 |
20050278440 | Scoggins | Dec 2005 | A1 |
20060002350 | Behroozi | Jan 2006 | A1 |
20060012935 | Murphy | Jan 2006 | A1 |
20060013263 | Fellman | Jan 2006 | A1 |
20060018303 | Sugiarto et al. | Jan 2006 | A1 |
20060038548 | Shuey | Feb 2006 | A1 |
20060043961 | Loy | Mar 2006 | A1 |
20060071810 | Scoggins et al. | Apr 2006 | A1 |
20060071812 | Mason, Jr. et al. | Apr 2006 | A1 |
20060195610 | Cole et al. | Aug 2006 | A1 |
20060203707 | Lee et al. | Sep 2006 | A1 |
20060209878 | Nelson | Sep 2006 | A1 |
20060274791 | Garcia et al. | Dec 2006 | A1 |
20070025398 | Yonge et al. | Feb 2007 | A1 |
20080068215 | Stuber et al. | Mar 2008 | A1 |
20080068989 | Wyk et al. | Mar 2008 | A1 |
20080089390 | Picard | Apr 2008 | A1 |
20090092148 | Zhang et al. | Apr 2009 | A1 |
20090122810 | Jin et al. | May 2009 | A9 |
20090252032 | Jiang et al. | Oct 2009 | A1 |
20100152910 | Taft | Jun 2010 | A1 |
20100238855 | Yoshida et al. | Sep 2010 | A1 |
20110280178 | Heifner | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
0984642 | Mar 2000 | EP |
2311191 | Sep 1997 | GB |
2005010214 | Feb 2005 | WO |
WO 2006083696 | Aug 2006 | WO |
WO 2006096854 | Sep 2006 | WO |
Entry |
---|
Mario Catalani, “Polymatrix and Generalized Polynacci Numbers”, Department of Economics, University of Torino, Torino, Italy, Oct. 14, 2002. |
International Search Report and Written Opinion of the ISA for PCT International Application No. PCT/US07/20022 issued Jun. 26, 2008. |
Jul. 3, 2013 Office Action for Canadian Patent Application No. 2,763,756. |
Feb. 7, 2013 Office Action for Canadian Patent Application No. 2,763,756. |
Mar. 26, 2014 Office Action issued in Canadian Patent Application No. 2,763,756. |
Canadian Patent Application No. 2,763,756 Office Action dated Apr. 26, 2012. |
PCT International Search Report and PCT Written Opinion of the International Searching Authority for PCT International Application No. PCT/US12/70552 completed Feb. 15, 2013, mailed Mar. 4, 2013. |
PCT International Preliminary Report on Patentability for PCT International Application No. PCT/US2012/070552 issued Jun. 24, 2014. |
PCT Written Opinion of the International Searching Authority for PCT International Application No. PCT/US12/70552 completed Feb. 15, 2013. |
Extended European Search Report for European Application No. 12860099.6, dated Jun. 23, 2015, 9 pages. |
Yu et al., “GROUP: A Grid-Clustering Routing Protocol for Wireless Sensor Networks,” International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2006, Sep. 22-24, 2006, IEEE, pp. 1-5. |
Canadian Office Action mailed Oct. 2, 2015, for Canadian Patent Application No. 2,763,756, 10 pages. |
Yang, Guu-Chang, “Partitioning Frequency-Hopping Codes for CDMA Cellular Systems,” Proceedings of IEEE INFOCOM 1996, The Conference on Computer Communications, Fifteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Networking the Next Generation, San Francisco, CA, USA, Mar. 24-28, 1996, vol. 2, IEEE 1996, pp. 457-463. |
Dec. 5, 2013 Office Action for Canadian Patent Application No. 2,763,756. |
Number | Date | Country | |
---|---|---|---|
20130162441 A1 | Jun 2013 | US |