Cell signaling genes and related methods

Abstract
Novel plant cell signaling genes and gene products are provided. These gene, polypeptide and oligonucleotide sequences are useful in regulating plant phenotype. Moreover, these genes and gene products are useful for expression profiling of plant cell signaling genes. The invention specifically provides polynucleotide and polypeptide sequences isolated from Eucalyptus and Pinus species.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to the field of plant cell signaling genes and polypeptides encoded by such genes, and the use of such polynucleotide and polypeptide sequences for controlling plant phenotype. The invention specifically provides cell signaling polynucleotide and polypeptide sequences isolated from Eucalyptus and Pinus and sequences related thereto.


2. Background


A. Cell Signaling Genes and Gene Products

Plants progress through set developmental programs throughout the course of their lifetimes. This is particularly evident in embryogenesis and floral development. There are a variety of signal molecules produced by certain cells in the plant to which other cells, particularly in the meristematic regions, are poised to respond. These signal molecules trigger distinct sets of developmental programs at specific times that lead to the formation of, for example, flowers or cotyledons. In addition to the programmed developmental pathways, plants are exposed to a variety of environmental stimuli such as changes in temperature and amount of sunlight, availability of water, wounding from mechanical injury and attack by pathogens. Environmental factors, such as exposure to light, heat, cold, drought, etc., activate the expression of genes and synthesis of proteins and other compounds essential for an appropriate response to the environmental signal and thereby, the healthy development of the plant. These responses, like the developmental pathways, are mediated by signal molecules.


To respond to these signal molecules, plant cells produce surface receptor proteins that serve as sensors, regulators and/or transducers of cell signals. The intracellular transduction of a signal is often transmitted via a phosphorylation cascade of molecules that culminates in the transcription of genes to elicit the appropriate cellular response either for normal development or against environmental challenge.


One major class of receptor proteins is the single-transmembrane family, of which there are several subclasses. These proteins are characterized by three domains: an extracellular signal molecule (or ligand) recognition/binding domain, a single cell membrane-spanning domain and an intracellular signal transduction domain which is usually a protein kinase. Many, but not all, plant single transmembrane proteins belong to the subclass known as receptor-like kinases (RLKs). The intracellular kinase domains of plant RLKs are all serine/threonine protein kinases, while the extracellular domains of RLKs are of different types. One type of RLK is characterized by the presence of the extracellular S-domain, originally described in self-incompatibility-locus glycoproteins that inhibit self-pollination. The S-domain is recognized by an array of ten cysteine residues in combination with other conserved residues. Another class of RLKs has an extracellular domain distinguished by leucine rich repeats (LRR) that are involved in protein-protein interactions. Binding of ligands to the extracellular domain is followed by receptor dimerization, autophosphorylation and the activation of a series of intracellular proteins which serve to transduce the signal to the nucleus. The structure of plant RLKs is very similar to receptors found in cell signaling pathways in animal systems.


One example of a plant RLK is the Xa21 gene, which confers resistance to the plant pathogen Xanthomonas oryzae pv. oryzae race 6. This gene was cloned using genetic means comparing Xanthomonas-sensitive and resistant strains of rice (Song et al., Science 270:1804-1806 (1995)), and has been subsequently been shown to confer resistance to Xanthomonas in Arabidopsis. The 1025 amino acid protein possesses a number of features with similarity to known protein domains including a NH2-terminal 23 amino acid residue signal peptide, indicating that the protein is directed to the plasma membrane. Amino acids 81 to 634 contain 23 imperfect copies of a 24-amino acid LRR. Amino acids 651 to 676 encode a 26-amino acid hydrophobic segment that is likely to form a membrane-spanning domain. The C-terminal amino acids contain a putative intracellular serine threonine kinase domain carrying 11 subdomains with all 15 invariant amino acids that are typical of protein kinases. Subdomains VI and VIII are indicative of serine-threonine phosphorylation specificity. Xa21 has strong similarities to other RLKs, such as the Arabidopsis receptor-like kinase proteins RLK5 and TMK1, showing conservation of both the LRR and protein kinase domains. It is not yet known to what protein Xa21 transduces its pathogen recognition signal.


Another kind of membrane receptor molecule expressed by plant cells is histidine kinases (HKs). HKs have been known for some time in bacterial signal transduction systems, where they form one half of a two-component signaling system. The bacterial HK serves as a sensor molecule for extracellular signals, such as changes in osmoticum, nutrients and toxins. The HK autophosphorylates on a histidine residue in response to ligand binding. This phosphohistidine donates its phosphate group to an aspartate residue of the second member of the two component system, known as the response regulator (RR). The phosphorylated RR then binds DNA in a sequence-specific manner, serving to directly activate specific genes which code for proteins that mediate the response to the extracellular stimulus.


Like bacteria, plant cells have a two-component signaling system which consists of a sensor element HK and a RR. The two components may be separate molecules or may exist as a hybrid molecule (hereinafter referred to as hybrid HK/RR proteins). The HK proteins are distinguished by well-conserved amino acid motifs that occur in a specific order. From the amino terminus, the conserved regions are identified as the H, N, G1, F and G2 boxes. These motifs are usually found within a 200-250 amino acid span of the protein. The G1, F and G2 boxes are thought to be involved in nucleotide binding. As in bacteria, upon receiving the extracellular signal, the HK is autophosphorylated on the histidine residue contained in the H box. The phosphate group is subsequently transferred to the RR. All HKs are believed to phosphorylate a RR, as an obligate part of signal transduction. RRs are characterized by the absolute conservation of an aspartate which is phosphorylated by the phosphohistidine of the HK, and a conserved lysine residue. Unlike bacteria, RRs in plants have not been shown to bind DNA directly. Rather, the plant RRs characterized to date appear to transduce the signal into protein kinase cascades, which eventually phosphorylate and activate or inactivate transcription factors, and thereby affect gene expression.


The ethylene receptor (ETR1; Chang et al. Science 262:539-544) is the best known two-component signaling system in plants. Ethylene is a well known signal molecule that is involved in the regulation of plant development as well as the coordination of fertilization, senescence, skoto/photomorphogenesis and responses to pathogens and mechanical injury. The ethylene receptor is a hybrid HK/RR protein. The signal is transduced through a Raf-like protein kinase named CTR1. CTR1 is a negative regulator of downstream steps in the signaling pathway. While the details of this pathway remain unclear, it appears that the HK is constitutively active in the absence of ethylene, thereby constantly phosphorylating CTR1, which in turn represses other genes in the ethylene response pathway. Binding of ethylene to ETR1 inhibits the HK function of the receptor, resulting in the inhibition of the negative regulator CTR1, thereby allowing the activation of downstream proteins in the ethylene signal transduction cascade. This culminates in activation of ethylene response genes.


More recently, two RR genes, IBC6 and IBC7, which are induced in response to the plant growth regulator cytokinin, have been cloned from Arabidopsis thaliana and characterized (Brandstatter and Kieber, The Plant Cell 10:1009-1019 (1998)). It is likely that IBC6 and IBC7 are involved in the transduction of the cytokinin signal in plants. This is particularly interesting in light of the fact that a gene encoding the hybrid HK/RR protein CKI1 (Kakimoto, Science 274:982-985, 1996) causes cytokinin-like effects when it is ectopically expressed in transgenic plants. Thus it appears likely that a two-component HK/RR system is involved in cytokinin signal transduction. Cytokinin is known to regulate plant growth and development, including such physiological events as nutrient metabolism, expansion and senescence of leaves, and lateral branching.


While polynucleotides encoding proteins involved in plant cell signaling have been isolated for certain species of plants, genes encoding many such proteins have not yet been identified in a wide range of plant species. Thus, there remains a need in the art for materials which may be usefully employed in the modification of cell signaling in plants.


Proper plant growth and development requires the ability to react to environmental and developmental factors. Throughout its life, a plant is subject to changes in light, temperature, water and nutrient availability. Plants are also subject to attack by pathogens, such as viruses, nematodes, mites, and insects. Reacting to developmental and environmental cues requires complex interactions between environmental signals and factors internal to the plant. Such reaction is typically effected by changes in gene expression. Various internal signals are required for coordinating gene expression during development and in response to environmental factors. These internal signals are communicated throughout by signal transduction pathways that allow propagation of the original signal. This ultimately results in the activation or suppression of gene expression.


Plant development is also affected by cell environmental factors such as temperature, nutrient availability, light, etc. See Gastal and Nelon, Plant Physiol. 105:191-7 (1994), Ben-Haj-Sahal and Tardieu, Plant Physiol. 109:861-7 (1995), and Sacks et al., Plant Physiol. 194:519-27 (1997). Plant development and phenotype are affected by cell signaling, and altering expression of the genes involved in the cell signaling can be a useful method of modifying plant development and altering plant phenotype.


The ability to alter expression of cell signaling genes is extremely powerful because cell signaling drives plant development, including growth rates, responses to environmental cues, and resulting plant phenotype. Control of plant cell signaling and phenotypes associated with alteration of cell signaling gene expression has, among others, applications for alteration of wood properties and, in particular, lumber and wood pulp properties. For example, improvements to wood pulp that can be effected by altering cell signaling gene expression include increased or decreased lignin content, increased accessibility of lignin to chemical treatments, improved reactivity of lignin, and increased or decreased cellulose or hemi content. Manipulating the plant signal transduction pathways can also engineer better lumber having increased dimensional stability, increased tensile strength, increased shear strength, increased compression strength, increased shock resistance, increased stiffness, increased or decreased hardness, decreased spirality, decreased shrinkage, and desirable characteristics with respect to weight, density, and specific gravity.


B. Expression Profiling and Microarray Analysis in Plants

The multigenic control of plant phenotype presents difficulties in determining the genes responsible for phenotypic determination. One major obstacle to identifying genes and gene expression differences that contribute to phenotype in plants is the difficulty with which the expression of more than a handful of genes can be studied concurrently. Another difficulty in identifying and understanding gene expression and the interrelationship of the genes that contribute to plant phenotype is the high degree of sensitivity to the environmental factors that plants demonstrate.


There have been recent advances using genome-wide expression profiling. In particular, the use of DNA microarrays has been useful to examine the expression of a large number of genes in a single experiment. Several studies of plant gene responses to developmental and environmental stimuli have been conducted using expression profiling. For example, microarray analysis was employed to study gene expression during fruit ripening in strawberry, Aharoni et al., Plant Physiol. 929:1019-1031 (2002), wound response in Arabidopsis, Cheong et al, Plant Physiol. 129:661-7 (2002), pathogen response in Arabidopsis, Schenk et al., Proc. Nat'l Acad. Sci. 97:11655-60 (2000), and auxin response in soybean, Thibaud-Nissen et al., Plant Physiol. 132:118. Whetten et al., Plant Mol. Biol. 47:275-91 (2001) discloses expression profiling of cell wall biosynthetic genes in Pinus taeda L. using cDNA probes. Whetten et al. examined genes which were differentially expressed between differentiating juvenile and mature secondary xylem. Additionally, to determine the effect of certain environmental stimuli on gene expression, gene expression in compression wood was compared to normal wood. 156 of the 2300 elements examined showed differential expression. Whetten, supra at 285. Comparison of juvenile wood to mature wood showed elements as differentially expressed. Id. at 286.


Although expression profiling and, in particular, DNA microarrays provide a convenient tool for genome-wide expression analysis, their use has been limited to organisms for which the complete genome sequence or a large cDNA collection is available. See Hertzberg et al., Proc. Nat'l Acad. Sci. 98:14732-7 (2001a), Hertzberg et al., Plant J. 25:585 (2001b). For example, Whetten, supra, states, “A more complete analysis of this interesting question awaits the completion of a larger set of both pine and poplar ESTs.” Whetten et al. at 286. Furthermore, microarrays comprising cDNA or EST probes may not be able to distinguish genes of the same family because of sequence similarities among the genes. That is, cDNAs or ESTs, when used as microarray probes, may bind to more than one gene of the same family.


Methods of manipulating gene expression to yield a plant with a more desirable phenotype would be facilitated by a better understanding of cell signaling gene expression in various types of plant tissue, at different stages of plant development, and upon stimulation by different environmental cues. The ability to control plant architecture and agronomically important traits would be improved by a better understanding of how cell signaling gene expression effects formation of plant tissues, how cell signaling gene expression protects plants from pathogens and adverse environmental conditions, and how plant growth and the cell signaling are connected. Among the large number of genes, the expression of which can change during development of a plant, only a fraction are likely to effect phenotypic changes of agronomic significance.


SUMMARY

Accordingly, there is a need for tools and methods useful in determining the changes in the expression of cell signaling genes that result in desirable plant phenotypes. There is also a need for polynucleotides useful in such methods. There is a further need for methods which can correlate changes in cell signaling gene expression to a phenotype. There is a further need for methods of identifying cell signaling genes and gene products that impact plant phenotype and that can be manipulated to obtain a desired phenotype.


In one embodiment, an isolated polynucleotide is provided comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1-197 or a conservative variant thereof. In one aspect, the polynucleotide has a sequence comprised in a gene expressed in a wild-type plant of a species of Eucalyptus or Pinus. In another aspect, the variant has a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60%, to any one of SEQ ID NO: 1-197.


In one aspect, the polynucleotide encodes a protein such as a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, synaptobrevin-like protein or a catalytic domain thereof, or a protein having the same function. In another aspect, the polynucleotide comprises a variant having a sequence identity that is greater than 60%, 65%, 70%, 75%, 80%, 85% or 90% to any one of SEQ ID NO: 1-197 and the protein encoded by the polynucleotide possesses the activity of the protein encoded by the SEQ ID NO: 198-394.


In one embodiment, a plant cell is provided which is transformed with an isolated polynucleotide of SEQ ID NO: 1-197. In another embodiment, a transgenic plant is provided comprising an isolated polynucleotide of SEQ ID NO: 1-197.


In one embodiment, a DNA construct is provided comprising at least one polynucleotide having the sequence of any one of SEQ ID NO: 1-197 or a conservative variants thereof. In one aspect, the DNA construct comprises a promoter operably linked to the polynucleotide. In another aspect, the promoter is selected from any one of a constitutive promoter, a strong promoter, an inducible promoter, a regulatable promoter, a temporally regulated promoter or a tissue-preferred promoter. In another aspect, the DNA construct comprises a polynucleotide encoding an RNA transcript. In yet another aspect, the polynucleotide is positioned along the DNA construct in a sense or antisense orientation relative to the promoter. In one aspect, the RNA transcript induces RNA interference of a polynucleotide having a nucleic acid sequence of any one of SEQ ID NO: 1-197.


In one embodiment, a method of making a transformed plant is provided comprising transforming a plant cell with a DNA construct and culturing the transformed plant cell under conditions that promote growth of a plant.


In another embodiment, a plant cell is provided transformed with a DNA construct. In yet another aspect, a transgenic plant is provided comprising a transformed plant cell. In one aspect, the transformed plant is a woody plant. In another aspect, the woody plant is a tree. In yet another aspect, the plant is of a species of Eucalyptus or Pinus. In one aspect, the transgenic plants have a phenotype which is different from a phenotype of a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant has a different phenotypic characteristic such as lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation, ratio of root to branch vegetative, development, leaf area index, and leaf shape. In yet another aspect, the transgenic plant exhibits one or more traits, such as, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant exhibits one or more traits such as reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.


In one embodiment, an isolated polynucleotide is provided comprising a nucleic acid sequence encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 198-394 and in which the polynucleotide encodes a polypeptide having the activity of the polypeptide of SEQ ID NOs: 198-394.


In one embodiment, a method of making a transformed plant is provided comprising transforming a plant cell with a DNA construct comprising at least one polynucleotide encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 198-394 and culturing the transformed plant cell under conditions that promote growth of a plant. In one aspect, the method used a DNA construct comprises a promoter operably linked to the polynucleotide. In another aspect, the polypeptide is selected from 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, or synaptobrevin-like protein. In one aspect, the method uses a plant cell located within plant explant tissue. In another aspect, the method produces a transgenic plant which exhibits a phenotype different from a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant has a different phenotypic characteristic such as lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. In yet another aspect, the transgenic plant exhibits one or more traits, such as, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant exhibits one or more traits such as reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.


In one embodiment, wood obtained from a transgenic plant transformed by a DNA construct is provided. In another embodiment, wood pulp obtained from a transgenic plant transformed by a DNA construct is provided.


In another embodiment, a method of making wood is provided comprising transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from SEQ ID NO: 1-197 and conservative variants thereof, culturing the transformed plants under conditions that promote growth of the plant, and obtaining wood from the plant.


In yet another embodiment, a method of making wood pulp is provided comprising transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from SEQ ID NO: 1-197 and conservative variants thereof, culturing the transformed plants under conditions that promote growth of the plant, and obtaining wood pulp from the plant.


In one embodiment, an isolated polypeptide is provided comprising an amino acid sequence encoded by a polynucleotide selected from SEQ ID NO: 1-197. In another embodiment, an isolated polynucleotide is provided comprising an amino acid selected from SEQ ID NO: 198-394.


In one embodiment, a method of altering a plant phenotype is provided comprising altering expression in the plant of a polypeptide encoded by any one of SEQ ID NO: 1-197. In one aspect, the expression of the polypeptide can be up-regulated, down-regulated, silenced, or developmentally regulated. In another aspect, the plant phenotype is selected from lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. In yet another aspect, the plant exhibits one or more traits, such as, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. In another aspect, the transgenic plant exhibits one or more traits such as reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.


In one embodiment, a polynucleotide is provided comprising a nucleic acid selected from SEQ ID NO: 395-583. In one aspect, the polynucleotide comprises less than about 100 nucleotide bases.


In another embodiment, a method of correlating gene expression in two different samples is provided comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from SEQ ID NOs: 1-197 and conservative variants thereof in a first sample, detecting a level of expression of the one or more genes in a second sample, comparing the level of expression of the one or more genes in the first sample to the level of expression of the one or more genes in the second sample, and correlating a difference in expression level of the one or more genes between the first and second samples. In one aspect, the first sample and the second sample are each from a different type of plant tissue. In another aspect, the first sample and the second sample are from the same tissue, and each sample is harvested during a different season of the year. In yet another aspect, the first sample and the second sample are obtained from plants in different stages of development. In one aspect, the first sample is obtained from a plant not exposed to an environmental stimulus, and the second sample is obtained from a plant exposed to an environmental stimulus. In another aspect, the environmental stimulus is selected from the group consisting of change in temperature, change in amount of light, change in availability of water, change in availability of nutrients, change in availability of atmospheric gases, frost, wounding from mechanical injury, and wounding from attack by an insect, fungus, bacteria or virus.


In one embodiment, a method of correlating the possession of a plant phenotype to the level of gene expression in the plant of one or more genes is provided comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from SEQ ID NOs: 1-197 and conservative variants thereof in a first plant possessing a phenotype, detecting a level of expression of the one or more genes in a second plant lacking the phenotype, comparing the level of expression of the one or more genes in the first plant to the level of expression of the one or more genes in the second plant, and correlating a difference in expression level of the one or more genes between the first and second plants to possession of the phenotype.


In another embodiment, a method of correlating gene expression to a response to an external stimulus or environmental condition is provided comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof in a first plant cell in the absence of the external stimulus or environmental condition, detecting a level of expression of the one or more genes in a second plant cell in the presence of the external stimulus or environmental condition, comparing the level of the expression of the one or more genes in the first plant cells to the level of expression of the one or more genes in the second plants cells; and correlating a difference in expression level of the one or more genes between the first and second samples to presence of the external stimulus or environmental condition. In one aspect, the first and second samples are both obtained from a plant tissue such as vascular tissue, apical meristem, vascular cambium, xylem, phloem, root, flower, cone, fruit, or seed. In another aspect, the plant tissue of the first sample and second samples are each obtained from a different type of tissues. In yet another aspect, the first and second samples are each obtained from a plant tissue in a different stage of development. In one aspect, the external stimulus is selected from the group consisting of change in temperature, change in amount of light, change in availability of water, change in availability of nutrients, wounding from mechanical injury, and wounding from attack by pathogens.


In one embodiment, there are methods provided in which the first and second plants or plant cells are of a species selected from Eucalyptus and Pinus species. In one aspect, the first and second plants or plant cells are of a species selected from Eucalyptus grandis or Pinus radiata.


In one embodiment, there are methods provided in which the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions. In one aspect, the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions. In another aspect, the step of detecting is effected by hybridization to a labeled nucleic acid. In yet another aspect, the one or more polynucleotides are labeled with a detectable label. In one aspect, at least one of the one or more polynucleotides hybridizes to a 3′ untranslated region of one of the one or more genes. In another aspect, at least one of the one or more polynucleotides hybridizes to the 3′ untranslated region of one of the one or more genes. In one aspect, the one or more polynucleotides comprise a nucleic acid sequence selected from SEQ ID NOs: 395-583. In another aspect, the one or more polynucleotides comprise a nucleic acid sequence selected from SEQ ID NOs: 395-583. In yet another aspect, the one or more polynucleotides is selected from DNA or RNA. In one aspect, the methods further comprise, prior to the detecting steps, the step of amplifying the one or more genes in the first and second plant or plant cells. In another aspect, the methods further comprise, prior to the detecting steps, the step of labeling the one or more genes in the first and second plant or plant cells with a detectable label.


In one embodiment, a combination for detecting expression of one or more genes is provided comprising two or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a nucleic acid sequence selected from SEQ ID NOs: 1-197. In one aspect, each of the two or more oligonucleotides hybridizes to a nucleotide sequence encoded by a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In another aspect, at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a nucleic acid sequence selected from SEQ ID NOs: 1-197. In one aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In another aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 395-583. In one aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In another aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins. In one aspect, each of the two or more oligonucleotides hybridizes to a different gene. In yet another aspect, the combination comprises from about to about 5000 of the two or more oligonucleotides. In one embodiment, each of the two or more oligonucleotides is labeled with a detectable label.


In another embodiment, a combination for detecting expression of one or more genes is provided comprising two or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from SEQ ID NOs: 1-197. In another aspect, each of the two or more oligonucleotides hybridizes to a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In yet another aspect, at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a nucleic acid sequence selected from SEQ ID NOs: 1-197. In one aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In another aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583. In another aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a protein selected from a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In one aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins. In another aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a different gene. In yet another aspect, the combination comprises from about 2 to about 5000 of the two or more oligonucleotides. In one embodiment, each of the two or more oligonucleotides is labeled with a detectable label.


In one embodiment, a microarray is provided comprising a combination described above provided on a solid support, wherein each of said two or more oligonucleotides occupies a unique location on said solid support.


In another embodiment, a method for detecting one or more genes in a sample is provided comprising contacting the sample with two or more oligonucleotides, and detecting the one or more genes of interest which are hybridized to the one or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197 under standard hybridization conditions. In another aspect, each of the two or more oligonucleotides hybridizes to a gene comprising a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In one aspect, at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197. In another aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In one aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583. In another aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In a further aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins. In another aspect, the two or more oligonucleotides are provided on a solid support, wherein each of the two of more oligonucleotides occupy a unique location on the solid support. In yet another aspect, the solid support comprises from about 2 to about 5000 of the two or more oligonucleotides. In one aspect, the method further comprises prior to the contacting step, the step of amplifying the one or more genes or nucleic acid sequences in the sample. In another aspect, the methods further comprises, prior to the contacting step, the step of labeling the one or more genes or nucleic acid sequences in the sample with a detectable label.


In yet another embodiment, a method for detecting one or more nucleic acid sequences encoded by one or more genes in a sample is provided comprising contacting the sample with two or more oligonucleotides and detecting the one or more nucleic acid sequences which are hybridized to the one or more oligonucleotides. In one aspect, each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197 under standard hybridization conditions. In another aspect, each of the two or more oligonucleotides hybridizes to a gene comprising a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In yet another aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene comprising a different one of the nucleic acid sequences selected from SEQ ID NOs: 1-197. In one aspect, at least one of the two or more oligonucleotides hybridizes to a nucleic acid sequence that is complementary to a 3′ untranslated region of a gene comprising a nucleic acid sequence selected from SEQ ID NOs: 1-197. In another aspect, each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. In one aspect, at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583. In another aspect, each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. In a further aspect, each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins. In another aspect, the two or more oligonucleotides are provided on a solid support, wherein each of the two of more oligonucleotides occupy a unique location on the solid support. In yet another aspect, the solid support comprises from about 2 to about 5000 of the two or more oligonucleotides. In one aspect, the method further comprises prior to the contacting step, the step of amplifying the one or more genes or nucleic acid sequences in the sample. In another aspect, the methods further comprises, prior to the contacting step, the step of labeling the one or more genes or nucleic acid sequences in the sample with a detectable label.


In one embodiment, a kit for detecting gene expression is provided comprising the microarray described above together with one or more buffers or reagents for a nucleotide hybridization reaction.


Other features, objects, and advantages of the present invention are apparent from the detailed description that follows. It should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, are given by way of illustration only, not limitation. Various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from the detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the annotated amino acid sequence of SEQ ID NO: 198.



FIG. 2 shows the annotated amino acid sequence of SEQ ID NO: 199.



FIG. 3 shows the annotated amino acid sequence of SEQ ID NO: 200.



FIG. 4 shows the annotated amino acid sequence of SEQ ID NO: 201



FIG. 5 shows the annotated amino acid sequence of SEQ ID NO: 206.



FIG. 6 shows the annotated amino acid sequence of SEQ ID NO: 207.



FIG. 7 shows the annotated amino acid sequence of SEQ ID NO: 208.



FIG. 8 shows the annotated amino acid sequence of SEQ ID NO: 227.



FIG. 9 shows the annotated amino acid sequence of SEQ ID NO: 283.



FIG. 10 shows the annotated amino acid sequence of SEQ ID NO: 290.



FIG. 11 shows the annotated amino acid sequence of SEQ ID NO: 296.



FIG. 12 shows the annotated amino acid sequence of SEQ ID NO: 307.



FIG. 13 shows the annotated amino acid sequence of SEQ ID NO: 308.



FIG. 14 shows the annotated amino acid sequence of SEQ ID NO: 309.



FIG. 15 shows the annotated amino acid sequence of SEQ ID NO: 320.



FIG. 16 shows the annotated amino acid sequence of SEQ ID NO: 377.



FIG. 17 shows the annotated amino acid sequence of SEQ ID NO: 382.



FIG. 18 shows the annotated amino acid sequence of SEQ ID NO: 388.



FIG. 19 shows the annotated amino acid sequence of SEQ ID NO: 389.



FIG. 20 shows the annotated amino acid sequence of SEQ ID NO: 392.



FIG. 21 shows the annotated amino acid sequence of SEQ ID NO: 230.



FIG. 22 shows the annotated amino acid sequence of SEQ ID NO: 231.



FIG. 23 shows the annotated amino acid sequence of SEQ ID NO: 265.



FIG. 24 shows the annotated amino acid sequence of SEQ ID NO: 269.



FIG. 25 shows the annotated amino acid sequence of SEQ ID NO: 273.



FIG. 26 shows the annotated amino acid sequence of SEQ ID NO: 278.



FIG. 27 shows the annotated amino acid sequence of SEQ ID NO: 316.



FIG. 28 shows the annotated amino acid sequence of SEQ ID NO: 317.



FIG. 29 shows the annotated amino acid sequence of SEQ ID NO: 355.



FIG. 30 shows the annotated amino acid sequence of SEQ ID NO: 372.



FIG. 31 shows the annotated amino acid sequence of SEQ ID NO: 390.



FIG. 32 shows the annotated amino acid sequence of SEQ ID NO: 247.



FIG. 33 shows the annotated amino acid sequence of SEQ ID NO: 346.



FIG. 34 shows the annotated amino acid sequence of SEQ ID NO: 368.



FIG. 35 shows the annotated amino acid sequence of SEQ ID NO: 214.



FIG. 36 shows the annotated amino acid sequence of SEQ ID NO: 274.



FIG. 37 shows the annotated amino acid sequence of SEQ ID NO: 349.



FIG. 38 shows the annotated amino acid sequence of SEQ ID NO: 314.



FIG. 39 shows the annotated amino acid sequence of SEQ ID NO: 213.



FIG. 40 shows the annotated amino acid sequence of SEQ ID NO: 222.



FIG. 41 shows the annotated amino acid sequence of SEQ ID NO: 224.



FIG. 42 shows the annotated amino acid sequence of SEQ ID NO: 228.



FIG. 43 shows the annotated amino acid sequence of SEQ ID NO: 232.



FIG. 44 shows the annotated amino acid sequence of SEQ ID NO: 236.



FIG. 45 shows the annotated amino acid sequence of SEQ ID NO: 237.



FIG. 46 shows the annotated amino acid sequence of SEQ ID NO: 252.



FIG. 47 shows the annotated amino acid sequence of SEQ ID NO: 253.



FIG. 48 shows the annotated amino acid sequence of SEQ ID NO: 256.



FIG. 49 shows the annotated amino acid sequence of SEQ ID NO: 259.



FIG. 50 shows the annotated amino acid sequence of SEQ ID NO: 263.



FIG. 51 shows the annotated amino acid sequence of SEQ ID NO: 268.



FIG. 52 shows the annotated amino acid sequence of SEQ ID NO: 271.



FIG. 53 shows the annotated amino acid sequence of SEQ ID NO: 284.



FIG. 54 shows the annotated amino acid sequence of SEQ ID NO: 286.



FIG. 55 shows the annotated amino acid sequence of SEQ ID NO: 293.



FIG. 56 shows the annotated amino acid sequence of SEQ ID NO: 294.



FIG. 57 shows the annotated amino acid sequence of SEQ ID NO: 305.



FIG. 58 shows the annotated amino acid sequence of SEQ ID NO: 323.



FIG. 59 shows the annotated amino acid sequence of SEQ ID NO: 336.



FIG. 60 shows the annotated amino acid sequence of SEQ ID NO: 343.



FIG. 61 shows the annotated amino acid sequence of SEQ ID NO: 351.



FIG. 62 shows the annotated amino acid sequence of SEQ ID NO: 360.



FIG. 63 shows the annotated amino acid sequence of SEQ ID NO: 363.



FIG. 64 shows the annotated amino acid sequence of SEQ ID NO: 366.



FIG. 65 shows the annotated amino acid sequence of SEQ ID NO: 369.



FIG. 66 shows the annotated amino acid sequence of SEQ ID NO: 373.



FIG. 67 shows the annotated amino acid sequence of SEQ ID NO: 380.



FIG. 68 shows the annotated amino acid sequence of SEQ ID NO: 385.



FIG. 69 shows the annotated amino acid sequence of SEQ ID NO: 394.



FIG. 70 shows the annotated amino acid sequence of SEQ ID NO: 262.



FIG. 71 shows the annotated amino acid sequence of SEQ ID NO: 272.



FIG. 72 shows the annotated amino acid sequence of SEQ ID NO: 347.



FIG. 73 shows the annotated amino acid sequence of SEQ ID NO: 240.



FIG. 74 shows the annotated amino acid sequence of SEQ ID NO: 223.



FIG. 75 shows the annotated amino acid sequence of SEQ ID NO: 313.



FIG. 76 shows the annotated amino acid sequence of SEQ ID NO: 374.



FIG. 77 shows the annotated amino acid sequence of SEQ ID NO: 279.



FIG. 78 shows the annotated amino acid sequence of SEQ ID NO: 288.



FIG. 79 shows the annotated amino acid sequence of SEQ ID NO: 370.



FIG. 80 shows the annotated amino acid sequence of SEQ ID NO: 202.



FIG. 81 shows the annotated amino acid sequence of SEQ ID NO: 203.



FIG. 82 shows the annotated amino acid sequence of SEQ ID NO: 204.



FIG. 83 shows the annotated amino acid sequence of SEQ ID NO: 258.



FIG. 84 shows the annotated amino acid sequence of SEQ ID NO: 311.



FIG. 85 shows the annotated amino acid sequence of SEQ ID NO: 312.



FIG. 86 shows the annotated amino acid sequence of SEQ ID NO: 364.



FIG. 87 shows the annotated amino acid sequence of SEQ ID NO: 212.



FIG. 88 shows the annotated amino acid sequence of SEQ ID NO: 353.



FIG. 89 shows the annotated amino acid sequence of SEQ ID NO: 238.



FIG. 90 shows the annotated amino acid sequence of SEQ ID NO: 325.



FIG. 91 shows the annotated amino acid sequence of SEQ ID NO: 326.



FIG. 92 shows the annotated amino acid sequence of SEQ ID NO: 220.



FIG. 93 shows the annotated amino acid sequence of SEQ ID NO: 221.



FIG. 94 shows the annotated amino acid sequence of SEQ ID NO: 234.



FIG. 95 shows the annotated amino acid sequence of SEQ ID NO: 235.



FIG. 96 shows the annotated amino acid sequence of SEQ ID NO: 248.



FIG. 97 shows the annotated amino acid sequence of SEQ ID NO: 299.



FIG. 98 shows the annotated amino acid sequence of SEQ ID NO: 315.



FIG. 99 shows the annotated amino acid sequence of SEQ ID NO: 324.



FIG. 100 shows the annotated amino acid sequence of SEQ ID NO: 334.



FIG. 101 shows the annotated amino acid sequence of SEQ ID NO: 342.



FIG. 102 shows the annotated amino acid sequence of SEQ ID NO: 344.



FIG. 103 shows the annotated amino acid sequence of SEQ ID NO: 356.



FIG. 104 shows the annotated amino acid sequence of SEQ ID NO: 359.



FIG. 105 shows the annotated amino acid sequence of SEQ ID NO: 367.



FIG. 106 shows the annotated amino acid sequence of SEQ ID NO: 209.



FIG. 107 shows the annotated amino acid sequence of SEQ ID NO: 244.



FIG. 108 shows the annotated amino acid sequence of SEQ ID NO: 261



FIG. 109 shows the annotated amino acid sequence of SEQ ID NO: 297.



FIG. 110 shows the annotated amino acid sequence of SEQ ID NO: 341



FIG. 111 shows the annotated amino acid sequence of SEQ ID NO: 358.



FIG. 112 shows the annotated amino acid sequence of SEQ ID NO: 365.



FIG. 113 shows the annotated amino acid sequence of SEQ ID NO: 250.



FIG. 114 shows the annotated amino acid sequence of SEQ ID NO: 280.



FIG. 115 shows the annotated amino acid sequence of SEQ ID NO: 330.



FIG. 116 shows the annotated amino acid sequence of SEQ ID NO: 331



FIG. 117 shows the annotated amino acid sequence of SEQ ID NO: 357.



FIG. 118 shows the annotated amino acid sequence of SEQ ID NO: 375.



FIG. 119 shows the annotated amino acid sequence of SEQ ID NO: 266.



FIG. 120 shows the annotated amino acid sequence of SEQ ID NO: 327.



FIG. 121 shows the annotated amino acid sequence of SEQ ID NO: 257.



FIG. 122 shows the annotated amino acid sequence of SEQ ID NO: 319.



FIG. 123 shows the annotated amino acid sequence of SEQ ID NO: 329.



FIG. 124 shows the annotated amino acid sequence of SEQ ID NO: 361.



FIG. 125 shows the annotated amino acid sequence of SEQ ID NO: 210.



FIG. 126 shows the annotated amino acid sequence of SEQ ID NO: 211.



FIG. 127 shows the annotated amino acid sequence of SEQ ID. NO: 354.



FIG. 128 shows the annotated amino acid sequence of SEQ ID NO: 362



FIG. 129 shows the annotated amino acid sequence of SEQ ID NO: 300.



FIG. 130 shows the annotated amino acid sequence of SEQ ID NO: 301



FIG. 131 shows the annotated amino acid sequence of SEQ ID NO: 233.



FIG. 132 shows the annotated amino acid sequence of SEQ ID NO: 264.



FIG. 133 shows the annotated amino acid sequence of SEQ ID NO: 267.



FIG. 134 shows the annotated amino acid sequence of SEQ ID NO: 298.



FIG. 135 shows the annotated amino acid sequence of SEQ ID NO: 376.



FIG. 136 shows the annotated amino acid sequence of SEQ ID NO: 205.



FIG. 137 shows the annotated amino acid sequence of SEQ ID NO: 215.



FIG. 138 shows the annotated amino acid sequence of SEQ ID NO: 241



FIG. 139 shows the annotated amino acid sequence of SEQ ID NO: 285.



FIG. 140 shows the annotated amino acid sequence of SEQ ID NO: 291



FIG. 141 shows the annotated amino acid sequence of SEQ ID NO: 292.



FIG. 142 shows the annotated amino acid sequence of SEQ ID NO: 302.



FIG. 143 shows the annotated amino acid sequence of SEQ ID NO: 303.



FIG. 144 shows the annotated amino acid sequence of SEQ ID NO: 304.



FIG. 145 shows the annotated amino acid sequence of SEQ ID NO: 350.



FIG. 146 shows the annotated amino acid sequence of SEQ ID NO: 245.



FIG. 147 shows the annotated amino acid sequence of SEQ ID NO: 260.



FIG. 148 shows the annotated amino acid sequence of SEQ ID NO: 381



FIG. 149 shows the annotated amino acid sequence of SEQ ID NO: 216.



FIG. 150 shows the annotated amino acid sequence of SEQ ID NO: 217.



FIG. 151 shows the annotated amino acid sequence of SEQ ID NO: 218.



FIG. 152 shows the annotated amino acid sequence of SEQ ID NO: 219.



FIG. 153 shows the annotated amino acid sequence of SEQ ID NO: 226.



FIG. 154 shows the annotated amino acid sequence of SEQ ID NO: 229.



FIG. 155 shows the annotated amino acid sequence of SEQ ID NO: 239.



FIG. 156 shows the annotated amino acid sequence of SEQ ID NO: 255.



FIG. 157 shows the annotated amino acid sequence of SEQ ID NO: 275.



FIG. 158 shows the annotated amino acid sequence of SEQ ID NO: 306.



FIG. 159 shows the annotated amino acid sequence of SEQ ID NO: 318.



FIG. 160 shows the annotated amino acid sequence of SEQ ID NO: 322.



FIG. 161 shows the annotated amino acid sequence of SEQ ID NO: 335.



FIG. 162 shows the annotated amino acid sequence of SEQ ID NO: 348.



FIG. 163 shows the annotated amino acid sequence of SEQ ID NO: 383.



FIG. 164 shows the annotated amino acid sequence of SEQ ID NO: 387.



FIG. 165 shows the annotated amino acid sequence of SEQ ID NO: 393.



FIG. 166 shows the annotated amino acid sequence of SEQ ID NO: 225.



FIG. 167 shows the annotated amino acid sequence of SEQ ID NO: 310.



FIG. 168 shows the annotated amino acid sequence of SEQ ID NO: 242.



FIG. 169 shows the annotated amino acid sequence of SEQ ID NO: 243.



FIG. 170 shows the annotated amino acid sequence of SEQ ID NO: 281



FIG. 171 shows the annotated amino acid sequence of SEQ ID NO: 287.



FIG. 172 shows the annotated amino acid sequence of SEQ ID NO: 289.



FIG. 173 shows the annotated amino acid sequence of SEQ ID NO: 328.



FIG. 174 shows the annotated amino acid sequence of SEQ ID NO: 332.



FIG. 175 shows the annotated amino acid sequence of SEQ ID NO: 333.



FIG. 176 shows the annotated amino acid sequence of SEQ ID NO: 345.



FIG. 177 shows the annotated amino acid sequence of SEQ ID NO: 378.



FIG. 178 shows the annotated amino acid sequence of SEQ ID NO: 384.



FIG. 179 shows the annotated amino acid sequence of SEQ ID NO: 386.



FIG. 180 shows the annotated amino acid sequence of SEQ ID NO: 270.



FIG. 181 shows the annotated amino acid sequence of SEQ ID NO: 276.



FIG. 182 shows the annotated amino acid sequence of SEQ ID NO: 282.



FIG. 183 shows the annotated amino acid sequence of SEQ ID NO: 339.



FIG. 184 shows the annotated amino acid sequence of SEQ ID NO: 246.



FIG. 185 shows the annotated amino acid sequence of SEQ ID NO: 249.



FIG. 186 shows the annotated amino acid sequence of SEQ ID NO: 251.



FIG. 187 shows the annotated amino acid sequence of SEQ ID NO: 254.



FIG. 188 shows the annotated amino acid sequence of SEQ ID NO: 277.



FIG. 189 shows the annotated amino acid sequence of SEQ ID NO: 295.



FIG. 190 shows the annotated amino acid sequence of SEQ ID NO: 321



FIG. 191 shows the annotated amino acid sequence of SEQ ID NO: 337.



FIG. 192 shows the annotated amino acid sequence of SEQ ID NO: 338.



FIG. 193 shows the annotated amino acid sequence of SEQ ID NO: 340.



FIG. 194 shows the annotated amino acid sequence of SEQ ID NO: 352.



FIG. 195 shows the annotated amino acid sequence of SEQ ID NO: 379.



FIG. 196 shows the annotated amino acid sequence of SEQ ID NO: 391



FIG. 197 shows the annotated amino acid sequence of SEQ ID NO: 371.



FIG. 198 shows a graphic representation of the DNA construct pWVR202.



FIG. 199 shows a graphic representation of the DNA construct pGrowth1.



FIG. 200 shows a graphic representation of the DNA construct pGrowth2.



FIG. 201 shows a graphic representation of the DNA construct pGrowth11.



FIG. 202 shows a graphic representation of the DNA construct pGrowth21.



FIG. 203 shows a graphic representation of the DNA construct pGrowth22.



FIG. 204 shows a graphic representation of the DNA construct pGrowth23.



FIG. 205 shows a graphic representation of the DNA construct pGrowth24.



FIG. 206 shows a graphic representation of the DNA construct pGrowth25.



FIG. 207 shows a graphic representation of the DNA construct pGrowth26.



FIG. 208 shows a graphic representation of the DNA construct pGrowth27.



FIG. 209 shows a graphic representation of the DNA construct pGrowth28.



FIG. 210 shows a graphic representation of the DNA construct pGrowth30.



FIG. 211 shows a graph of the percentage of shoot lines from each line of plants transformed in Example 16.



FIG. 212 shows a graphic representation of the DNA construct pGrowth3.



FIG. 213 shows a graphic representation of the DNA construct pGrowth29.



FIG. 214 shows a graphic representation of the DNA construct pGrowth49.



FIG. 215 shows a graphic representation of the DNA construct pGrowth51.





DETAILED DESCRIPTION

Novel isolated cell signaling genes and polynucleotides useful for identifying the multigenic factors that contribute to a phenotype and for manipulating gene expression to effect a plant phenotype are provided. These genes, which are derived from plants of commercially important forestry genera, pine and eucalyptus, are involved in the plant signal transduction and are, at least in part, responsible for expression of phenotypic characteristics important in commercial wood, such as stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, and extractives content. Generally, the genes and polynucleotides encode a protein which can be a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, synaptobrevin-like protein or a catalytic domain thereof, or a polypeptide having the same function, the invention further includes such proteins and polypeptides.


The methods of the present invention for selecting cell signaling gene sequences to target for manipulation permit better design and control of transgenic plants with more highly engineered phenotypes. The ability to control plant architecture and agronomically important traits in commercially important forestry species is improved by the information obtained from the methods, such as which genes affect which phenotypes, which genes affect signal transduction, which genes are active in which stage of plant development, and which genes are expressed in which tissue at a given point in the cell cycle or plant development.


Unless indicated otherwise, all technical and scientific terms are used herein in a manner that conforms to common technical usage. Generally, the nomenclature of this description and the described laboratory procedures, including cell culture, molecular genetics, and nucleic acid chemistry and hybridization, respectively, are well known and commonly employed in the art. Standard techniques are used for recombinant nucleic acid methods, oligonucleotide synthesis, cell culture, tissue culture, transformation, transfection, transduction, analytical chemistry, organic synthetic chemistry, chemical syntheses, chemical analysis, and pharmaceutical formulation and delivery. Generally, enzymatic reactions and purification and/or isolation steps are performed according to the manufacturers' specifications. Absent an indication to the contrary, the techniques and procedures in question are performed according to conventional methodology disclosed, for example, in Sambrook et al., Molecular Cloning A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), and F. M. Ausubel et al. (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. (2002). Specific scientific methods relevant to the present invention are discussed in more detail below. However, this discussion is provided as an example only, and does not limit the manner in which the methods of the invention can be carried out.


I. Plant Cell Signaling Genes and Gene Products

A. Cell Signaling Genes, Polynucleotide and Polypeptide Sequences


One aspect of the present invention relates to novel cell signaling genes and polypeptides encoded by such genes.


The present invention provides novel plant cell signaling genes and polynucleotides and novel cell signaling proteins and polypeptides. The SEQ ID NOs of exemplary cell signaling genes and their corresponding gene products, i.e. oliogonucleotides and proteins, are set forth in TABLE 1. In accordance with one embodiment of the invention, the cell signaling genes are the same as those expressed in a wild-type plant of a species of Pinus or Eucalyptus. Specific exemplary novel plant cell signaling gene sequences of the invention are set forth in TABLE 2, which comprises Eucalyptus grandis and Pinus radiata sequences. Corresponding gene products, i.e., proteins and oligonucleotides, are listed in TABLE 3 and TABLE 4.


Cell Signaling genes and gene products affect plant growth and development by a number of disparate mechanisms and biological pathways. Exemplary categories for some of these mechanisms and biological pathways include growth, development and phytohormone response genes, cellular receptor and related genes and intracellular transduction genes are provided. Exemplary genes and gene products for members of these categories are also provided.


1. Growth, Development and Phytohormone Response Genes and Gene Products


Ethylene Response Genes and Gene Products. Ethylene is an important phyotohormone, or plant hormone, because it is involved in virtually all stages of plant growth and development, effecting environmental and developmental responses. Ethylene participates in the regulation of processes such as germination of seeds, senescence, abscission, fruit ripening, responses to environmental stresses such as wounding, flooding, and changes in temperatures or light.


Ethylene is produced from methionine via the formation of S-adenosylmethionine (SAM), which in turn forms the non-protein amino acid, 1-aminocyclopropane-1-carboxylic acid (ACC). ACC is subsequently oxidized to the 2-carbon olefin, ethylene. Two enzymes are unique to the plant ethylene biosynthetic pathway.


One phytormone synthesis gene is 1-aminocyclopropane-1-carboxylate synthase. It is a pyridoxal phosphate dependent enzyme that converts SAM to ACC. Another phytormone synthesis gene is 1-aminocyclopropane-1-carboxylate oxidase. It catalyzes the oxidation of ACC to the 2-carbon olefin, ethylene. Adams and Yang, Proc. Natl. Acad. Sci. USA 76:170-174 (1979).


Ethylene production is tightly controlled by regulation of enzyme expression and modulation of enzyme activity dependent upon the availability of cofactors required for catalysis. ACC synthase and ACC oxidase are constituatively present in most plant tissues because small amounts of ethylene are necessary for virtually all stages of development. However, ethylene biosynthesis is increased significantly during fruit ripening. ACC synthase is considered to be the primary, though not exclusive, rate-limiting enzyme in the ethylene biosynthetic pathway, while the regulation of ethylene production via control of ACCO expression and ACCO activity are through to fine-tune the system.


Ethylene signal transduction initiates with ethylene binding at a family of ethylene receptors and terminates in a transcription cascade involving the EIN3/EIL and ERF families of plant-specific transcription factors. Two Arabidopsis F box proteins, called EBF1 and EBF2, have been identified that interact physically with EIN3/EIL transcription factors. See Potuschak et al., Cell. 115(6):679-89 (2003). EBF1 overexpression results in plants insensitive to ethylene.


During fruit ripening, and through this mechanism, ethylene induces the expression of a number of genes and gene products. Yang & Hoffman, Annu. Rev. Plant Physio]. 35:155-189 (1984); Abeles et al., Ethylene In Plant Biology, Academic Press, San Diego (1992). For example, the ethylene-responsive elongation factor (EF-TS) is a mitochondrial elongation factor which promotes guanine nucleotide exchange during polypeptide synthesis. See Benichou et al., Plant Mol. Biol. 53(3):411-22 (2003).


Gibberellin Response Genes and Gene Products. Another major class of phytohormone is tetracyclic diterpenoids, called Gibberellins (GA). GAs are involved in many processes during plant growth and development, including seed germination, stem elongation, flowering, and fruit development. See Hedden and Kamiya, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:431-60 (1997). Bioactive GAs are perceived at the plasma membrane of the plant cell. See Lovegrove et al., Plant J. 15:311-320 (1998). A number of potential components of the GA signaling pathway have been identified using cell biological, pharmacological, and genetic approaches. See Thornton et al., Trends Plant ScL 4:424-428 (1999); Lovegrove and Hooley, Trends Plant ScL 5:102-110 (2000).


It is thought that de novo biosynthesis is the main source of bioactive GA in growing tissues and, as such, the enzymes are likely to be the regulators of GA-related growth. See Huang et al., Plant Physio]. 118(3):773-81 (1998). In Arabidopsis, there are at least five loci involved in GA biosynthesis: GA1, GA2, GA3, GA4, and GA5. See Koornneef and van der Veen, Theor. Appl. Genet. 58:257-263 (1980). For a complete review of the proposed biosynthetic pathway see Finkelstein and Zeevaart, Gibberellins and abscisic acid 1n Arabidopsis (C R Somerville, E M Meyerowitz, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 523-553 (1984). Briefly, the first reaction of the GA biosynthesis pathway is the cyclization of geranylgeranyl pyrophosphate to ent-kaurene, a two-step conversion. Copalyl diphosphate synthase, formerly ent-kaurene synthetase A, the enzyme responsible for the first part of the reaction, is encoded by the GA1 locus and has been cloned. See Sun et al., Plant Cell 4:119-128 (1992). The GA2 locus encodes ent-kaurene synthase, which completes the conversion of geranylgeranyl pyrophosphate to ent-kaurene. It is thought that the GA3 locus encodes a Cyt P450 monooxygenase which catalyzes the oxidation of ent-kaurene to ent-kaurenoic acid. It is also thought that GA5 and GA4 encode GA20-oxidase and GA3-hydroxylase, respectively. Both genes have been cloned, and GA5 protein produced in vitro exhibits GA20-oxidase activity. See Chiang et al., Plant Cell 7:195-201 (1995); Xu et al., Proc. Natl. Acad. Sci. U.S.A. 92:6640-6644 (1995).


GA20-oxidase catalyzes what is thought to be an important aspect of the regulation of the GA biosynthetic pathway—the oxidation of GA at carbon-20. In spinach, enhanced oxidation activity is associated with the bolting response. See Gilmour et al., Plant Physiol. 82:190-195 (1986). In maize seedlings, GA20-oxidase activity is down-regulated as a result of feedback control. See Karssen et al. (eds), Prooress in Plant Growth Regulation, pp 534-544, Kluwer Academic Publishers, Dordrecht, The Netherlands (1992). In Arabidopsis, GA20-oxidase is up-regulated when plants are transferred from short-day to long-day conditions. Likewise, it is down-regulated when plants are treated with bioactive GA. Accordingly, it is thought that the developmental and environmental regulation of 20-oxidase gene expression influences plant growth by affecting the level of endogenous gibberellic acid. See Huang et al., Plant Physiol. 118(3):773-81 (1998).


As such, catabolism of GAs is an important regulator of the endogenous levels of bioactive gibberellins. In many plant species, bioactive GA are 2-hydroxylated to produce biologically inactive proteins. This step is catalyzed by GA 2-oxidase. This enzyme also inactivates immediate precursors of bioactive GAs. See Ross et al., Plant J. 7:513-523 (1995). The expression levels of GA 2-oxidase have been correlated to the presence of bioactive GA. In total, both GA biosynthesis genes and gene products and GA catabolism genes and gene products are regulated through feedback to maintain endogenous levels of bioactive GAs. See Sakamoto et al, Plant Physiol. 125(3):1508-16 (2001).



Arabidopsis mutants that are GA-deficient display characteristic phenotypes, including dark green leaves and a dwarf growth habit attributable to reduced stem elongation. See Peng and Harberd, Plant Physiol. 113:1051-1058 (1997). A semidominant mutation of Arabidopsis, gibberellic acid insensitive (GAI), also confers a dark green, dwarf phenotype. It is thought that the gal mutation affects either GA perception or subsequent signal transduction. Likewise, it is thought that GAI, and its known suppressors, modulate a signal-transduction pathway that represses growth and is opposed by gibberellic acid. See Peng et al., Genes Dev. 11(23):3194-205 (1997).


Brassinosteroid Response Genes and Gene Products. Brassinosteroids (BRs) are widely distributed throughout the plant kingdom and elicit unique growth promoting activity when applied exogenously. Mandava, Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:23-52 (1988). In many species, BR-deficient mutants show strong dwarfism with dark-green rugose leaves, reduced apical dominance and reduced male fertility. Also, Arabidopsis BR-deficient mutants have a prolonged vegetative phase and delayed leaf and chloroplast senescence. See Chory and Li, Plant Cell Environ. 20:801-806 (1997).


One Arabidopsis BR-deficiency causing mutation, det2, has been cloned and shown to encode a protein analogous to mammalian steroid 5α-reductases. See Li et al., Science 272:398-401 (1996). In mammals, steroid hormones are synthesized from cholesterol via pregnenolone through a series of reactions that modify the ring structure and the side chain of the sterol. Similarly, BRs are thought to be derived from several major phytosterols (e.g., campesterol, sitosterol, and stigmasterol) via multiple oxidation steps. In many mammalian steroid hormones, the reduction of a 4,5 double bond, as catalyzed by 5α-reductase, serves to modulate the biological activity of the steroid hormone. In contrast, known naturally occurring and biologically active BRs lack double bonds in the A and B rings and contain a 5-reduced stereochemistry. Accordingly, it is thought that a steroid 5-reductase must be required for the formation of the trans A/B ring junction that is essential for the biological activity of BRs. See Li et al., Proc. Natl. Mad. Sci. U.S.A. 94(8):3554-59 (1997).


Likewise, another Arabidopsis BR-deficiency causing mutation, cpd, has been cloned and characterized. See Szekeres et al., Cell 85:171-182 (1996). The CPD protein shares sequence homology with several mammalian cytochrome P450 proteins, including several steroid hydroxylases. Mutations in CPD cause phenotypic defects that are similar to those of det2 mutations. Moreover, brassinolide treatment restores a wild-type phenotype to cpd mutants. Accordingly, these and other studies suggest that CPD may encode a steroid 23-hydroxylase.


Much like the control of mammalian steroid biological activity, it is thought that BRs are modulated through a mechanism of hormone inactivation by sulfonation. In this regard, a plant enzyme that catalyzes the O-sulfonation of brassinosteroids and of mammalian estrogenic steroids has been cloned and characterized. See Rouleau et al., J. Biol. Chem. 274(30):20925-30 (1999). This steroid sulfotransferase catalyzes a reaction which abolishes BRs biological activity in the bean second internode bioassay. Moreover, the expression of the steroid sulfotransferase genes in some species was found to be induced by salicylic acid, a well-known signal molecule in the plant defense response. This pattern of expression suggests that, in addition to an increased synthesis of proteins having antimicrobial properties, plants respond to pathogen infection by modulating steroid-dependent growth and developmental processes.


Additionally, a large number of Arabidopsis BR-insensitive mutants have been characterized and shown to possess a mutation of the same gene. See Li and Chory, Cell 90:929-938 (1997). This gene was cloned and shown to possess homology to LRR receptor kinases. As such, it is thought that the BR steroid receptor is a LRR receptor in the plasma membrane.


Cytokinin Response Genes and Gene Products. The phytohormone cytokinin plays a major role in many developmental processes and environmental responses of plants, including leaf senescence, apical dominance, chloroplast development, anthocyanin production, and the regulation of cell division and sink/source relationships. See Hutchison and Kieber, Plant Cell. 14:S47-59 (2002). Cytokinins first were identified by their ability to promote cell division in cultured cells in combination with another phytohormone, auxin. See Skoog and Miller, Symp. Soc. Exp. Biol. 1:118-131 (1957). It is thought that the influence of cytokinins on morphogenesis is primarily achieved through cell cycle regulation. See Werner et al., Proc. Natl. Acad. Sci. USA 98(18):10487-92 (2001). The hormone is required for S-phase entry in leaf mesophyllprotoplasts and tobacco pith explants. See Cooke and Meyer, Planta 152:1-7 (1991); Mok and Mok (eds.), Cytokinins: Chemistry, Activity and Function, CRC, Boca Raton, Fla. (1994). Additionally, several cell cycle genes are regulated by cytokinins, including, cdc2, CycD3, and others. See, e.g., Hemerly et al., Plant Cell 5:1711-1723 (1993); Riou-Khamlichi et al., Science 283, 1541-1544 (1999).


Similar to other phytohormones, the existence of pathways for the degradation and conjugation of cytokinins suggests that the level of these compounds are tightly regulated. For example, Cytokinin oxidase catalyzes the irreversible degradation of in a single enzymatic step by oxidative side chain cleavage. See Schmulling et al., J. Plant Res. 116(3):241-52 (2003).


Several of the enzymes encoding the proteins that catalyze these metabolic reactions have been cloned (see, for example, Houba-Hérin et al., Plant J. 17:615-626 (1999); Martin et al., Plant Physiol. 120:553-557 (1999), Martin et al., Proc. Natl. Acad. Sci. USA 96:284-289 (1999); Martin et al., Proc. Natl. Acad. Sci. USA 98:5922-5926 (2001); and Morris et al., Biochem. Biophys. Res. Commun. 255:328-333 (1999)), as have the genes encoding a key enzyme in cytokinin biosynthesis, isopentyl transferase (see Kakimoto, Science 274:982-985 (2001); Takei et al., J. Biol. Chem. 276:26405-410 (2001)). Cytokinin biosynthesis and catabolism have been reviewed in depth, for example, in Haberer and Kieber, Plant Physiol. 128:354-362 (2001) and Mok and Mok, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:89-118 (2001).


The cytokinin cell signal transduction pathway has also been partially elucidated. See, e.g., Hutchison and Kieber, Plant Cell 14:S47-59 (2002). Briefly, cytokinins bind to cytokinin response 1 (CRE1) histidine kinase at the cell membrane, and most likely also to the histidine kinases AHK2 and AHK3. Binding induces autophosphorylation on a Histidine residue within the receptor's transmitter domain. Subsequently, the phosphate is transferred to an Asparagine residue within the fused receiver domain. Then, this phosphate is transferred to a Histidine residue on a phosphotransfer protein (AHP). The AHP translocates to the nucleus, where it activates a response regulator (ARR). The activated ARR then binds to elements within the promoter of other ARRs to increase their rate of transcription. Some ARRs feed back to inhibit their own expression and, possibly, cytokinin signaling in general.


Auxin Response Genes and Gene Products. Further, the first phytohormone discovered, Auxin, also may dramatically affect plant phenotype, growth and development. Auxin has been shown to impact a wide variety of developmental processes, such a stem elongation, apical dominance, root initiation and fruit development. Auxin was first identified as the chemical agent responsible for the phototropism of coleoptile tips. See Thiamann and Skoog, Vica faba. Proc. R. Soc. Lond. [Biol.] 114:317-339 (1934). Thiamann and Skoog, among others, discovered that auxin in higher plants is actually indole-3-acetic acid (IAA). It has been recommended that auxins, as a class of hormones, can be defined as any compound that has a biological activity similar to, but not necessarily identical with IAA. See Salisbury (Ed.), Units, Symbols and Terminology for Plant Physiology, Oxford University Press, New York, N.Y. (1996). These activities include, for example, the induction of cell elongation in isolated coleoptile or stem sections; the induction of cell division in callus tissues in the presence of a cytokinin; the promotion of lateral root formation at the cut surfaces of stems; the induction of parthenocarpic fruit growth; and the induction of ethylene formation.


Multiple IAA biosynthetic pathways exist in plants, both tryptophan-dependent and tryptophan-independent. In one pathway, called the indole-3-pyruvic acid (IPA) pathway, is thought to be the most common tryptophan-dependent biosynthetic pathway. The IPA pathway involves the deanimation of tryptophan to form IPA, followed by a decarboxylation reaction to form indole-3-acetaldehyde (IAid). IAid is then oxidized to form IAA. Alternatively, in the indole-3-acetonitrile (IAN) pathway, tryptophan is converted to indole-3-acetaldoxime and subsequently converted to IAN. A nitrilase then catalyzes the conversion of IAN to IAA.


Likewise, Auxin degradation may occur through may different pathways. In one, it is thought that peroxidase enzymes catalyze the oxidation of IAA to 3-methyleneoxindole. However, the physiological significance of the peroxidase pathway is unclear. See Normanly et al., Plant Physiol. 107:323-329 (1995). Two other oxidation pathways have been proposed for the degradation of IAA. In both, the final product is oxindole-3-acetic acid. See Davies (Ed.), Plant Hormones and Their Role in Plant Growth Development (2nd ed.), Kluwer, Dordrecht, Netherlands (1995).


Absicisic Acid Response Genes and Gene Products. Absicisic acid (ABA) functions in initiation and maintenance of seed and bud dormancy and response to stress. ABA exerts long-term and short-term control over plant development. Long term effects are mediated by ABA induced gene expression. ABA stimulates synthesis of RAB. ABA also is involved in plant development by interacting, typically as an antagonist, with auxin, cytokinin, and gibberellin. ABA also affects plant tolerance to water stress by preventing desiccation. Proteins which are responsive to ABA, “RAB proteins” are water soluble, rich in glycine and lysine, and low in hydrophobic residues. Rab regulates transport of proteins and RNA across nuclear envelope. Vernoud et al., supra. RAB proteins are discussed in more detail below.


2. Cellular Receptor and Related Genes and Gene Products


Likewise, cell surface receptors communicate outside stimuli and serve as initiation sites for intracellular signaling cascades. For example, a family of cellular receptor genes, including ETR1, ETR2, EIN4, ERS1, and ERS2, has been implicated in ethylene perception in Arabidopsis thaliana. See Hua et al., Cell 94:261-271 (1998). The ETR1 gene encodes an ethylene receptor, as indicated by the ethylene-binding activity of its amino-terminal domain. See Schaller et al., Science 270:1809-1811 (1995). The ETR2 gene products are cellular receptors involved in the development of different plant tissues. See Sakai et al., Proc. Natl. Acad. Sci. U.S.A. 95(10):5812-17 (1998).


G-Receptor Coupled Genes and Gene Products. G-receptor coupled receptors (GPCR) constitute another large superfamily of proteins that communicate signals across cell membrane. On the exterior side, they bind to a ligand (which could be a photon, hormone, antigen, growth factor or a neurotransmitter) and at the cytosolic side, they activate a GTP binding protein (G-protein). All GPCRs share one characteristic in that they consist of a single protein chain that crosses the cell membrane seven times. Loops that occur between the cell wall and the cell membrane take part in ligand recognition, while the second and third cytosolic loop and part of the C-terminal end of the receptors are implicated in G-protein recognition.


G proteins are characterized by three subunits: α, β and γ. The α subunit has two domains. Of the two, the function of only one, namely, the ras domain is known in somewhat detail. It contains a GDP/GTP binding site. A covalently attached lipid attaches this subunit to the lipid cell membrane bilayer. After the formation of the ligand-receptor complex, GNRP (guanine nucleotide release protein) catalyzes the removal of GDP and replaces it with GTP. Simultaneously, a subunit is dissociated from the β and γ subunits. Both the GTP-bound subunit and free subunits can activate downstream effectors. Such effectors include adenyl cyclase and ion channels. The cycle returns by the intrinsic GTPase activity of the α-subunit. It hydrolyzes GTP into GDP concomitant with reassociation of the α-subunit with the β and γ subunits.


GPCR is highly expressed in meristemic tissues. See Colucci et al., Proc. Nat'l Acad. Sci. U.S.A. 99:4736-41 (2002). GPCR overexpression in Arabidopsis results in loss of seed dormancy and shortening of time to flower and fruit set. Overexpression has been shown to lead to excessive cell division in meristem and initiation of additional meristems.


Antisense suppression of GCR1 in Arabidopsis results in a phenotype suggestive of a role in cytokinin signaling. See Hooley et al., Lond. B. Biol. Sci. 353:1425-30 (1998). Furthermore, transgenic Arabidopsis expression antisense GDR1 under the control of constitutive cauliflower mosaic virus 35S promoter show reduced sensitivity to cytokinins in roots and shoots, but respond normally to other plant hormones. This suggests a role for GCR1 in cytokinin signal transduction. Plakidou-Dymock et al., Curr. Biol. 12:315-24 (1998).


3. Intracellular Transducer Genes and Gene Products


Cell signaling genes and gene products also can be intracellular transducers along the signaling cascade. One intracellular transducer, the Mago nashi protein, has been studied extensively in Drosophila. See Newmark et al., Development 124(16):3197-207 (1997). Mago nashi gene products mediate the polarity of the developing Drosophila ooctye. A mago nashi gene analog has been found in rice. See Swidzinski et al., Genome 44(3):394-400 (2001). Mago nashi gene products were found to be expressed in root, leaf and developing seed tissue as determined by RNA and protein gel blot analysis.


Receptor kinases are also important cell signaling genes. The Ras superfamily of monomeric GTPases comprises Ras, Rab, and Rho/Rac. Ras and Rac relay signals from surface receptors to actin cytoskeleton. Members of Rab are involved in regulating intracellular membrane vesicle traffic. Ras proteins, which are located on inner surface of the membrane, are involved in initiating the kinase cascade that communicates signals from the receptor to the nucleus.


RAB exhibits high degree of functional and structural conservation in all eukaryotic cells studied. Haizel et al., Plant Physiol. 108:59-67 (1995). Rab GTPases are a large family of the small GTP-binding protein superfamily. Vernoud, et al., Plant Physiol. 131:1191 (2003). Rab has been shown to have a role in intracellular membrane trafficking and to be involved in membrane fusion events. Rab is also thought to be involved in intracellular transport from the ER to Golgi apparatus. Bown and Gatehouse, Plant Mol. Biol. 21:1195-99 (1993).


Rab GTPases cycle between inactive GDP-bound form located in cytosol and active GTP-bound form which is membrane associate. Upon binding to target membrane, the RAB GTPase is converted from GDP-bound form the GTP bound form through activation by RABGEF proteins. The intrinsic activity of monomeric GTP-binding proteins is very low. GAPs can modulate the cellular activity of these proteins by several orders of magnitude. Haizel. GAPs bind at specific effector-binding domains.


Most GTP-binding mRNAs are constitutively expressed in similar amounts, RAB1, RAB2, RAB5, RAB7 have elevated levels in root nodules, while certain RAB7, RAB8, and RAB11 are enriched in aerial parts of the plant suggesting that most small GTPases have housekeeping functions whereas a few are required for specialized activities that are important to specialized cells. See Borg et al., Plant J. 11:237-50 (1997).


The RAB11 protein is known to also possess regions which participate in GTP binding and hydrolysis. A c-terminal CCXX motif, essential for membrane attachment, is conserved in RAB11. Haizel et al., Plant Physiol. 108:59-67 (1995).


RAB5 is associated with early endosomes. See Haizel et al., supra. In vitro assays demonstrated that RAB5 controls early endosome fusion and plays a critical role in trafficking soluble cargoes from prevacuolar compartment to central vacuole during early endocytosis. See Gorvel et al. Cell 64:915-25; Sohn et al., Plant Cell 15:1057 (2003); Daitoku et al., Int J. Mol. Med. 8:397 (2001).


RAB7 affects the transport of cargo from early endosomes to late endosomes and lysosomes. See Feng et al., J. Cell Biol. 131:1435-52 (1995); Mukhopadhyay et al., J. Biol. Chem. 272:13055-59 (1997). In plants, RAB7 is localized in late endosomes. Additionally, RAB7 has a conserved effector domain, YKATIGADF. RAB7 has a c-terminal motif that differs from RAB11 (CXC motif). Haizel et al., supra.


Ras-related nuclear protein (RAN) is a 25 kDa nuclear GTP-binding protein with a highly conserved amino acid sequence among plants, animals and fungi. Ach and Gruissem, Proc. Nat'l Acad. Sci. U.S.A. 91:5863-7 (1994). Ran complexes with chromatin-associated protein RCC1, a negative regulator of mitosis. Ran is thought to function in a GTPase switch involved in the coupling of the completion of DNA replication to onset of M phase. The role of Ran is thought to be broader, however, than regulation of mitosis only. For example, in tomato, Ran has been shown to be constitutively expressed in all tissues, regardless of the stage of cell cycle. Furthermore, the levels of tomato Ran mRNA do not change during fruit development. In interphase cells, RAN GTPases direct nucleocytoplasmic transport. Like other GTPases, RAN cycles between GDP and GTP bound states. However for RAN, GTP binding and hydrolysis is linked to transport into or out of the nucleus. Unlike other GTPases, RAN is not post-translationally lipid modified and does not associate with cellular membranes. Vernoud et al., supra at 1203.


Ras GTPases are shown to regulate cell proliferation in yeast and mammalian systems. Vernoud, et al., Plant Physiol. 131:1191 (2003). This group includes the Rho GTPases. The Rho GTPases are involved in assembly of actin cytoskeleton. Haizel et al., supra. Ras, however, has not yet been identified in plants. Instead, the Ras homologs RAB and RHO have been characterized. Functionally, Ras is activated by the release of GDP. The binding of GTP begins a cascade event. Ras recruits and then binds Raf. The binding of Ras to Raf initiates a phosphorylation cascade called the MAPK cascade. The ethylene receptor ETR1, is thought to pass its signal to CTR1, a protein kinase of the Raf family. In the context of the phosphorylation cascade, Raf is referred to as MAP kinase kinase kinase (MAPKKK). MAPKKK phosphorylates MAPKK which phosphorylates MAPK. MAPK enters the nucleus where it activates other protein kinases, transcription factors, and regulatory proteins.


Three types of receptor-like kinases are known in plants. S receptor kinases have an S domain which consists of 10 cysteins in a particular arrangement with other amino acids. SRK genes are expressed predominantly in pistols. Leucine rich repeat receptors possess a beta-sheet with an exposed face that participates in protein-protein interactions. These proteins are involved in disease resistance by recognition of ligands produced by pathogens and the subsequent activation of intracellular defense response. See Bent et al., Plant Cell 8:1757:71 (1996)). S receptor kinases are also involved in the normal development of plants.


At least one class of intracellular transducers, 14-3-3 proteins, function as regulators of a wide range of biological processes. One feature of 14-3-3 proteins is their ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. 14-3-3 proteins interact directly with different target proteins. Typically the target protein is phosphorylated, enabling binding of 14-3-3 to the target protein, altering its activity. 14-3-3 binding can is known to directly alter protein activity (either positively or negatively), control nuclear-cytoplasmic shuttling, mediate protein import into mitochondria and chloroplasts, and form a scaffold to permit interactions between two different binding proteins. 14-3-3 proteins are also known to be involved in cell signaling. For example, response to plant pathogens involve 14-3-3 proteins and calmodulin-domain protein kinases (CDPK), MAP kinase pathways, lipoxygenases and ion channels have been identified as potential targets for 14-3-3 proteins important in defense.


The sequences of the invention encode proteins involved in cell signaling. These proteins include 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. As discussed in more detail below, manipulation of the expression of the cell signaling genes and polynucleotides, or manipulation of the activity of the encoded proteins and polypeptides, can result in a transgenic plant with a desired phenotype that differs from the phenotype of a wild-type plant of the same species.


Throughout this description, reference is made to cell signaling gene products. As used herein, a “cell signaling gene product” is a product encoded by a cell signaling gene, and includes both nucleotide products, such as RNA, and amino acid products, such as proteins and polypeptides. Examples of specific cell signaling genes of the invention include SEQ ID NOs: 1-197. Examples of specific cell signaling gene products of the invention include products encoded by any one of SEQ ID NOs: 198-583. Reference also is made herein to cell signaling proteins and cell signaling polypeptides. Examples of specific cell signaling proteins and polypeptides of the invention include polypeptides encoded by any of SEQ ID NOs: 1-197 or polypeptides comprising the amino acid sequence of any of SEQ ID NOs: 198-394.


The present invention also includes sequences that are complements, reverse sequences, or reverse complements to the nucleotide sequences disclosed herein.


The present invention also includes conservative variants of the sequences disclosed herein. The term “variant,” as used herein, refers to a nucleotide or amino acid sequence that differs in one or more nucleotide bases or amino acid residues from the reference sequence of which it is a variant.


Thus, in one aspect, the invention includes conservative variant polynucleotides. As used herein, the term “conservative variant polynucleotide” refers to a polynucleotide that hybridizes under stringent conditions to an oligonucleotide probe that, under comparable conditions, binds to the reference gene the conservative variant is a variant of. Thus, for example, a conservative variant of SEQ ID NO: 1 hybridizes under stringent conditions to an oligonucleotide probe that, under comparable conditions, binds to SEQ ID NO: 1. For example, sequences are considered to hybridize when they form a double-stranded complex in a hybridization solution of 6×SSC, 0.5% SDS, 5×Denhardt's solution and 100 μg of non-specific carrier DNA. See F. M. Ausubel et al. (Eds.), Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. (2002). “Moderate stringency” is defined as a temperature of 60° C. in a hybridization solution of 6×SSC, 0.5% SDS, 5×Denhardt's solution and 100 μg of non-specific carrier DNA. Id. “High stringency” hybridization conditions are, for example, 68° C. in a hybridization solution of 6×SSC, 0.5% SDS, 5×Denhardt's solution and 100 μg of non-specific carrier DNA. Id. Following the moderate stringency hybridization reaction, the nucleotides are washed in a solution of 2×SSC plus 0.05% SDS for five times at room temperature, with subsequent washes with 0.1×SSC plus 0.1% SDS at 60° C. for 1 h.


One aspect of the invention provides conservative variant polynucleotides that exhibit at least about 75% sequence identity to their respective reference sequences. “Sequence identity” has an art-recognized meaning and can be calculated using published techniques. See Computational Molecular Biology, Lesk, ed. (Oxford University Press, 1988), Biocomputinq: Informatics And Genome Projects, Smith, ed. (Academic Press, 1993), Computer Analysis Of Sequence Data, Part I, Griffin & Griffin, eds., (Humana Press, 1994), Sequence Analysis In Molecular Biology, Von Heinje ed., Academic Press (1987), Sequence Analysis Primer, Gribskov & Devereux, eds. (Macmillan Stockton Press, 1991), Gish et al., J. Mol. Biol. 215: 403 (1990); Gish and States, Nature Genet. 3: 266 (1993); Madden at al., Meth. Enzymol. 266:131 (1996); Altschul at al., Nucleic Acids Res. 25: 3389 (1997); and Zhang and Madden, Genome Res. 7: 649-656 (1997), and Carillo and Lipton, SIAM J. Applied Math. 48: 1073 (1988). Methods commonly employed to determine identity or similarity between two sequences include but are not limited to those disclosed in Guide To Huge Computers, Bishop, ed., (Academic Press, 1994) and Carillo & Lipton, supra.


Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include but are not limited to the GCG program package (Devereux et al., Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul et al., J. Mol. Biol. 215: 403 (1990)), and FASTDB (Brutlag et al., Comp. App. Biosci. 6: 237 (1990)).


The invention includes conservative variant polynucleotides having a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60% to any one of 1-29. In such variants, differences between the variant and the reference sequence can occur at the 5′ or 3′ terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.


Additional conservative variant polynucleotides contemplated by and encompassed within the present invention include polynucleotides comprising sequences that differ from the polynucleotide sequences of SEQ ID NOs: 1-197 or complements, reverse complements or reverse sequences thereof, as a result of deletions and/or insertions totaling less than 30% of the total sequence length. In one embodiment, deletions and/or insertions total less than 20% or less than 10% of the total length.


The invention also includes conservative variant polynucleotides that, in addition to sharing a high degree of similarity in their primary structure (sequence) to SEQ ID NOs have at least one of the following features: (i) they contain an open reading frame or partial open reading frame encoding a polypeptide having substantially the same functional properties in polynucleotide synthesis as the polypeptide encoded by the reference polynucleotide, or (ii) they have nucleotide domains or encoded protein domains in common. The invention includes conservative variants of SEQ ID NOs: 1-197 that encode proteins having the enzyme or biological activity or binding properties of the protein encoded by the reference polynucleotide. Such conservative variants are functional variants, in that they have the enzymatic or binding activity of the protein encoded by the reference polynucleotide.


In accordance with the invention, polynucleotide variants can include a “shuffled gene” such as those described in e.g. U.S. Pat. Nos. 6,500,639, 6,500,617, 6,436,675, 6,379,964, 6,352,859, 6,335,198, 6,326,204′ and 6,287,862. A variant of a nucleotide sequence of the present invention also can be a polynucleotide modified as disclosed in U.S. Pat. No. 6,132,970, which is incorporated herein by reference.


In accordance with one embodiment, the invention provides a polynucleotide that encodes a cell signaling protein such as 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein. SEQ ID NOs: 1-197 provide examples of such polynucleotides.


In accordance with another embodiment, a polynucleotide of the invention encodes the catalytic or protein binding domain of a polypeptide encoded by any of SEQ ID NOs: 1-197 or of a polypeptide comprising any of SEQ ID NOs: 198-394. The catalytic and protein binding domains of the polysaccharide synthesis proteins of the invention are known in the art. The conserved sequences of these proteins are shown in FIGS. 1-197 as underlined text.


The invention also encompasses as conservative variant polynucleotides that differ from the sequences discussed above but that, as a consequence of the degeneracy of the genetic code, encode a polypeptide which is the same as that encoded by a polynucleotide of the present invention. The invention also includes as conservative variants polynucleotides comprising sequences that differ from the polynucleotide sequences discussed above as a result of substitutions that do not affect the amino acid sequence of the encoded polypeptide sequence, or that result in conservative substitutions in the encoded polypeptide sequence.


The present invention also includes an isolated polypeptide encoded by a polynucleotide comprising any of SEQ ID NOs: 1-197 or any of the conservative variants thereof discussed above. The invention also includes polypeptides comprising SEQ ID NOs: 198-394 and conservative variants of these polypeptides.


In accordance with the invention, a variant polypeptide or protein refers to an amino acid sequence that is altered by the addition, deletion or substitution of one or more amino acids.


The invention includes conservative variant polypeptides. As used herein, the term “conservative variant polypeptide” refers to a polypeptide that has similar structural, chemical or biological properties to the protein it is a conservative variant of. Guidance in determining which amino acid residues can be substituted, inserted, or deleted can be found using computer programs well known in the art such as Vector NTI Suite (InforMax, MD) software. In one embodiment of the invention, conservative variant polypeptides that exhibit at least about 75% sequence identity to their respective reference sequences.


Conservative variant protein includes an “isoform” or “analog” of the polypeptide. Polypeptide isoforms and analogs refers to proteins having the same physical and physiological properties and the same biological function, but whose amino acid sequences differs by one or more amino acids or whose sequence includes anon-natural amino acid.


Polypeptides comprising sequences that differ from the polypeptide sequences of SEQ ID NO: 198-394 as a result of amino acid substitutions, insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated by and encompassed within the present invention.


One aspect of the invention provides conservative variant polypeptides function in cell signaling, as determined by one or more appropriate assays, such as those described below. The invention includes variant polypeptides which are cell signaling or cell signaling-like proteins, such as those participating in the regulation of ethylene synthesis or those genes that encode a peptide having the biological activity of a receptor kinase. As discussed above, the invention includes variant polynucleotides that encode polypeptides that function as cell signaling proteins.


In one embodiment, an isolated polynucleotide comprise a sequence encoding the catalytic or substrate-binding domain from a polypeptide selected from any one of SEQ ID NO: 198-394. In one aspect, the polynucleotide encodes a polypeptide having the same or similar activity of a polypeptide selected from any one of SEQ ID NO: 198-394.


The activities and physical properties of cell signaling proteins can be examined using any method known in the art. The following examples of assay methods are not exhaustive and are included to provide some guidance in examining the activity and distinguishing protein characteristics of cell signaling protein variants. In any case, any and all biological, chemical, enzymatic or radiologic assay method can be used to determine whether a polypeptide has the same or similar activity of another polypeptide.


One such assay monitors DNA synthesis by thymidine incorporation. DNA synthesis correlated, in most cases, with cellular growth. It is monitored in, for example, tissue samples from transformed and control plants by pulse labeling with about 1 μCi of [methyl-3H]thymidine (Ambersham Pharmacia Biotech, Benelux, Roosendaal, The Netherlands) for about 30 minutes at about 28° C. on a rotary shaker. Labeled cells can be collected by centrifugation and immediately frozen in liquid nitrogen. Total DNA and protein can be extracted by grinding and precipitated by standard techniques. Once collected, protein content can be measured using, for example, Bradford reagent (Bio-Rad Laboratories, Hercules, Calif.) or other techniques. Likewise, a protein sample can by hydrolyzed and incorporated radioactivity measured by scintillation counting. Upon quenching correction, total DNA synthesis can be expressed as Bq per μg of protein in the sample. DNA synthesis can also be measured, for example, using the flow cytometrical analysis of nuclei. See, e.g., Porceddu et al., J. Biol. Chem. 276(39):36354-360 (2001).


Biological assays using transgenic plants can indicate whether a putative cell signaling gene possesses a specific activity. For example, gibberellin-mutants tend to possess striking phenotypes. See Pend and Harberd, Plant Physiol. 113:1051-1058 (1997). Transgenic plants transformed with DNA constructs expressing a putative gibberellic acid insensitive (GAI) gene product, therefore, would be expected exhibit a distinctive GAI phenotype.


Phytohormone concentrations can also be measured. For example, gibberellin and abscisic acid content of transgenic and control plants can be measured using the technique of Green et al., Plant Physiol. 114(1):203-212 (1997). Briefly, tissue samples are extracted, purified and analyzed by GC-MS for gibberellins and abscisic acid. GC-MS permits the monitoring of characteristic ions corresponding to biologically gibberellins and biologically inactive gibberellins.


GA20-oxidase activity can be measured in protein extracts by the technique of Xu et al., Proc. Natl. Acad. Sci. USA 92(14):6640-6644 (1995). Briefly, extracts are concentrated and used to assay the oxidation of the substrates [14C]GA53 and [14C]GA19. The products of the assay are separated using HPLC, collected and again purified by reverse-phase HPLC. The samples are then analyzed by GC-MS.


Likewise, the inactivation of bioactive GA by GA 2-oxidase can be monitored by the technique of Ross et al., Plant J. 7:513-523 (1995).


In addition to biological assays using transgenic plants, brassionosteriods response genes and gene products can be measured. For example, a putative steroid sulfotransferase can be assayed using the technique of Rouleau et al., J. Biol. Chem. 274(30):20925-30 (1999). Briefly, a purified, recombinant gene product is tested for the ability to transfer the 35S-labeled sulfonate group from the cosubstrate PAPS (NEN Life Science Products) to brassionosteriods.


Additionally, a functional assay measuring steroid 5α-reductase activity has been described. See Li et al., Proc. Natl. Acad. Sci. USA 94:3554-3559 (1997). Briefly, the activity of recombinantly expressed steroid 5α-reductase proteins is measured by the reduction of radiolabeled progesterone to 4,5-dihydroprogesterone. Alternative radiolabeled substrates can be used.


Cytokinins can be measured directly by extraction from plant tissue and purification by HPLC. See Smart et al., Plant Cell 3:647-656 (1991). Cytokinin oxidases/dehydrogenases can be measured by the degradation of the cytokinins isopentenyladenine, zeatin, and their ribosides by oxidative side chain cleavage (for a review see Schmulling et al., J. Plant Res. 116(3):241-52 (2003). Likewise, activity can be inferred from interation of proteins with the cyclases/histidine kinases associated sensory extracellular domain of the CRE1/WOL/AHK4, AHK2, and AHK3 cellular receptors.


In the case of auxin response gene products, the activity of putative nitrolases can be determined by the technique of Nagasawa et al., Eur. J. Biochem. 194:765-772 (1990), using either thiophene-2-acetonitrile or indole-3-acetonitrile as a substrate.


Protein kinase acitivty can, for example, be measured by quantifying the amount of ATP remaining in solution following a kinase reaction. The kinase gene product is purified using standard techniques and combined with its substrate to form a kinase reaction. A non-radioactive assay is performed in a single well of a 96- or 384-well plate by adding a volume of luciferase reagent (Kinase-Glo™ Reagent, Promega Corporation, Madison Wis.) equal to the volume of solution in the well of a completed kinase reaction. Subsequently, luminescence is measured by a luminomiter. The luminescent signal is correlated with the amount of ATP and inversely correlated with the amount of kinase activity. This assay can be performed with virtually any kinase and substrate combination. The kinase substrate can be a peptide, protein or lipid. Additionally, radiologic methods for detecting kinase reactions are well known.


Likewise, putative SNF1-related protein kinases can, for example, be assayed using the methods of Huang and Huber, Plant Cell Physiol. 42(10):1079-87 (2001).


Putative G-coupled proteins can be verified by their ability to bind G-proteins. Briefly, putative G-coupled proteins are expressed as glutathione S-transferase fusion proteins and purified using glutathione-agarose beads. G protein subunits (Gi3, Gj2, and Go) from the desired plant species are recombinantly generated and labeled with [35S]methionine by in vitro translation. Glutathione S-transferase or recombinant G-coupled proteins proteins are incubated separately with G-proteins which are preincubated with necessary cofactors. The total input of each of the labeled G-protein can be resolved on SDS-PAGE gels stained with Coomassie Brilliant Blue, together with protein samples eluted from the binding assays. Some G-coupled protein activity can also be monitored, for example, through the activation of phospholipase C. See, e.g., Ghosh and Smrcka, Methods Mol. Biol. 237:67-75 (2004). Phospholipase C activity can also be measured on microsomal membrane preparations, according to the method described by Zhang et al., Planta 215:312-318 (2002)


Small GTP-binding proteins encoded by the Rab and Ran gene families can be monitored using GTP-binding assays or GAP assays. Briefly, GAP assays, filter-binding assays, and the loading small GTP-binding proteins with 5′-[γ32P]GTP can be done according to the method of Strom et al., Nature 361:736-739 (1993). For the analysis of reaction products by TLC, small GTP-binding proteins can be loaded with 5′-(α32P]GTP and purified by passage through Bio-Spin 6 chromatography columns (Bio-Rad). A GAP assay mixture can be analyzed by TLC. Aliquots can be spotted onto polyethyleneimine cellulose foils, and the chromatogram developed. The reaction products or the applied GTP and GDP standard can be visualized by autoradiography or by UV light, respectively.


B. Methods of Using Cell Signaling Genes, Polynucleotide and Polypeptide Sequences


The present invention provides methods of using cell signaling genes and conservative variants thereof. The invention includes methods and constructs for altering expression of cell signaling or cell signaling-like genes and/or gene products for purposes including, but not limited to (i) investigating the gene or gene product role in a cell signaling pathway and its ultimate effect on plant phenotype and (ii) to effect a change in plant phenotype. For example, the invention includes methods and tools for modifying wood quality, fiber development, wood lignin and polysaccharide content, fruit ripening, and plant growth and yield by altering expression of one or more cell signaling genes.


The invention comprises methods of altering the expression of any of the polysaccharide synthesis genes and variants discussed above. Thus, for example, the invention comprises altering expression of a cell signaling gene present in the genome of a wild-type plant of a species of Eucalyptus or Pinus. In one embodiment, the cell signaling gene comprises a nucleotide sequence selected from SEQ ID NOs: 1-197 sequences or the conservative variants thereof, as discussed above.


1. Techniques to Alter Gene Expression


Techniques which can be employed in accordance with the present invention to alter gene expression, include, but are not limited to: (i) over-expressing a gene product, (ii) disrupting a gene's transcript, such as disrupting a gene's mRNA transcript; (iii) disrupting the function of a polypeptide encoded by a gene, or (iv) disrupting the gene itself. Over-expression of a gene product, the use of antisense RNAs, ribozymes, and the use of double-stranded RNA interference (dsRNAi) are valuable techniques for discovering the functional effects of a gene and for generating plants with a phenotype that is different from a wild-type plant of the same species.


Over-expression of a target gene often is accomplished by cloning the gene or cDNA into an expression vector and introducing the vector into recipient cells. Alternatively, over-expression can be accomplished by introducing exogenous promoters into cells to drive expression of genes residing in the genome. The effect of over-expression of a given gene on cell function, biochemical and/or physiological properties can then be evaluated by comparing plants transformed to over-express the gene to plants that have not been transformed to over-express the gene.


Antisense RNA, ribozyme, and dsRNAi technologies typically target RNA transcripts of genes, usually mRNA. Antisense RNA technology involves expressing in, or introducing into, a cell an RNA molecule (or RNA derivative) that is complementary to, or antisense to, sequences found in a particular mRNA in a cell. By associating with the mRNA, the antisense RNA can inhibit translation of the encoded gene product. The use of antisense technology to reduce or inhibit the expression of specific plant genes has been described, for example in European Patent Publication No. 271988, Smith et al., Nature, 334:724-726 (1988); Smith et. al., Plant Mol. Biol., 14:369-379 (1990)).


A ribozyme is an RNA that has both a catalytic domain and a sequence that is complementary to a particular mRNA. The ribozyme functions by associating with the mRNA (through the complementary domain of the ribozyme) and then cleaving (degrading) the message using the catalytic domain.


RNA interference (RNAi) involves a post-transcriptional gene silencing (PTGS) regulatory process, in which the steady-state level of a specific mRNA is reduced by sequence-specific degradation of the transcribed, usually fully processed mRNA without an alteration in the rate of de novo transcription of the target gene itself. The RNAi technique is discussed, for example, in Elibashir, et al., Methods Enzymol. 26:199 (2002); McManus & Sharp, Nature Rev. Genetics 3:737 (2002); PCT application WO 01/75164; Martinez et al., Cell 110:563 (2002); Elbashir et al., supra; Lagos-Quintana et al., Curr. Biol. 12:735 (2002); Tuschl et al., Nature Biotechnol. 20:446 (2002); Tuschl, Chembiochem. 2:239 (2001); Harborth et al., J. Cell Sci. 114:4557 (2001); et al., EMBO J. 20:6877 (2001); Lagos-Quintana et al., Science 294:8538 (2001); Hutvagner et al., loc cit, 834; Elbashir et al., Nature 411:494 (2001).


2. DNA Constructs


The present invention provides a DNA construct comprising at least one polynucleotide of SEQ ID NOs: 1-197 or conservative variants thereof, such as the conservative variants discussed above. Any method known in the art can be used to generate the DNA constructs of the present invention. See, e.g., Sambrook et al., supra.


The invention includes DNA constructs that optionally comprise a promoter. Any suitable promoter known in the art can be used. A promoter is a nucleic acid, preferably DNA, that binds RNA polymerase and/or other transcription regulatory elements. As with any promoter, the promoters of the invention facilitate or control the transcription of DNA or RNA to generate an mRNA molecule from a nucleic acid molecule that is operably linked to the promoter. The RNA can encode a protein or polypeptide or can encode an antisense RNA molecule or a molecule useful in RNAi. Promoters useful in the invention include constitutive promoters, inducible promoters, temporally regulated promoters and tissue-preferred promoters.


Examples of useful constitutive plant promoters include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (Odel et al., Nature 313:810 (1985)); the nopaline synthase promoter (An et al., Plant Physiol. 88:547 (1988)); and the octopine synthase promoter (Fromm et al., Plant Cell 1:977 (1989)). It should be noted that, although the CaMV 35S promoter is commonly referred to as a constitutive promoter, some tissue preference can be seen. The use of CaMV 35S is envisioned by the present invention, regardless of any tissue preference which may be exhibited during use in the present invention.


Inducible promoters regulate gene expression in response to environmental, hormonal, or chemical signals. Examples of hormone inducible promoters include auxin-inducible promoters (Baumann et al., Plant Cell 11:323-334 (1999)), cytokinin-inducible promoters (Guevara-Garcia, Plant Mol. Biol. 38:743-753 (1998)), and gibberellin-responsive promoters (Shi et al. Plant Mol. Biol. 38:1053-1060 (1998)). Additionally, promoters responsive to heat, light, wounding, pathogen resistance, and chemicals such as methyl jasmonate or salicylic acid, can be used in the DNA constructs and methods of the present invention.


Tissue-preferred promoters allow for preferred expression of polynucleotides of the invention in certain plant tissue. Tissue-preferred promoters are also useful for directing the expression of antisense RNA or iRNA in certain plant tissues, which can be useful for inhibiting or completely blocking the expression of targeted genes as discussed above. As used herein, vascular plant tissue refers to xylem, phloem or vascular cambium tissue. Other preferred tissue includes apical meristem, root, seed, and flower. In one aspect, the tissue-preferred promoters of the invention are either “xylem-preferred,” “cambium-preferred” or “phloem-preferred,” and preferentially direct expression of an operably linked nucleic acid sequence in the xylem, cambium or phloem, respectively. In another aspect, the DNA constructs of the invention comprise promoters that are tissue-specific for xylem, cambium or phloem, wherein the promoters are only active in the xylem, cambium or phloem.


A vascular-preferred promoter is preferentially active in any of the xylem, phloem or cambium tissues, or in at least two of the three tissue types. A vascular-specific promoter is specifically active in any of the xylem, phloem or cambium, or in at least two of the three. In other words, the promoters are only active in the xylem, cambium or phloem tissue of plants. Note, however, that because of solute transport in plants, a product that is specifically or preferentially expressed in a tissue may be found elsewhere in the plant after expression has occurred.


Additionally, the promoters of particular cell signaling genes may be expressed only within the cambium in developing secondary vasculature. Within the cambium, particular polysaccharide synthesis gene promoters may be expressed exclusively in the stem or in the root. Moreover, the cell signaling promoters may be expressed only in the spring or only in the summer, fall or winter.


A promoter may be operably linked to the polynucleotide. As used in this context, operably linked refers to linking a polynucleotide encoding a structural gene to a promoter such that the promoter controls transcription of the structural gene. If the desired polynucleotide comprises a sequence encoding a protein product, the coding region can be operably linked to regulatory elements, such as to a promoter and a terminator, that bring about expression of an associated messenger RNA transcript and/or a protein product encoded by the desired polynucleotide. In this instance, the polynucleotide is operably linked in the 5′- to 3′-orientation to a promoter and, optionally, a terminator sequence.


Alternatively, the invention provides DNA constructs comprising a polynucleotide in an “antisense” orientation, the transcription of which produces nucleic acids that can form secondary structures that affect expression of an endogenous cell signaling gene in the plant cell. In another variation, the DNA construct may comprise a polynucleotide that yields a double-stranded RNA product upon transcription that initiates RNA interference of a cell signaling gene with which the polynucleotide is associated. A polynucleotide of the present invention can be positioned within a t-DNA, such that the left and right t-DNA border sequences flank or are on either side of the polynucleotide.


It should be understood that the invention includes DNA constructs comprising one or more of any of the polynucleotides discussed above. Thus, for example, a construct may comprise a t-DNA comprising one, two, three, four, five, six, seven, eight, nine, ten, or more polynucleotides.


The invention also includes DNA constructs comprising a promoter that includes one or more regulatory elements. Alternatively, the invention includes DNA constructs comprising a regulatory element that is separate from a promoter. Regulatory elements confer a number of important characteristics upon a promoter region. Some elements bind transcription factors that enhance the rate of transcription of the operably linked nucleic acid. Other elements bind repressors that inhibit transcription activity. The effect of transcription factors on promoter activity can determine whether the promoter activity is high or low, i.e. whether the promoter is “strong” or “weak.”


A DNA construct of the invention can include a nucleotide sequence that serves as a selectable marker useful in identifying and selecting transformed plant cells or plants. Examples of such markers include, but are not limited to, a neomycin phosphotransferase (nptII) gene (Potrykus et al., Mol. Gen. Genet. 199:183-188 (1985)), which confers kanamycin resistance. Cells expressing the nptII gene can be selected using an appropriate antibiotic such as kanamycin or G418. Other commonly used selectable markers include a mutant EPSP synthase gene (Hinchee et al., BioTechnology 6:915-922 (1988)), which confers glyphosate resistance; and a mutant acetolactate synthase gene (ALS), which confers imidazolinone or sulphonylurea resistance (European Patent Application No. 154,204).


The present invention also includes vectors comprising the DNA constructs discussed above. The vectors can include an origin of replication (replicons) for a particular host cell. Various prokaryotic replicons are known to those skilled in the art, and function to direct autonomous replication and maintenance of a recombinant molecule in a prokaryotic host cell.


For example, pMON530 is an Agrobacterium-based plant transformation vector for use in transformation of dicotyledonous plants is plasmid vector (Rogers et al., Improved vectors for plant transformation: expression cassette vectors and new selectable markers, in Recombinant DNA Methodology, Wu et al. (Ed.), Academic Press, San Diego, Calif. (1989). Another useful plasmid is pMON530, a derivative of pMON505, prepared by transferring the 2.3 kb Stul-HindIII fragment of pMON316 into pMON526. Plasmid pMON526 is a simple derivative of pMON505 in which the SmaI site is removed by digestion with XmaI, treatment with Klenow polymerase and ligation. Plasmid pMON530 retains all the properties of pMON505 and the CaMV35S-NOS expression cassette, but contains a unique cleavage site for SmaI between the promoter and polyadenylation signal.


Binary vector pMON505 is a derivative of pMON200 (Rogers et al., supra) in which the Ti plasmid homology region, LIH, is replaced with a 3.8 kb HindIII to SmaI segment of the mini RK2 plasmid, pTJS75 (Schmidhauser and Helinski, J. Bacteriol. 164(1):446-55 (1985)). This segment contains the RK2 origin of replication, oriV, and the origin of transfer, oriT, for conjugation into Agrobacterium using the tri-parental mating procedure. Horsch and Klee., Proc. Natl. Acad. Sci. U.S.A. 83:4428 (1986). Plasmid pMON505 retains all the important features of pMON200 including the synthetic multi-linker for insertion of desired DNA fragments, the chimeric NOS/NPTII′/NOS gene for kanamycin resistance in plant cells, the spectinomycin/streptomycin resistance determinant for selection in E. coli and A. tumefaciens, an intact nopaline synthase gene for facile scoring of transformants and inheritance in progeny, and a pBR322 origin of replication for ease in making large amounts of the vector in E. coli. Plasmid pMON505 contains a single T-DNA border derived from the right end of the pTiT37 nopaline-type T-DNA. Southern blot analyses demonstrate that plasmid pMON505 and any DNA that it carries are integrated into the plant genome, that is, the entire plasmid is the T-DNA that is inserted into the plant genome. One end of the integrated DNA is located between the right border sequence and the nopaline synthase gene and the other end is between the border sequence and the pBR322 sequences.


A particularly useful Ti plasmid cassette vector is pMON17227. This vector is described in WO 92/04449 and contains a gene encoding an enzyme conferring glyphosate resistance (denominated CP4), which is an excellent selection marker gene for many plants, including potato and tomato. The gene is fused to the Arabidopsis EPSPS chloroplast transit peptide (CTP2), and expression is driven by the promoter of choice.


In one embodiment, the DNA constructs comprise the polynucleotides pWVR8 or pART27 as described in Gleave, Plant Mol. Biol. 20:1203-27 (1992), or a fragment thereof. In another embodiment, the DNA constructs comprise any suitably modified Ti plasmid or a fragment thereof.


In one embodiment, the DNA constructs comprise at least one polynucleotide having any one of the sequences of SEQ ID NO: 1-197 and conservative variants thereof. In a further embodiment, the DNA constructs comprise a promoter such that the promoter is operably linked to the one or more polynucleotides. In another aspect, the promoter can be a constitutive promoter, a strong promoter, an inducible promoter, a regulatable promoter, a temporally regulated promoter, or a tissue-preferred promoter.


3. Transformed Host Cells, Plant Tissue and Plants


The invention also provides host cells which are transformed with the DNA constructs of the invention. As used herein, a host cell refers to the cell in which a polynucleotide of the invention is expressed. Accordingly, a host cell can be an individual cell, a cell culture or cells that are part of an organism. The host cell can also be a portion of an embryo, endosperm, sperm or egg cell, or a fertilized egg. In one aspect, the host cell is a plant cell. In another aspect, the plant cell is transformed with at least one polynucleotide selected from SEQ ID NO: 1-197.


The present invention further provides transgenic plants comprising the DNA constructs of the invention. The invention includes transgenic plants that are angiosperms or gymnosperms. The DNA constructs of the present invention can be used to transform a variety of plants, both monocotyledonous (e.g. grasses, corn, grains, oat, wheat and barley), dicotyledonous (e.g., Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and Gymnosperms (e.g., Scots pine disclosed in Aronen et al., Tree Physiol. 15(1):65-70 (1995), white spruce disclosed in Ellis et al., Plant Mol. Biol. 17(1):19-27 (1991)), and larch (Huang et al., In Vitro Cell 27:201-207 (1991)).


The plants also include turfgrass, wheat, maize, rice, sugar beet, potato, tomato, lettuce, carrot, strawberry, cassaya, sweet potato, geranium, soybean, and various types of woody plants. Woody plants include trees such as palm oak, pine, maple, fir, apple, fig, plum and acacia. Woody plants also include rose and grape vines.


In one embodiment, a transgenic plant is provided comprising at least one polynucleotide selected from SEQ ID NO: 1-197.


In one embodiment, the DNA constructs of the invention are used to transform woody plants, i.e., trees or shrubs whose stems live for a number of years and increase in diameter each year by the addition of woody tissue. The invention includes methods of transforming plants including eucalyptus and pine species of significance in the commercial forestry industry such as plants selected from the group consisting of Eucalyptus grandis and its hybrids, and Pinus taeda, as well as the transformed plants and wood and wood pulp derived therefrom. Other examples of suitable plants include those selected from the group consisting of Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus eldarica, Pinus ellioti, Pinus jeffreyi, Pinus lambertiana, Pinus massoniana, Pinus monticola, Pinus nigra, Pinus palustris, Pinus pinaster, Pinus ponderosa, Pinus radiata, Pinus resinosa, Pinus rigida, Pinus serotina, Pinus strobis, Pinus sylvestris, Pinus taeda, Pinus virginiana, Abies amabilis, Abies balsamea, Abies concolor, Abies grandis, Abies lasiocarpa, Abies magnifica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Juniperus virginiana, Larix decidua, Larix laricina, Larix leptolepis, Larix occidentalis, Larix siberica, Libocedrus decurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseudotsuga menziesii, Sequoia gigantea, Sequoia sempervirens, Taxodium distichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occidentalis, Thuja plicata, Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botryoides, Eucalyptus bridgesiana, Eucalyptus calophylla, Eucalyptus camaldulensis, Eucalyptus citriodora, Eucalyptus cladocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus dalrympleana, Eucalyptus deglupta, Eucalyptus delagatensis, Eucalyptus diversicolor, Eucalyptus dunnii, Eucalyptus ficifolia, Eucalyptus globulus, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevopinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus melliodora, Eucalyptus nicholii, Eucalyptus nitens, Eucalyptus nova-angelica, Eucalyptus obliqua, Eucalyptus occidentalis, Eucalyptus obtusiflora, Eucalyptus oreades, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resinifera, Eucalyptus robusta, Eucalyptus rudis, Eucalyptus saligna, Eucalyptus sideroxylon, Eucalyptus stuartiana, Eucalyptus tereticomis, Eucalyptus torelliana, Eucalyptus umigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viridis, Eucalyptus wandoo, and Eucalyptus youmanni.


As used herein, the term “plant” also is intended to include the fruit, seeds, flower, strobilus, etc. of the plant. A transformed plant of the current invention can be a direct transfectant, meaning that the DNA construct was introduced directly into the plant, such as through Agrobacterium, or the plant can be the progeny of a transfected plant. The second or subsequent generation plant can be produced by sexual reproduction, i.e., fertilization. Furthermore, the plant can be a gametophyte (haploid stage) or a sporophyte (diploid stage).


As used herein, the term “plant tissue” encompasses any portion of a plant, including plant cells. Plant cells include suspension cultures, callus, embryos, meristematic regions, callus tissue, vascular tissue, apical meristem, vascular cambium, xylem, phloem, flower, leaves, roots, shoots, gametophytes, sporophytes, pollen, seeds and microspores. Plant tissues can be grown in liquid or solid culture, or in soil or suitable media in pots, greenhouses or fields. As used herein, “plant tissue” also refers to a clone of a plant, seed, progeny, or propagule, whether generated sexually or asexually, and descendents of any of these, such as cuttings, cone, fruit, and seeds.


In accordance with one aspect of the invention, a transgenic plant that has been transformed with a DNA construct of the invention has a phenotype that is different from a plant that has not been transformed with the DNA construct.


As used herein, “phenotype” refers to a distinguishing feature or characteristic of a plant which can be altered according to the present invention by integrating one or more DNA constructs of the invention into the genome of at least one plant cell of a plant. The DNA construct can confer a change in the phenotype of a transformed plant by modifying any one or more of a number of genetic, molecular, biochemical, physiological, morphological, or agronomic characteristics or properties of the transformed plant cell or plant as a whole.


For example, gibberellic acid insensitive plants have characteristic phenotypes typified by dark green leaves and reduced stem elongation resulting in a dwarf growth habit. See. Peng and Harberd, Plant Physiol. 113:1051-1058 (1997). Thus, plant stem cell growth can be modulated by altering the GA cell signaling cascade, its biosynthesis or degradation. Gene and gene products which catalyze each of these events can be used to increase or decrease plant stem cell growth. In this manner, the polynucleotides of the invention can be used to modulate GA cell signaling cascade, its biosynthesis or degradation, and thereby mediate plant growth.


In one embodiment, transformation of a plant with a DNA construct of the present invention can yield a phenotype including, but not limited to any one or more of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides.


In another embodiment, the affected phenotype includes one or more of the following traits: propensity to form reaction wood, a reduced period of juvenility, an increased period of juvenility, self-abscising branches, accelerated reproductive development or delayed reproductive development, as compared to a plant of the same species that has not been transformed with the DNA construct.


In a further embodiment, the phenotype that is different in the transgenic plant includes one or more of the following: lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape.


Phenotype can be assessed by any suitable means. The plants can be evaluated based on their general morphology. Transgenic plants can be observed with the naked eye, can be weighed and their height measured. The plant can be examined by isolating individual layers of plant tissue, namely phloem and cambium, which is further sectioned into meristematic cells, early expansion, late expansion, secondary wall formation, and late cell maturation. See, e.g., Hertzberg, supra. The plants also can be assessed using microscopic analysis or chemical analysis.


Microscopic analysis includes examining cell types, stage of development, and stain uptake by tissues and cells. Fiber morphology, such as fiber wall thickness and microfibril angle of wood pulp fibers can be observed using, for example, microscopic transmission ellipsometry. See Ye and Sundström, Tappi J. 80:181 (1997). Wood strength, density, and grain slope in wet wood and standing trees can be determined by measuring the visible and near infrared spectral data in conjunction with multivariate analysis. See U.S. Patent Application Publication Nos. 2002/0107644 and 2002/0113212. Lumen size can be measured using scanning electron microscopy. Lignin structure and chemical properties can be observed using nuclear magnetic resonance spectroscopy as described in Marita et al., J. Chem. Soc., Perkin Trans. I 2939 (2001).


The biochemical characteristic of lignin, cellulose, carbohydrates and other plant extracts can be evaluated by any standard analytical method known including spectrophotometry, fluorescence spectroscopy, HPLC, mass spectroscopy, and tissue staining methods.


In one embodiment, the making of a transformed plant comprises transforming a plant cell with a DNA construct and culturing the transformed plant cell under conditions that promote growth of a plant.


As used herein, “transformation” refers to a process by which a nucleic acid is inserted into the genome of a plant cell. Such insertion encompasses stable introduction into the plant cell and transmission to progeny. Transformation also refers to transient insertion of a nucleic acid, wherein the resulting transformant transiently expresses the nucleic acid. Transformation can occur under natural or artificial conditions using various methods well known in the art. See, e.g., Glick and Thompson (Eds.), Methods In Plant Molecular Biology, CRC Press, Boca Raton, Fla. (1993). Transformation can be achieved by any known method for the insertion of nucleic acid sequences into a prokaryotic or eukaryotic host cell, including Agrobacterium-mediated transformation protocols (see, e.g., Horsch et al., Science 227:1229-31 (1985), viral infection, whiskers, electroporation (see, e.g., Rhodes et al., Science 240(4849):204-207 (1988), microinjection, polyethylene glycol-treatment (see, e.g., Lyznik et al., Plant Mol. Biol. 13:151-161 (1989), heat shock, lipofection, and particle bombardment (see, e.g., Klein et al., Plant Physiol. 91:440-444 (1989) and Boynton et al., Science 240(4858):1534-1538 (1988)). Transformation can also be accomplished using chloroplast transformation as described in, for example, Svab et al., Proc. Natl. Acad. Sci. 87:8526-30 (1990).


Plant transformation strategies are described in, for example, U.S. Pat. Nos. 5,159,135 (cotton), 5,981,840 (corn), 5,914,451 (soybean), and WO 00/12715 (eucalyptus), which are incorporated by reference in their entirety. Additional plant transformation strategies and techniques are reviewed in Birch, R. G., Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:297 (1997) and Forester et al., Exp. Agric. 33:15-33 (1997), and are incorporated by reference in their entirety


Methods for transforming tree species are well known in the art. In accordance with one embodiment of the invention, genotype-independent transformation of Eucalyptus explants and generation of transgenic progeny can be accomplished by transformation using Agrobacterium. A tree explant can be, although need not be, harvested and cultured on a pre-culture medium before transformation. Although a pre-culture medium is not necessary, use of such a medium can increase transformation efficiency and plant regeneration. A pre-culture medium is a nutrient medium upon which plant explants can be cultured before transformation with Agrobacterium. Any pre-culture media and time periods of culture can be used. The pre-culture medium contains an Agrobacterium inducer, such as acetosyringone. The pre-culture medium can optionally contain plant growth regulators, including auxin and cytokinin. Pre-culture medium can be prepared using and appropriate salt medium, including, but not limited to Woody Plant Medium (WPM) salts (Lloyd and McCown, Combined Proceedings of the International Plant Propagators Society 30:421-427, 1980), Murashige and Skoog medium (Sigma Aldrich, St. Louis, Mo.) or Lepoivre medium. The pre-culture medium can contain Agrobacterium inducers, such as, for example acetosyringone. Optionally, pre-culture medium can contain auxin, cytokinin, or both auxin and cytokinin. An exemplary plant pre-culture medium is shown in TABLE 5.









TABLE 5







Exemplary Plant Pre-Culture Medium.










Medium
Amount per



Components
Liter of Medium






WPM salts
1 package




(Sigma)











Ca(NO3)2•4H2O
3.7
g



MgSO4•4H2O
0.37
g



Nicotinic Acid
0.5
mg



Thiamine•HCl
0.5
mg



Pyridoxin•HCl
0.5
mg



D-Pantothenic Acid
1.0
mg



Myo-inositol
0.1
g



BA
0.1-1
mg



Bacto-agar
5-8
g



Acetosyringone
5-200
mg



NAA
0.2-3
mg



zeatin
1-6
mg









In this transformation method, plant explants can be pre-cultured for four days in the dark on the pre-culture medium. Induced Agrobacterium culture can be prepared by methods known in the art. The induced culture is applied to a plant explant. Explants can be transformed by application of Agrobacterium culture to the explant, vacuum infiltration, floral dip, etc. Following transformation, Agrobacterium culture-treated explants can be co-cultivated with Agrobacterium under light or dark conditions for 2-10 days. In one embodiment, the explants are co-cultivated with Agrobacterium under light or dark conditions for 4 days.


Following co-cultivation, explants can be transferred to regeneration medium with 400 mg/L timentin. Explants can be cultured on regeneration medium before transfer to a selection medium. In one embodiment, explants are cultured on regeneration medium for four days. Any suitable selection medium can be used. In one embodiment, the selection medium is the regeneration medium supplemented with both timentin and an herbicide selection agent. TABLE 6 provides an exemplary regeneration medium.









TABLE 6







Exemplary Plant Regeneration Medium.










Components for 1 Liter of Medium
Grams













KNO3
1



NH4H2PO4
0.25



MgSO4•7H2O
0.25



CaCl2•2H2O
0.10



FeSO4•7H2O
0.0139



Na2EDTA•2H2O
0.01865



MES (Duchefa m1501)
600.0



MS Micro (½ strength)




MnSO4•H2O
0.00845



ZnSO4•7H2O
0.0043



CuSO4•5H2O
0.0000125



CoCl2•6H2O
0.0000125



KI
0.000415



H3BO3
0.0031



Na2MoO4•2H2O
0.000125



Plant Growth Regulators




Zeatin




NAA (naphthalene acetic acid)




Sugars




Glucose/Sucrose
20.0



Myo-inositol
0.100



Amino Acid and Vitamin Mix




Nicotinic Acid
0.010



Thiamine
0.010



Ca Pantothenate
0.001



Pyridoxine
0.001



Biotin
0.00001



Ascorbic Acid
0.050



L-glutamine
0.1



Arginine
0.0258



Glycine
0.00199



Lysine
0.0508



Methionine
0.0132



Phenylalanine
0.0257



Serine
0.00904



Threonine
0.00852



Tryptophan
0.0122



Tyrosine
0.0127



Gelling Agent




Gelrite
3.0









Shoot clumps that survive selection are maintained on regeneration medium containing herbicide and timentin. The shoot clumps can be transferred until shoots proliferate and initially elongate. In one embodiment, the shoot clumps are transferred every 3 weeks.


Any reporter gene can be used, such as, for example, GFP, luciferase, or GUS. See, e.g., B. Miki and S. McHugh, J. Biotechnol. 107(3):193-232 (2004).


In one embodiment, GUS staining can performed to monitor the frequency of Agrobacterium infection and to ensure that the selected shoots are not escapes or chimeras. Leaf and stem tissues from the regenerated shoots can be stained for reporter gene expression immediately upon shoot development. For example, to determine GUS activity, the explants can be incubated in a substrate comprising 100 mM phosphate buffer (pH 7.0), 0.05% dimethyl suphoxide, 0.05% Triton X-100, 10 mM EDTA, 0.5 mM potassium ferrocyanide, and 1.5 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-gluc). The explants can then be subjected to 10 minutes of vacuum before an overnight incubation at 37° C. prior to counting GUS foci.


In accordance with another embodiment, transformation of Pinus is accomplished using the methods described in U.S. Patent Application Publication No. 2002/0100083.


C. Compositions and Methods for Enhancing Woody Plants


Another aspect of the invention provides methods of obtaining wood and/or making wood pulp from a plant transformed with a DNA construct of the invention. Methods of producing a transgenic plant are provided above and are known in the art. A transformed plant can be cultured or grown under any suitable conditions. For example, pine can be cultured and grown as described in U.S. Patent Application Publication No. 2002/0100083. Eucalyptus can be cultured and grown as in, for example, Rydelius, et al., “Growing Eucalyptus for Pulp and Energy,” presented at the Mechanization in Short Rotation, Intensive Culture Forestry Conference, Mobile, Ala., 1994. Wood and wood pulp can be obtained from the plant by any means known in the art.


As noted above, the wood or wood pulp obtained in accordance with this invention may demonstrate improved characteristics including, but not limited to any one or more of lignin composition, lignin structure, wood composition, cellulose polymerization, fiber dimensions, ratio of fibers to other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape include increased or decreased lignin content, increased accessibility of lignin to chemical treatments, improved reactivity of lignin, increased or decreased cellulose content increased dimensional stability, increased tensile strength, increased shear strength, increased compression strength, increased shock resistance, increased stiffness, increased or decreased hardness, decreased spirality, decreased shrinkage, and differences in weight, density, and specific gravity.


II. Expression Profiling of Cell Signaling Genes

The present invention also provides methods and tools for performing expression profiling of cell signaling genes. Expression profiling is useful in determining whether genes are transcribed or translated, comparing transcript levels for particular genes in different tissues, genotyping, estimating DNA copy number, determining identity of descent, measuring mRNA decay rates, identifying protein binding sites, determining subcellular localization of gene products, correlating gene expression to a phenotype or other phenomenon, and determining the effect on other genes of the manipulation of a particular gene. Expression profiling is particularly useful for identifying gene expression in complex, multigenic events. For this reason, expression profiling is useful in correlating polysaccharide synthesis gene expression to plant phenotype and formation of plant tissues and the interconnection thereof to the polysaccharide biosynthesis.


Only a small fraction of a plant's cell signaling genes are expressed at a given time in a given tissue sample, and all of the expressed genes may not affect the plant phenotype. To identify genes capable of affecting a phenotype of interest, the present invention provides methods and tools for determining, for example, a cell signaling gene expression profile at a given point in plant development and a cell signaling gene expression profile a given tissue sample. The invention also provides methods and tools for identifying cell signaling genes whose expression can be manipulated to alter plant phenotype. In support of these methods, the invention also provides methods and tools that distinguish expression of different genes of the same family, such as, for example, MAP Kinase and MAP kinase kinase proteins.


As used herein, “gene expression” refers to the process of transcription of a DNA sequence into an RNA sequence, followed by translation of the RNA into a protein, which may or may not undergo post-translational processing. Thus, the relationship between plant phenotype and cell signaling gene expression can be observed by detecting, quantitatively or qualitatively, changes in the level of RNA or protein. As used herein, the term “biological activity” includes, but is not limited to, the activity of a protein gene product, including enzyme activity, such as, for example, kinase activity.


The present invention provides oligonucleotides that are useful in these expression profiling methods. Each oligonucleotide is capable of hybridizing under a given set of conditions to a cell signaling gene or gene product. In one aspect of the invention, a plurality of oligonucleotides is provided, wherein each oligonucleotide hybridizes under a given set of conditions to a different cell signaling gene product. Examples of oligonucleotides of the present invention include SEQ ID NOs: 395-583. Each of the oligos of SEQ ID NOs 395-583 hybridizes under standard conditions to a different gene product of one of SEQ ID NOs: 1-197. The oligonucleotides of the invention are useful in determining the expression of one or more cell signaling genes in any of the above-described methods.


A. Cell, Tissue, Nucleic Acid, and Protein Samples


Samples for use in methods of the present invention may be derived from plant tissue. Suitable plant tissues include, but are not limited to, somatic embryos, pollen, leaves, stems, calli, stolons, microtubers, shoots, xylem, male strolbili, pollen cones, vascular tissue, apical meristem, vascular cambium, xylem, root, flower, and seed.


According to the present invention “plant tissue” is used as described previously herein. Plant tissue can be obtained from any of the plants types or species described supra.


In accordance with one aspect of the invention, samples can be obtained from plant tissue at different developmental stages, from plant tissue at various times of the year (e.g. spring versus summer), from plant tissues subject to different environmental conditions (e.g. variations in light and temperature) and/or from different types of plant tissue and cells. In accordance with one embodiment, plant tissue is obtained during various stages of maturity and during different seasons of the year. In a further embodiment, plant tissue is obtained from plants displaying different phenotypes. For example, plant tissue can be collected from stem dividing cells, differentiating xylem, early developing wood cells, differentiated early wood cells, and differentiated late wood cells. As another example, gene expression in a sample obtained from a plant with developing wood can be compared to gene expression in a sample obtained from a plant which does not have developing wood. As a further example, gene expression in a sample obtained from a plant displaying a reaction wood phenotype, such as compression wood or tension wood, can be compared to gene expression in a sample obtained from a plant which does not have reaction wood.


Differentiating xylem includes samples obtained from reaction wood. Reaction wood includes compression wood, side-wood, tension wood, and normal vertical xylem. Methods of obtaining samples for expression profiling from pine and eucalyptus are known. See, e.g., Allona et al., Proc. Nat'l Acad. Sci. 95:9693-8 (1998) and Whetton et al., Plant Mol. Biol. 47:275-91, and Kirst et al., Int'l Union of Forestry Research Organizations Biennial Conference, S6.8 (June 2003, Umea, Sweden).


In one embodiment of the invention, gene expression in one type of tissue is compared to gene expression in a different type of tissue or to gene expression in the same type of tissue in a difference stage of development. Gene expression can also be compared in one type of tissue which is sampled at various times during the year (different seasons). For example, gene expression in juvenile secondary xylem can be compared to gene expression in mature secondary xylem. Similarly, gene expression in cambium can be compared to gene expression in xylem. Furthermore, gene expression in apical meristems can be compared to gene expression in cambium.


In another embodiment of the invention, a sample is obtained from a plant having a specific phenotype and gene expression in that sample is compared to a sample obtained from a plant of the same species that does not have that phenotype. For example, a sample can be obtained from a plant exhibiting a fast rate of growth and gene expression can be compared with that of a sample obtained from a plant exhibiting a normal or slow rate of growth. Differentially, expressed genes identified from such a comparison can be correlated with growth rate and, therefore, useful for manipulating growth rate.


In a further embodiment, a sample is obtained from clonally propagated plants. In one embodiment the clonally propagated plants are of the species Pinus or Eucalyptus. Individual ramets from the same genotype can be sacrificed at different times of year. Thus, for any genotype there can be at least two genetically identical trees sacrificed, early in the season and late in the season. Each of these trees can be divided into juvenile (top) to mature (bottom) samples. Further, tissue samples can be divided into, for example, phloem to xylem, in at least 5 layers of peeling. Each of these samples can be evaluated for phenotype and gene expression.


Where cellular components may interfere with an analytical technique, such as a hybridization assay, enzyme assay, a ligand binding assay, or a biological activity assay, it may be desirable to isolate the gene products from such cellular components. Gene products, including nucleic acid and amino acid gene products, can be isolated from cell fragments or lysates by any method known in the art.


Nucleic acids used in accordance with the invention can be prepared by any available method or process, or by other processes as they become known in the art. Conventional techniques for isolating nucleic acids are detailed, for example, in Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology, Hybridization With Nucleic Acid Probes, chapter 3 (Elsevier Press, 1993), Berger and Kimmel, Methods Enzymol. 152:1 (1987), and Gibco BRL & Life Technologies Trizol RNA Isolation Protocol, Form No. 3786 (2000). Techniques for preparing nucleic acid samples, and sequencing polynucleotides from pine and eucalyptus are known. See, e.g., Allona et al., supra and Whetton et al., supra.


A suitable nucleic acid sample can contain any type of nucleic acid derived from the transcript of a cell signaling gene, i.e., RNA or a subsequence thereof or a nucleic acid for which an mRNA transcribed from a cell signaling gene served as a template. Suitable nucleic acids include cDNA reverse-transcribed from a transcript, RNA transcribed from that cDNA, DNA amplified from the cDNA, and RNA transcribed from the amplified DNA. Detection of such products or derived products is indicative of the presence and/or abundance of the transcript in the sample. Thus, suitable samples include, but are not limited to, transcripts of the gene or genes, cDNA reverse-transcribed from the transcript, cRNA transcribed from the cDNA, DNA amplified from the genes, and RNA transcribed from amplified DNA. As used herein, the category of “transcripts” includes but is not limited to pre-mRNA nascent transcripts, transcript processing intermediates, and mature mRNAs and degradation products thereof.


It is not necessary to monitor all types of transcripts to practice the invention. For example, the expression profiling methods of the invention can be conducted by detecting only one type of transcript, such as mature mRNA levels only.


In one aspect of the invention, a chromosomal DNA or cDNA library (comprising, for example, fluorescently labeled cDNA synthesized from total cell mRNA) is prepared for use in hybridization methods according to recognized methods in the art. See Sambrook et al., supra.


In another aspect of the invention, mRNA is amplified using, e.g., the MessageAmp kit (Ambion). In a further aspect, the mRNA is labeled with a detectable label. For example, mRNA can be labeled with a fluorescent chromophore, such as CyDye (Amersham Biosciences).


In some applications, it may be desirable to inhibit or destroy RNase that often is present in homogenates or lysates, before use in hybridization techniques. Methods of inhibiting or destroying nucleases are well known. In one embodiment of the invention, cells or tissues are homogenized in the presence of chaotropic agents to inhibit nuclease. In another embodiment, RNase is inhibited or destroyed by heat treatment, followed by proteinase treatment.


Protein samples can be obtained by any means known in the art. Protein samples useful in the methods of the invention include crude cell lysates and crude tissue homogenates. Alternatively, protein samples can be purified. Various methods of protein purification well known in the art can be found in Marshak et al., Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1996).


B. Detecting Levels of Gene Expression


For methods of the invention that comprise detecting a level of gene expression, any method for observing gene expression can be used, without limitation. Such methods include traditional nucleic acid hybridization techniques, polymerase chain reaction (PCR) based methods, and protein determination. The invention includes detection methods that use solid support-based assay formats as well as those that use solution-based assay formats.


Absolute measurements of the expression levels need not be made, although they can be made. The invention includes methods comprising comparisons of differences in expression levels between samples. Comparison of expression levels can be done visually or manually, or can be automated and done by a machine, using for example optical detection means. Subrahmanyam et al., Blood. 97: 2457 (2001); Prashar et al., Methods Enzymol. 303: 258 (1999). Hardware and software for analyzing differential expression of genes are available, and can be used in practicing the present invention. See, e.g., GenStat Software and GeneExpress® GX Explorer™ Training Manual, supra; Baxevanis & Francis-Ouellette, supra.


In accordance with one embodiment of the invention, nucleic acid hybridization techniques are used to observe gene expression. Exemplary hybridization techniques include Northern blotting, Southern blotting, solution hybridization, and S1 nuclease protection assays.


Nucleic acid hybridization typically involves contacting an oligonucleotide probe and a sample comprising nucleic acids under conditions where the probe can form stable hybrid duplexes with its complementary nucleic acid through complementary, base pairing. For example, see PCT application WO 99/32660; Berger & Kimmel, Methods Enzymol. 152: 1 (1987). The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. The detectable label can be present on the probe, or on the nucleic acid sample. In one embodiment, the nucleic acids of the sample are detectably labeled polynucleotides representing the mRNA transcripts present in a plant tissue (e.g., a cDNA library). Detectable labels are commonly radioactive or fluorescent labels, but any label capable of detection can be used. Labels can be incorporated by several approached described, for instance, in WO 99/32660, supra. In one aspect RNA can be amplified using the MessageAmp kit (Ambion) with the addition of aminoallyl-UTP as well as free UTP. The aminoallyl groups incorporated into the amplified RNA can be reacted with a fluorescent chromophore, such as CyDye (Amersham Biosciences)


Duplexes of nucleic acids are destabilized by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA:DNA, RNA:RNA or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature and/or lower salt and/or in the presence of destabilizing reagents) hybridization tolerates fewer mismatches.


Typically, stringent conditions for short probes (e.g., 10 to 50 nucleotide bases) will be those in which the salt concentration is at least about 0.01 to 1.0 M at pH 7.0 to 8.3 and the temperature is at least about 30° C. Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


Under some circumstances, it can be desirable to perform hybridization at conditions of low stringency, e.g., 6×SSPE-T (0.9 M NaCl, 60 mM NaH2PO4, pH 7.6, 6 mM EDTA, 0.005% Triton) at 37° C., to ensure hybridization. Subsequent washes can then be performed at higher stringency (e.g., 1×SSPE-T at 37° C.) to eliminate mismatched hybrid duplexes. Successive washes can be performed at increasingly higher stringency (e.g., down to as low as 0.25×SSPE-T at 37° C. to 50° C.) until a desired level of hybridization specificity is obtained.


In general, standard conditions for hybridization is a compromise between stringency (hybridization specificity) and signal intensity. Thus, in one embodiment of the invention, the hybridized nucleic acids are washed at successively higher stringency conditions and read between each wash. Analysis of the data sets produced in this manner will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest. For example, the final wash may be selected as that of the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity.


1. Oligonucleotide Probes


Oligonucleotide probes useful in nucleic acid hybridization techniques employed in the present invention are capable of binding to a nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing via hydrogen bond formation. A probe can include natural bases (i.e., A, G, U, C or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the nucleotide bases in the probes can be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, probes can be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages.


Oligonucleotide probes can be prepared by any means known in the art. Probes useful in the present invention are capable of hybridizing to a nucleotide product of a cell signaling gene, such as one of SEQ ID NOs: 1-197. Probes useful in the invention can be generated using the nucleotide sequences disclosed in SEQ ID NOs: 1-197. The invention includes oligonucleotide probes having at least a 2, 10, 15, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 100 nucleotide fragment of a corresponding contiguous sequence of any one of SEQ ID NOs: 1-197. The invention includes oligonucleotides of less than 2, 1, 0.5, 0.1, or 0.05 kb in length. In one embodiment, the oligonucleotide is 60 nucleotides in length. In another embodiment, the oligonucleotide is 30 nucleotides in length.


Oligonucleotide probes can be designed by any means known in the art. See, e.g., Li and Stormo, Bioinformatics 17: 1067-76 (2001). Oligonucleotide probe design can be effected using software. Exemplary software includes ArrayDesigner, GeneScan, and ProbeSelect. Probes complementary to a defined nucleic acid sequence can be synthesized chemically, generated from longer nucleotides using restriction enzymes, or can be obtained using techniques such as polymerase chain reaction (PCR). PCR methods are well known and are described, for example, in Innis et al., eds., PCR Protocols: A Guide to Methods and Applications, Academic Press Inc. San Diego, Calif. (1990). The probes can be labeled, for example, with a radioactive, biotinylated, or fluorescent tag. Optimally, the nucleic acids in the sample are labeled and the probes are not labeled. Oligonucleotide probes generated by the above methods can be used in solution or solid support-based methods.


The invention includes oligonucleotide probes that hybridize to a product of the coding region or a 3′ untranslated region (3′ UTR) of a cell signaling gene. In one embodiment, the oligonucleotide probe hybridizes to the 3′UTR of any one of SEQ ID NOs: 1-197. The 3′ UTR is generally a unique region of the gene, even among members of the same family. Therefore, the probes capable of hybridizing to a product of the 3′ UTR can be useful for differentiating the expression of individual genes within a family where the coding region of the genes likely are highly homologous. This allows for the design of oligonucleotide probes to be used as members of a plurality of oligonucleotides, each capable of uniquely binding to a single gene. In another embodiment, the oligonucleotide probe comprises any one of SEQ ID NOs: 395-583. In another embodiment, the oligonucleotide probe consists of any one of SEQ ID NOs: 1-197.


2. Oligonucleotide Array Methods


One embodiment of the invention employs two or more oligonucleotide probes in combination to detect a level of expression of one or more cell signaling genes, such as the genes of SEQ ID NOs: 1-197. In one aspect of this embodiment, the level of expression of two or more different genes is detected. The two or more genes may be from the same or different cell signaling gene families. Each of the two or more oligonucleotides may hybridize to a different one of the genes.


One embodiment of the invention employs two or more oligonucleotide probes, each of which specifically hybridize to a polynucleotide derived from the transcript of a gene provided by SEQ ID NOs: 1-197. Another embodiment employs two or more oligonucleotide probes, at least one of which comprises a nucleic acid sequence of SEQ ID NOs: 395-583. Another embodiment employs two or more oligonucleotide probes, at least one of which consists of SEQ ID NOs: 395-583.


The oligonucleotide probes may comprise from about 5 to about 60, or from about 5 to about 500, nucleotide bases, such as from about 60 to about nucleotide bases, including from about 15 to about 60 nucleotide bases.


One embodiment of the invention uses solid support-based oligonucleotide hybridization methods to detect gene expression. Solid support-based methods suitable for practicing the present invention are widely known and are described, for example, in PCT application WO 95/11755; Huber at al., Anal. Biochem. 299: 24 (2001); Meiyanto et al., Biotechniques. 31: 406 (2001); Relogio et al., Nucleic Acids Res. 30:e51 (2002). Any solid surface to which oligonucleotides can be bound, covalently or non-covalently, can be used. Such solid supports include filters, polyvinyl chloride dishes, silicon or glass based chips, etc.


One embodiment uses oligonucleotide arrays, i.e. microarrays, which can be used to simultaneously observe the expression of a number of genes or gene products. Oligonucleotide arrays comprise two or more oligonucleotide probes provided on a solid support, wherein each probe occupies a unique location on the support. The location of each probe may be predetermined, such that detection of a detectable signal at a given location is indicative of hybridization to an oligonucleotide probe of a known identity. Each predetermined location can contain more than one molecule of a probe, but each molecule within the predetermined location has an identical sequence. Such predetermined locations are termed features. There can be, for example, from 2, 10, 100, 1,000, 2,000 or 5,000 or more of such features on a single solid support. In one embodiment, each oligonucleotide is located at a unique position on an array at least 2, at least 3, at least 4, at least 5, at least 6, or at least 10 times.


Oligonucleotide probe arrays for detecting gene expression can be made and used according to conventional techniques described, for example, in Lockhart at al., Nat'l Biotech. 14: 1675 (1996), McGall et al., Proc. Nat'l Acad. Sci. USA 93: 13555 (1996), and Hughes et al., Nature Biotechnol. 19:342 (2001). A variety of oligonucleotide array designs is suitable for the practice of this invention.


In one embodiment the one or more oligonucleotides include a plurality of oligonucleotides that each hybridize to a different gene expressed in a particular tissue type. For example, the tissue can be developing wood.


In one embodiment, a nucleic acid sample obtained from a plant can be amplified and, optionally labeled with a detectable label. Any method of nucleic acid amplification and any detectable label suitable for such purpose can be used. For example, amplification reactions can be performed using, e.g. Ambion's MessageAmp, which creates “antisense” RNA or “aRNA” (complementary in nucleic acid sequence to the RNA extracted from the sample tissue). The RNA can optionally be labeled using CyDye fluorescent labels. During the amplification step, aaUTP is incorporated into the resulting aRNA. The CyDye fluorescent labels are coupled to the aaUTPs in a non-enzymatic reaction. Subsequent to the amplification and labeling steps, labeled amplified antisense RNAs are precipitated and washed with appropriate buffer, and then assayed for purity. For example, purity can be assay using a NanoDrop spectrophotometer. The nucleic acid sample is then contacted with an oligonucleotide array having, attached to a solid substrate (a “microarray slide”), oligonucleotide sample probes capable of hybridizing to nucleic acids of interest which may be present in the sample. The step of contacting is performed under conditions where hybridization can occur between the nucleic acids of interest and the oligonucleotide probes present on the array. The array is then washed to remove non-specifically bound nucleic acids and the signals from the labeled molecules that remain hybridized to oligonucleotide probes on the solid substrate are detected. The step of detection can be accomplished using any method appropriate to the type of label used. For example, the step of detecting can accomplished using a laser scanner and detector. For example, on can use and Axon scanner which optionally uses GenePix Pro software to analyze the position of the signal on the microarray slide.


Data from one or more microarray slides can be analyzed by any appropriate method known in the art.


Oligonucleotide probes used in the methods of the present invention, including microarray techniques, can be generated using PCR. PCR primers used in generating the probes are chosen, for example, based on the sequences of SEQ ID NOs: 1-197, to result in amplification of unique fragments of cell signaling genes (i.e., fragments that hybridize to only one polynucleotide of any one of SEQ ID NOs: 1-197 under standard hybridization conditions). Computer programs are useful in the design of primers with the required specificity and optimal hybridization properties. For example, Li and Stormo, supra, discuss a method of probe selection using ProbeSelect which selects an optimum oligonucleotide probe based on the entire gene sequence as well as other gene sequences to be probed at the same time.


In one embodiment, oligonucleotide control probes also are used. Exemplary control probes can fall into at least one of three categories referred to herein as (1) normalization controls, (2) expression level controls and (3) negative controls. In microarray methods, one or more of these control probes may be provided on the array with the inventive cell signaling gene-related oligonucleotides.


Normalization controls correct for dye biases, tissue biases, dust, slide irregularities, malformed slide spots, etc. Normalization controls are oligonucleotide or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample to be screened. The signals obtained from the normalization controls, after hybridization, provide a control for variations in hybridization conditions, label intensity, reading efficiency and other factors that can cause the signal of a perfect hybridization to vary between arrays. In one embodiment, signals (e.g., fluorescence intensity or radioactivity) read from all other probes used in the method are divided by the signal from the control probes, thereby normalizing the measurements.


Virtually any probe can serve as a normalization control. Hybridization efficiency varies, however, with base composition and probe length. Preferred normalization probes are selected to reflect the average length of the other probes being used, but they also can be selected to cover a range of lengths. Further, the normalization control(s) can be selected to reflect the average base composition of the other probes being used. In one embodiment, only one or a few normalization probes are used, and they are selected such that they hybridize well (i.e., without forming secondary structures) and do not match any test probes. In one embodiment, the normalization controls are mammalian genes.


Expression level control probes hybridize specifically with constitutively expressed genes present in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level control probes. Typically, expression level control probes have sequences complementary to subsequences of constitutively expressed “housekeeping genes” including, but not limited to certain photosynthesis genes.


As used herein, “negative control” probes are not complementary to any of the test oligonucleotides (i.e., the inventive cell signaling gene-related oligonucleotides), normalization controls, or expression controls. In one embodiment, the negative control is a mammalian gene which is not complementary to any other sequence in the sample.


The terms “background” and “background signal intensity” refer to hybridization signals resulting from non-specific binding or other interactions between the labeled target nucleic acids (i.e., mRNA present in the biological sample) and components of the oligonucleotide array. Background signals also can be produced by intrinsic fluorescence of the array components themselves.


A single background signal can be calculated for the entire array, or a different background signal can be calculated for each target nucleic acid. In a one embodiment, background is calculated as the average hybridization signal intensity for the lowest 5 to 10 percent of the oligonucleotide probes being used, or, where a different background signal is calculated for each target gene, for the lowest 5 to 10 percent of the probes for each gene. Where the oligonucleotide probes corresponding to a particular cell signaling gene hybridize well and, hence, appear to bind specifically to a target sequence, they should not be used in a background signal calculation. Alternatively, background can be calculated as the average hybridization signal intensity produced by hybridization to probes that are not complementary to any sequence found in the sample (e.g., probes directed to nucleic acids of the opposite sense or to genes not found in the sample). In microarray methods, background can be calculated as the average signal intensity produced by regions of the array that lack any oligonucleotides probes at all.


3. PCR-Based Methods


In another embodiment, PCR-based methods are used to detect gene expression. These methods include reverse-transcriptase-mediated polymerase chain reaction (RT-PCR) including real-time and endpoint quantitative reverse-transcriptase-mediated polymerase chain reaction (Q-RTPCR). These methods are well known in the art. For example, methods of quantitative PCR can be carried out using kits and methods that are commercially available from, for example, Applied BioSystems and Stratagene®. See also Kochanowski, Quantitative PCR Protocols (Humana Press, 1999); Innis et al., supra.; Vandesompele et al., Genome Biol. 3: RESEARCH0034 (2002); Stein, Cell Mol. Life. Sci. 59: 1235 (2002).


Gene expression can also be observed in solution using Q-RTPCR. Q-RTPCR relies on detection of a fluorescent signal produced proportionally during amplification of a PCR product. See Innis et al., supra. Like the traditional PCR method, this technique employs PCR oligonucleotide primers, typically 15-30 bases long, that hybridize to opposite strands and regions flanking the DNA region of interest. Additionally, a probe (e.g., TaqMan@, Applied Biosystems) is designed to hybridize to the target sequence between the forward and reverse primers traditionally used in the PCR technique. The probe is labeled at the 5′ end with a reporter fluorophore, such as 6-carboxyfluorescein (6-FAM) and a quencher fluorophore like 6-carboxy-tetramethyl-rhodamine (TAMRA). As long as the probe is intact, fluorescent energy transfer occurs which results in the absorbance of the fluorescence emission of the reporter fluorophore by the quenching fluorophore. As Taq polymerase extends the primer, however, the intrinsic 5′ to 3′ nuclease activity of Taq degrades the probe, releasing the reporter fluorophore. The increase in the fluorescence signal detected during the amplification cycle is proportional to the amount of product generated in each cycle.


The forward and reverse amplification primers and internal hybridization probe is designed to hybridize specifically and uniquely with one nucleotide derived from the transcript of a target gene. In one embodiment, the selection criteria for primer and probe sequences incorporates constraints regarding nucleotide content and size to accommodate TaqMan® requirements.


SYBR Green® can be used as a probe-less Q-RTPCR alternative to the Taqman®-type assay, discussed above. ABI Prism® 7900 Sequence Detection System User Guide Applied Biosystems, chap. 1-8, App. A-F. (2002).


A device measures changes in fluorescence emission intensity during PCR amplification. The measurement is done in “real time,” that is, as the amplification product accumulates in the reaction. Other methods can be used to measure changes in fluorescence resulting from probe digestion. For example, fluorescence polarization can distinguish between large and small molecules based on molecular tumbling (see, e.g., U.S. Pat. No. 5,593,867).


4. Protein Detection Methods


Proteins can be observed by any means known in the art, including immunological methods, enzyme assays and protein array/proteomics techniques.


Measurement of the translational state can be performed according to several protein methods. For example, whole genome monitoring of protein—the “proteome”—can be carried out by constructing a microarray in which binding sites comprise immobilized, preferably monoclonal, antibodies specific to a plurality of proteins having an amino acid sequence of any of SEQ ID NOs: 198-394 or proteins encoded by the genes of SEQ ID NOs: 1-197 or conservative variants thereof. See Wildt et al., Nature Biotechnol. 18: 989 (2000). Methods for making polyclonal and monoclonal antibodies are well known, as described, for instance, in Harlow & Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988).


Alternatively, proteins can be separated by two-dimensional gel electrophoresis systems. Two-dimensional gel electrophoresis is well-known in the art and typically involves isoelectric focusing along a first dimension followed by SDS-PAGE electrophoresis along a second dimension. See, e.g., Hames et al, Gel Electrophoresis of Proteins: A Practical Approach (IRL Press, 1990). The resulting electropherograms can be analyzed by numerous techniques, including mass spectrometric techniques, western blotting and immunoblot analysis using polyclonal and monoclonal antibodies, and internal and N-terminal micro-sequencing.


In another embodiment, cell signaling proteins can be detected by directly measuring their enzymatic activity. For example, cytokinin oxidase activity can be measured by a simple colormetric assay. See Libreros-Minotta et al., Anal. Biochem. 231:339-341 (1995). Likewise, cell signaling gene products can be detected directly or indirectly by the functional assays described supra in Part I.A. of this description.


C. Correlating Gene Expression to Phenotype


As discussed above, the invention provides methods and tools to correlate gene expression to plant phenotype. Gene expression may be examined in a plant having a phenotype of interest and compared to a plant that does not have the phenotype or has a different phenotype. Such a phenotype includes, but is not limited to, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides.


In another embodiment, the phenotype includes one or more of the following traits: propensity to form reaction wood, a reduced period of juvenility, an increased period of juvenility, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration.


In a further embodiment, the phenotype that is different from the comparative plant includes one or more of the following: lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. Phenotype can be assessed by any suitable means as discussed above, such as, for example Hertzberg, supra, Ye and Sundström, supra, U.S. Patent Application Publication Nos. 2002/0107644 and 2002/0113212, Marita et al., supra.


It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.


The following examples are given to illustrate the present invention. It should be understood, however, that the invention is not to be limited to the specific conditions or details described in these examples. Throughout the specification, any and all references to a publicly available document, including a U.S. patent, are specifically incorporated by reference in their entirety.


EXAMPLES
Example 1

Example 1 demonstrates the isolation and characterization of cell signaling genes from E. grandis and P. radiata.


Total RNA was extracted from plant tissue (using the protocol of Chang et al., Plant Mol. Biol. Rep. 11:113-116 (1993). Plant tissue samples were obtained from phloem (P), cambium (C), expanding xylem (X1), and differentiating and lignifying xylem (X2).


mRNA was isolated from the total RNA preparation using either a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, Calif.) or Dynal Beads Oligo (dT)25 (Dynal, Skogen, Norway). cDNA expression libraries were constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the using the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) using an aliquot (1-5 μL) from the 5 μL ligation reaction dependent upon the library. Mass excision of the library was done using XL1-Blue MRF' cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, Md.) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG).


Of the colonies plated and selected for DNA miniprep, 99% contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems Division, Foster City, Calif.) according to the manufacturer's protocol.


DNA sequence for positive clones was obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced first from the 5′ end and, in some cases, also from the 3′ end. For some clones, internal sequence was obtained using either Exonuclease III deletion analysis, yielding a library of differentially sized subclones in pBK-CMV, or by direct sequencing using gene-specific primers designed to identify regions of the gene of interest. The determined cDNA sequences are provided in SEQ ID NOS: 1-197. The predicted polypeptide sequences are SEQ ID NOs: 198-394.


To identify cell signaling gene candidates in P. radiata and E. grandis databases, cDNA sequences were compared to the Arabidopsis cell signaling gene superfamilies. Richmond and Somerville, Plant Physiol. 124:495 (2000).


Next, public domain sequences (by SWISS-PROT/TrEMBL ID's) were used to search against the pine and eucalyptus databases (non-redundant by contig, expect <1.0e−2). Probably pine and eucalyptus gene candidates were obtained. Of these, several pine and eucalyptus gene candidates were potentially full length (i.e. contained start Met) or near full length sequences.


The contig consensus DNA and protein sequences were then obtained for all gene candidates and duplicate sequences were identified. Multiple alignment was then carried out with the protein sequences. The protein alignment was created using the remaining pine and eucalyptus sequences along with the Arabidopsis members, and previously identified cell signaling genes. From the protein alignment, a dendogram was created. This dendogram grouped the sequence hits into cell signaling families. These sequences were analyzed by primer walking to provide a full length sequence (best HT pick from the contig analyzed for full length sequence).


The public domain cell signaling sequences from maize, cotton, rice, and poplar were also extracted and blasted against the pine and eucalyptus databases. The completed primer walked pine and eucalyptus sequences were also blasted against ownseq and the top 500 hits were taken. This was done so that the sequences could be used to search further and ensure that nothing in the pine and eucalyptus databases had been missed by using the Arabidopsis superfamily. This search resulted in the identification of additional sequences not found in the previous searches. These sequences were then also sent for primer walked full length sequence.


After removing a small number of additional duplicates after primer walking, the pine and eucalyptus primer walked cell signaling genes were identified. The classification of these sequences was confirmed by alignment with ClustalX, the corresponding dendogram, and MEME/MAST analysis.


Example 2

Example 2 demonstrates how additional regions either 5′ or 3′ of target sequences are identified and characterized.


To identify additional sequence 5′ or 3′ of a partial cDNA sequence in a cDNA library, 5′ and 3′ rapid amplification of cDNA ends (RACE) was performed. using the SMART RACE cDNA amplification kit (Clontech Laboratories, Palo Alto, Calif.). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, and then ligating of the SMART RACE. Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA. Gene-specific primers were designed to be used along with adaptor specific primers for both 5′ and 3′ RACE reactions. Using 5′ and 3′ RACE reactions, 5′ and 3′ RACE fragments were obtained, sequenced, and cloned. The process may be repeated until 5′ and 3′ ends of the full-length gene were identified. A full-length cDNA may generated by PCR using primers specific to 5′ and 3′ ends of the gene by end-to-end PCR.


For example, to amplify the missing 5′ region of a gene from first-strand cDNA, a primer was designed from the opposite strand of the template sequence, and from the region between ˜100-200 by of the template, sequence. A successful amplification should give an overlap of ˜100 by of DNA sequence between the 5′ end of the template and PCR product.


RNA was extracted from four pine tissues, namely seedling, xylem, phloem and structural root using the Concert Reagent Protocol (Invitrogen, Carlsbad, Calif.) and standard isolation and extraction procedures. The resulting RNA was then treated with DNase, using 10 U/μl DNase I (Roche Diagnostics, Basel, Switzerland). For 100 μg of RNA, 9 μl 10×DNase buffer (Invitrogen, Carlsbad, Calif.), 10 μl of Roche DNase 1 and 90 μl of Rnase-free water was used. The RNA was then incubated at room temperature for 15 minutes and 1/10 volume 25 mM EDTA is added. A RNeasy mini kit (Qiagen, Venlo, The Netherlands) was used for RNA purification according to manufacturer's protocol.


To synthesize cDNA, the extracted RNA from xylem, phloem, seedling and root was used and the SMART RACE cDNA amplification kit (Clontech Laboratories Inc, Palo Alto, Calif.) was followed according to manufacturer's protocol. For the RACE PCR, the cDNA from the four tissue types was combined. The master mix for PCR was created by combining equal volumes of cDNA from xylem, phloem, root and seedling tissues. PCR reactions were performed in 96 well PCR plates, with 1 μl of primer from primer dilution plate (10 mM) to corresponding well positions. 49 μl of master mix is aliquoted into the PCR plate with primers. Thermal cycling commenced on a GeneAmp 9700 (Applied Biosystems, Foster City, Calif.) obtaining 94° C. for 5 seconds, 72° C. for 3 minutes, 5 cycles, 94° C. for 5 seconds, 70° C. for 10 seconds, and 72° C. for 3 minutes, repeated for 5 cycles. Subsequently, the thermal cycling occurred at 94° C. for 5 seconds, 68° C. for 10 sec, and 72° C. for 3 minutes, repeated for 25 cycles.


cDNA was separated on an agarose gel following standard procedures. Gel fragments were excised and eluted from the gel by using the Qiagen 96-well Gel Elution kit, following the manufacturer's instructions.


PCR products were ligated into pGEMTeasy (Promega, Madison, Wis.) in a 96 well plate overnight according to the following specifications: 60-80 ng of DNA, 5 μl 2× rapid ligation buffer, 0.5 μl pGEMT easy vector, 0.1 μl DNA ligase, filled to 10 μl with water, and incubated overnight.


Each clone was transformed into E. coli following standard procedures and DNA was extracted from 12 clones picked by following standard protocols. DNA extraction and the DNA quality was verified on an 1% agarose gel. The presence of the correct size insert in each of the clones was determined by restriction digests, using the restriction endonuclease EcoRI, and gel electrophoresis, following standard laboratory procedures.


The transformation of Eucalyptus elite clones with a sense UDP-glucose binding domain sequence operably-linked to a constitutive promoter confers an enhanced growth phenotype, as evidenced by increases in cellulose synthesis, primary cell wall synthesis, wood density, and tensile strength. Leaf explants are harvested from stock Eucalyptus plants and the explants are cultured on a pre-treatment medium. The pre-culture medium comprises auxin, cytokinin, and an Agrobacterium inducer, such as acetosyringone, to stimulate cell division along the excised edges of the tissue explant. Following four days of pre-culture, the explants are inoculated with Agrobacterium strain GV2260 containing a plasmid bearing a portion of the UDP-glucose binding domain operably (inked to a ubiquitin promoter. The explants are co-cultivated for 3 days prior to transfer to Euc Regeneration medium. The explants are cultured on Eucalyptus Regeneration medium for days before transfer to selection medium containing an herbicide.


Following the selection of herbicide-resistant transformants, the transformants are assayed for GUS expression. Upon the confirmation of GUS expression, shoots are harvested and transferred to a rooting medium. The rooting medium comprises BTM-1 salts supplemented with 5 g/l MeadWestvaco Nuchar activated carbon, and rooting development usually occurs after 2-4 weeks. Upon development of the primary root system, the transformed plants are transferred to soil. The transgenic Eucalyptus plants carrying any one of SEQ ID NOs. 1-197 operably linked to a ubiquitin promoter exhibit modulated growth rates, responses to environmental cues and altered phenotypic traits.


Example 3

Example 3 illustrates a procedure for RNA extraction and purification, which is particularly useful for RNA obtained from conifer needle, xylem, cambium, and phloem.


Tissue is obtained from conifer needle, xylem, cambium or phloem. The tissue is frozen in liquid nitrogen and ground. The total RNA is extracted using Concert Plant RNA reagent (Invitrogen). The resulting RNA sample is extracted into phenol:chloroform and treated with DNase. The RNA is then incubated at 65° C. for 2 minutes followed by centrifugation at 4° C. for 30 minutes. Following centrifugation, the RNA is extracted into phenol at least 10 times to remove contaminants.


The RNA is further cleaned using RNeasy columns (Qiagen). The purified RNA is quantified using RiboGreen reagent (Molecular Probes) and purity assessed by gel electrophoresis.


RNA is then amplified using MessageAmp (Ambion). Aminoallyl-UTP and free UTP are added to the in vitro transcription of the purified RNA at a ratio of 4:1 aminoallyl-UTP-to-UTP. The aminoallyl-UTP is incorporated into the new RNA strand as it is transcribed. The amino-allyl group is then reacted with Cy dyes to attach the colorimetric label to the resulting amplified RNA using the Amersham procedure modified for use with RNA. Unincorporated dye is removed by ethanol precipitation. The labeled RNA is quantified spectrophotometrically (NanoDrop). The labeled RNA is fragmented by heating to 95° C. as described in Hughes et al., Nature Biotechnol. 19:342 (2001).


Example 4

Example 4 illustrates how cell signaling genes important for wood development in P. radiata can be determined and how oligonucleotides which uniquely bind to those genes can be designed and synthesized for use on a microarray.


Pine trees of the species P. radiata are grown under natural light conditions. Tissue samples are prepared as described in, e.g., Sterky et al., Proc. Nat'l Acad. Sci. 95:13330 (1998). Specifically, tissue samples are collected from woody trees having a height of 5 meters. Tissue samples of the woody trees are prepared by taking tangential sections through the cambial region of the stem. The stems are sectioned horizontally into sections ranging from juvenile (top) to mature (bottom). The stem sections separated by stage of development are further separated into 5 layers by peeling into sections of phloem, differentiating phloem, cambium, differentiating xylem, developing xylem, and mature xylem. Tissue samples, including leaves, buds, shoots, and roots are also prepared from seedlings of the species P. radiata.


RNA is isolated and ESTs generated as described in Example 1 or Sterky et al., supra. The nucleic acid sequences of ESTs derived from samples containing developing wood are compared with nucleic acid sequences of genes known to be involved in cell signaling. ESTs from samples that do not contain developing wood are also compared with sequences of genes known to be involved in the plant growth and development. An in silico hybridization analysis can then be performed using BLAST (NCBI).


Sequences from among the known cell signaling genes that show hybridization in silico to ESTs made from samples containing developing wood, but that do not hybridize to ESTs from samples not containing developing wood are selected for further examination.


cDNA clones containing sequences that hybridize to the genes showing wood-preferred expression are selected from cDNA libraries using techniques well known in the art of molecular biology. Using the sequence information, oligonucleotides are designed such that each oligonucleotide is specific for only one cDNA sequence in the library. The oligonucleotide sequences are provided in TABLE 4. 60-mer oligonucleotide probes are designed using the method of Li and Stormo, supra or using software such as ArrayDesigner, GeneScan, and ProbeSelect.


The oligonucleotides are then synthesized in situ described in Hughes et al., Nature Biotechnol. 19:324 (2002) or as described in Kane at al., Nucleic Acids Res. 28:4552 (2000) and affixed to an activated glass slide (Sigma-Genosis, The Woodlands, Tex.) using a 5′ amino linker. The position of each oligonucleotide on the slide is known.


Example 5

Example 5 illustrates how RNAs of tissues from multiple pine species, in this case both P. radiata and loblolly pine P. taeda trees, are selected for analysis of the pattern of gene expression associated with wood growth and development in the juvenile wood and mature wood forming sections of the trees using the microarrays derived from P. radiata cDNA sequences described in Example 4.


Open pollinated trees of approximately 16 years of age are selected from plantation-grown sites, in the United States for loblolly pine, and in New Zealand for radiata pine. Trees are felled during the spring and summer seasons to compare the expression of genes associated with these different developmental stages of wood formation. Trees are felled individually and trunk sections are removed from the bottom area approximately one to two meters from the base and within one to two meters below the live crown. The section removed from the basal end of the trunk contains mature wood. The section removed from below the live crown contains juvenile wood. Samples collected during the spring season are termed earlywood or springwood, while samples collected during the summer season are considered latewood or summerwood. Larson et al., Gen. Tech. Rep. FPL-GTR-129. Madison, Wis.: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. p. 42.


Tissues are isolated from the trunk sections such that phloem, cambium, developing xylem, and maturing xylem are removed. These tissues are collected only from the current year's growth ring. Upon tissue removal in each case, the material is immediately plunged into liquid nitrogen to preserve the nucleic acids and other components. The bark is peeled from the section and phloem tissue removed from the inner face of the bark by scraping with a razor blade. Cambium tissue is isolated from the outer face of the peeled section by gentle scraping of the surface. Developing xylem and lignifying xylem are isolated by sequentially performing more vigorous scraping of the remaining tissue. Tissues are transferred from liquid nitrogen into containers for long term storage at −70° C. until RNA extraction and subsequent analysis is performed.


Example 6

Example 6 illustrates procedures alternative to those used in Example for RNA extraction and purification, particularly useful for RNA obtained from a variety of tissues of woody plants, and a procedure for hybridization and data analysis using the arrays described in Example 4.


RNA is isolated according to the protocol of Chang et al., Plant Mol. Biol. Rep. 11:113-116 (1993). DNA is removed using DNase I (Invitrogen, Carlsbad, Calif.) according to the manufacturer's recommendations. The integrity of the RNA samples is determined using the Agilent 2100 Bioanalyzer (Agilent Technologies, USA).


10 μg of total RNA from each tissue is reverse transcribed into cDNA using known methods.


In the case of Pinus radiata phloem tissue, it can be difficult to extract sufficient amounts of total RNA for normal labelling procedures. Total RNA is extracted and treated as previously described and 100 ng of total RNA is amplified using the Ovation™ Nanosample RNA Amplification system from NuGEN™ (NuGEN, CA, USA). Similar amplification kits such as those manufactured by Ambion may alternatively be used. The amplified RNA is reverse transcribed into cDNA and labelled as described above.


Hybridization and stringency washes are performed using the protocol as described in the US Patent Application for “Methods and Kits for Labeling and Hybridizing cDNA for Microarray Analysis” (supra) at 42 C. The arrays (slides) are scanned using a ScanArray 4000 Microarray Analysis System (GSI Lumonics, Ottawa, ON, Canada). Raw, non-normalized intensity values are generated using QUANTARRAY software (GSI Lumonics, Ottawa, ON, Canada).


A fully balanced, incomplete block experimental design (Kerr and Churchill, Gen. Res. 123:123, 2001) is used in order to design an array experiment that would allow maximum statistical inferences from analyzed data.


Gene expression data is analyzed using the SAS® Microarray Solution software package (The SAS Institute, Cary, N.C., USA). Resulting data was then visualized using JMP® (The SAS Institute, Cary, N.C., USA).


Analysis done for this experiment is an ANOVA approach with mixed model specification (Wolfinger et al., J. Comp. Biol. 8:625-637). Two steps of linear mixed models are applied. The first one, normalization model, is applied for global normalization at slide-level. The second one, gene model, is applied for doing rigorous statistical inference on each gene. Both models are stated in Models (1) and (2).





log2(Yijkls)=θij+Dk+Sl+DSklijkls  (1)






R
ijkls
(g)ij(g)+Dk(g)+Sl(g)+DSkl(g)+SSls(g)ijkls(g)  (2)


Yljkls represents the intensity of the sth spot in the lth slide with the kth dye applying the jth treatment for the ith cell line. θij, Dk, Sl, and DSkl represent the mean effect of the jth treatment in the ith cell line, the kth dye effect, the lth slide random effect, and the random interaction effect of the kth dye in the lth slide. ωijkls is the stochastic error term. represent the similar roles as θij, Dk, Sl, and DSkl except they are specific for the gth gene. Rijkls(g) represents the residual of the gth gene from model (1). μij(g), Dk(g), Sl(g), and DSkl(g) represent the similar roles as θij, Dk, Sl, and DSkl except they are specific for the gth gene. ssls(g) represent the spot by slide random effect for the gth gene. εljkls(g) represent the stochastic error term. All random terms are assumed to be normal distributed and mutually independent within each model.


According to the analysis described above, certain cDNAs can be shown to be differentially expressed.


The involvement of these specific genes in wood growth and development is inferred through the association of the up-regulation or down-regulation of genes to the particular stages of wood development. Both the spatial continuum of wood development across a section (phloem, cambium, developing xylem, maturing xylem) at a particular season and tree trunk position and the relationships of season and tree trunk position should be considered when making associations of gene expression to the relevance in wood development.


Example 7

Example 7 demonstrates how one can correlate cell signaling gene expression with agronomically important wood phenotypes such as density, stiffness, strength, distance between branches, and spiral grain.


Mature clonally propagated pine trees are selected from among the progeny of known parent trees for superior growth characteristics and resistance to important fungal diseases. The bark is removed from a tangential section and the trees are examined for average wood density in the fifth annual ring at breast height, stiffness and strength of the wood, and spiral grain. The trees are also characterized by their height, mean distance between major branches, crown size, and forking.


To obtain seedling families that are segregating for major genes that affect density, stiffness, strength, distance between branches, spiral grain and other characteristics that may be linked to any of the genes affecting these characteristics, trees lacking common parents are chosen for specific crosses on the criterion that they exhibit the widest variation from each other with respect to the density, stiffness, strength, distance between branches, and spiral grain criteria. Thus, pollen from a tree exhibiting high density, low mean distance between major branches, and high spiral grain is used to pollinate cones from the unrelated plus tree among the selections exhibiting the lowest density, highest mean distance between major branches, and lowest spiral grain. It is useful to note that “plus trees” are crossed such that pollen from a plus tree exhibiting high density are used to pollinate developing cones from another plus tree exhibiting high density, for example, and pollen from a tree exhibiting low mean distance between major branches would be used to pollinate developing cones from another plus tree exhibiting low mean distance between major branches.


Seeds are collected from these controlled pollinations and grown such that the parental identity is maintained for each seed and used for vegetative propagation such that each genotype is represented by multiple ramets. Vegetative propagation is accomplished using micropropagation, hedging, or fascicle cuttings. Some ramets of each genotype are stored while vegetative propagules of each genotype are grown to sufficient size for establishment of a field planting. The genotypes are arrayed in a replicated design and grown under field conditions where the daily temperature and rainfall are measured and recorded.


The trees are measured at various age's to determine the expression and segregation of density, stiffness, strength, distance between branches, spiral grain, and any other observable characteristics that may be linked to any of the genes affecting these characteristics. Samples are harvested for characterization of cellulose content, lignin content, cellulose microfibril angle, density, strength, stiffness, tracheid morphology, ring width, and the like. Samples are also examined for gene expression as described in Example 6. Ramets of each genotype are compared to ramets of the same genotype at different ages to establish age:age correlations for these characteristics.


Example 8

Example 8 demonstrates how responses to environmental conditions such as light and season alter plant phenotype and can be correlated to cell signaling gene expression using microarrays. In particular, the changes in gene expression associated with wood density are examined.


Trees of three different clonally propagated E. grandis hybrid genotypes are grown on a site with a weather station that measures daily temperatures and rainfall. During the spring and subsequent summer, genetically identical ramets of the three different genotypes are first photographed with north-south orientation marks, using photography at sufficient resolution to show bark characteristics of juvenile and mature portions of the plant, and then felled. The age of the trees is determined by planting records and confirmed by a count of the annual rings. In each of these trees, mature wood is defined as the outermost rings of the tree below breast height, and juvenile wood as the innermost rings of the tree above breast height. Each tree is accordingly sectored as follows:

    • NM—NORTHSIDE MATURE
    • SM—SOUTHSIDE MATURE
    • NT—NORTHSIDE TRANSITION
    • ST—SOUTHSIDE TRANSITION
    • NJ—NORTHSIDE JUVENILE
    • SJ—SOUTHSIDE JUVENILE


Tissue is harvested from the plant trunk as well as from juvenile and mature form leaves. Samples are prepared simultaneously for phenotype analysis, including plant morphology and biochemical characteristics, and gene expression analysis. The height and diameter of the tree at the point from which each sector was taken is recorded, and a soil sample from the base of the tree is taken for chemical assay. Samples prepared for gene expression analysis are weighed and placed into liquid nitrogen for subsequent preparation of RNA samples for use in the microarray experiment. The tissues are denoted as follows:

    • P—phloem
    • C—cambium
    • X1-expanding xylem
    • X2-differentiating and lignifying xylem


Thin slices in tangential and radial sections from each of the sectors of the trunk are fixed as described in Ruzin, Plant Microtechnique and Microscopy, Oxford University Press, Inc., New York, N.Y. (1999) for anatomical examination and confirmation of wood developmental stage. Microfibril angle is examined at the different developmental stages of the wood, for example juvenile, transition and mature phases of Eucalyptus grandis wood. Other characteristics examined are the ratio of fibers to vessel elements and ray tissue in each sector. Additionally, the samples are examined for characteristics that change between juvenile and mature wood and between spring wood and summer wood, such as fiber morphology, lumen size, and width of the S2 (thickest) cell wall layer. Samples are further examined for measurements of density in the fifth ring and determination of modulus of elasticity using techniques well known to those skilled in the art of wood assays. See, e.g., Wang, et al., Non-destructive Evaluations of Trees, Experimental Techniques, pp. 28-30 (2000).


For biochemical analysis, 50 grams from each of the harvest samples are freeze-dried and analyzed, using biochemical assays well known to those skilled in the art of plant biochemistry for quantities of simple sugars, amino acids, lipids, other extractives, lignin, and cellulose. See, e.g., Pettersen & Schwandt, J. Wood Chem. & Technol. 11:495 (1991).


In the present example, the phenotypes which can be chosen for comparison are high density wood, average density wood, and low density wood. Nucleic acid samples are prepared as described in Example 3, from trees harvested in the spring and summer. Gene expression profiling by hybridization and data analysis is performed as described above.


Using similar techniques and clonally propagated individuals one can examine cell signaling gene expression as it is related to other complex wood characteristics such as strength, stiffness and spirality.


Example 9

Example 9 demonstrates how a cell signaling gene can be linked to a tissue-preferred promoter and expressed in pine.


A cell signaling gene, which is more highly expressed during the early spring, is identified by the method described in Example 7. A DNA construct having the density-related polypeptide operably linked to a promoter is placed into an appropriate binary vector and transformed into pine using the methods described herein. Pine plants are transformed as described in herein and the transgenic pine plants are used to establish a forest planting. Increased density even in the spring wood (early wood) is observed in the transgenic pine plants relative to control pine plants which are not transformed with the density related DNA construct.


Example 10

Using techniques well known to those skilled in the art of molecular biology, the sequence of a cell signalling gene isolated in Example 9 can be analyzed in genomic DNA isolated from alfalfa. This enables the identification of an orthologue in alfalfa. The orthologue nucleotide sequence can then be used to create an RNAi knockout construct. This construct is then transformed into alfalfa. See, e.g., Austin et al., Euphytica 85, 381 (1995). The regenerated transgenic plants should demonstrate modulated growth, development or a perturbed ability to perceive and respond to environmental cues.


Example 11

Example 11 demonstrates how gene expression analysis can be used to find gene variants which are present in mature plants having a desirable phenotype. The presence or absence of such a variant can be used to predict the phenotype of a mature plant, allowing screening of the plants at the seedling stage. Although this example employs eucalyptus, the method used herein is also useful in breeding programs for pine and other tree species.


The sequence of a putative density-related gene is used to probe genomic DNA isolated from Eucalyptus that vary in density as described in previous examples. Non-transgenically produced Eucalyptus hybrids of different wood phenotypes are examined. One hybrid exhibits high wood density and another hybrid exhibits lower wood density. A molecular marker in the 3′ portion of the coding region is found which distinguishes a high-density gene variant from a lower density gene variant.


This molecular marker enables tree breeders to assay non-transgenic Eucalyptus hybrids for likely density profiles while the trees are still at seedling stage, whereas in the absence of the marker, tree breeders must wait until the trees have grown for multiple years before density at harvest age can be reliably predicted. This enables selective outplanting of the best trees at seedling stage rather than an expensive culling operation and resultant erosion at thinning age. This molecular marker is further useful in the breeding program to determine which parents will give rise to high density outcross progeny.


Molecular markers located in the 3′ portion of the coding region of the gene that do not correspond to variants seen more frequently in higher or lower wood density non-transgenic Eucalyptus hybrid trees are also useful for fingerprinting different genotypes of Eucalyptus, for use in identity-tracking in the breeding program and in plantations.


Example 12

This Example describes microarrays for identifying gene expression differences that contribute to the phenotypic characteristics that are important in commercial wood, namely wood appearance, stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, extractives content and the like.


Woody trees of genera that produce commercially important wood products, in this case Pinus and Eucalyptus, are felled from various sites and at various times of year for the collection and isolation of RNA from developing xylem, cambium, phloem, leaves, buds, roots, and other tissues. RNA is also isolated from seedlings of the same genera.


All contigs are compared to both the ESTs made from RNA isolated from samples containing developing wood and the sequences of the ESTs made from RNA of various tissues that do not contain developing wood. Contigs containing primarily ESTs that show more hybridization in silica to ESTs made from RNA isolated from samples containing developing wood than to ESTs made from RNA isolated from samples not containing developing wood are determined to correspond to possible novel genes particularly expressed in developing wood. These contigs are then used for BLAST searches against public domain sequences. Those contigs that hybridize in silica with high stringency to no known genes or genes annotated as having only a “hypothetical protein” are selected for the next step. These contigs are considered putative novel genes showing wood-preferred expression.


The longest cDNA clones containing sequences hybridizing to the putative novel genes showing wood-preferred expression are selected from cDNA libraries using techniques well known to those skilled in the art of molecular biology. The cDNAs are sequenced and full-length gene-coding sequences together with untranslated flanking sequences are obtained where possible. Stretches of 45-80 nucleotides (or oligonucleotides) are selected from each of the sequences of putative novel genes showing wood-preferred expression such that each oligonucleotide probe hybridizes at high stringency to only one sequence represented in the ESTs made from RNA isolated from trees or seedlings of the same genus.


Oligomers are then chemically synthesized and placed onto a microarray slide as described in Example 4. Each oligomer corresponds to a particular sequence of a putative novel gene showing wood-preferred expression and to no other gene whose sequence is represented among the ESTs made from RNA isolated from trees or seedlings of the same genus.


Sample preparation and hybridization are carried out as in Example 4. The technique used in this example is more effective than use of a microarray using cDNA probes because the presence of a signal represents significant evidence of the expression of a particular gene, rather than of any of a number of genes that may contain similarities to the cDNA due to conserved functional domains or common evolutionary history. Thus, it is possible to differentiate homologous genes, such as those in the same family, but which may have different functions in phenotype determination.


This hybridization data, gained using the method of Example 6, enables the user to identify which of the putative novel genes actually possesses a pattern of coordinate expression with known genes, a pattern of expression consistent with a particular developmental role, and/or a pattern of expression that suggests that the gene has a promoter that drives expression in a valuable way.


The hybridization data obtained using this method can be used, for example, to identify a putative novel gene that shows an expression pattern particular to the tracheids with the lowest cellulose microfibril angle in developing spring wood (early wood). The promoter of this gene can also be isolated as in Example 8, and operably linked to a gene that has been shown as in Example 9 to be associated with late wood (summer wood). Transgenic pine plants containing this construct are generated using the methods of Example 9, and the early wood of these plants is then shown to display several characteristics of late wood, such as higher microfibril angle, higher density, smaller average lumen size, etc.


Example 13

Example 13 demonstrates the use of a xylem-specific promoter functionally linked to a cell signaling gene for increased plant growth.


Xylem-specific cell signaling gene products are identified via array analyses of different secondary vasculature layers as described in Example 6. Candidate promoters linked to the genes corresponding to these gene products are cloned from pine genomic DNA using, e.g., the BD Clontech GenomeWalker kit and tested in transgenic tobacco via a reporter assay(s) for cambium specificity/preference. A promoter which overexpresses a gene in xylem can be chosen. The promoter is operably linked to a cell signaling gene and the DNA construct is used to transform a plant. Boosted transcript levels of candidate cell signaling genes, aberrant cell signaling enzyme activity, and modulated growth and development may result in an increase of cell growth thereby increasing xylem-biomass.


Example 14

Example 14 describes the construction strategy and assembly of DNA constructs comprising cell signaling genes.


The DNA construct pWVR202 was used as the base cloning vector for 16 cell signaling gene DNA constructs. The nucleotide sequence of pWVR202 is depicted in TABLE 7 as SEQ ID NO: 584 and graphically shown in FIG. 198. pWVR202 is a modified Ti plasmid comprising a polynucleotide with LB, RB, and nopaline synthase elements. pWVR202 comprises two neomycin phosphotransferase genes, nptII and nptIII, as selectable markers. It also comprises a chimeric Pinus radiata superubiquitin promoter and intron (SUBIN) operably linked to a polylinker sequence. The SUBIN promoter was previously described in U.S. Pat. No. 6,380,459 and identified therein as SEQ ID NO: 2. The pWVR202 polylinker comprises a polynucleotide sequence possessing the recognition sites of the restriction endonucleases PstI, NheI, AvrII, ScaI and ClaI.


The pGrowth DNA constructs were assembled by one of two cloning strategies. First, the target gene is excised from the source polynucleotide by a restriction endonuclease causing the resulting polynucleotide fragment to have blunt ends. Such a fragment is cloned into the ScaI restriction endonuclease recognition site. Alternatively, the ends of any polynucleotide fragment can be polished and inserted at the ScaI site. Second, some target polynucleotides were excited by the SpeI restriction endonuclease and inserted into pWVR202 digested by both the AvrII and NheI restriction endonucleases. Those skilled in the art can easily develop other cloning strategies using site-specific endonucleases and other enzymes known in the art. Once complete, the DNA constructs were verified by extensive restriction digests to ensure proper assembly.


Twelve pGrowth DNA constructs comprising cell signaling genes were assembled. TABLE 8 lists the DNA construct, the purported cell signaling gene and the gene SEQ ID NO.









TABLE 8







pGrowth Cell Signaling Gene DNA Constructs











DNA Construct
Putative Cell Signaling Gene
SEQ ID NO













1
pGrowth1
Polyphosphoinositide binding protein
130


2
pGrowth2
Polyphosphoinositide binding protein
132


3
pGrowth3
Polyphosphoinositide binding protein
122


4
pGrowth11
Ethylene-responsive elongation factor
117


5
pGrowth21
G-protein coupled receptor
150


6
pGrowth22
14-3-3 protein
180


7
pGrowth23
14-3-3 protein
195


8
pGrowth24
14-3-3 protein
192


9
pGrowth25
Synaptobrevin-like
98


10
pGrowth26
Synaptobrevin-like
140


11
pGrowth27
Synaptobrevin-like
155


12
pGrowth28
Synaptobrevin-like
124


13
pGrowth29
SNF1-related protein kinase
113


14
pGrowth30
Ethylene Receptor
152


15
pGrowth49
Synaptobrevin like
141


16
pGrowth51
Polyphosphoinositide binding protein
164









These DNA constructs are depicted in FIGS. 199-210 and 212-215.


Example 15

Example 15 demonstrates the transformation of Populus deltoids with some of the DNA constructs of Example 14.


The DNA constructs described in Example 14 were used to transform Populus deltoides stock plant cultures. The DNA constructs used were pGrowth1, pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth22, pGrowth23, pGrowth24, pGrowth25, pGrowth26, pGrowth27, pGrowth28, pGrowth29, and pGrowth30. The DNA construct pWVR8 comprising the gus gene acted as a negative control for subsequent experiments. See Gleave, Plant Mol. Biol. 20:1203-27 (1992), Wesley et al., Plant J. 27(6):581-90 (2001). Each DNA construct was inoculated into Agrobacterium cultures by standard techniques.



Populus deltoides stock plant cultures were maintained on DKW medium (see, e.g., Driver and Kuniyuki, HortScience 19 (4):507-509 (1984)) with about 2.5 uM zeatin in a growth room with an approximately 16 hour photoperiod. For transformation, petioles were excised aseptically using a sharp scalpel blade from the stock plants, cut into lengths from about 4 mm to about 6 mm, placed on DKW medium with about 1 ug/ml BAP and about 1 ug/ml NAA immediately after harvest, and incubated in a dark growth chamber at about 28° C. for about 24 hours.



Agrobacterium cultures were grown to log phase, as indicated by an OD600 from about 0.8 to about 1.0 A. Cultures were then pelleted and resuspended in an equal volume of Agrobacterium Induction Medium (AIM) containing Woody Plant Medium salts (Lloyd and McCown, Combined Proceedings of the International Plant Propagators Society 30:421-427 (1980)), about 5 g/L glucose, about 0.6 g/L MES at about pH 5.8, and about 1 μL of a 100 mM stock solution of acetosyringone per ml of AIM. The Agrobacterium pellet was resuspended by vortexing. Bacterial cells were incubated for an about an hour at about 28° C. in an environmental chamber while being shakien at about 100 rpm.


Subsequently, P. deltoides explants were exposed to the Agrobacterium mixture for approximately 15 minutes. The explants were then lightly blotted on sterile paper towels, replaced onto the same plant medium and cultured in the dark at about 18° C. to about 20° C. After a three-day co-cultivation period, the explants were transferred to DKW medium in which the NAA concentration was reduced to about 0.1 ug/ml and to which was added about 400 mg/L timentin.


After approximately 4 days on eradication medium, explants were transferred to small magenta boxes containing the same medium supplemented with timentin (400 mg/L) as well as the selection agent geneticin (50 mg/L). Explants were transferred every two weeks to fresh selection medium. Calli that grow in the presence of the selection medium were isolated and sub-cultured to fresh selection medium every three weeks. Calli were observed for the production of adventitious shoots.


Adventitious shoots were normally observed within two months from the initiation of transformation. These shoot clusters were transferred to DKW medium to which no NAA was added, and in which the BAP concentration was reduced to 0.5 ug.ml. This medium was designed for shoot elongation to occur over a period of about 14 weeks. Subsequently, elongated shoots were excised and transferred to BTM medium (see Chalupa, Communicationes Instituti Forestalls Checosloveniae 13:7-39, (1983)) at about pH5.8 and containing about 20 g/l sucrose and about 5 g/l activated charcoal. The complete BTM-1 formula is set forth in TABLE 9. This medium facilitates the development of roots.









TABLE 9







Exemplary Rooting Medium for Populus deltoides










BTM-1 Media Components
mg/L






NH4NO3
412



KNO3
475



Ca(NO3)2•4H2O
640



CaCl2•2H2O
 440*



MgSO4•7H2O
370



KH2PO4
170



MnSO4•H2O
   2.3



ZnSO4•7H2O
   8.6



CuSO4•5H2O
   0.25



CoCl2•6H2O
   0.02



KI
   0.15



H3BO3
   6.2



Na2MoO4•2H2O
   0.25



FeSO4•7H2O
  27.8



Na2EDTA•2H2O
  37.3



Myo-inositol
100



Nicotinic acid
   0.5



Pyridoxine HCl
   0.5



Thiamine HCl
 1



Glycine
 2



Sucrose
20000 



Activated Carbon
5000 









After development of roots, which typically occurs in about 4 weeks, transformants were propagated in a greenhouse by rooted cutting methods or in vitro through auxiliary shoot induction. In the later case, transformants were grown for about four weeks on DKW medium containing about 11.4 μM zeatin. Subsequently, the multiplied shoots from each transformant line were separated and transferred to root induction medium (each plant of a line is a ramet). Rooted plants were transferred to soil for evaluation of growth in glasshouse and field conditions.


Example 16

Example 16 demonstrates the modulation of adventitious shoots in the transformed plants of Example 15.


Approximately 0.100 explants of P. deltoides were transformed by the method of Example 15 with each of the DNA constructs described in Example 14 (except pGrowth1, pGrowth2, pGrowth3, pGrowth29, pGrowth49 and pGrowth51). A number of explants transformed with pGrowth22, pGrowth25 and pGrowth30 were found to provide shoots of a size that were already transferable to rooting medium at only 12 weeks after transformation. TABLE 10 demonstrates the regenerative capability of the transformants.









TABLE 10







Exemplary Growth Data for Cell Signal Gene Transformants

















Percent

Percent of

Percent





Efficiency
No.
Calli

of Shoot



No. of

of Calli
Regenerating
Regenerating
No. of
Lines


DNA
Petiole
No. of
From Total
from Callus on
from Harvested
Shoot
Collected from


Construct
Explants
Calli
Petioles
Selection
Calli
Lines
Haversted Calli

















pGrowth11
96
38
39.58
7
18.42
0
0.00


pGrowth21
98
83
84.69
7
8.43
0
0.00


pGrowth22
100
54
54.00
3
5.56
1
1.85


pGrowth23
96
50
52.08
1
2.00
0
0.00


pGrowth24
95
31
32.63
3
9.68
0
0.00


pGrowth25
75
79
105.33
3
3.80
3
3.80


pGrowth26
97
62
63.92
0
0.00
0
0.00


pGrowth27
100
98
98.00
6
6.12
0
0.00


pGrowth28
98
104
106.12
8
7.69
0
0.00


pGrowth30
100
69
69.00
1
1.45
1
1.45


pWVR8
100
56
56.00
0
0.00
0
0.00









Briefly, calli produced on petiole explants are observed regularly. As shoots formed, they were transferred to shoot elongation medium. Sufficiently healthy and elongated shoot lines were transferred to rooting medium as they became ready. Only transformants comprising pGrowth22, pGrowth25 and pGrowth30 were found to possess a phenotype characterized by rapid regeneration.


At 3 months, neither the other transformants nor the control transformant had produced shoot lines that were ready to be collected for rooting. Cultures of the pGrowth22, pGrowth25 and pGrowth30 transformants, however, were ready to be moved to rooting medium. FIG. 211 shows the percent of shoot lines from each transformant which were ready to be placed in rooting medium. TABLE 10 demonstrates that the regeneration-enhancing effect of the putative cell signaling genes was not due to increased transformation efficiency, although pGrowth25 appears to have raised transformation efficiency relative to the control and the other plasmids.


Likewise, TABLE 11 shows the subsequent growth of the transformants. First, TABLE 11 demonstrates the regeneration of the other transformants and control plants within 5 months. Second, TABLE 11 illustrates that the characteristic of the pGrowth22, pGrowth25 and pGrowth30 transformants was, in fact, accelerated regeneration and not an increase in the total number of shoot lines produced.









TABLE 11







Exemplary Growth Data for Cell Signal Gene Transformants











3 Months
4 Months
5 Months














No. of
Percent of
No. of
Percent of
No. of
Percent of


DNA
Shoot
Lines from
Shoot
Lines from
Shoot
Lines from


Construct
Lines
Harvested Calli
Lines
Harvested Calli
Lines
Harvested Calli
















pGrowth11
0
0.00
0
0.00
4
10.53


pGrowth21
0
0.00
0
0.00
11
13.25


pGrowth22
1
1.85
1
1.85
6
11.11


pGrowth23
0
0.00
0
0.00
1
2.00


pGrowth24
0
0.00
0
0.00
2
6.45


pGrowth25
3
3.80
3
3.80
4
50.6


pGrowth26
0
0.00
1
1.61
3
4.84


pGrowth27
0
0.00
7
7.14
10
10.20


pGrowth28
0
0.00
5
4.81
5
4.81


pGrowth30
1
1.45
1
1.45
5
7.25


pWVR8
0
0.00
0
0.00
1
1.79










P. deltoides is a model species representing a variety of commercially important angiosperm species useful for the testing of the effect of cell signaling genes and gene products on plant growth and development. Regeneration of plantlets from cottonwood callus cultures produced by transformation is a rate-limiting step for the establishment of plants in outdoor field tests. In this example, the control plant did not produce any shoot lines ready for transfer to rooting medium until 5 months after transformation. An acceleration of two months could, in certain seasons, significantly advance the establishment of transgenic plants. In certain seasons, up to a year of growth can be saved using the pGrowth22, pGrowth25 and pGrowth30 transformants.


Example 17

Example 17 demonstrated the qualitative and quantitative modulation of plant leaves in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA construct pGrowth24 by the method of Example 15. The pGrowth24 DNA construct ectopically overexpresses a putative 14-3-3 protein disclosed as SEQ ID NO: 192. The cloning strategy and assembly of pGrowth24 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


Upon regeneration, the pGrowth24-transformed plants presented an aberrant phenotype as compared to the negative control plants. Specifically, the transformants presented particularly narrow leaves in tissue culture. Ramlets generated in tissue culture continued to present this narrow leaf phenotype. After the ramlets were transferred from tissue culture to hormone-free BTM rooting medium, the narrow leaf phenotype persisted.


The transformants' leaves are exceptionally narrow as compared to the negative control. However, the length of the transformants' leaves were qualitatively similar to those of the negative control plants. Lastly, the transformants presented a qualitative increase in the number of leaves per plant as compared to a negative control plant of the same height (i.e., an increase of leaves per unit plant height).


Accordingly, by qualitatively and quantitatively modulating leaf surface area, the DNA constructs may alter the capacity of a plant for photosynthesis.


Example 18

Example 18 demonstrates the qualitative and quantitative modulation of stem growth and development in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA construct pGrowth25 by the method of Example 15. The pGrowth25 DNA construct ectopically overexpresses a putative synaptobrevin-like protein disclosed as SEQ ID NO: 98. The cloning strategy and assembly of pGrowth25 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


The transformants' presented unusually rapid regeneration as compared to the negative control plants. In addition, the transformants presented a qualitative and quantitative difference in stem growth. First, the transformants appeared to growth faster and longer compared to the negative control plants. Second, transformants presented quantitatively longer internodes than the negative control plants.


The modulation of internode length is commercially significant for the commercial forestry industry. In woody plants, stem nodes subtend potential branch. Branches, themselves, form a locus for undesirable traits such as knot formation and the deposition of compression wood. Both traits reduce the utility of the woody plant for pulp and solid wood products.


Accordingly, by qualitatively and quantitatively modulating stem growth, the DNA constructs may alter the utility of the plant for the commercial forestry industry.


Example 19

Example 19 demonstrates the qualitative modulation of stem growth and development in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA construct pGrowth27 by the method of Example 15. The pGrowth27 DNA construct ectopically overexpresses a putative synaptobrevin-like protein disclosed as SEQ ID NO: 155. The cloning strategy and assembly of pGrowth25 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


The transformants presented longitudinal invaginations of the stem. These invaginations are characterized as striations in the stem longitudinal architecture. As such, the transformants possessed stems which appeared either “corrugated” or possessing callus under the epidermis. From these observations, it appeared that the rate of cell division in the radial and/or tangential plane in the stem was exceeding the rate of tangential cell expansion. As the transformants grew, the stem striations became more pronounced. Likewise, the growth remained stem specific in all but one transformant. In that case, the plant leaves were unusually rounded convoluted across the face of the leaf. It is thought that both phenotypic characteristics result from an increase in cell division.


Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane in Saccharomyces cerevisiae. It appears that the gene is conserved among eukaryotes, but its function in higher plants is as yet unknown. These observations represent the first description of a phenotype in plants produced by these genes.


To the commercial forestry industry, the striation phenotype has significant potential utility. It is believed that the striations are an indication of greater cell division rates in diameter growth. Striations are commonly seen in cottonwood on older, more mature stems. In contrast, newly emerging, succulent stems, such as those present in tissue culture, are smooth and cylindrical. It is believed that new, succulent shoots may be smooth for up to feet from their distal/apical end to the point where striations begin to form. Striations seem to be associated with stems of larger diameter, for instance ones that are greater than 1 inch in circumference.


Moreover, this phenotype may indicate a quantitative increase in the density of stems and branches. This increased density and longitudinal thickening can provide additional support for the plant. In woody plants, species presenting longitudinal striations are more likely to form in waterlogged soils. It is thought that the increased striation phenotype described here is indicative of transformants adapted for soils in which less stable trees can topple.


Example 20

Example 20 demonstrated the effect of cell signaling genes on growth in the transformed plants of Example 15.



P. deltoids plants were transformed with the DNA constructs pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth22, pGrowth23, pGrowth24, pGrowth25, pGrowth26, pGrowth27, pGrowth28 and pGrowth30 by the method of Example 15. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


Rooted plants made by the method described in Example 15 were transferred to a mist house for between 10 days and 2 weeks to facilitate acclamation. Misting conditions varied depending on outside environmental conditions. Plants were then grown in standard greenhouse conditions for 2.5 to 3 months before being moved to outdoor conditions for between 7 to 10 days for hardening.


Four ramets for each line and the control were then planted in a field trial in a randomized block design. After 7 months of growth, plant height and diameter were measured to calculate the volume or biomass of the trees. Height was measured between the root collar and the terminal bud, while diameter was taken at breast height (4.5 feet) (Diameter at Breast Height=DBH). The volume index was calculated by multiplying the square of the DBH by the height. All subsequent growth measurements are a comparison of the volume index calculated as described above.


Plants transformed with pGrowth2 or pGrowth3 were measured after 14 months of growth, while plants transformed with pGrowth11, pGrowth21, pGrowth22, pGrowth23, pGrowth24, pGrowth25, pGrowth26, pGrowth27, pGrowth28 and pGrowth30 were measured after 18 months of growth. For example, after 18 months of growth plants transformed with pGrowth11, pGrowth21, pGrowth24, pGrowth25, pGrowth26, pGrowth27, and pGrowth30 did not demonstrate overall growth increases over the GUS control plants, but did generate rapidly growing lines with volume growth increases exceeding 50%. These lines with growth increases exceeding 50% result in their being a shift in the population and thus an increase of the volume in the top elite plants within that population compared to the top elite plants of the control. It was observed that one out of 8 lines (13%) of construct pGrowth11 had growth increases exceeding 50%; the growth increase of this line was 100%. Four out of 15 lines (27%) of construct pGrowth21 had growth increases exceeding 50%; growth increases of these lines were 96%, 84%, 79%, and 54%. One out of 9 lines (11%) of construct pGrowth24 had growth increases exceeding 50%; the growth increase of this line was 55%. Two out of 27 lines (7%) of construct pGrowth25 had growth increases exceeding 50%; growth increases of these lines were 110% and 94%. One out of 8 lines (13%) of construct pGrowth26 had growth increases exceeding 50%; the growth increase of this line was 75%. Two out of 28 lines (7%) of construct pGrowth27 had growth increases exceeding 50%; growth increases of these lines were 98% and 88%. One out of 13 lines (8%) of construct pGrowth30 had growth increases exceeding 50%; the growth increase of this line was 117%. Table 12 summarises the results for the putative cell signaling genes that were transformed into P. deltoids plants.









TABLE 12







Exemplry growth data for cell signaling


gene in P. deltoids transformants













plants
% of plants
% growth



SEQ
displaying
with growth
increase


DNA
ID
growth increases
increases
compared


Construct
NO
of >50%
of >50%
with control














pGrowth2
132





pGrowth3
122





pGrowth11
117
yes
13%
100%


pGrowth21
150
yes
27%
54%-96%


pGrowth22
180





pGrowth23
195





pGrowth24
192
yes
11%
 55%


pGrowth25
98
yes
 7%
 94%-110%


pGrowth26
140
yes
13%
 75%


pGrowth27
155
yes
 7%
88%-98%


pGrowth28
124





pGrowth30
152
yes
 8%
117%









Example 21

Example 21 demonstrates the modulation of plant growth and development by the modulation of the programmed cell death (PCD) signaling cascade.



P. deltoids plants were transformed with the DNA constructs pGrowth1 and pGrowth2 by the method of Example 15. The pGrowth1 DNA construct ectopically overexpresses a putative polyphosphoinositide binding protein disclosed as SEQ ID NO: 130. The cloning strategy and assembly of pGrowth1 is described in Example 14. The pGrowth2 DNA construct ectopically overexpresses a putative polyphosphoinositide binding protein SSH2P disclosed as SEQ ID NO: 132. The cloning strategy and assembly of pGrowth2 is described in Example 14. Negative control plants were transformed with the GUS expressing DNA construct pWVR8 described in Gleave, Plant Mol. Biol. 20:1203-27 (1992) and Wesley et al., Plant J. 27(6):581-90 (2001).


Transformants of each DNA construct presented, in tissue culture, shoots with a patterned necrosis occurring in and immediately surrounding the vasculature of fully expanded leaf blades. It is thought that the necrosis resulted from a PCD signaling cascade.


PCD has been the subject of considerable investigation by many researchers, and genes that are involved in PCD are claimed in multiple patent applications and patents, including U.S. Pat. No. 6,451,604.


The transformants appear to initiate a PCD cascade specifically in the leaf blade vasculature and surrounding cells. These two genes are normally expressed in a xylem-preferred manner, as shown by the method of Example 11. It is thought that the putative polyphosphoinositide binding protein functions in the PCD signaling pathway that normally occurs during xylem development or leaf abscission. However, the transformants express the protein here ectopically. The ectopic activity appeared to be predominantly on older, fully expanded leaves. Ramets of most of the translines perpetuated this phenotype through propagation, suggesting that the phenotype observed is not a tissue-culture effect.


To the forestry industry, modulation of the PCD signaling cascade has significant commercial importance. First, in some hardwood species, modulation of the PCD can be used to effect earlier PCD in developing xylem through the use of tissue specific promoters. This, in turn, can result in smaller xylem cells, denser wood, and perhaps more compact overall habit.


Likewise, PCD can be down-regulated through the use of antisense or RNAi DNA constructs with tissue-specific promoters. It is thought that down-regulation of PCD in xylem can result in larger xylem cells and greater wood volume. Similarly, down-regulation of PCD in leaf tissue can result in delayed leaf abscission, thereby extending the duration of leaf photosynthesis and resulting in enhanced overall growth of the plant.


Moreover, it is thought the phenotypic patterned necrosis occurs because the cell signaling gene products of pGrowth1 and pGrowth2 require the presence of additional gene products to initiate or sustain the PCD signaling cascade. It may be the additional factors are present only in the vasculature of maturing leaves, i.e. not in leaf primordia or elsewhere in the leaf blade.


Example 22

Example 22 demonstrates the transformation of Eucalyptus grandis×Eucalyptus europhyfia with the DNA constructs of Example 14 and the growth and propagation of transgenic E. grandis×E. europhylla plants.


pGrowth22 and pGrowth27 as described in Example 14, were used to transform clonal E. grandis×E. europhylla leaf explants. The leaf explants were transformed according to the protocol described in International patent publication WO00/12715, except where noted below. In brief, dissected leaf explants were inoculated with Agrobacterium comprising the DNA constructs pGrowth22 or pGrowth27. Inoculated explants were co-cultured for two weeks in diffuse light and selected on agar supplemented with 250 mg/L kanamycin and 250 mg/L timentin (omitting NM from the transformation media). Leaf explants were then cultured for two weeks on on agar supplemented with 100 mg/L kanamycin and 250 mg/L timentin. The leaf explants were cultured for another two weeks on on agar supplemented with 150 mg/L kanamycin and 250 mg/L timentin. Thereafter and until healthy single shoots were collected, the leaf explants were transferred monthly to fresh media containing 150 mg/L kanamycin and 250 mg/L timentin.


Single shoots were placed in elongation media in order to proliferate the putative transgenic tissue. The alongation media consists of Murashige and Skoog salts (MS) supplemented with 1 microM 6-benzylaminopurine (BAP), 20 g/L sucrose and 7 g/L agar. PCR analysis of the explant tissue was conducted after approximately 200 mg of tissue is grown and collected. Both the promoter and gene sequences were verified using PuRe Taq Ready-To-Go™ PCR beads (Amersham Biosciences, Piscataway, N.J.). PCR positive explants were then maintained as sock cultures through proliferation on elongation media supplemented with 150 mg/L kanamycin and 250 mg/L timentin.


Transgenic E. grandis×E. europhylla plants were propagated from these stock cultures. Where necessary, shoots were transferred monthly to fresh media. Single shoots were placed onto elongation media and maintained until reaching approximately 2-3 cm tall. Thereafter, single shots were placed into conventional rooting medium. After 10 days, the transformed plants were transferred to a green house with appropriate climate. A skilled artisan would recognize that many different culture media and intervals may be suited to regenerating plants of the instant invention. Using an appropriate humidity regime and fungicides to control fungal growth, plants were then grown in standard greenhouse conditions for 2.5 to 3 months before being moved to outdoor conditions for between 7 to 10 days for hardening.


Example 23

Example 23 demonstrated the effect of cell signaling genes on growth in the transformed plants of Example 22.


Eight ramets for each line transformed in Example 22 and an untransformed control were then planted in a field trial in a randomized block design. After 7 months of growth, plant height and diameter were measured to calculate the volume or biomass of the trees as described in Example 20. All subsequent growth measurements are a comparison of the volume index calculated as described above.


Plants transformed with pGrowth22 or pGrowth27 resulted in significant volume growth increases compared to the control untransformed plants. Average volume growth increases of 47% and 161% respectively have been recorded.


Six out of 14 lines (43%) of pGrowth22 lines have volume growth gains of at least 50% compared to the untransformed controls. The top lines have volume growth gains of 249%, 214%, and 107% or a mean increase of 190%. Eleven out of 15 lines (73%) of pGrowth27 lines have volume growth gains of at least 50% compared to the untransformed controls. The top 3 lines have volume growth gains of 455%, 337%, and 306% or a mean increase of 366%. Table 13 summarises the results for the putative cell signaling genes that were transformed into E. grandis×E. europhylla plants.









TABLE 13







Exemplry growth data for cell signaling genes in E. grandis × E. europhylla transformants











DNA
SEQ ID
plants displaying growth
% of plants with
Mean % growth of top three


Construct
NO
increases of greater than 50%
growth increases >50%
transformants compared with control





pGrowth22
180
yes
45%
190%


pGrowth27
155
yes
73%
366%









Example 24

Example 24 demonstrates the transformation of Pinus taeda with the DNA constructs of Example 14 and the growth and propagation of transgenic P. taeda plants


pGrowth1, pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth23, pGrowth25 and pGrowth30 as described in Example 14, were used to transform clonal P. taeda. Specified clones of elite selected families of loblolly pine (Pinus taeda), was initiated as embryogenic cell lines from zygotic embryos of individual immature megagametophytes using the procedures described in U.S. Pat. No. 5,856,191, and maintained using the procedures described in U.S. Pat. No. 5,506,136.


After one to three months of culture on maintenance medium, the tissue cultures were cryopreserved, stored for periods of up to several years, and retrieved using the methods of U.S. Pat. No. 6,682,931. Those skilled in the art of plant tissue culture will recognize that other cryopreservation and recovery protocols would be applicable to the present method and that the detail in this example may not be construed to limit the application of the method.


Uniform suspension cultures from each of the genetically different tissue culture lines were established by inoculating a 250 ml Nephelo sidearm flask (Kontes Chemistry and Life Sciences Products) with 1 g of tissue each according to the method of U.S. Pat. No. 5,491,090. The flasks containing the cells in liquid medium were placed on a gyrotory shaker at 100 rpm in a dark culture room at a temperature of 23° C.±2° C. One week later, the liquid in each flask was brought to 35 ml by pouring 15 ml fresh medium into the culture flask and swirling to evenly distribute the cells. Cell growth was measured in the sidearm by decanting cells and medium into the sidearm portion of the flasks, allowing the cells to settle for 30 minutes and then measuring the settled cell volume (SCV). When the SCV was greater than or equal to half the maximal SCV (50% of the volume of the flask was occupied by plant cells), each culture was transferred to a 500 ml sidearm flask containing a total of 80 ml cells and medium and the transferred culture was maintained under the same conditions.


To prepare for gene transfer, polyester membrane supports were sterilized by autoclaving and placed in separate sterile Buchner funnels, and for each of six replicate plates per cell line, one to three milliliters of pine embryogenic suspension was pipetted onto each support such that the embryogenic tissue was evenly distributed. The liquid medium was suctioned from the tissues and each support bearing the embryogenic tissue was placed on gelled preparation medium for Agrobacterium inoculation according to the methods described in U.S. Patent Publication No. 20020100083. Specifically, the constructs pGrowth1, pGrowth2, pGrowth3, pGrowth11, pGrowth21, pGrowth23, pGrowth25 and pGrowth30 as described in Example 14, were each introduced into different isolates Agrobacterium tumefaciens by techniques well known to those skilled in the art, and virulence was induced with administration of acetosyringone by commonly used techniques whereupon each of the induced Agrobacterium isolates was co-mingled with separate replicates of the plant material according to the methods described in U.S. Patent Publication No. 20020100083. The cells were co-cultivated in the dark at 22°±2° C. for approximately 72 hours.


Following co-cultivation, Agrobacterium was eradicated from the cultures according to the methods described in U.S. Patent Publication No. 20020100083. Cells borne on polyester membrane supports were then transferred onto fresh selection media at intervals of 2 weeks. Active growth on the selection medium occurred in a number of isolated sectors on many of the petri dishes. Such active growth in the presence of selection agent was normally an indication that the growing tissues have integrated the selection gene into their chromosomes and are stably transformed. These areas of active growth are treated as independent transformation events and were henceforth referred to as putative transgenic sublines. The putatively transgenic embryogenic tissue was multiplied by transferring growing transgenic sectors to fresh semi-solid maintenance medium supplemented with the respective selection agent.


Putatively transformed sublines, after reaching approximately 2 g, were chosen for polymerase chain reaction (PCR) amplification for verification of the presence of transgenes using standard techniques. Lines that had been verified by PCR were selected for testing alongside lines transformed with the GUS control construct pWVR31.


Germinable embryos were produced from each of the selected lines verified as transformed by PCR, as follows. After the cell masses cultured on selection medium have proliferated to at least one gram, each culture was separately resuspended in liquid medium. When the cell suspensions were brought to uniform (half-maximal) SCV, equivalent amounts of suspension culture cells were pipetted onto sterile membrane supports for placement on development/maturation medium as described in U.S. Pat. No. 5,506,136 to develop high quality harvestable stage 3 (cotyledonary) embryos. Dishes were incubated in a dark growth chamber at 23±2° C. The membrane supports were transferred to new petri dishes containing fresh medium every 3 weeks. At week 9, stage 3 (cotyledonary) embryos were visually analyzed for germination quality and harvested onto fabric supports on medium as described in U.S. Pat. No. 5,506,136, and incubated for about four weeks in the dark at a temperature of 4° C.±2° C. Next, embryos on their fabric supports were incubated above water in sealed containers for about three weeks in the dark at a temperature of 25° C.±2° C. Following the above two treatments, embryos on their fabric supports were transferred to medium germination medium and incubated for about three days in the dark at a temperature of 25° C.±2° C. Embryos were then removed from their fabric supports and placed onto the surface of fresh germination medium. Germination was conducted in the light at a temperature of 25° C.±2° C. Germination plates were examined weekly, over a period of about four weeks, and germinating embryos were transferred to MAGENTA® boxes containing 100 ml of germination medium for conversion to plantlets. MAGENTA® boxes containing developing plantlets were incubated in the light at 25° C.±2° C. for about eight to twelve weeks.


When the plantlets formed epicotyls (newly formed shoots of approximately two to four cm), they were transferred to containers filled with a potting mix [2:1:2 peat:perlite:vermiculite, containing 602 g/m3 OSMOCOTE fertilizer (18-6-12), 340 g/m3 dolomitic lime and 78 g/m3 MICRO-MAX micronutrient mixture (Sierra Chemical Co.)]. The plantlets were grown in a shaded greenhouse and misted infrequently for a period of about two weeks. They were removed from mist for acclimatization in the greenhouse for 5 to 6 months. Plantlets were then transferred to outdoor conditions for 7 to 10 days final acclimatization before field planting.


Once transformed and propagated, a skilled artisan would also recognize the accelerated reproduction of Pinus plants can occur by grafting of the plantlets. See, e.g., Mergen, F. (1954) Rooting and grafting of slash pine (Pinus elliottii Engel.) for application in forest genetics. Ph.D. dissertation, Yale University, New Haven, Conn.; and Ahlgren, C. E. (1967) A relationship between scion, bud origin and growth of white pine grafts. Minnesota Forestry Notes 180. University of Minnesota, St. Paul. 2 p.


Example 25

Example 25 demonstrated the effect of cell signaling genes on growth in the transformed plants of Example 24.


Four ramets for each line transformed in Example 24 and the GUS control (pWVR31) plants were then planted in a field trial in a randomized block design. After 15 months of growth, plant height and diameter were measured to calculate the volume or biomass of the trees. Height was measured between the root collar and the terminal bud, while diameter was measured at the root collar. The volume index was calculated by multiplying the square of the root collar diameter by the height. All subsequent growth measurements are a comparison of the volume index calculated as described above.


After 15 months of growth, plants transformed with pGrowth1, pGrowth3, pGrowth11, pGrowth21, and pGrowth30 had growth increases of 34%, 8%, 28%, 10%, and 28% respectively when compared to the mean growth of the GUS controls. Two out of 8 lines (25%) of construct pGrowth1 had growth increases exceeding 50%; growth increases of these two lines were 103% and 70%. One out of 10 lines (10%) of construct pGrowth3 had growth increases exceeding 50%; the growth increase of this line was 136%. Two out of 8 lines (25%) of construct pGrowth11 had growth increases exceeding 50%; growth increases of these two lines were 106% and 81%. One out of 8 lines (13%) of construct pGrowth21 had growth increases exceeding 50%; the growth increase of this line was 109%. Two out of 9 lines (22%) of construct pGrowth30 had growth increases exceeding 50%; the growth increases of these two lines were 116% and 71%. Table 14 summarises the results for the putative cell signaling genes that were transformed into P. taeda plants.









TABLE 14







Exemplry growth data for cell signaling genes in P. taeda transformants














plants with mean growth
Mean % growth

% growth




increases when compared
increase when
% of plants
increase


DNA
SEQ ID
to controls and with
compared with
with growth
compared


Construct
NO
increases of >50%
control
increases >50%
with control















pGrowth1
130
yes
35%
25%
70%-103%


pGrowth2
132



pGrowth3
122
yes
 8%
10%
136%


pGrowth11
117
yes
28%
25%
81%-106%


pGrowth21
150
yes
10%
13%
109%


pGrowth23
195



pGrowth25
98



pGrowth30
152
yes
28%
22%
71%-116%









A summary of results in examples 16, 17, 18, 20, 21, 23, and 25 are presented in table 15.


While the invention is described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention. All references and publications cited herein are incorporated by reference in their entireties.









TABLE 1







Cell signaling genes and corresponding gene products (continued)


TABLE 1


Cell Signaling Genes and Corresponding Gene Products









Gene Sequences
Protein
Oligonucleotide















SEQ



SEQ
ORF
ORF
SEQ



ID NO
Target
ConsID
Species
ID NO
Start
Stop
ID NO
OligoID


















1
14-3-3 protein
eucalyptusSpp_000217

E. grandis

198
84
845
395
Euc_000217_O_1


2
14-3-3 protein
eucalyptusSpp_000345

E. grandis

199
293
1081
396
Euc_000345_O_3


3
14-3-3 protein
eucalyptusSpp_000402

E. grandis

200
504
1298
397
Euc_000402_O_1


4
14-3-3 protein
eucalyptusSpp_000989

E. grandis

201
128
916
398
Euc_000989_O_5


5
Indole-3-
eucalyptusSpp_001121

E. grandis

202
6
1523
399
Euc_001121_O_4



acetaldehyde



reductase


6
Indole-3-
eucalyptusSpp_001122

E. grandis

203
15
1532
400
Euc_001122_O_2



acetaldehyde



reductase


7
Indole-3-
eucalyptusSpp_001123

E. grandis

204
18
1550
401
Euc_001123_O_2



acetaldehyde



reductase


8
RAB7
eucalyptusSpp_001357

E. grandis

205
144
767
402
Euc_001357_O_2


9
14-3-3 protein
eucalyptusSpp_001976

E. grandis

206
127
879
403
Euc_001976_O_2


10
14-3-3 protein
eucalyptusSpp_002470

E. grandis

207
1293
262
404
Euc_002470_O_1


11
14-3-3 protein
eucalyptusSpp_002585

E. grandis

208
102
893
405
Euc_002585_O_1


12
MAP kinase
eucalyptusSpp_003164

E. grandis

209
105
1175
406
Euc_003164_O_3



kinase


13
RAB11G
eucalyptusSpp_003661

E. grandis

210
833
215
407
Euc_003661_O_3


14
RAB11G
eucalyptusSpp_003664

E. grandis

211
167
823
408
Euc_003664_O_5


15
Indole-3-
eucalyptusSpp_003672

E. grandis

212
177
1241
409
Euc_003672_O_1



acetonitrilase


16
F-box family
eucalyptusSpp_003901

E. grandis

213
613
2355
410
Euc_003901_O_2


17
Ethylene
eucalyptusSpp_003961

E. grandis

214
263
2500
411
Euc_003961_O_2



receptor


18
RAB7
eucalyptusSpp_004008

E. grandis

215
142
762
412
Euc_004008_O_2


19
RAS-like
eucalyptusSpp_004124

E. grandis

216
89
745
413
Euc_004124_O_1



GTP-binding



protein


20
RAS-like
eucalyptusSpp_004275

E. grandis

217
145
795
414
Euc_004275_O_2



GTP-binding



protein


21
RAS-like
eucalyptusSpp_004355

E. grandis

218
911
218
415
Euc_004355_O_3



GTP-binding



protein


22
RAS-like
eucalyptusSpp_004433

E. grandis

219
245
922
416
Euc_004433_O_3



GTP-binding



protein


23
MAP kinase
eucalyptusSpp_004776

E. grandis

220
89
1210
417
Euc_004776_O_2


24
MAP kinase
eucalyptusSpp_004796

E. grandis

221
394
1512
418
Euc_004796_O_1


25
F-box family
eucalyptusSpp_004824

E. grandis

222
935
2653
419
Euc_004824_O_2


26
GAI giberellic
eucalyptusSpp_004908

E. grandis

223
297
2183
420
Euc_004908_O_4



acid



insensitive


27
F-box family
eucalyptusSpp_005075

E. grandis

224
215
2146
421
Euc_005075_O_2


28
SNF1-related
eucalyptusSpp_005102

E. grandis

225
118
1689
422
Euc_005102_O_5



protein kinase


29
RAS-like
eucalyptusSpp_005244

E. grandis

226
142
798
423
Euc_005244_O_3



GTP-binding



protein


30
14-3-3 protein
eucalyptusSpp_005479

E. grandis

227
1011
258
424
Euc_005479_O_2


31
F-box family
eucalyptusSpp_005507

E. grandis

228
287
2062
425
Euc_005507_O_4


32
RAS-like
eucalyptusSpp_005653

E. grandis

229
41
691
426
Euc_005653_O_2



GTP-binding



protein


33
1-
eucalyptusSpp_005812

E. grandis

230
118
1080
427
Euc_005812_O_2



aminocyclopro-



pane-1-



carboxylate



oxidase


34
1-
eucalyptusSpp_005813

E. grandis

231
75
1037
428
Euc_005813_O_1



aminocyclopro-



pane-1-



carboxylate



oxidase


35
F-box family
eucalyptusSpp_006242

E. grandis

232
62
1192
429
Euc_006242_O_4


36
RAB5B
eucalyptusSpp_006353

E. grandis

233
194
796
430
Euc_006353_O_3


37
MAP kinase
eucalyptusSpp_006361

E. grandis

234
351
1541
431
Euc_006361_O_2


38
MAP kinase
eucalyptusSpp_006615

E. grandis

235
152
1279
432
Euc_006615_O_3


39
F-box family
eucalyptusSpp_006845

E. grandis

236
89
1693
433
Euc_006845_O_1


40
F-box family
eucalyptusSpp_007557

E. grandis

237
182
1927
434
Euc_007557_O_1


41
Mago Nashi
eucalyptusSpp_007597

E. grandis

238
114
572
435
Euc_007597_O_2



protein


42
RAS-like
eucalyptusSpp_007971

E. grandis

239
218
865
436
Euc_007971_O_2



GTP-binding



protein


43
GA20-oxidase
eucalyptusSpp_008077

E. grandis

240
105
1262
437
Euc_008077_O_2


44
RAB7
eucalyptusSpp_008134

E. grandis

241
158
781
438
Euc_008134_O_1


45
Steroid
eucalyptusSpp_008349

E. grandis

242
522
1325
439
Euc_008349_O_2



reductase


46
Steroid
eucalyptusSpp_008461

E. grandis

243
283
1587
440
Euc_008461_O_2



reductase


47
MAP kinase
eucalyptusSpp_009014

E. grandis

244
86
1162
441
Euc_009014_O_1



kinase


48
RAN (GTPase
eucalyptusSpp_009403

E. grandis

245
333
1958
442
Euc_009403_O_1



activating



protein)


49
Synaptobrevin
eucalyptusSpp_009707

E. grandis

246
303
959
443
Euc_009707_O_3



like


50
1-
eucalyptusSpp_010310

E. grandis

247
126
1586
444
Euc_010310_O_4



aminocyclopro-



pane-1-



carboxylate



synthase


51
MAP kinase
eucalyptusSpp_010424

E. grandis

248
692
1801
445
Euc_010424_O_4


52
Synaptobrevin
eucalyptusSpp_010831

E. grandis

249
46
714
446
Euc_010831_O_3



like


53
MAP kinase
eucalyptusSpp_010908

E. grandis

250
436
2538
447
Euc_010908_O_5



kinase kinase


54
Synaptobrevin
eucalyptusSpp_011066

E. grandis

251
188
901
448
Euc_011066_O_3



like


55
F-box family
eucalyptusSpp_011354

E. grandis

252
51
824
449
Euc_011354_O_4


56
F-box family
eucalyptusSpp_011918

E. grandis

253
147
1769
450
Euc_011918_O_2


57
Synaptobrevin
eucalyptusSpp_012495

E. grandis

254
56
721
451
Euc_012495_O_3



like


58
RAS-like
eucalyptusSpp_012520

E. grandis

255
187
843
452
Euc_012520_O_2



GTP-binding



protein


59
F-box family
eucalyptusSpp_012653

E. grandis

256
268
1446
453
Euc_012653_O_1


60
Polyphospho-
eucalyptusSpp_014684

E. grandis

257
1565
275
454
Euc_014684_O_4



inositide



binding



protein



SSH2P


61
Indole-3-
eucalyptusSpp_014843

E. grandis

258
53
2071
455
Euc_014843_O_1



acetaldehyde



reductase


62
F-box family
eucalyptusSpp_015050

E. grandis

259
3
1115
456
Euc_015050_O_1


63
RAN (GTPase
eucalyptusSpp_015957

E. grandis

260
215
1843
457
Euc_015957_O_2



activating



protein)


64
MAP kinase
eucalyptusSpp_016091

E. grandis

261
1314
331
458
Euc_016091_O_2



kinase


65
G protein-
eucalyptusSpp_016403

E. grandis

262
70
1047
459
Euc_016403_O_3



coupled



receptor


66
F-box family
eucalyptusSpp_016623

E. grandis

263
180
1733
460
Euc_016623_O_4


67
RAB5B
eucalyptusSpp_016847

E. grandis

264
131
790
461
Euc_016847_O_1


68
1-
eucalyptusSpp_017232

E. grandis

265
36
959
462
Euc_017232_O_1



aminocyclopro-



pane-1-



carboxylate



oxidase


69
Polyphospho-
eucalyptusSpp_017284

E. grandis

266
69
1079
463
Euc_017284_O_3



inositide



binding



protein


70
RAB5B
eucalyptusSpp_017391

E. grandis

267
3
599
464
Euc_017391_O_1


71
F-box family
eucalyptusSpp_017393

E. grandis

268
18
1244
465
Euc_017393_O_2


72
1-
eucalyptusSpp_017739

E. grandis

269
27
986
466
Euc_017739_O_2



aminocyclopro-



pane-1-



carboxylate



oxidase


73
Steroid
eucalyptusSpp_017775

E. grandis

270
77
1090
467
Euc_017775_O_4



sulfotransfer-



ase


74
F-box family
eucalyptusSpp_017798

E. grandis

271
309
2063
468
Euc_017798_O_2


75
G protein-
eucalyptusSpp_018758

E. grandis

272
343
1635
469
Euc_018758_O_3



coupled



receptor


76
1-
eucalyptusSpp_020648

E. grandis

273
2189
380
470
Euc_020648_O_2



aminocyclopro-



pane-1-



carboxylate



oxidase


77
Ethylene
eucalyptusSpp_020951

E. grandis

274
147
2447
471
Euc_020951_O_5



receptor


78
RAS-like
eucalyptusSpp_021218

E. grandis

275
82
735
472
Euc_021218_O_3



GTP-binding



protein


79
Steroid
eucalyptusSpp_021474

E. grandis

276
80
1114
473
Euc_021474_O_1



sulfotransfer-



ase


80
Synaptobrevin
eucalyptusSpp_021708

E. grandis

277
99
761
474
Euc_021708_O_1



like


81
1-
eucalyptusSpp_023492

E. grandis

278
3025
370
475
Euc_023492_O_2



aminocyclopro-



pane-1-



carboxylate



oxidase


82
Gibberellin 2-
eucalyptusSpp_024797

E. grandis

279
102
1085
476
Euc_024797_O_1



oxidase


83
MAP kinase
eucalyptusSpp_028582

E. grandis

280
19
1101
477
Euc_028582_O_3



kinase kinase


84
Steroid
eucalyptusSpp_034316

E. grandis

281
201
1016
478
Euc_034316_O_3



reductase


85
Steroid
eucalyptusSpp_035385

E. grandis

282
109
1116
479
Euc_035385_O_1



sulfotransfer-



ase


86
14-3-3 protein
eucalyptusSpp_035910

E. grandis

283
25
798
480
Euc_035910_O_1


87
F-box family
eucalyptusSpp_039440

E. grandis

284
60
1172
481
Euc_039440_O_4


88
RAB7
eucalyptusSpp_039852

E. grandis

285
77
697
482
Euc_039852_O_2


89
F-box family
eucalyptusSpp_040890

E. grandis

286
249
1154
483
Euc_040890_O_1


90
Steroid
eucalyptusSpp_045179

E. grandis

287
107
1546
484
Euc_045179_O_1



reductase


91
Gibberellin 2-
eucalyptusSpp_046633

E. grandis

288
213
1208
485
Euc_046633_O_4



oxidase


92
Steroid
eucalyptusSpp_047001

E. grandis

289
77
1474
486
Euc_047001_O_3



reductase


93
14-3-3 protein
pinusRadiata_000460

P. radiata

290
1157
259
487
Pra_000460_O_2


94
RAB7
pinusRadiata_000760

P. radiata

291
84
683

no oligo


95
RAB7
pinusRadiata_000761

P. radiata

292
154
774
488
Pra_000761_O_1


96
F-box family
pinusRadiata_001338

P. radiata

293
2672
546
489
Pra_001338_ORF_O_1


97
F-box family
pinusRadiata_001342

P. radiata

294
280
2088
490
Pra_001342_O_4


98
Synaptobrevin
pinusRadiata_001591

P. radiata

295
51
743
491
Pra_001591_O_2



like


99
14-3-3 protein
pinusRadiata_001729

P. radiata

296
332
1111
492
Pra_001729_O_1


100
MAP kinase
pinusRadiata_001853

P. radiata

297
44
1057
493
Pra_001853_O_1



kinase


101
RAB5B
pinusRadiata_001859

P. radiata

298
388
990
484
Pra_001859_O_1


102
MAP kinase
pinusRadiata_001935

P. radiata

299
234
1352
495
Pra_001935_O_1


103
RAB11J
pinusRadiata_001960

P. radiata

300
20
682
496
Pra_001960_O_1


104
RAB11J
pinusRadiata_001961

P. radiata

301
1037
223
497
Pra_001961_ORF_O1


105
RAB7
pinusRadiata_002135

P. radiata

302
238
858

no oligo


106
RAB7
pinusRadiata_002136

P. radiata

303
209
829

no oligo


107
RAB7
pinusRadiata_002137

P. radiata

304
447
1139

no oligo


108
F-box family
pinusRadiata_002167

P. radiata

305
268
1761
498
Pra_002167_O_2


109
RAS-like
pinusRadiata_002192

P. radiata

306
693
1343
499
Pra_002192_O_2



GTP-binding



protein


110
14-3-3 protein
pinusRadiata_002262

P. radiata

307
126
908
500
Pra_002262_O_1


111
14-3-3 protein
pinusRadiata_002264

P. radiata

308
1235
260
501
Pra_002264_ORF_O_4


112
14-3-3 protein
pinusRadiata_002278

P. radiata

309
268
1047
502
Pra_002278_O_1


113
SNF1-related
pinusRadiata_002328

P. radiata

310
686
2221
503
Pra_002328_O_1



protein kinase


114
Indole-3-
pinusRadiata_002633

P. radiata

311
487
2121
504
Pra_002833_O_1



acetaldehyde



reductase


115
Indole-3-
pinusRadiata_002634

P. radiata

312
61
1704
505
Pra_002634_O_2



acetaldehyde



reductase


116
GAI giberellic
pinusRadiata_003369

P. radiata

313
490
2628

no oligo



acid



insensitive


117
Ethylene-
pinusRadiata_003503

P. radiata

314
291
1499
506
Pra_003503_ORF_O1



responsive



elongation



factor EF-TS


118
MAP kinase
pinusRadiata_003519

P. radiata

315
219
1337
507
Pra_003519_O_1


119
1-aminocyclopro-
pinusRadiata_003795

P. radiata

316
132
1133

no oligo



pane-1-



carboxylate



oxidase


120
1-
pinusRadiata_003797

P. radiata

317
31
1056
508
Pra_003797_O_2



aminocyclopro-



pane-1-



carboxylate



oxidase


121
RAS-like
pinusRadiata_003807

P. radiata

318
472
1140
509
Pra_003807_O_1



GTP-binding



protein


122
Polyphospho-
pinusRadiata_003928

P. radiata

319
48
863
510
Pra_003928_ORF_O1



inositide



binding



protein



SSH2P


123
14-3-3 protein
pinusRadiata_003961

P. radiata

320
164
940
511
Pra_003961_O_4


124
Synaptobrevin
pinusRadiata_004131

P. radiata

321
1543
219
512
Pra_004131_O_1



like


125
RAS-like
pinusRadiata_004155

P. radiata

322
214
855
513
Pra_004155_O_2



GTP-binding



protein


126
F-box family
pinusRadiata_004503

P. radiata

323
151
1908
514
Pra_004503_O_1


127
MAP kinase
pinusRadiata_004512

P. radiata

324
505
2235
515
Pra_004512_O_1


128
Mago Nashi
pinusRadiata_004937

P. radiata

325
369
818
516
Pra_004937_ORF_O2



protein


129
Mago Nashi
pinusRadiata_004939

P. radiata

326
221
700
517
Pra_004939_O_1



protein


130
Polyphospho-
pinusRadiata_005336

P. radiata

327
1902
317
518
Pra_005336_ORF_O2



inositide



binding



protein


131
Steroid
pinusRadiata_005664

P. radiata

328
41
1498
519
Pra_005664_O_1



reductase


132
Polyphospho-
pinusRadiata_006109

P. radiata

329
60
872
520
Pra_008109_ORF_O1



inositide



binding



protein



SSH2P


133
MAP kinase
pinusRadiata_006207

P. radiata

330
584
1453
521
Pra_006207_O_2



kinase kinase


134
MAP kinase
pinusRadiata_006211

P. radiata

331
61
2700
522
Pra_006211_O_2



kinase kinase


135
Steroid
pinusRadiata_006556

P. radiata

332
1
1464
523
Pra_006556_ORF_O2



reductase


136
Steroid
pinusRadiata_006558

P. radiata

333
89
1555
524
Pra_006558_O_1



reductase


137
MAP kinase
pinusRadiata_006562

P. radiata

334
187
1920
525
Pra_006562_O_5


138
RAS-like
pinusRadiata_006604

P. radiata

335
186
839
526
Pra_006604_O_1



GTP-binding



protein


139
F-box family
pinusRadiata_006664

P. radiata

336
715
2442
527
Pra_006664_O_5


140
Synaptobrevin
pinusRadiata_006899

P. radiata

337
231
896
528
Pra_006899_O_1



like


141
Synaptobrevin
pinusRadiata_006947

P. radiata

338
287
949
529
Pra_006947_O_2



like


142
Steroid
pinusRadiata_006962

P. radiata

339
71
1204
530
Pra_006962_ORF_O2



sulfotransfer-



ase


143
Synaptobrevin
pinusRadiata_007855

P. radiata

340
112
774
531
Pra_007855_O_2



like


144
MAP kinase
pinusRadiata_007911

P. radiata

341
2618
513
532
Pra_007911_O_4



kinase


145
MAP kinase
pinusRadiata_007918

P. radiata

342
1162
2274
533
Pra_007918_O_1


146
F-box family
pinusRadiata_008017

P. radiata

343
124
2067
534
Pra_008017_O_1


147
MAP kinase
pinusRadiata_008128

P. radiata

344
59
1231
535
Pra_008128_O_3


148
Steroid
pinusRadiata_008715

P. radiata

345
18
1406
536
Pra_008715_O_2



reductase


149
Cytokinin
pinusRadiata_009284

P. radiata

346
29
1717
537
Pra_009284_O_2



oxidase


150
G protein-
pinusRadiata_009432

P. radiata

347
424
1368
538
Pra_009432_O_1



coupled



receptor


151
RAS-like
pinusRadiata_009540

P. radiata

348
581
1228
539
Pra_009540_O_2



GTP-binding



protein


152
Ethylene
pinusRadiata_009549

P. radiata

349
585
2825
540
Pra_009549_O_2



receptor


153
RAB7
pinusRadiata_009741

P. radiata

350
147
767
541
Pra_009741_O_1


154
F-box family
pinusRadiata_009788

P. radiata

351
240
1964
542
Pra_009788_O_2


155
Synaptobrevin
pinusRadiata_010012

P. radiata

352
437
1096
543
Pra_010012_O_1



like


156
Indole-3-
pinusRadiata_010045

P. radiata

353
433
1473
544
Pra_010045_O_3



acetonitrilase


157
RAB11G
pinusRadiata_010668

P. radiata

354
150
803
545
Pra_010668_O_1


158
1-
pinusRadiata_010871

P. radiata

355
68
1060
546
Pra_010871_O_1



aminocyclopro-



pane-1-



carboxylate



oxidase


159
MAP kinase
pinusRadiata_010893

P. radiata

356
141
1247
547
Pra_010893_O_1


160
MAP kinase
pinusRadiata_010981

P. radiata

357
35
1480
548
Pra_010981_O_3



kinase kinase


161
MAP kinase
pinusRadiata_010995

P. radiata

358
159
1115
549
Pra_010995_ORF_O2



kinase


162
MAP kinase
pinusRadiata_011965

P. radiata

359
318
1424
550
Pra_011965_O_1


163
F-box family
pinusRadiata_012292

P. radiata

360
988
2790
551
Pra_012292_ORF_O1


164
Polyphospho-
pinusRadiata_012454

P. radiata

361
174
944
552
Pra_012454_ORF_O1



inositide



binding



protein



SSH2P


165
RAB11G
pinusRadiata_012693

P. radiata

362
1110
216
553
Pra_012693_O_1


166
F-box family
pinusRadiata_013112

P. radiata

363
828
2297
554
Pra_013112_O_1


167
Indole-3-
pinusRadiata_013120

P. radiata

364
255
1748
555
Pra_013120_O_1



acetaldehyde



reductase


168
MAP kinase
pinusRadiata_013449

P. radiata

365
379
1428
556
Pra_013449_O_3



kinase


169
F-box family
pinusRadiata_013718

P. radiata

366
91
2850
557
Pra_013718_O_2


170
MAP kinase
pinusRadiata_013908

P. radiata

367
745
2466
558
Pra_013908_O_1


171
Cytokinin
pinusRadiata_014246

P. radiata

368
2523
572
559
Pra_014246_O_1



oxidase


172
F-box family
pinusRadiata_014765

P. radiata

369
151
1908

no oligo


173
Gibberellin 2-
pinusRadiata_015681

P. radiata

370
6
1031
560
Pra_015681_O_2



oxidase


174
Polyphospho-
pinusRadiata_015966

P. radiata

371
53
829

no oligo



inositide



binding



protein



SSH2P


175
1-
pinusRadiata_016432

P. radiata

372
79
1050
561
Pra_016432_O_2



aminocyclopro-



pane-1-



carboxylate



oxidase


176
F-box family
pinusRadiata_016828

P. radiata

373
125
1531
562
Pra_016828_O_2


177
GAI giberellic
pinusRadiata_017416

P. radiata

374
118
1902
563
Pra_017416_O_3



acid



insensitive


178
Phytochrome
pinusRadiata_017652

P. radiata

375
58
3532
564
Pra_017652_O_3



A


179
RAB5B
pinusRadiata_018337

P. radiata

376
231
833
565
Pra_018337_O_2


180
14-3-3 protein
pinusRadiata_018748

P. radiata

377
35
778
566
Pra_018748_O_2


181
Steroid
pinusRadiata_019345

P. radiata

378
25
1452
567
Pra_019345_O_1



reductase


182
Synaptobrevin
pinusRadiata_019839

P. radiata

379
63
740
568
Pra_019839 ORF_O_3



like


183
F-box family
pinusRadiata_020271

P. radiata

380
306
1094
569
Pra_020271_O_1


184
RAN (GTPase
pinusRadiata_021096

P. radiata

381
210
1853
570
Pra_021096_O_2



activating



protein)


185
14-3-3 protein
pinusRadiata_022578

P. radiate

382
180
968
571
Pra_022578_ORF_O2


186
RAS-like
pinusRadiata_022829

P. radiata

383
286
930
572
Pra_022829_O_1



GTP-binding



protein


187
Steroid
pinusRadiata_022951

P. radiata

384
75
1208
573
Pra_022951_O_2



reductase


188
F-box family
pinusRadiata_023140

P. radiata

385
167
2005
574
Pra_023140_O_4


189
Steroid
pinusRadiata_023522

P. radiata

386
317
1261
575
Pra_023522_O_1



reductase


190
RAS-like
pinusRadiata_023629

P. radiata

387
298
945
576
Pra_023629_O_2



GTP-binding



protein


191
14-3-3 protein
pinusRadiata_024074

P. radiata

388
86
859
577
Pra_024074_O_2


192
14-3-3 protein
pinusRadiata_025093

P. radiata

389
203
1048
578
Pra_025093_O_1


193
1-
pinusRadiata_025459

P. radiata

390
159
1238
579
Pra_025459_O_1



aminocyclopro-



pane-1-



carboxylate



oxidase


194
Synaptobrevin
pinusRadiata_025638

P. radiata

391
183
1073
580
Pra_025638_O_2



like


195
14-3-3 protein
pinusRadiata_026397

P. radiata

392
141
929
581
Pra_026397_O_1


196
RAS-like
pinusRadiata_027059

P. radiata

393
70
711
582
Pra_027059_O_2



GTP-binding



protein


197
F-box family
pinusRadiata_027138

P. radiata

394
167
2005
583
Pra_027138_O_1
















TABLE 2







Cell Signaling Gene Sequences









SEQ




ID NO
Sequence












1
GCAAGCTAAGCTAAGGGAGCGGTTACCCTCGCGAAAGCAAGAACCTTTCAGTTCACGCAGA




AGAGAGAGAAAGAAAGAGAGAGATGGAGAGGGAGAGAGAGCAGCAGGTTTACCAGGCGAG



GCTCGCGGAGCAAGCCGAGCGATACGATGAGATGGTTGAGTCGATGAAGCAAGTAGCTAA



GCTGGATGTGGAACTGACTGTTGAGGAGAGAAATGTGTTGTCTGTTGGGTATAAGAATGTG



ATTGGGGCCAGAAGGGCATCATGGCGGATTTTATCTTCCATTGAGCAGAAGGAGGGGACCA



AGGGTAACGAGCAGAATGTGAAGAGGATCAAGGACTACAGGCAAAGGGTTGAAGATGAGCT



CGCCAAGATCTGCAGTGACATACTCTCAGTCATTGATAAGCATCTTATCCCATCCTCCTCAA



GTGGAGAGTCGACTGTTTTCTACTATAAGATGAAAGGTGATTATTGTCGTTACCTTGCTGAAT



TCAAGGCTGGTGATGACCGCAAAGAAGCTGCTGATCAGTCGCTCAAGGCATATGAGGCTGC



CAGTTCCACTGCTTCAACGGATTTGGCTCCAACTCACCCTATCAGACTTGGACTGGCTTTGA



ATTTCTCCGTCTTCTATTATGAAATCATGAACTCGCCAGAAAGGGCATGCCATCTGGCTAAA



CAAGCTTTTGATGAGGCTATCGCGGAACTCGATAGCCTAAATGAAGACTCCTATAAGGACAG



TACCCTCATTATGCAACTTCTTAGGGACAATCTTACACTATGGACTACAGATCTGCCTGAAGA



AGGAGGTGAGCAATCCAAAGTTGATGAGCCTGCGGCAGAGAGTTAATTGGGCAAAGTAGAC



GCTTCCTGATGATTTCAATTCTTTGGGGGACATTGAGGCTTGCTAGGGCAGGAGTCATGGT



CTTATGCGATGGTGCAGTTAGTAGACTGTTGGTCTGTATTTACTTATTTAACAGAATGCTTCT



CCACAGTGTTGTGTTTGTGCTGGTTACACGATTGAATACTGTTATCTTTGTCCTATAAAACAC



GGAAGCCTTTTCTCAAAAAAAAAA





2
GGAGAAGCGCCTTTTTTTTCCTTTCTCTCTCCCTTGCTTTCGTTTCTCCATTTGTGGTTTTTCC



GTTTTTTCCACGTCGCTCCCAGCGGATACGCGTCTTCCGCCACCTCATCTCGCCCCGCCGT



ATAAATTCGGAGTCCTCCCTGGCGCACTCCCCTCTCGCGTCCGTCCGCAAAACACTCCCCC



CGCCCGCAGCTCGCTCCGCCCGGCTTTTTCTCGCTCGCTCGCTCGCGATTCTTGCTCTTCC



GCAAATCCCTAGTCGAGAGTTAGGTTTCGTAACAGTACACGGAAGATGTCGCCCTCTGATTC



TTCACGGGAGGAATATGTGTACATGGCCAAGTTAGCTGAACAGGCTGAGCGGTACGAGGAG



ATGGTGGATTTCATGGAGAAAGTTGCCAAGACTGTAGACGTCGAGGAGCTAACCGTTGAGG



AACGTAACCTTTTGTCTGTGGCGTACAAGAATGTGATTGGGGCCAGGAGGGCATCGTGGAG



GATCATTTCTTCCATTGAGCAGAAGGAAGAGAGCAGGGGTAACACTGATCATGTCTCGATCA



TTAAGGACTACAGGGGAAAGATCGAGTCCGAGCTCAGCAAGATCTGTGAAGGCATTCTCAG



CCTTCTTGAGTCGCATCTCATTCCTTCAGCCTCCTCTGCTGAGTCCAAGGTGTTTTACCTTAA



GATGAAAGGTGATTACCACAGGTATCTGGCAGAGTTTAAGACTGCGACTGAAAGGAAAGAA



GCTGCCGAGAGCACTTTATTGGCCTACAAATCTGCTCAGGATATTGCTGGGGCCGAACTGG



CTTCTACTCACCCAATTAGGCTGGGACTTGCGCTGAACTTCTCTGTTTTCTACTATGAAATAC



TTAACTCTCCTGATCGGGCTTGCGCTCTTGCAAAGCAGGCATTTGATGAGGCCATCGCTGA



GTTGGATACGCTGGGCGAGGAATCATACAAGGACAGTACATTGATCATGCAACTTCTTCGA



GATAACTTGACTCTGTGGACTTCTGATCTCACGGATGAAGCTGGGGATGACATTAAGGAAG



CTTCGAAACTGGAGTCTGGAGAGGGGCAGCAATGATTTGCTAGGATGATGTCAGTACTTTAA



TGATATTTTGCACCGTCGTAGATGCCTTGTGGTTTGTCACAGTGAAGATTATTTATGAACTGA



GAGTGCTATAAGTTGTTTCTCTAGTGTTCCTTGAAAAAAAAAA





3
CAAAAGCAATCTACATTTCTTTCTTTGATTACCAGGACAAATAAAATAAGATGCTATACCAGA



GCAGTATCAGTGTTACACAAGAATCAAATAGGATTTGGCACCTCAAAGGCAGATAAATTGAT



TAAATGGCCACAAATTGGAAAGCATCATTCAAAAGATAAGTCACAAGAGCTCCTCAAACCTG



AACAATAAATTATATTCACCATGACCACAGCAATGAGCATCACATGATTGAGAATCTCGTTGC



ACAAGCCCACAAGACAGGTGAACTATCAATCTGACTTTCTTGGCCATCCAAAGCAGTGATTC



CTCATTGTAAAAATTTAATCAATCTTTTGCTATTAGGCAATTCTTCCATAGTCTTTTCTTCCAC



GAGTTGTTGGAGGTATGTTTGTGAAAGCATCACTGGCCCTTCGCCCCCACTCTCGCTCACC



TCCGAACGAGAGAGTCCCAATCATTCGCAGCTTCGCAGCTTTTGTAATTTGATCAGCACGTT



GAAGATGGCGGCAGCTGATTCTTCACGCGAGGAAAATGTGTACATGGCCAAGTTGGCTGAA



CAGGCCGAGCGTTATGAGGAAATGGTGGAATTTATGGAGAAAGTGGCCAAGACGGTTGATG



TCGAGGAGCTTACTGTTGAGGAACGTAACCTCCTCTCCGTGGCATACAAGAATGTGATTGGT



GCCAGGAGGGCTTCATGGAGGATCATCTCTTCCATTGAGCAGAAGGAAGAGAGCAGGGGA



AATGAGGACCATGTTGTGATTATCAAGGAGTATAGGGGGAAGATTGAGACTGAGCTCAGCA



AGATCTGTGATGGCATCCTCAATCTCCTTGAGTCGCATCTCGTTCCATCAGCCTCATCTGCT



GAGTCAAAGGTGTTCTATCTGAAGATGAAGGGTGATTACCACAGGTACTTGGCTGAGTTTAA



GGCGGGAACTGAGAGGAAAGAGGCTGCTGAGAGCACCTTGTTGGCTTATAAATCTGCTCAG



GATATTGCTTTGGCTGAGCTGGCTCCCACTCACCCTATTAGGCTTGGACTTGCTCTTAACTT



CTCTGTGTTCTATTATGAAATTCTCAACTCACCTGATCGTGCCTGCAGTCTGGCTAAACAGG



CATTTGATGAGGCTATCTCCGAGCTAGATACATTGGGTGAGGAATCATACAAGGACAGCACA



TTGATTATGCAACTTCTCCGAGATAACCTAACACTCTGGACTTCCGATGTCACGGATGAAGC



TGGAGATGAGATCAAGGAATCTTCAAAAAGGGAGTCTGGTGAGGGGCAGCCACCACAGTGA



CGAGCTCCATTCGAAGATGGCTTCTCTGTACTTTAAGACTGTGAACTCTTATGTAGGCAGCG



CTTTGTTATAACATCATTTGGTCAGCACCATGATCTTAGTACTTGCACTGCTTTTGGGTGAAA



GTATTATGGGACTGTGTACTTTTCTCTGGTTAGTTATGGGAAGAGATTGACTTGATGCAGTG



CTCTGTTTTGTCTCGTGGTAGTGATGTCAGTGGTTTTCTTATTGTGAAGTGAATAATTCTATA



GACTCACACTACCAATGGTTCACAAAGTGATTGTGGTAGACATATGTCGAGTGCTTTAATTG



GTTCGCCGTTTCATGTCAAATGCTATCACCTTTTGCCAAAAAAAAAA





4
GCGTCGTCCTCCTTCCTCCTCCCCCTTCCTCACCAGCCAGTCGTCGTCTGCTTGAGGGCTA



GAGAGAGAGAGAGAGTAGAGAGAGAGTAGAGAGAGAGTGTAGAGAGAGAGAGAGAGAGAG



AAGGAGATGGCGTCGACGAAGGAGAGAGACGGCTACGTCTACGTCGCCAAGCTCGCCGAG



CAGGCCGAGCGCTACGACGAAATGGTGGAGGCCATGAAGAATGTGGCGAAGCTCGATGTG



GAGCTGACGGTGGAAGAGAGGAACCTGCTCTCCGTCGGTTACAAGAACGTGATCGGCGCG



CGGCGGGCGTCGTGGAGGATCCTCTCTTCCATCGAGCAGAAGGAGGACTCGAAAGGGAAC



GAGCATAATGTGAAGAAGATCAAGGAGTTCAGGCAGAAGGTCGAGGCCGAGCTGGCGAAT



ATCTGCGGGGATGTGATGAAGGTGATCGATGAGCATTTGATTCCTTCGTGTGCTGGTGGAG



AATCGACCGTGTTTTTCTATAAAATGAAAGGAGATTACTATCGGTACTTGGCAGAGTTTAAGG



CTGGTGATGACAGAAAGGAGGCAGCTGATCAGTCTATGAAAGCATATGAGCTGGCTTCCAC



CACCGCAGAGGCTGACCTATCCCCGACACATCCAATCAGATTGGGTTTGGCATTGAACTTTT



CTGTCTTCTACTATGAGATCATGAACTCTCCTGAAAGGGCCTGTCACCTTGCAAAGCAGGCT



TTTGACGAAGCGATCTCAGAGTTGGATACTTTGAGTGAGGAATCCTACAAAGACAGCACATT



AATTATGCAGCTTCTAAGGGACAATCTGACATTATGGACTTCTGACATCCCTGAGGATGGAG



CTGAAGATGCTCAGAAGCTTGACAATGCTGCCAAAGCTGCAGGAGGTGAAGATGCAGAGTG



AGGCAGAGTGTTGCTTGGGAGCTCATAAAGGGAGTCAAATGGTTTGAGGGTGGTGTTTCCT



TGTCTGAAGGCATATTGAGAGACTTTTACTTTCTGTTTCCTTCACTTTTTTCGTTTCGTCGTCC



TCTTTTGCTTCGACATTGCTACTAGCTAATTATTTGGTGCTTGTTCTGTGCTCCCATTCTCAC



GTCTGCTGATTAAACCTGATAAAAATTATGTCAAGACAGTCTGTTGTACGATCTAAGTCTGTT



TAATTGAGAATGTAGCGTTATTAGATGATGAATCTCAACAGTTGTGCAATCGGATGTTAAGG



CCTACTTGTTAATCTAAAAAAAAAA





5
AAGAGATGGCAGAGCACCGCAGCTATGGAAATGTGAATCTAAAGACGTTTGATGCTCATGTT



CCGGAGATTAAGTTCACCAAGCTCTTCATCGACGGCGAGTTCGTCGATTCTGTCAAAGGAA



GGACATTCGAGACGAAAGATCCAAGAAATGGACAAGTGGTGGCAAGAGTCGCGGAGGGAG



ACGAAGAGGACGTGGAGTTGGCCGTGATTGCTGCCCGTCGAGCATTTGATCACGGCCCTT



GGCCACGCATGCCCGGCTATCAAAGGGGAAGGATCATGTCAAAATTTGCAGACTTGATCGA



AGAGAACATAGACGAACTAGCTGCTCTGGACACTATAGATGCCGGGAAGCTATTCAGTGTC



GGCAAGGCCCGGGACATTCCTAACGCTGCCATGCTGCTGAGGTACTATGCCGGTGCGGTG



GATAAGATCCACGGCGAGGTATTGAAGATGTCGCGCGAGCTTCACGGGTACACGCTACGG



GAGCCGGTTGGCGTGATCGGGCACATCATCCCTTGGAACTTCCCGACCGGGGTGTTCTTCA



TGAAGGTCGCCCCAACACTGGCGGCTGGTTGCACCATGATCGTGAAGCCCGCCGAGCAAA



CCCCTCTATCGGCTCTCTTTTACGCTCATTTGGCTAAGAAGGCTGGTGTTCCTGATGGAGTG



ATCAATGTCGTTACCGGTTTTGGACCGACAGCTGGTGCAGCGATAAGTAGTCATATGGACAT



TGATATGGTTAGTTTTACGGGGTCTACAAAAGTAGGACACATGGTGATGCAGGCCGCGGCA



ACGAGCAATTTGAAACAAGTGTCGCTTGAATTGGGGGGCAAATCACCTCTTATAGTCTTTGA



TGATGTCGATTTAGATACCGCTACTAATCTTGCTCTGACTGGTATCCTCTATAACAAGGGAG



AAGTATGCGTCGCAGGATCTCGTGTCTATGTTCAAGAAGCGATCTATGAAGAATTCGAGAAG



AAGCTAGTGGCAAAGGCCAAGGCTTGGCCGGTCGGTGACCCATTTGATCCGAATGTCCGTC



AAGGACCGCAGGTCGATAAGAAACAGTTTGAGAAAATACTTTCTTACATCGAGCATGGAAAG



AGAGAAGGAGCTACACTTTTGATTGGGGGTGAGCGTCTAGGCACCGAAGGGTACTACATTC



AGCCAACAATCTTCACAGATGTTAATGAGGACAATGTGATCGTAAAGGATGAGATTTTCGGC



CCCGTCATGTCACTCATGAAATTCAAGACCATGGAGGAGGTGATCAAGAGGGCCAATGACA



CGAGGTACGGTCTAGCGGCGGGAATTCTGACAAAGAACATAGATCTAGCAAACACGGTCTC



AAGGTCAATCCGAGCAGGTATGATTTGGATAAATTGCTACCTTGCAGTTGACAACGACTGTC



CTTATGGTGGCTACAAGATGAGTGGCTTTGGCAAAGATCTTGGCTTGGACGCTCTCCACAAA



TACCTACATGTCAAATCTATCGTGACCCCCATTTATAACTCTCCCTGGCTTTGAGAGAGTTTT



TTTTTTCTTAGTGGGCGCTGGATTGCATCATCAGACGGGTCAAATAATATATAATTAGAAGTG



TATTTGTTTGAGTGAAAATATTTTTCCCGAAAAAAAAAA





6
AGGAGAGAGACGAGATGGCAGAGAACCAGAGCGACGCCAACGGGAGCCTGAAGACTTATG



ATGAACACGTTCCGGACATCAAGTTTACCAAGCTCTTCATCAATGGCGAGTTCGTCGATTCT



GTCAAAGGGAGGACGTTCGAGACGATAGATCCAAGAAATGGAGAAGTTACAGCAAGAGTTG



CAGAGGGAGACAAAGAGGACGTGGATTTGGCTGTGAAAGCCGCCCGTCAAGCATTTGATCA



CGGCCCTTGGCCACGCATGCCCGGCTACCAAAGGGGAAGGATCATGTCGAAATTTGCGGA



CTTGATCGAAGAGAACATAGATGAACTGGCTGCTCTGGACACTATCGACGCCGGGAAGATA



TTCAGCATGGGCAAGGCCGTGGACATCCCTCACGCTGCCACATGTCTAAGGTATTATGCCG



GCGCAGCGGACAAGATCCATGGTGAGGTGTTGAAGATGTCGCGTGAACTTCATGGGTACAC



GCTGCTGGAGCCGGTTGGCGTGGTCGGGCACATTATCCCTTGGAACTTCCCGACCAGCAT



GTTCTTTATGAAGGTCGCCCCAGCACTGGCGGCTGGTTGCACCATGATCGTGAAGCCTGCC



GAGCAGACCCCTCTGTCGGCTCTCTATTATGCTCATTTGGCTAAGAAGGCCGGTGTTCCTAA



TGGAGTGATCAATGTTGTAACTGGTTTCGGACCAACGGCCGGTGCTGCAATAACCAGTCAT



ATGGACATTGATATGGTCAATTTTACGGGGTCTACAAAAGTGGGGCGCATCGTGATGCAGA



CTGCAGCGACAAGCAATTTGAAACAAGTGTCACTCGAATTAGGCGGGAAATCGCCTATTATG



ATATTTGATGATGCTGATTTAGATACTGCTACCGATCTTGCTCTAATAGGTATCGTCCATAAC



AAGGGAGAAATATGCGTCGCGGGCTCTCGCGTTTATGTTCAGGAAGGGATCTATGAAGAGT



TTGAGAAGAAGCTGGTGGCAAAGGCAAAGGCTTGGCCAGTCGGTGACCCATTTGATCCGAA



AGTCCAACAAGGACCGCAGGTCGATAAGAAACAATTTGAGAAGATACTTTCTTATATCGAGC



ATGGAAAGAGAGAAGGGGCCACGCTTTTGACTGGGGGCGAGCGTTTGGGCACCAAAGGGT



ACTATGTTCAGCCAACAATTTTCACAAATGTTAAGGAGGACAATGTGATCGTGAAGGATGAG



ATTTTTGGTCCTGTCATGTCGCTCATGAAATTCAAGACTGTGGAGGAGGCGATCAAGAGGG



CTAACGATACTAGGTATGGTCTAGCAGCAGGGATTGTGACGAAGAATATAGATGTGGCGAA



CACAGTCTCGAGGTCAATTCGAGCGGGTGTCATATGGATAAACTGCTACTTTGCATTCGACA



ATGACTGTCCTTGTGGTGGTTACAAGACAAGCGGCTTCGGGAGAGATCTCGGTTTGGATGC



CCTCCACAAATGCCTACATGTTAAATCTATTGTGACCCCGCTTTATAACTCTCCATGGCTTTA



AGAGAATTTTCTAGGAAAAGAGCTTTGAGTCATATGGTGGCTCAAATAATGTGTAATTCCAAA



TTATGAGGTATATTTGCAATAAACAAAATGCAGGTCATTTTGGCAAAAAAAAAAAAAAAAAAA



AGCAAGTGTCAAAGCCATTCTAGTCCACTTGCCTTGGTGGAATGGGTTTGTTGTGTATTCTT



AAATGATCTGCCCTACTCTCTGCTCCTTTGTCGTCTTTTATATATTTTTGATATTGGTAATGAG



GAGATGAATTCTTCTGTGTCCTTTGTATGTCTTATAGTCTGATATCATCATGAGTGATGAAGT



TGGTCGAAGAGCATATTGTGCAAACTGCTAAACTTGAGTTGTACTATGGGGGGTTTACAGTT



TAAAAAAAAAA





7
GGATTTTGAGTGCAGAGATGAGAGAGAGGGAGATGGCAGAGAACCAGAGCAATGCCAACG



GGAGCCTGAAGACTTATGATGCTCATGTTCCAGAGATTAAATTCACCAAGCTCTTCATCAAT



GGCAAGTTCGTCGATTCTGTCAAAGGGAGGACATTGGAGACGATAGATCCAAGAAATGGAC



AAGCGACGGCGAGAGTTGCCGAGGGAGACAAAGAGGACGTGGATTTGGCTGTCAAAGCTG



CCCGCCAAGCATTTGATCACGGCCCCTGGCCGCGCATGCCCGGCTATCAAAGGGGAAGGA



TCATGTCGAAATTTGCGGACTTAATCGAAGAGAACATAGACGAACTAGCTGCTCTGGACACT



ATAGATGCCGGGAAGCTATTTAGTGTCGGCAAGGCCCAGGACATCCCTCACGCTGCCACGA



TGCTGAGGTACTATGCGGGTGCAGCGGATAAGATCCACGGCGAGGTATTGAAGATGTCGC



GCGAGCTTCACGGGTACACGCTACGGGAGCCGGTTGGCGTGATCGCGCACATCATCCCTT



GGAACTTCCCGACCGCGGTGTTCTTTATGAAGGTCGCCCCAGCGCTGGCGGCTGGTTGCA



CCATGATCGTGAAGCCCGCCGAGCAAACCCCTCTATCGGCTCTCTTTTACGCTCACTTGGC



TAAGAAGGCCGGTATTCCTGATGGAGTAATCAACATTGTAACTGGTTTTGGACGGACAGCC



GGTGCGGCGATAAGCAATCACATGGACATTGACATGGTTAGTTTTACGGGGTCTACAGAAG



TGGGACGCATTGTAATGCAGGCCGCAGCAACAAGCAATTTAAAACAAGTGTCGCTCGAATT



GGGCGGGAAATCACCTCTTATAATTTTTGATGATGTTGATTTAGATACTGCTACTGATCTTGC



TCTAACCGGTATCCTCCATAACAAGGGAGAAATATGTGTTGCGGGCTCTCGTGTCTATGTTC



AAGAAGGGATCTATGAAGAGTTCAAGAACAAGCTAGTGGCAAAGGCAAAGGCTTGGCCGGT



CGGCGACCCATTTGATCCGAATGTCCGTCACGGACCGCAAGTCGATAAGAAACAGTTTGAG



AAGATACTTGCATACATCGAGCATGGAAAGAGAGAAGGAGCCACGCTTTTGACTGGGGGCG



AGCGTCTGGGCACCGAAGGTTACTACATTCAGCCAACAATCTTCACAAATGTTAAGGAGGAC



AACATGATTGTGAAGGATGAGATTTTCGGCCCTATCATGTCGCTCATGAAATTCAAGACCAC



GGAGGAGGTGATCAAGAGGGCCAATGACACGAGGTATGGTCTAGCAGCAGGGGTTTTGAC



GAAGAACATAGATATGGCGAACACAGTCTCGAGGTCAATTCGAGCAGGCACCATCTGGATA



AATTGCTACTTTGCATTCGACAATGACTGTCCTCTTGGCGGCTACAAGATGAGCGGCTTTGG



CAGAGATTTTGGTTTGGACGCTCTCCACAAATACCTACAAGTCAAATCTGTTGTGACCCCCA



TTTACAAGTCTCCCTGGCTTTGAGAGAAATTTAGGCAAGAAGGGGGATGGGGGGCATTTGC



ATCATCTGATGGCTCAAATTATCAAATTATGAATGATTAAGAGTGTATTTGTTTGGCTGAAAG



CATTTTCACTCGTGTAATTTGCTGAAAATGATCAATAAATGAGAATCATTTATGGCCAAAAAA



AAAA





8
AAAATTTCGGAAGATCCCCAATCCGTTTCAAATTCTCTCGATCAAGGACCCCACGTTTTTCCT



CCAAATCCAAAACCCTAATTCTCCGCATCTCGATCCGTCGCAGATCTCTCCTCGCCGCCCTC



CTCCCCGCCCTCCTCCCCATGGCATCTCGCAGGCGCATGCTGCTCAAGGTCATCATCCTCG



GCGACAGCGGGGTCGGGAAGACGTCTCTCATGAACCAGTACGTCAACCGCAAGTTCAGTAA



CCAGTACAAGGCGACCATTGGAGCTGATTTCTTGACGAAGGAAGTTCAGTTTGAAGATCGAT



TGTTCACATTGCAGATATGGGATACTGCTGGGCAAGAAAGGTTCCAGAGTCTGGGTGTGGC



TTTTTACCGAGGTGCAGACTGCTGCGTCCTTGTTTATGATGTGAATGTCATGAAATCATTTGA



TAATCTTAACAACTGGAGGGAAGAGTTTCTACTTCAGGCCAGCCCATCAGACCCTGAAAACT



TTCCATTCGTCGTGTTGGGGAACAAGATAGATGTTGATGGTGGTAATAGTCGTGTGGTTTCT



GAAAAGAAAGCAAAGGCTTGGTGTGCTTCTAAGGGAAACATCCCTTATTTCGAGACATCTGC



AAAAGAAGGATTCAACGTGGAGGCTGCATTTGAGTGTATAGCTAAAAATGCTTTGAAGAATG



AACCTGAAGAAGAAATATACCTTCCCGACACCATTGACGTCACTGGTGGAGGACGGCAGCA



GAGATCTACTGGCTGTGAATGTTGAAGAGAATTAATTGGCTACTCTTTCCTGGGAATGGAAA



TACAGTGGAACCGATTTATCGTGATTCATTGCTCAATAACTATTACGTAAGAGACTAATGTAG



GCGACCAGATCAAACTCTCATCATGTATCATTAGTAGATCAAGGAAGACTGTTCCTTGGTCT



TATCGGTTCCCTCTTCTAATGTTAGTAGTTTACAAGTATAATTTGTTTGGACATGTATTCTTGG



GTATGAGTTTGCTTTGAAGTAAAAAAAAAA





9
TCTCTCTCTCTTCAAATCAATCCACCCCCAAATCCTCCTCCTCCTCCTCCGCCCCTCGCTTTC



TCTCTCTAGATCGATCGGCCGGTCGATTTGATCGGAGCAGCTGCGGCGAGTCGGAGCGGG



GCGATGGCGGTGCCGGAGAACCTGGGCAGGGACCAGTACGTGTACCTGGCGAAGCTGGC



CGAGCAGGCGGAGCGGTACGAGGAGATGGTGGAGTTCATGCACAAGCTGGTCGTCGGCTG



GACGCCGGCCGCCGAGCTCACCGTCGAGGAGCGGAACCTCCTCTCCGTGGCCTACAAGAA



CGTGATCGGCTCGCTCCGGGCGGCCTGGCGCATCGTCTCCTCCATCGAGCAGAAGGAGGA



GGGCCGGAAGAACGAGGACCACGTCGTCCTCGTCAAGGAGTACAGATCCAAGGTCGAGAA



CGAGCTCTCCGACGTGTGCGCCAGCATCCTCCGCCTCCTCGACACGAATCTGGTCCCCTC



GGCCGCCGCCAGCGAGTCCAAGGTGTTCTACCTGAAGATGAAGGGGGATTACCACCGGTA



CCTGGCCGAGTTCAAGGTCGGCGACGAGAGGAAGGCCGCCGCCGAGGATACCATGCTCG



CTTACAAGGCGGCTCAGGATATCGCTCAAGCAGATCTGGCTTCAACCCATCCAATAAGGCT



GGGTCTGGCACTCAACTTCTCTGTGTTCTATTATGAGATCCTTAATCAGTCTGATAAAGCTTG



CAGCATGGCCAAACAGGCATTTGAGGAAGCAATTGCTGAGCTGGATACATTGGGTGAAGAA



TCATACAAGGACAGCACTCTCATCATGCAGCTGCTAAGGGATAATTTCACCCTCTGGACTTC



TGATGTGCAGGACCAATTGGATGAGCCCTAGAAGATGCAGCGTAAGCTCAACGGAAATTCG



AAACTTTGTTCTGGGAGGAGGTGGGCTGTGAAATGTCATTTGTCGGTACCGATTTAAAGCGT



GCATCAGTGACATGTTTCTCTTTTATTTTTAGATTATTAAATCCTTTTCCTGTTTCCAAAACGA



ATTGGAAAACGCTCTTGGGTTTGTGAACGTGCTTCTCACTGCTTTAGTGTTGGTTTTCACTG



GATAAAAAAAAAA





10
CTCTCTCTCTCTCTCCGCCAAACGCTCTCGAAGAAATCACCAGGGAAAAAAAAAAAAGAAAA



AAAAGAGAAAGAAAAAAGATCAGGAAATCGAAAAAACCGAAAGAGGAAGAAGAGAACCCCC



CAAATCCCCCCCTCCCCCAGTTCCAGATCTAGAAGCCCCGGCGAGCAGCGAGCGAGCAGC



AATGGCGACGGCACCATCGGCGCGCGAGGAGAACGTGTACATGGCGAAGCTGGCGGAGC



AGGCGGAGCGCTACGAGGAGATGGTGGAGTTCATGGAGAAGGTCGCCGCCGCCGCCGCC



GCCGCCGACGCCGAGGAGCTCACCATCGAGGAGCGCAACCTCCTCTCCGTCGCCTACAAG



AACGTCATCGGCGCCCGCCGCGCCTCCTGGCGCATCATCTCCTCCATCGAGCAGAAGGAG



GAGAGCCGCGGCAACGAGGACCACGTCGCCGCCATCCGCGACTACCGCTCCAAGATCGAG



TCCGAGCTCTCCGGCATCTGCGCCGGCATCCTCAAGCTCCTCGACTCCCGCCTCATCCCCG



CCGCCGCCTCCGGCGACTCCAAGGTCTTCTACCTCAAGATGAAGGGCGACTACCACCGGT



ACCTCGCCGAGTTCAAGACCGGCGCCGAGCGCAAGGAGGCCGCCGAGAGCACCCTCACC



GCCTACAAGGCCGCTCAGGACATTGCCAACACGGAGCTTGCTCCGACTCACCCAATCCGG



CTCGGACTAGCCCTCAACTTTTCTGTTTTCTACTATGAGATTCTGAATTCTCCTGACCGTGCT



TGCAGTTTGGCCAAGCAGGCTTTTGATGAAGCAATTGCTGAGTTGGATACACTTGGAGAGG



AGTCTTACAAAGACAGCACTTTGATTATGCAACTTCTTCGCGACAACCTCACCTTGTGGACTT



CCGACATGCAGGAAGACGGTGCAGACGAGATTAAAGAAGCACCGAAGGCTGATGAACAGC



AGTGAGGTCTTGACTATTGCTCGCTGTCAAATTTCTCCATTCAATGTTTTTACTTGGAGAAGG



TGCTTGTTGCTGATTTCTCTTTTATTCCGAAGTTGGAGGCATCATCGTCTCTTTTTATTTGTTT



CTGACTTTAGTTTGTCTCATCAATCTCCTCATGTGCTATCAATTGTGCCTTATTTTTCTTGGAG



GCATGGAGCTTCAAATTCTGCATTGAGTGTAGCAGATCCCTTCTATTAGATTATTCATATGAC



TATGTGACTGATGATATCTTCTTTCTTTGTCAACAAGATATTTGATTCGATGTGCTAAAAAAAA



AAAAAAA





11
GCTCTCTCTCCCTCCCTCCCTCCCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTAAACCCGACG



CGATTTTCGAATCCGACCTCCCTCGACAACCCTCTCCGATGGCCGCCGCCGCACCGCCGC



CGTCCTCGCCGCGCGAGGAGTACGTGTACATGGCGAAGCTGGCCGAGCAGGCGGAGCGC



TACGAGGAGATGGTGGAGTTCATGGAGAAGGTGTCGGCCGCCGCCGCCGACGCCGAGGA



GCTCACCGTCGAGGAGCGCAACCTCCTGTCGGTCGCCTACAAGAACGTGATCGGGGCCCG



CCGCGCCTCCTGGCGCATCATCTCCTCCATCGAGCAGAAGGAGGAGAGCCGCGGCAACGA



GGACCACGTGGCCGCGATCCGCGACTACCGCGCCAAGATCGAGGCCGAGCTCTCCAAGAT



CTGCGACGGCATCCTCGGCCTCCTCGACACCCGCCTCATCCCCGCCGCCTCCGTCGGCGA



CTCCAAGGTCTTCTACCTCAAGATGAAGGGGGATTACCACCGCTACTTGGCCGAGTTCAAA



ACCGGCACCGAGCGCAAGGAAGCCGCCGAGAGCACCCTCACCGCCTACAAAGCCGCTCAG



GATATTGCCAACTCTGAACTGGCTCCTACTCACCCAATTCGGCTTGGGCTGGCTTTGAACTT



CTCTGTTTTCTACTATGAGATTCTCAACTCCCCCGACCGTGCTTGTGGTCTCGCTAAACAAG



CCTTTGATGAAGCAATTGCTGAGTTGGACACTCTTGGTGAGGAATCCTACAAGGACAGCACT



TTGATCATGCAGCTTCTCAGAGATAACCTGACCTTGTGGACATCCGACATGCAGGATGATGG



AGTGGATGAGATCAAAGAAACAGCCAAGGCTGATGAGCAATAGTGATGTCTCAGCTGCTCA



TCAATATCCGTATAGAAGCTACCCTCTTATCTGTTTTTTAACTGGGGAAGATTGCTGGCTACT



GATTCATGTGCAATTCTGGGTTTTAGGCTCGTTGTCTCTATAACAGAATTCTGGTGTTGCTTG



TCTTATCGAAGTCTTATGTATTTCCAAATCACTCTTATTTCTCTTGGATTCTTAATGCTTCAAT



ATCTCAATTGAACACGATAAAAGGCCTCCATGTCTATGCAGATTGTTGCCTACTTTAAAAAAA



AAA





12
CTCTCTCTCTCTCTCTAATTTCCTTCACCTCAAACCCCCCCCCCCCCCAAATCCCACCGGCT



CCCGGCAGCAACCGCCGATCGCCGATCGCCGCCGCCGCCGCGATGAAGAAGGGGGGCTT



AAACCCCATCCTCAACCTCAAGCTCTCCCTCCCTCCTCCCGATGAGGACTCCATCGCCAAG



TTCCTGACGCAGAGCGGCACGTTCGTGGATGGCGATCTGCTCGTCAACAGGGACGGGGTT



CGGGTCGTGCAGCAGACCGAAGTCGAAGTGCCACCCCTTATCAAGCCAACAGACAACCAGT



TGAGTTTAGCGGACATAGACACAATTAAAGTTATTGGAAAGGGGAATGGTGGAATAGTCCAA



TTGGTCCAACACAAATGGACTGGGCAGTTTTTCGCATTGAAGGTCATCCAAATGAAGGTTGA



GGAGTCTGCAAGAAAGCAGATAGCACAGGAACTCAAAATTAATCAATCTTCGCAGTGTCCAT



ATGTTGTGGTCTGCTACCAATCTTTCTATGATAATGGTACCGTTTCTATTATATTAGAGTATAT



GGATGGAGGGTCGCTGGCGGATTTTCTGAGAAAAGTTAAAACTATTCCAGAGCCAAATCTTG



CGGTCATTTGTAAGCAGGTGCTCAAGGGTTTGTTGTATCTGCATCATGAGAAGCACATAATA



CATCGAGATCTGAAGCCTTCTAATCTGTTGATAAATCATAGAGGAGAAGTCAAGATTACTGAT



TTTGGAGTGAGTGCTATAATGGCTAGCACATCTGGACAAGCTAATACCTTTGTCGGCACATA



TAACTATATGTCTCCTGAGAGAATCATTGGAAACAATTATGGTTACAAAAGTGATATTTGGAG



CCTGGGCTTAGTATTGCTAGAGTGTGCAACTGGGAAGTTCCCATATACACCGCCTGATCAAC



AAGAAGGATGGACCAATTTCTATGAGCTCATGGAAGCCATTGTTGATCACCCACCGCCTTCA



GCAGCTTCTGATCAATTCTCTAGCGAGTTCTGCTCATTTATCTCTGCCTGTGTACAGCAGGA



CCCAAAGAAAAGATGGTCTGCGAATGAACTTATGGGTCATCCTTTCATCAGCATGTATGAGG



ACTTGAATGTTGATCTTGCTTCCTACTTCACTAATGCAGGCTCCCCGCTTGCAACCTTTTGAA



ACTCCACTGTGGTTCCAGCAACCGGAGATCTTTGGCTCCCTGGGAGCTTAGAGAGCAGTTT



CAAGAAAAACACCTGCTCAGGATTTTAATTTATTATGAAAGTGGATAACTTTTGGAGCTGATA



ACTGTCTGCCTCGAGCGGAGTGTAGTGGAGTGGAGTGAAGTGTTGGCAGTTAAAGACGATT



TCAAGGGCGTGATTACTTTGAGCGTCGAAGGACAGCTGATGTAAATTCGAAATTTCTTTCTT



ATTGCAAGG





13
CCGGCATTGCCCCGACCCGACCCGGCACGGATGGAGGACGACGAGCGGGGGGAGGAGTA



CCTCTTCAAGATCGTGCTGATCGGCGACTCCGCCGTCGGGAAGTCCAACCTCCTCTCCCGG



TTCGCGCTCGACGAGTTCGACATCAACACCAAGGCCACCATCGGGGTCGAGTTCCAGACCC



AGGTCGTGGAGATCGACGGCAAGGAGGTGAAGGCCCAGATCTGGGACACCGCCGGCCAG



GAGCGCTTCCGCGCCGTCACCTCCGCCTACTACCGCGGCGCCGTCGGCGCCCTCATCGTC



TACGACATCACCCGCCGCACCACCTTCGAGAGCGTCAAGCGGTGGCTCGACGAGCTCGAT



ACTCACTGTGATACCGCTGTCGCAAGAATGCTTGTTGGGAACAAGTGTGATTTAAACAATAT



CAGAGAGGTGAGCACCGAGGAGGGCAAAGCCCTTGCAGAAGCAGAAGGGCTATTCTTTAT



GGAGACCTCCGCCCTCGATTCCACGAATGTTCAGATATCGTTCGAGATTGTTATCCGCGAG



ATATACAAGAATATCAGCAGGAAGGTCCTCAACTCCGATTCATACAAGGCGGAATTGTCCGT



AAATCGAGTGACCCTCGCCAAAAACGGTGCGGACTCGTCAGGTCGGAGTTTCTACTCGTGC



TGCGCTAGATGATGTCCGATCCTTCATGTACGCTCCATCAATTTTTTGGAGTCTCTTGTACTG



TTTTATTTCATCAAATTTTTGGAAGTGTCTTGCACTGTCTTATTTTATCAATTTGTATCCTAATA



CGTGGCCAATGAACTTTACGGTTTTCTTCAAAAAAAAAA





14
CGAGCACAGTCGGTGGTCAGACCACTTTCCCACGTCTTTTTCTCTTTCCTCCTCCTCCTCTT



CTCCTTCAATCCCCTCCGCATTCCAAGCGTCCGCTGCATTGGATCGACCTCTGACGGAACC



TGCAGAAGAAGCGAGAGACAGAAGAGCGAGAAAGCAGAGGGAGATGTCGTCGTCGGACGA



GGAGGGAGGGGAGGAGTACCTGTTCAAGATCGTCATCATCGGGGACTCGGCGGTGGGGAA



GTCGAACCTGCTGTCCCGGTACGCCCGGAACGAGTTCAACCCCCACTCCAAGGCCACCAT



CGGGGTGGAGTTCCAGACCCAGTCCATGGACATCGACGGCAAGGAGGTCAAGGCCCAGAT



TTGGGACACCGCCGGCCAGGAACGCTTCCGCGCCGTCACCTCCGCCTACTACCGCGGTGC



CGTCGGCGCCCTCGTCGTCTACGACATCACCCGCCGCTCCACCTTCGACAGCGTCTCCCG



CTGGCTCGACGAGCTCAAGACTCACTCAGACACAACAGTTGCAAGGATGCTTGTTGGGAAC



AAATGTGACCTGGAGAGTATTAGGGATGTGACGGTTGAGGAGGGGAAGAGTTTAGCGGAAT



CAGAAGGGTTGTTCTTTATGGAGACTTCCGCTTTGGATGCCACAAATGTGAAGACAGCCTTC



GAGATCGTGATAAAAGAAATATATAACAATGTGAGCAGGAAGGTTCTAAATTCAGATGCTTAT



AAAGCAGAGCTCTCTGTTAACAGGGTAACCTTGGCTGGTAATGGGGCCGATGGATCAAAGC



GGAGTCAGAGCTTTTCTTGCTGTTCCAGGTGATACTGTAGAGGTGTAATTCTTTCAAGTCCG



ATGATGAAAACTTCATTGTCGATTCTATTGGTTGAGCTGTCTGTTTGTTTGGTTTTTGCTTGTT



TTTTCTTATCAGGGGTTTTTAAAATGCTGTTATAGCAAATTTTATTCAAGAATATTAACCTATC



GATTTCTTCTAGTTCTAGATATATGTAATAGCAAAGAATTATGTGGACCAAAAAAAAAA





15
GAAAGATCGAGAAACCTGCTGCGGCTGCTAAGTGGGAGGACTAGCAGAGACAAACCAATTT



CCACACGTCTCTCTCTCTCTCTGCTCTCAGACCAGACGGCGACAAAACTGAGCTCCGGCTC



GGAGCGACAGCAAAACCCAAGCCACACAGAAAGAGAGAGATACACAGAATAGCAATGGCG



CTGGTTCCATCCGATCCCATCAACAACGGCCAGTCCCTCCCCCTCATCGCCGAGGTCAACA



TGTCCTCCGACTCCTCCTCCGCCGCCGCCGTCGTCCGCGCCACCGTCGTCCAGGCCTCCA



CCGTCTTCTACGACACGCCCGCCACTCTGGATAAGGCGGAGAGGCTGCTGGCCGAGGCGG



CTTCGTACGGGTCTCAGCTGGTCGTCTTCCCCGAAGCCTTCGTCGGCGGTTACCCCCGCG



GCTCCACCTTCGGCGTCAGCATCGGCAATCGTACGGCGAAAGGCAAGGAGGAGTTCCGCA



AGTATCACGCCTCCGCCATCGATGTTCCAGGCCCTGAAGTTGATCGCTTAGCAGCGATGGC



TGGAAAATATAAAGTTTTCCTAGTGATGGGGGTGATAGAGAGAGATGGATATACATTGTATT



GCACAATCCTGTTTTTTGATCCTCAAGGTCATTACCTTGGGAAGCACCGTAAAGTCATGCCA



ACGGCTCTGGAGCGTGTCATCTGGGGATTTGGTGATGGGTCGACCATTCCGGTGTTTGATA



CGCCGATTGGGAAAATTGGTGCGGCCATTTGCTGGGAAAATAGAATGCCACTTCTGAGGAC



AGCAATGTATGCTAAAGGTGTTGAAATATATTGTGCGCCGACAGCTGATGCGAGGGACATTT



GGCAAGCATCTATGACACATATTGCTCTTGAGGGTGGATGTTTTGTTTTATCAGCCAACCAA



TTTTGTCGTCGGAAAGACTACCCGCCTCCACCAGAGTATGTTTTTGCAGGAACAGATGACGA



TCTTAACCCAGATTCTGTCGTATGTGCTGGAGGCAGTGTAATTATATCTCCATCAGGAAATG



TTTTGGCCGGACCCAATTATGATGGCGAGGCACTCATCTCAGCTGACCTTGACCTTGGAGA



AATAGCGCGGGCCAAGTTTGATTTTGATGTGGTTGGGCATTATTCGAGGCCTGAGGTGCTT



AGCCTGATCGTGAGGGACCATCCGAGCAACCCAGTTACCTTTGCATCGACATCCGGGAAGC



CTGAAGGCCCTTACAAATAGGTTATGTTTTCTTTCACGGAGCCAGGTCTGAATCATGGCAAA



TAACGGCAAGCAAATGTTGGTCCCAGTGGGAAGCTTTTGATTGTTTGTTTCAACTTTTTGGA



CTCCTGATTGTTTGTTCAACTTTTTCGACTTCATGAGCTATTGTAAATTCTGATTGCAAGCAA



CATAGTTCATGAATACTTCCTGCTTGATAGTTGAGAAAGCGATGTTATATTTCAGTTGCACAG



TAAACATGTCTGTATCCTGTGCAGTAGGACTCTTGTAACTAGTCTGTATCTTGGCAATGAAAT



AAGAACATTAGTGACTGTTCTCGTGAATTAAAAAAAAAA





16
TCTCTCTCTACACACTCTCTCTCTCTACATTCTTTCTCTCTCTTCACTTTCTCTCTCTACTGTG



TCCCTGCCCAAATTGCCATTTCTGAAGTGTGTCAGCTTCGCCCTTTGGGTGGAGTTAAACAG



AGATCACAATAATCTCCTTCATTATTGTCATCTTGACATCGACTCCTCTCTCCCTCTCTCTCT



CTCTCCATCCATCTCCTCCTCGTTCTCTCTCTATATTACCCATTTCGCCTCCGTCCTTCCGTT



TCTCTCTCCTCCTCTCCTTCCCCCCCCTTTTCCCCCCAACCTCCAGTTCATTCGGCATCACT



CACTCCCAATCTCAATCTCCCGGACCCATGTATCAAATCTGAATCTTTGCTCTCAATTCCCAA



TCCCCGGTCGAATCTTTGACTACCCATCTTCGAATCCTCTTCTGGGTCGCCCTCTATCTCCC



TCCCCACGTCCCCCGCCTCCGCCGCCGGAGCGGCCGGGGTTCTGCAGCCGAGGCCGCCG



CGACCGGCCGCATTGAGCCCGGAGCCGACCGCCGTCCGCCGTCCGGGACCGATCCGGAG



CGCAAAGTCATGAGCTTGGCGGGGTCTTGGTGATTCCCCGGGAGGTGGGTCGGTCATGGA



TCCGAGCAAATCGCGCGACTCGGCGGAGTCGACCCGGGTGATACAGTTCCCGAACGACGT



GCTGGAGCGGATTCTGTCCCTCATAGACTCGCACCGGGACCGGAACGCCGTCTCCCTCGT



CTCCAAGGCGTGGTACAACGCGGAGCGGTGGACGCGGCGGCACGTCTTCATCGGCAACTG



CTACGCGGTGTCGCCGCAGATCGTGGCCCGCCGGTTCCCCAACATCCGCAGCGTCATGCT



CAAGGGGAAGCCCCGGTTCTCGGACTTCAACCTGGTGCCGCCCAACTGGGGTGCTGACGT



ACACGGGTGGCTCGCGGTCTTCGCGGATCAGTACCCGCAGCTCGAGGAGCTGAGGCTCAA



GCGGATGACCGTGACGGACGAGAGCTTGAAGTTCTTGGCTCGCAAGTTCCATAATTTCAGG



GTGCTCTCGCTCCTGAGCTGCGATGGGTTCAGCACCGATGGTCTCGAGGCAATCGCAACC



GACTGCAGACATTTGACTGAGCTGGATATACAAGAGAATGGGATTGATGATATCAGTGGCAA



CTGGTTGAGTTGCTTCCCTGAAAACTTCACATCTATGGAGGTGCTGAACTTTGCAAGTCTAA



GTAGTGATGTGAATTTTGACGCTCTTGAGAGGCTTGTAAGTCAGTGCAAGTCACTGAAGATT



TTGAAGGTTAATAAAAGTATTACGCTAGAACAATTACAGAGGCTGCTTGTCCGTGCTCCTCA



GTTGACCGAGCTTGGTACTGGTTCGTTTTTACAAGAGCTTACTGCTCACCAGTCTGAGGAGC



TTGAAAGAGCTTTCATTGGTTGCAAGTATCTGCATGCACTCTCCGGCTTGTGGGAAGCTACG



ACACTATATCTACCTGTTCTTTACCCAGCCTGTACAAATTTGACTTTTCTGAATTTAAGTTATG



CTGCTTTGCAAAGTGAAGAGCTTGCCAAGCTTGTTGCCCACTGTCCACGTCTTCAGCGTCTC



TGGGTACTTGACACTGTTGAAGATGTAGGACTTGAGGCTGTTGCCTCGAGTTGTCCCCTTTT



AGAGGAGCTTCGAGTCTTCCCAGCTGATCCTTATGACCAGGACATTAATCGTGGTGTGACT



GAATCGGGGTTTCTTGCTGTGTCGCTCGGCTGCCGCAAGCTCCACTATGTCCTCTACTTTTG



CCGTCAGATGACAAATGCTGCTGTAGCCAGAATTGTGCAGAACTGCCCTGGTTTTACCCACT



TTCGTCTTTGCATAATGAAGCCGGGGCAACCTGATTACCTAACAAATGAACCTATGGATGAG



GGTTTTGGTGCAGTTGTGAAGACTTGCACAAATCTCCGAAGGCTTGGCGTTTCTGGTCTTTT



GACTGACTTAACGTTCGAGTATATTGGAAGATATGCGAAGAACTTGGAAACGCTTTCTGTGG



CTTTTGCTGGCGGCAGCGATCTCGGGATGAAGAGTATACTGGTTGGTTGCCCAAAGTTGAG



GAAACTTGAAATAAGGGATTGTCCATTTGGTAATGAAGCTCTTCTTTCGGGCTTGGAGAAAT



ATGAGTCAATGAGATCTTTGTGGATGTCTGCTTGCAAAGTGACGCTACATGGTTGTAAGACA



TTGGCTACGCAAAGGCCACGGTTGAATGTTGAGGTAATGAAGGATGAGGAGATCGATGATG



GCCAGTCTTATAAGGTTTATGTTTACCGTACTGTTGCTGGACCAAGGACAGATGCTCCATCT



TTTGTCCATACTCTTTGAAGTTGATAATTAGAGGGAGCTGGTGCCAGGATTCTGGAACTTTC



AAGGGCAGCCTGTGTTCTGCGAAGTCAGCCCTTGTGCTAATGCTGGAGCCCGGGGAGCGG



AACAGAACTCATGTTCCTGTTACCTCAACTGTTTTACAAGGCCTCCACCTGTGGTGCTCAATT



TGTTGTAGCAAGGCACCTTGAAATTTAACTTCTTGTAGACTCGTGAAATTTCCTTCCTTTGTC



ATATTTTCTTCTGAGTGTTTTTTAACTC





17
GGAGAGATAGAGAGAGCGAGAGGAGAGAGACGGCGATGGAGGATGAGGAAGAAGAGACG



ACGACGACGACGATGATGCGCGGACCATGCCGATCCAGAGACGGCGGCGCAGCAGCGGC



GGCGGCGGCGGAGGCGGCGGGGCCTTCCACCGTGTGTTGACTTCTCTCTCCCGGCCCTC



CCGACTCCGCCTTCGGGCTCGGCGGACTTGATTAGTCGGGCATGTGAAAAAGAATCTTTGA



CTGCTCAGATTGTTGAACAACGTGATGGAGTCCTGCAACTGCGTTGAGCCACAGTGGCCAG



CTGATGAGCTTTTGATGAAGTATCAGTACCTCTCAGATTTCTTTATTGCTCTGGCGTACTTTT



CCATCCCTCTAGAACTCATCTACTTTGTCAAGAAATCTGCTGTATTTCCCTATAGATGGGTTC



TTGTTCAGTTTGGTGCCTTCATAGTTCTGTGCGGAGCAACCCACCTGATCAACTTATGGACA



TTTGCCATACACTCAAGAACTGTAGCATATGTTATGACCATTGCAAAGGTTTTAACTGCTGCG



GTATCATGTATTACAGCTCTCATGCTTGTGCATATCATCCCCGATCTACTTAGTGTGAAAACC



AGGGAACTATTTCTGAAAAACAAGGCTGCAGAACTTGACAGGGAAATGGGCTTAATTCGTAC



TCAGGAGGAAACTGGCAGACATGTCAGGATGCTAACGCACGAAATCAGAAGCACTCTTGAT



CGACATACTATTTTGAAAACTACTCTGATTGAACTGGGCAGAACTTTGGGATTGGAAGAGTG



TGCCCTGTGGATGCCAACACGAAGTGGCTTGGAGCTTCAGCTATCCTACACTCTCCGTCAG



CAGCAGAATCCAGTTGGATACACAGTACCCATTCATCTTCCTGTAATCAATCGAGTGTTTAGT



AGCAATCGTGCGTTGAAGATATCACCCAATTCACCCGTTGCTAGAATACGTCCTCTTGCGGG



GAAATACATTCCCGGTGAGGTTGTCGCTGTGCGGGTTCCTCTGCTGCATCTCTCTAATTTCC



AGATAAATGACTGGCCTGAGCTTTCAACGAAACGGTATGCTTTAATGGTGTTGATGCTTCCA



TCCGACAGTGCTAGGCAGTGGCATGTCCATGAACTGGAGCTCGTTGAAGTGGTAGCTGATC



AGGTTGCAGTTGCTCTCTCCCATGCTGCAATACTAGAAGAGTCTATGCGGGCAAGGGATCT



TCTCATGGAGCAAAATGTTGCACTTGATCTGGCCAGAAGAGAAGCGGAAACAGCTATTCGT



GCTCGCAATGATTTTTTGGCTGTTATGAACCATGAAATGAGAACTCCCATGCATGCAATTATT



GCCCTTTCTTCCTTACTGCAGGAAACTGAACTGACCCCTGAGCAGCGTCTAATGGTTGAAAC



GATAATGAAGAGCAGTAATCTTTTGGCTACTTTGATAAATGATGTACTAGATCTTTCGAGGCT



TGAAGATGGAAGCTTTCAACTTAACATCGCCACGTTTAATCTTCATGCTGTGTTTAGAGAGGT



CCTTAATTTGATTAAACCGGTGGCATCTGTGAAGAAACTGCTCATCACATTGAATTTAGCCCC



AGATTTGCCTGAGTATGCTGTTGGGGATGAAAAACGCCTCATGCAAGTCATTTTAAATGTTG



TTGGTAATGCAGTTAAATTTTCTAAAGAAGGTGGCATTTCGATAACCGCCTTTGTGGCTAAAG



CAGAGTATTTAAGAGAAGCCAGAACTCCCGAATTTCTTCCATTGCCAAGTGATAATCACTTCT



ATTTACGTGTACAGGTGAGAGATTCTGGATCAGGTGTTAACCCTCAAGATATTCCCAAGTTA



TTCACAAAATTTGCACATAACCAATCATTAGCAACCAGAAATTCTGGTGGGAGTGGACTAGG



TCTTGCAATTTGTAAAAGGTTTGTAACTCTCATGGATGGACACATATGGATTGAAAGCGAAG



GCATTGGCAAAGGATGTACTGCCACGTTTATTGTAAGGCTGGGAATCCCAGAGAAGTTGAAT



GAATCTAAGTTCCCTGTATTACCCAGAGGGTCATCAAATCATGTCCTGGCCAATTTTTCTGG



GCTCAAAGTGCTTGTTATGGATGATAATGGTGTTGGCAGGGCAGCGACCAAGGGACTTCTC



CTACATCTGGGATGTGATGTGACAACCGTAAGCTCGGGGGATGAGTTGTTGCATGCTGTCT



CTCAGGAACACAAGGTAGTTCTTATGGATATTTGCACGCCTGGTATAGACAGTTACGAAGTT



GCCGTCCAGATACACAGGTTGTATTCACAACATCATGAGAGGCCACTCTTAGTGGCAATCAC



TGGAAGCACTGACAAGGTAACCAAAGAGAATTGCATGAGGGTTGGGATGGATGGTGTTATC



CAGAAACCTGTGTCGCTTGATAAAATGAGAAACGTACTGTCTGAGCTACTGGAATGTGGACA



TCAAATGTCTAGTTTGGCCCGTGTTTGAGAAGAATGGAGAAAATAAGACTGCGATAAAGTTT



CTTGCGGCAAATGATTTGTAAATACTGCATGCAGTGGAACATTGGAGGGTTATCAAGCAATG



CTACAACAACCCCATGTAATACGAGACTCATACCGATCATTTTTATCCAAGAATGACCAAGGT



CATCAGATGATTGAACAAGCCGAAGCCCCATAGTGGAGCTGCTAGTAACTTCACGGGATGA



TGACAAGTCTTATGTGTCGTCGACAAAGTTGTGATGTCGTTGCAATTGTAAGATATTATGGTC



CCATCAATGATATCTCTTTGTTTGAAAAAAAAAA





18
GAAAAGCTTCTGTACATGCGCAATCCCAAAGGAAGCCCTCTGAACATCCGTTGATCCCTGG



CGGAAAAAAGAGGCAGCACCCATTGATCACCAGGGAGAAAGAGAGAGAGGGTTGCTTACG



GATTCTCCGAATTCGCAAGAATGGCTTCTCGGAGACGCATGCTTCTCAAGGTCATAATCCTT



GGTGACAGCGGGGTTGGAAAGACATCTTTGATGAATCAATATGTGAACCGAAAGTTCAGTAA



TCAGTACAAAGCAACCATCGGGGCAGATTTCCTTACCAAGGAAGTCCAGTTTGGGGATAGA



CTTTTCACATTGCAGATATGGGATACAGCGGGGCAGGAACGGTTCCAAAGTCTCGGTGTTG



CCTTTTACCGTGGAGCTGACTGTTGTGTTCTTGTATATGATGTGAATGTGATGAAATCGTTTG



ACAACCTTAACCACTGGAGAGAGGAGTTTCTCATTCAGGCCAGCCCTTCTGACCCTGAGAA



CTTCCCATTTGTTGTGTTGGGAAACAAGATTGACATTGATGGTGGCAACAGTCGAGTGGTAT



CTGAGAAGAAAGCGAAAGCATGGTGTGCCTCAAAGGGAAACATTTCTTACTTCGAAACTTCT



GCAAAGGAAGGTTTTAATGTTGAAGCAGCTTTCCAATGTATAGCCAAGAATGCCCTTAAGAA



TGAGCCTGAAGAAGAACTCTACCTTCCCGATACTATTGATGTGGCTGGTGGACAGCAGCAG



CGTTCTTCGGGCTGTGAATGTTGAAGAGTATATGACTTTAAATTTGCTGGTCCCTCGAGAAA



AGACTCGCAAAAGACGGCCATCATTTTACTTCTGCCGACTGTGAATCGCCAGGGCACTACC



GGTTGTTGAGAGTGCCATGTATATCATTAGCAATGTTCATCAGTTCAGCACAATATTTGTGGT



TTCATCGTTCCAAAATCGTGCGTTGTGAAATTGGTTGTGTATAATCTCTAGAATCCAAAGGCT



TACGGGTCATGCAATCCTTTCTAATTTGATTACTCAGATGTCCAAGCTGTACACTTAATTTGC



TCTCAAAAAAAAAA





19
GGTCGAAGCTGAAAATCTGACAAAATCCTCTCCCCGCGGCCGTTTCCGTTCTTGAGCTTCG



ATCCGCAGGGAAGGGGAGCTCCGAGCAATGGCGGGCGGCTACAGGGCGGACGACGACTA



CGACTACTTGTTCAAGGTGGTGCTGATCGGCGACTCCGGCGTCGGCAAATCCAACCTCCTG



TCCAGATTCACGCGGAACGAGTTCAGCCTGGAGTCCAAGTCCACCATCGGGGTCGAGTTCG



CCACCAGGAGCATCCGCGTCGACGACAAGGTCGTCAAGGCCCAGATTTGGGACACCGCCG



GCCAAGAGAGATATCGTGCAATCACAAGTGCCTATTACAGAGGAGCAGTTGGTGCATTGCT



TGTTTATGACGTTACGAGACATGTCACTTTTGAGAATGTCGAAAGATGGTTGAAGGAGCTGC



GGGACCACACAGACTCTAATATCGTGATAATGCTGGTAGGAAACAAAGCAGATCTGAGGCA



CTTGCGTGCCGTGTCTACGGAGGATGCCAAGGCCTTTGCAGAAAGAGAGAACACTTACTTC



ATGGAGACTTCCGCTCTTGAATCTATGAATGTAGAGAATTCATTCACCGAAGTGCTCACACA



AATATACCACGTGGTGAGTCGAAAAGCACTTGATGTTGGGGAAGATCCGGCAGCACCTCCC



AAGGGACAAACTATCAGTGTCGGTTCAAAGGATGATGTTTCCGCAGTCAAGAAAGTGGGCT



GTTGCTCCGCTTGAAGTTAAGAGTAACAGAATGAAGATTTTGGGGGAAGTCTTTATTCAATC



CTAATCTGCTGCCCGGAGAATTGGAAGATGTTACGCGGGAATTGCAGACCTTCTTTACAACC



TGTCACCATCATCTCCATGCATGGCGATGCTTAAGCTTTTGCCGGATCAATTTAAGTTTGAA



GTCCAAGGAAACCGGATGTTAGGGCTTCGTGTATTTCATTTGTTTCATTTCCAGATGCTTAAT



TTTCTATTCCCATCCCGTGTTGATTTGTTTGTTGGGTTCTCTAGGTTTTTGAGCTGAATTGGT



CATGTCACACAGGGAACTGTCTTCGGGCGAGTTTAATCATGTATCTGATTTACGATCGGTGT



TGTGAACGTCGGA





20
CACCAACCATCCCGGGCGGGCGGCCTCGACTCCTTCTTGTTCCGTGCAGTTTTCATAGACT



ACTTCCATTAACGAGAATCCTTCCTCCATCGGCGTCTCCTTCTCCTTGTGCTTCTTGTTCTTG



GTGAGACTCTTGGAAAAGGGATGGTGGATTCGTTCGACGAAGAGTGCGATTACTTGTTCAA



GGCCGTCTTGACCGGGGACTCTGCCGTCGGGAAATCGAATCTCCTATCGAGGTTCGCGAG



GAAGGAGTTCCAGTTGGATTCGAAACCCACGATAGGCGTCGAATTCGCATACAGGAACGTC



AAGGTCGCCGACAAGCTCATCAAAGCCCAAATATGGGACACTGCAGGGCAAGAAAGATTTC



GAGCCATCACCAGTTCATACTATCGCGGAGCACTGGGGGCGCTGCTGGTTTACGACATCAC



TCGGCGAGTGACGTTCGAGAACGTGAAGAAATGGCTGCGCGAGCTCAGAGACTTTGGGAA



TCCCGACATGGTGGTGGTCCTGGTCGGGAATAAGTCCGATCTGGGCAGCTCTAGAGAAGT



GGACCTGGAAGAAGGGAAGGACTTTGCGGAGGCAGAGAATCTGTGCTTCATGGAAACTTCT



GCTCTGGAGAATCTAAATGTCGAGGAAGCATTCTTGGAGATGATCACCAGAATCCATGAGAT



CACAAGCCAGAAGAGCTTAGAAGCCAAGAACAATGAAATAACCAGTAGCCTTCACGGTCCT



AAGCAGGTCATTCAGATTGATGAGGTCACTGCTACTAAAAAGCCATACTGTTGCTCAAGTTA



ATCCCAACCGTTGGGGGATTTTTTGACGAGTCAGTACCAAATTTATAGTTGCCTACTGACCA



CATCTTGATTTTTTTCCCCTGAATTCAAGTCCAATCAGCTTCCTCTTTAAAAAAAAAA





21
GGTAATTGCCCAAATCAGATTCCTAGATTCTAGCCAACTCGACAACCGTCTCCACCCTTTCT



TTCTTCCCCTCAAATTTCAAATCAGTCCAAAAAAACTCAAGACTGCTGCTGCTGCCGATTGAT



TCGCCATCTCCTTCCCACCTTCCCTCCTTCCTCTCCAATCTCTCGAAGCTCCGTTGCTTTCAT



GGCCGGGTACAAAGCCGACGAGGAGTACGACTACCTGTTCAAGCTGGTCCTGATCGGCGA



CTCCGGCGTCGGCAAGTCCAACCTTCTCTCCCGCTTCACCCGGAACGAGTTCAACCTCGAG



TCCAAGTCCACCATCGGCGTCGAGTTCGCCACCAAGAGCTTGAGCATCGACGGCAAGGTC



GTCAAGGCCCAGATTTGGGACACCGCCGGCCAAGAAAGGTACCGTGCCATCACTAGTGCTT



ACTATAGAGGAGCTGTTGGCGCTTTACTTGTGTATGACGTCACCAGGCGTGCGACTTTTGA



GAACGTTGCAAGGTGGCTGAGGGAGTTGAGGGACCACACCGACCCCAACATCGTGGTCAT



GCTCATTGGCAACAAGTCTGATCTTCGCCACCTTGTGGCAGTCCCACTGGAGGATGGGAAG



TCATTTGCCGAGATGAGTCACTACTATTTCATGCAGACTTCTGCATTGGACGCGACCAATGT



GGAAGCAGCTTTTGCTGAAGTCCTTAGTCAGATTTATCGGATTGTGAGCAAGAGAGCAGTC



GAAGCGGGTGACAACCCAAGTGTTTCTTCTGTTCCAGGTCAGGGACAAACGATCAATGTCA



AAGAAGAGGGGTCTGTTTTTAAGAGGATTGGATGCTGCTCTAGTTAAGGTAGGTTTCTTCGG



CTGCTTGTTGCTCCAAGGGTGGGTCTGCCAAGTGCTACCTCTGTGTATATTTT





22
GGTCATTGAAGTCTAATCATCTTCAACCTCTCACCGAACAGACGCTGCTGCTGCTCTCTCCT



TCTTTCCCCTTCCCCATCAACACGCTCGTCTCTGTCCCTGTCCCTGTCCCTGTTTCTCTCTCT



ACCCTCCGAGATCTCCACAGTAGAGAGAGAAAGACAGAGAGAGAGAGAGAGAGAGAAGTG



ACGTGGTGACAGTAGAGAGAGAAAAGACCCGAGCTTGAGTCGTGGGTCGGTCGTGGGCAA



TGGCGAGCGGAGGAGGCTACGGGGACGGGAACCAGAAGATCGACTACGTCTTCAAGGTGG



TCCTGATCGGGGACTCCGCCGTCGGGAAGTCCCAGATACTCTCCCGCTTCGCCCGCAACG



AGTTCAGCCTCGACTCCAAGGCCACCATCGGCGTCGAGTTCCAGACCCGGACCCTCGTCAT



CCAGCACAAGAGCGTCAAGGCCCAGATCTGGGACACCGCCGGCCAAGAACGATACAGAGC



TGTTACGAGTGCATATTATAGGGGTGCGGTGGGGGCAATGCTTGTTTATGACATTACCAGAC



GGCAGAGCTTCGATCACATACCTCGCTGGTTGGAAGAGCTGCGTAGCCATGCTGACAAGAA



CATTGTCATTATTCTGGTCGGTAACAAAACCGATCTCGAGAACCAGCGTGCCGTGCCCACT



GAGGACGCGAAAGAGTTTGCCCAGAAGGAAGGGCTCTTCTTCTTGGAGACCTCTGCATTGG



ATTCTACCAATGTCGAGAGTGCATTCTTGACTGTCTTGACCGAGATATTCAACATCGTCAACA



AGAAGAGCCTAGTTGCTGGAGAGAGCCAAACTAATGGCAATCCTGCATCTTTGGCTGGCAA



AAAGATCATCATCCCGGGTCCTGCCCAAGAAATCCCAGCCAAGAACAAAATGTGTTGCGGA



ACATAATGCACTTCGACGTGATTTTCCTCTTATGCTCTAGCAATTTTTCCTCAGATTTGTCAT



GTGTGCTGCTTTATATTCTATGTATATCTACATATTAGAAGAGTGGTGGGGTTATACTGCTGA



TTGTAATAGTGTGTTTCGTGAGGTCACAGACACAATAGACCTAACTGGGGTGCATATTCATT



GAATGATTTTTGGCTTCGGAAGTTATATTTCATGCAATTTGCCAAAAAAAAAA





23
GTACGTTTCTAGAGAGAGAAAGTGAAGAGAGAGGATAGAAGAGAAGAGAGAGAGAGAGAG



AGAGAGAGCGCTGAGGAGGTTAGAGGTCATGGCTGACGCCGCAGCTCAGAACGGCCAGTT



CAGCGACTTCCCGGCGGTCCCGACCCACGGCGGCCAGTTCATCCAGTACAACATCTTCGG



CAACCACTTCGAGATCACGGCCAAGTACCGGCCGCCGATCATGCCGATCGGCCGCGGCGC



GTACGGCATCGTCTGCTCTGTTCTGAACTCGGAGACGAACGAGATGGTGGCGATCAAGAAG



ATAGCGAACGCGTTCGACAACCACATGGACGCCAAGCGGACGCTCCGCGAGATCAAGCTG



CTCCGCCATCTGGACCACGAGAACGTTATTGGCATTAGAGATGTGATTCCTCCTCCCCTACG



GCGAGAATTTACTGATGTCTACATTGCTATGGAACTCATGGACACTGATCTTCACCAAATTAT



TCGTTCAAACCAAGGCTTGTCAGAAGAGCACTGTCAGTACTTCTTGTATCAGATTCTACGTG



GACTGAAGTATATCCACTCTGCGAATGTTATTCATAGAGACTTGAAACCCAGCAATCTTTTGC



TGAATGCCAATTGTGACCTGAAGATCATTGACTTTGGCCTGGCACGGCCAACTGCAGAAAAT



GAATTTATGACTGAATATGTGGTCACCAGATGGTACAGGGCACCAGAATTGCTGTTGAACTC



TTCAGATTATACTGCTGCTATAGATGTGTGGTCTGTTGGTTGCATATTTATGGAGCTTATGAA



CAGAAAGCCTTTGTTCCCTGGGAGGGATCATGTGCATCAGATGCGTTTGCTTGTAGAGCTTC



TTGGTACACCAGCTGATGCCGATCTTGGGTTTGTGCGAAATGAGGATGCACGCCGATACAT



AAGACAGCTTCCTCAGCATCCCCGTCAACCATTGGCTAGTGTTTTTCCTCATGTTCACCCTTT



GGCCATCGATCTGGTTGAGAAGATGTTGACATTTGACCCAACAAAGAGAATCACAGTTGAAG



AAGCACTCGCCCATCCTTATCTTACGAGATTACACGACATAGCTGATGAACCTGTGTGCCGA



CAACCATTTTCTTTTGAGTTTGAGCAACAGCCCTTGGGAGAAGAGCAGATGAAGGACATGAT



ATATCAGGAGGCTATAGCGCTCAATCCAGAGTTTGCTTGATGCTGTTTAAAGTTTCTATGGT



GGATGAGGAACTGCGAACTAAAGTGGAAACAGTGCAGCGCAACGAAATGAAGAGTTGCACA



TATTCAGAGGCAACCGATCTCGTTGCTTTATTTTTCCGTGGAGTAAGTATGCCGTACCACGA



ATACTGATTTGAGGGGAGCTTTGCTCCACCTGTCGAATAAACTTTCTTGATTCCTTGAAACG



CCTTTTGTTTTTGCAATCGGTGCTTCTTGGCATTCTTTTATTAGCTTGTATTTCACTCAACGTG



CTTAATATCATTTTGTTGTAACATTTCACAGTTTGTAAATTTGTACTGCAAGATGTATTAGTAA



GAAGAACTGTATTTTTTTTTATTTTTTTGGTTCATTGAACCGTGCTTCAGTTTATGAATGCTAA



TCTGTATGTAACGCGCAGAGCAGGGCGCTAGAGCTTTTATCTGTGCCTTCACAACTTCTGTT



TTATTATAAATCCCTTCGTTCCCAAAAAAAAAA





24
TTCTCGATAAGCAATAATTGCTGCCCTTCTCTTTTCCTCGTCACTGCTACAGAGGCCGGGTC



TAATCGCGACGAGGTGACGAATCTGAGATCGAAAGTCGTCTCCTCTTGTTGCGGGGTCAGA



TCCGTAGGGCTCGTGGCTTGACAAGAACAGTGCTTTCCGAGGGAATAAGCAGATCCCAATG



CGTTAGGGGAATGATTGCGTAGGGCTGCGATCTTGGGCATCTGTTGCTGTCGGGAATTCTT



GCGAGGAGAAGGGCCTCTGAGGCTGCGTCGTGCTGGGGAGTTGATGAATTGCGCCTGCTC



GGGGGAAGAGTGAGTGGGATCCGACGATGGGTCTGAGCAAGAATGGCTTCTTTCTTTGAAT



TCGCTTCGAAGATCACATAAAAAGCAAATGGCAACACTAGTTGAGCCGCCAAATGGGGTTCA



TTCCGAGGGAAAGCACTATTACTCGATGTGGCAGACCTTGTTTGAGATTGACACAAAGTATG



TGCCCATCAAGCCCATTGGCCGGGGAGCCTATGGCATTGTTTGCTCTTCTGTGAACAGAGA



AACCAATGAGAAGGTGGCTATAAAGAAAATTCACAATGCCTTCGAGAATCGGGTTGATGCGC



TGAGAACTTTGCGCGAGATAAAGCTTCTCAGGCATCTTCGGCATGAGAACGTCATTGGTCTG



AAAGACGTCATGATGCCTATCCAGAGGAAAAGTTTCAAAGATGTCTATCTGGTGTATGAGCT



TATGGACACAGATCTGCACCAGATAATCAAATCCTCTCAGACACTTACGAATGACCACTGCC



AATATTTCCTCTTCCAGTTGCTACGAGGCTTGAAGTATCTACATTCAGCAAACATTCTCCACC



GAGACTTGAAGCCAGGGAACCTTCTCATCAATGCAAACTGTGACCTCAAGATCTGCGATTTT



GGGTTGGCACGAGCTAGCAATGGAAAGGGACAGTTCATGACTGAGTATGTGGTCACTCGCT



GGTACCGGGCCCCAGAACTCCTTCTGTGCTGTGACAACTACGGCACATCCATCGATGTGTG



GTCTGTTGGATGCATCTTCGCTGAGCTTCTCGGACGTAAGCCATTATTCCCTGGTACTGAGT



GCCTCAACCAACTCAAACTGATCATCAATGTCCTCGGCAGCCAAAGAGAGGAGGATATCGA



ATTTATCGACAACCCAAAGGCGAAAAAGTTCATAAAGTCTGTCCCATATTCCCCAGGGACTC



CATTATCCCGTCTTTACCCTAATGCACATCCTCTGGCTATTGATCTCCTGCAAAAGATGCTCA



TTTTCGACCCATCAAAGCGCATTGGCGTCACTGAGGCTCTCCAACACCCATACATGTCACCG



CTGTATGATCCGAATACCAATCCTCCTGCGCAGGTTCCCATCGACTTAGATGTCAATGAAGA



TCTGGAGGAAGAGATGATAAGGGAGATGATGTGGAAGGAAATGCTCCATTACCATCCCGAA



GTCGCTGTGGGCAATTTAGAGGTGTACTCTTAAGCATTCTTCAGTTGTTTTGTCTCGCCTCT



CTGTGATAAGGTACTCCATCAATATGCTGCTGCACTTCATTATGATGGTTCTGTAGTTTCTCT



TAACATATAGGCTAGCTTTTCCTCTTTTTCTCAGAGAGGGGATAAAATAATTTGCTGGAATCA



TGCCCAGGAAGTTCTTGTCCTCAAAATGCATGATTGAGCAACCGTTATCTTTCTTCTTCACTA



TGTCTGTTTGAGATCCATGTACTAGGTTTCCTATCTAACCTGTAAATAGCCTTATTGCTATGA



GACTTCAGGCTTGTTGTACAATTATATGATATGCTTGAGGATGCTTTTATAACATCTGGTTTG



GACGTAATAAGAGTACTTCTAAAGCTGTAAAAAAAAAA





25
GCTCTCTCTTCGTTCGCTTCACTGCCCCCCTCTCTCTCTCTTTCTCTCTCTCTCCTCGAGCTG



AGCTCAACTCGAACAAGAGCATTGCGGTTCACACAGAGGAGGGCAGAGGAGAGAGAAAGA



TAGAGAGAGAGAGAGAGAGAGGAGGAGGAGGAGAGAGAGAGCTCTGCATATTCAGGGTCA



TTGAGGAGATTTGTATCTACTTATGGAGATTGTAGATTCTGCGATCTGAGAAATTCGGGAGC



TCTGCTTATCTTTTTCTCTTCCTGTCTTGTCTTTTTTGTTTGTTTTTTCGTTTTTTTGGGTCTCC



CTCTTCTCAGCTGCTGCTGCTTGCTGCAGCTGCTGCAGCAATCATCATCATGACTTCTTGAT



TCGTAGATGATAGGTGAAGAAGAAGAAGAAGAAAGGGGGGGTTTTTCTCTTTCTCTGCTCTC



TTTCCTAGCTCTCTGCTCCTTACCCAGAAAGCCGTTCGTTCTCTCTCTCGGGCCGGAATTTG



CTCAGCGTCTGTCTTTTCCTCTCTCCGTTCAGATCTAATCGGAATCGGGAAGATATGTAAGG



GGGGGTCTTCTGGGTTTTGTCCGTCGCCATTTCCTCTCGAGCCTCGCGCGGTTTTAAGCGT



TTAGATCTGGGTTTTTCTTAGCTGGGTAGGTTTGGATTCAGTTCGCAGGTTGTAGTAGCTTA



ATCTCTGTACATTTGTTTTTTTTTTTTTTTTTTTTTTGTCTCCGAGCTATTTGGTTCTTTTGGGG



CGAAGGGTTGTGTTGGGATTAGGTTGTTTTTGCCGCCCCCCGGCTGTTTTTTTCGTTAGGGT



TTCTGTTCTTTTTTCTTCTTTCTTCCTGCGGGAGGGATGGATTGAGGGCTCATTTCGTTTGAA



AGTTGGGATTTTTTTTTTCCTGGGCAGTCGTGGGAATTGGATTTGTCACTTGGGTAAGGGAA



GATGAATTATTTTCCCGATGAAGTTATCGATCACGTGTTCGACTTTGTGACGTCGAACAGGG



ACCGCAACGTGATCTCTTTAGTGTGTAAATCTTGGTATAGGATCGAGAGGCTTAGCAGGCAG



AGAGTGTTTATCGGGAACTGCTACGCGATAAGTCCTGAGAGATTGATCGCGAGATTCCCGG



GGGTAAGGTCGCTCACTTTGAAGGGGAAGCCCCATTTCGCTGACTTCAATCTAGTGCCACC



TGACTGGGGAGGGTTCGTGTACCCTTGGATCGATGCATTGGCTAGGAGTAAGGTTAATTTG



GAGGAGCTCAGGTTGAAGAGGATGGTGGTTACAGATGATGGTCTTGAGCTGATTTCGAGAT



CGTTTGTAAATTTCAAGTCCTTGGTTCTTGTTAGCTGCGAAGGGTTCACTACTGATGGCCTT



GCGGCTATAGCAGCCAACTGTAGGTTTCTTAGGGAGCTGGACTTGCAAGAAAATGAAGTTG



AGGATCATAGAGGCCAGTGGCTAAACTGCTTTCCCGATAGCTGCACCTCTCTTGTCTCCCTA



AATTTTGCATGCTTAAAAGGAGATATAAATTTAGCAGCACTTGAGAGGCTTGTGGCAAGATC



TCCATATCTCAAGAGCTTGAGGCTAAGCCGTGCTGTCCCTCTTGACACGCTGCAGAAGATC



CTGGTCCGAGCACCTCAGTTGGTGGACTTAGGCGTGGGCTCTTTTGTCCATGACCCAGATT



CTGAAACCTACAACAAGTTGGTGACAGCAATTGAAAAATGCAAATCTATGAGGAGCTTATCC



GGATTCTTGGAGGTTTCTGCGTACTGCCTACCAGCTATTTATCCAATATGTTCAGGCCTGAC



CTCCTTGAATCTTAGTTATGCTCCTGGGATCCCTGGAAGTGAGCTAACTAAGTTAATCCGTC



ATTGCAGAAAGCTGCAGCGCTTATGGATACTTGACTGCATAGGAGATAAAGGGCTGGGAGT



CGTGGCTTCAAGCTGCAAAGAACTACAGGAATTGAGGGTTTTTCCGTCTGATCCTTACGGAG



TTGGAAATGCTGCAGTGACCGAAGAAGGGTTGGTTGCTATTTCCAGAGGTTGTCCAAAGCTT



AACTCACTGCTGTACTTCTGCCAGCAGATGACAAATGCTGCCCTGAAAATTGTAGCCCAGAA



CTGCCCTAATTTCATACGGTTCAGGTTGTGCATCCTCGAGCCCACAAAACCGGATTCTTCAA



CCAATCAGCCTCTTGACGAAGGATTCGGAGCTATTGTTCAGTCATGCAAGGGTGTCAGGCG



CTTGTCACTTTCTGGCCTTCTTACTGACCAGGTCTTCAATTATATTGGCACATTCGCTGAACA



GCTTGAGATGCTTTCTATTGCATTTGCTGGGGACAACGACAAGGGAATGCTTTATGTGTTAA



ATGGGTGCAAGAAGATTCGGAAATTGGAAATCAGGGATTGCCCCTTTGGTAACATCGCACTT



CTGACGGACGTGGGAAAGTATGAAACAATGCGATCCCTTTGGATGTCGTCGTGCGATATTA



CCCTTGGAGGCTGCAAAACCCTGGCAAAGAAGATGCCGAGGCTGAACGTGGAGATTATCAA



TGAAAACAATGAGATGGAGGATTGCATTGATGATGAGCAGAAAGTAGAAAGGATGTACCTCT



ACAGAACCTTGGTGGGGCCGAGGAAGGATGCACCAGAGCATGTTTGGACATTGTAGGGTTC



CCCTGAGGTTCATTGCCATGGCTTTGCCTCAAAATCTCCTGTTGTACCATCATTGTACCTCG



TTTAGGCTCGTAATTTGTGGATTTTTAGTTGTATGGTGATTTTTTATTTTATTCAGAAGAGATT



CTAATGTGCTTCTAGTTATAAATAGATTTTTCTTTAGCAAAAAAAAAA





26
GCTCCCTTGTTCCTTATCTCTTCCATTTCCTCAGCCTCTGCTGTTCCTCCACTGGACCTCCCA



CCACCCCCCTCCCTCCTCCCTCCTCCCCCCTAACCCCCCAAGAAAATCAAGAAAATCAAGAA



AAGAGACGCTGCCAGCAAAAGCAGCAGCATGCTAGTCATAAAACCTCCTCCACTCCCTGCT



GCCATGAACGAAATTTGATCCTCAGCTCCCCACTCACAGCCCTCCGAAATCTCTGAAATCAA



AGCAAGGAAAGAGAGAGAGAAGAGAGAGAAGAGAGAGGGGAAAGAGAGATGAAGAGGGAT



CATCGAGACGCTTGCAGTGGCGGCTATGGCGGCGGCGGTGGCGGGGAGGCGAGCGGCG



CCTCGAAGGGCGAGCCCCCGTCGTCCTCCTCCACCCACTCATTGCCCGGCTCTGGCAAGG



CCAAGATGGTGATGTGGGGCGAGGACGACCAAGATCCGAGCGGCGGTGGCGGGGGCGGC



ATGGACGAGCTCCTCGCGGTGCTCGGGTACAAGGTGAGGTCGTCGGACATGGCCGAGGTG



GCGCAGAAGCTGGAGCAGCTCGAGATGGTGATGGGCTCTGCTCAGGAGGACGGCATCTCG



CACCTGTCCTACGACGCCGTCCACTACAACCCTTCCGATCTCTCCTCGTGGGTCCAGAGCA



TGCTCTTCGAGCTCAACCCCCCTCCGCCGCCGCAGCAGGTGGCCGACGCGGTCCTCGCTG



CGGCCGAGTCGTCTTCCACCATCGCGCAGCACCACCGTTCGCATCTCGGGTCTCGGTCTCA



GACGCAGACTCGGACTCTGAGTCAGACTTCGGCTCCCACTCAGACGCAGTCCCAGGTAATC



TTCAACGACGACTCCGAGTACGACTTGAGGGCGATTCCCGGCGTCGCCGCTTTCCCACAG



GGCGACTCGGACTTCGAGAGCGCCGCCCGGAAGAAGATGAAGACCCTGAACGGCGGGTC



GAATTCGTTGTCGTCCTCGTCCTCTTCGTCGGCCGCCGGAGCGGCGCCCTCCGAGTCGAC



CCGGCCGGTCGTCCTGGTGGACACGCAGGAGACTGGGGTGCGGCTCGTCCACACGCTCAT



GGCCTGCGCCGAGGCGGTCCAGCAGGAGAACCTGAAGCTGGCCGATGCGCTCGTCAAGC



ACATTGGCCTGCTCGCCGCTTCGCAGAACGGCGCGATGCGCAAGGTAGCGACCTACTTCG



CCGAGGCGCTCGCCCGCCGGATTTACCGAATCTACCCCAACGACGGCAGCCTCGACTCCT



CGTGCAACGACATCCTCCAGATGCACTTCTACGAGACCTGCCCGTACCTCAAATTCGCCCA



CTTCACTGCCAATCAGGCGATTCTTGAAGCCTTCGCCACCGCCAGCCGCGTCCACGTCATC



GATTTCGGCCTCAAGCAGGGTATGCAGTGGCCGGCCCTCATGCAGGCTCTGGCCCTGAGG



CCCGGCGGTCCGCCCGCCTTCCGGCTCACCGGGATTGGCCCGCCGCAGCCGAACAACAC



CGACGCCTTGCAGCAGGTCGGCTGGAAGCTGGCTCAATTGGCCGACACTATCGGGGTCGA



GTTCGAATTCCGGGGTTTCGTGGCGAATTCGCTGGCTGATCTCGAGCCCGCCATGCTGGAC



ATCCGCCCTCCCGAGGTCGAGACGGTGGCCGTCAACTCGGTGTTTGAGCTCCACCCCCTG



CTCGCCCGACCGGGGGCGATTGACAAGGTTCTCTCATCGATCAAGGCCATGAGACCTAAGA



TAGTGACGATGGTGGAACAGGAGGCGAATCACAATGGCCCGGGGTTCGTGGACCGGTTCA



CGGAAGCTTTGCATTACTACTCCAGCCTGTTCGATTCGCTGGAAGGGTCTGGGGTGGCTCC



CCCGAACCAGGATCTGGTCATGTCCGAGGTCTACTTGGGTCGGCAGATTTGCAATGTTGTG



GCCTGCGAGGGGCCGGATCGAGTGGAGCGGCACGAGACGTTGGTGCAGTGGCAGGCGCG



GATGGGATCGGCTGGGTTCGACCCGGTCCATCTCGGGTCCAACGCGTTCAAGCAGGCGAG



CATGCTGCTGGCCCTGTTCGCAGGTGGAGAAGGTTACCGGGTCGAGGAAAACGATGGTTG



TCTCATGCTCGGTTGGCACACGAGGCCTCTGATCGCCACTTCGGCGTGGCAACTCGCTGCT



GCAACTCAGTGAATCAACTGTCGTTCGGTTGAGTTTGGTCGAAATCGAGATAGACCCTGTTG



TCGGTTGGACCCCTTAGATGATCAGTGAATGGAAGTGCTTTGCCTGAGTTGGGAAGGTACT



AAGAGAAGAGAGGCTACGAAACAACCTCAGAGCGTGTAGTTCCACTTCTTGTTTTTTGCCTC



TGTGTAGTCTTCTGCAAGATCTTCCAAATCTTCCTTATTGATTTATTTCATGAATTTTGATTTT



GGTTAGACCTTTGGGCTCTACTCAAGGTTGGATGAATGCGAATGTGTATCCTCTGCATTTAG



CTTCTGGAATAAAATGATGACGACGACGATTCTCGCTGCCAAAAAAAAACGGATGCAATCGT



TTACGATTCATCACATCTCTATGGAACTCCAAGTTACTGGGTGCAACAGTTTTTCGCCGAGT



CAAGTGGAGCAACTCTTCTTGATACAACAATTCCAGCGAATTACTCCAGCTCACTTCTCGCC



TCAGCAATCACGTGGACAAATTCAGATGATGATAAAAGTTATATAAAGATTAAGATCGTGAAC



TTCGGTAGCAGTCCAGTTAATCTAACAATTTCCATTAGCGGACTGGATCAAAATTCGATACAA



AAGTCTGGATCCTCAAAGACGGTATTGACATCTGCTAACTTGAAGGATGAGAACTCCTTTTC



TGAGCCGAACAAGGTGGTGCCAACCCAAAGTCTACTCGAAAATGCAGGCAAAGAGATGGAT



GTTGTTATCTTGCCCTATTCCTTCACTTCCTTTGATCTGTTAAAAGAATCGACTAGCATCCGG



ATGAAGGGAGATGATTATTCGTCTAAATCTTCTATCTAATTTATATATCTGATTGAGTGTAATT



ATATGGAATAATCTCATGACTCAGATGTTATGATACTCAAAAGTTATGTAGATCTTTGTGGCT



GTAACATGTACTTCTTGCTTACCTGTTCGATGCTATATAATATAAATTATATTACATAAAAAAA



AAA





27
TTCCTCTCCCCCCACTTCCTTTTTGCCCTATCTGATAGGGTTTCTCACCTTCTTCCCCCCTCC



CTCTCATGCATTCTTGCCCGCTAGCAGCCCTGCAAATCGCCCTGACCTTCTTGATCGTCGTC



TCGGGATCCGCCTTTTTTGCTCTCTCTCGAGGGTTTTCGGGTCGCGACCGTTTCGGAGCCC



GCCTCCCGGAGTCACCGGAGCCGTTCCCATGTCGAAGGTCCTCAGATTCACTGGAGGCGA



GGATTTTTACTCTGGGAGGTCAATATACCAAAGCCCAAAGGAGGTCAACCTCTTTTTGTCCC



TTGGTAACCATGTGGACGTGTATTTTCCTCCTAGCAAGAGGTCCCGCATCAGCGCTCCGTTT



GTTTTCAGTGAGGACCTATTCGAGCAGAAAAGGCAGGACACAATCGAAGTTCTTCCAGATGA



GTGCCTCTTTGAGATATTCAGAAGGTTGCCTGGAGGCCAGGAGAGGAGTGCCTGCGCTTGT



GTCTCCAAACGCTGGCTCAATCTTTTAAGCAATATATGCCCCAATGAACGCAGCTCTGGTAA



ATCTCAGAACAATTTGGATCCTACCTGTGGGGGAGAGGAAGTGAGTTCAGAGGACGATGGA



TTTCTCTCTAGGAGCTTGGAAGGGAAAAAGGCCACTGATATCCGTCTTGCTGCCATAGCTGT



GGGAACTGCTGATCGTGGGGGATTGGGCAAACTTTCAATCAGGGGTAGCAAGTTGTCCCAT



GTGACAAGCCTTGGTCTTGGGGCAATAGCACGCAGTTGCCCCTCTCTTAAGGCCCTGTCCC



TTTGGCACCTACCTTCTGTCGGAGACGAAGGTTTACTCGAGGTTGCAAATGGTTGTCACCAG



CTTGAGAAGCTAGATCTTTGCCAGTGTCCCAACATTACCAACAAGTTTTTGGTTGCAGTTGC



AAGGAACTGCCCTAATTTGACCGACATATCAATAGAGTCTTGTTCTAGCATTGGAAATGAAG



GTTTGGCTGCTGTTGGACAGTTCTGCCAGAATCTGAAGTCCATTTCAATCAAAAATTGCCCC



AGTGTTGGAGATCAGGGCATTGTTGGTCTGATTTCGAGGGCTGGTAGTGCCTTAACAAAGTT



CAAATTGCAGGCATTAAACATAACTGATGTATCTCTTGCGGTCATTGGGCACTATGCCACGG



CTGTTACCGATTTAACCCTTGCGAGCCTCCACAATGTCACAGAGAGAGGGTTTTGGGTCATG



GGCAATGGTCATGGCTTGCAAAGGCTGAGGTCTTTGATAGTCACCGCTTGTCGGGGTGCTA



CTGATCTGGGACTTGAATCTCTGGGGAAAGGTTGCCCTAATCTTAAGCAGTTATGCATCCGT



TCATCTGCATTCCTGTCAGATGGTGGCCTTGTTTCTTTCATGAAGTCAGCAAGGTCACTTGA



GAGCCTGCAATTGGAGGAGTGCCACAGGATTACCCTGTCAGGACTATATGGTCTTGTCGTT



GGTTGTGGGGATAAACTGAAATCTCTTGCTCTGACAAATTGCTGGGGATTTAAGGACTTTGA



TTTTGGATCACCTCAAGTGTCTCCTTGCAAGTCCCTGCGCTCTTTCTCTGTTCGCAACTGCC



CAGGCTTTGGTGATGCGTGCTTGGTGGCACTTGGGAAGATTTGCCCACATCTGCAGCAAGT



AGAATTGAGTGGGCTTACAGGAATAACGGATGAAGGGCTTTTACGACTGCTTGAATGCTGT



GAAGCTGGTCTTGTGAAGGTTAACCTCAGTGGATGCATCAACCTGACAGATCAAGTGGTTTC



AGCAATGGCTAAGTTGCATGGTAGGACCCTTGAGGTGCTAATTCTGGATGGTTGTACAAAAG



TTAGTGATCTGGGCTTGCTGGCTATTGCAGAAAATTGCCAACTGCTATCTGATCTCGATGTC



TCGAAATGTGCAATTTCGGATTTTGGATTGATGGCATTGGCTCGTTCTAGTCAACTGAGTTT



GCAAGTCCTTTCCGTGTCTGGTTGCTCTTTGGTGTCAGACAAGTGCTTGCCTGCTCTTAAGA



AAGTGGGCCGCACCCTTTTAGGTTTAAATCTCCAACATTGCACTGCAATCAGCACTCGTTCG



GTGGACCTGCTTTTGGAAGAGCTTTGGAGGTGTGACATTCTCGCTTGATTGAGAGTGGATG



GAAATTGCAGTTTCGTCTGAAGATTGGATTTATTTGTTATGAAGACTAGAGTTCAACTCGGCC



TATGTGGACAGCTACAGTTTGTGTTAGTTTTTGGATCCAGAATCCAGCGGATATGGGTGTTG



AAGCAAAATCCGGTGCTTGGTCCTTTTTTCAGGGAATATGGCCTTTCTTTTTTGGCAGGCTT



CCGAATTGGGAATCTGTTCTTAGTAGTTTTGCCTCTCCAAGACGAGAGGAGTCATTTATGGC



CAGATTTTCCTGAGAATGTCCTGACCAAGTTCCGGTTCAGTTCATCATCAATTTCGACAGAG



TTTTTATGATGCCTGGGTTGGTATCTGCTGTTTTAGCTCGGCATCATGCTGGTCAACTATGCT



GGCTTGTGATCAACTTTTCTCCGCGTCTGGATCCTTGCACTTGCAGGAATATTTCGGTTCTG



ACAGGTCTTTCTTGTTCCAGATCCTTGTATGTCATGGGCGGGTCATTCTCCAGAGTTTTGGT



GACGGTCGCGGTTGCTTTTCATGCTTACAATGCCTTGGATTCTTGGGCTTAGGCCATGGCA



GCTGCTCAAGCAGTCTTGCCATCACAACCCATGAGGTTGTTTTTTTCTAGCCAAGCCTTGTT



TTTCCCGGCATTGCGGTGTGGAAAGTTTCTTCGACCGTTTCGCCACACGTTGTTAGAATCTC



CCTCCCCCCTGACTATATGTTGGTTTTACAGTTTGTCAAGTGAAATAAAAGCAGTGTACTTGT



TCATGTTCTAAAAAAAAAA





28
GGTAACATTGAGGTCCTCCTCTGCACGTTTCTCCTTCGTCATCGGGGTTCTCTTACCTAGGG



TTTGCAGGCGGGCGCCACTCTTCTCCGCTGTTTCTACCTCTCTCGTTTGGCAGCCATGGGA



GAATCCAGGAGAGGAGAGATGGATGGAACGACTCGAGGGGGCAGCAATGCGGACATGTAT



CTGCCGAATTATAAGCTCGGGAAGACTCTGGGCATCGGTTCGTTTGGTAAGGTGAAAATAG



CGGAACACGTGTTGACTGGGCACAAGGTCGCCATAAAGATCCTCAACCGGCGCAAGATAAA



GAACATGGAGATGGAAGAGAAAGTGAGGAGAGAAATAAAAATCCTCAGACTCTTTATGCATC



CGCACATCATCCGACTTTATGAAGTCATTGAGACGCCTACGGACATTTATGTTGTGATGGAG



TATGTGAAGTCTGGGGAGCTGTTTGATTACATTGTCGAGAAGGGCAGGTTGCAGGAGAATG



AAGCTCGCAACTTTTTTCAGCAGATTATTTCCGGTGTGGAATACTGCCATAGGAATATGGTC



GTTCATAGAGATCTAAAGCCTGAAAACTTGCTGTTGGATTCTAAATGGAATGTGAAGATCGC



AGATTTCGGTCTGAGCAATATAATGCGTGACGGTCATTTCTTAAAGACAAGTTGTGGGAGCC



CCAACTATGCCGCTCCGGAGGTTATCTCTGGTAAACTTTATGCGGGGCCTGAAGTAGATGT



ATGGAGCTGTGGAGTTATATTATACGCTCTTCTTTGTGGCACACTCCCTTTCGATGATGAAAA



CATACCTAACCTTTTCAAGAAAATCAAGGGTGGGATGTACACTCTTCCAAGTCACTTATCGG



CAGGTTCAAAGGACTTGATCCCAAGGATGCTTATAGTTAATCCAATGAAACGAATCACCATT



CCAGAGATCCGTCAGCATCCTTGGTTTCAAGCTCATCTTCCACGTTATTTGGCCGTGCCTCC



ACCTGATACGATGCAGCAAGCGAAAAAGATTGACGAGGAAATACTCCAGGAAGTGGTCAAC



ATGGGTTTTGAGCGCAATCAACTTGTCGAATCACTTCGCAACCGGATTCAAAATGAGGCTAC



TGTTGCATACTACTTGTTATTGGATAACCGTTTCCGACCTTCCAATGGCTACCTCGGAGACG



AGTTTCAAGAAACGATGGAGTGCACCTTCAATCGTGGAAATCCAGGGGAGCTTACCATTCCA



ACTGTTGGGCCTCGCTACCCACTACCTGGATATATGGATTACCAGGGAGTGAATTCAAAACC



AGGTTATTATGGTGCTGAGAAGAAATGGGCTCTTGGTCTCCAGTCTCGAGCCCATCCACGG



GAAATAATGACTGAAGTTCTTAAGGCGCTGCGAGAACTAAATGTGTGCTGGAAGAAGATTGG



GCACTATAACATGAAGTGCATGTGGAATCCTTGTGTTCCCAGTCATGAGAGCATGGTTAGCA



ATCCTGTCCAGAGTAATTATTTTGGTGATGAATCTACAATAATCGAGAATGATGGCGCAACC



AAGTCCAGAAATGTGGTCAAGTTTGAGGTGCAGCTTTACAAAACGACGGAGGAGAAATATTT



ACTCGATTTGCAGAGGGTGCAGGGACCCCAGTTTCTGTTTTTGGACCTCTGTGCTGCTTTTC



TTGCCCAACTCCGGGTCCTTTAGGAAGAGAAGGGTGAAGATATCCACGAAAAGTCCTGCCA



ATAAAACTTGTGAATAACCATTGGAGGATTTTAGGCGTTCAACATTCATCAGGAAATTGATAT



CAAGCTTTTTGTTCTATATCAAAAATAAAACGTTAAAGAAAAACTCGTGGAAAATACAGTTTTG



TACCAACTGACGAGGTCGTTTCAGATGTTGTGTACTTAATCGAAAGTGATCTTTATTTACACT



TAAAAAAAAAA





29
GAAGGGGGGCTCTCTGTTTTTTTTAACGAGGAAGGAAACAAGCACGTCGTGCAACTTGCCG



TGTAGCTCTCGAAAACGCCCCTCCTTCTCTCTTTCTCTCTCTTCTCTCTCTTCTCTCTTTCTC



CTGGGTCTGAGCAAGAAATGGCAGGGTACAGAGCAGAGGATGACTACGACTACCTCTTCAA



AATTGTCCTGATTGGGGACTCTGGCGTGGGCAAGTCCAACCTGCTCTCCAGATTCACCAGG



AACGAGTTCAGCCTCGAGTCGAAGTCCACCATTGGGGTCGAGTTCGCCACTCGGAGCTTGA



ACGTCGATGGCAAGGTCATCAAGGCCCAGATTTGGGACACCGCTGGTCAAGAAAGGTACC



GTGCCATCACTAGTGCTTATTACCGGGGAGCTGTGGGCGCATTACTTGTGTACGACGTTAC



TCGTCACTCCACATTCGAAAACGTGGAGAGATGGTTGAGGGAATTGAGGGATCACACGGAC



CCCAACATCGTGGTCATGCTCGTCGGCAACAAGTCCGATCTCCGGCACCTCCTGGCAGTCT



CAACAGAGGATGGGAAATCATTTGCGGAGAGAGAGGCCCTCGTCTTCATGGAAACTTCTGC



ACTCGAGGCGACCAACGTGGAGAATGCTTTCGCCGAAGTCTTGACTCAGATTTACAACATC



GTGAGCAAGAAGGCCCTGGAAACAAGTGAGCAAGCAAATGGCTCGGCTGTGCCGTCTCAG



GGAGAGAAGATTGATGTTGGTAAGGATGTGTCAGCTGTCAAGAGAGGTGGATGCTGCTCAA



GCTAGTCAGATTCTTGGAACATTCGAGAGTTTTGGATTACTGGGTAGTTGCCGTTTTTCCTG



TCATCATATTTTGCGATATATAGCGTGAGATATTTTTTCTGCACGACACTGGCCGATCCGGTC



TAGATTGCAGGTACACGAATTTGTATCATTTATGTCAGCGATTTCTTGTGATGGGTACAGAG



CTTAATTTAGGAAACTGCTTGTTAATTTTACATCTATTGGTTCATTACCATGTTGGTCTTCTTT



TGTTTTTAGGACACAATGTATTAGGTGCTTGATGCTAGCGCGGACACATTGTATTATTTTCCG



AGGGAATCATGACGTTGAATTGGAAAAAAAAAA





30
CCAAGCTGTCTTCATCATTTCTCGCTGGGAATCAATTTGAATTCGATTCGATTTCGCCGTGTC



GATCGAGGATCGCTCGATCGATCGATCGATCAGAATCCCCAGTTCGTCTGAATCCTTCTCTC



CCTCCCTCCCTCTCTCTCTCTCTGTGTCTCTCTCTCGCCATTTCCGTGAGATCCAGCTATGG



ACTCCTCTCGCGAGAGCCTGGTCTACGTCGCGAAGCTCGCGGAGCAAGCCGAGCGCTACG



AGGAGATGGTGGATGAAATGAAGAAGGTTGCGAAGCTCAATGTTGCATTAACCGTTGAAGA



GAGAAACCTGCTATCTGTTGGGTACAAAAATGTTATTGGGGCTCGGAGAGCATCCTGGAGG



ATTCTGACATCCATAGAGCAAAAGGAAGATGCAAGGGGGAACGAGATCAGTGTGAAGCGAA



TCAAAGAGTACAGGAAGAAGGTTGAATCAGAGCTCTCTAGCATCTGCAGCGATATCATGGTC



ATACTTGATGAGCATGTCATTCCTTCAGCATCAGACGGTGAATCCAAAGTATTTTACTATAAG



ATGAAGGGAGACTACTACCGTTATCTTGCGGAATTCAAGAGTGATGACGAGAAGAAAGAGG



TTGCTGAACAGTCAATGAAAGCTTATGAGATGGCTACAAGTATTGCAGAGTCCGATTTGCCT



TATACACATCCCATCCGCCTTGGTTTGGCTTTGAATTTTTCGGTGTTTTACTATGAGATCCTC



AACTCAGCTGAAAGGGCATGCCACATCGCAAAGCAGGCATTTGATGATGCAATTGCAGAAC



TTGACAACCTCAATGAGGAGTCTTACAAAGATAGCACTTTAATCATGCAACTTCTCAGGGAC



AATCTCACATTGTGGACATCTGACATCACAGAGGAAGGAGAAGATGCACAAAGGATAAATG



GCTCAGCTAAAGTTGGCATGGAAGAAGGAGAGTAAAACAGGTGTAACCCTGAATCATATGC



CTTGCAGTGGGTCGACGCGGCCGCG





31
CGTTTCCGCGCTTCTGCTCGCGCGTCCTCTCGCTCGAGGCTTTCCGCTTCCTTCTTCCGAA



CCCCTTAAAGGTCGGGTCTTTCCCTCCCCCCTCTCGATGGATCCGGCCGCCGGCTCCGGC



TCCGGCTCCGGGCTGATCCGATTAGGGTTCTTGGCCGGCTCCGACGAGTGAGCTGTCGCC



CGCCTCCTCGCGGGCGGTTTTCCGGCGGCGGGTTTAGGGTTTTGCCCTTTTTCCGTTCTTG



AGAGAGAGAGAGAGATAGATAGAGAGAGAGAGGGGGGGGAGGTGATGGAGGATCGGAAC



GTGAAGAGGCCGGACAGCCCGGGGCTTTCCGACATCGTGTTGACCTGCGTCATGCCGTAC



ATCGACGACCCCAAGGATCGGGACGCGATTTCCCTGGTCTGCCGCCGCTGGTACGAGATT



GACGCCCTCACGAGGAAGCACGTCACCATCGCCCTCTGCTACACCACCAGCCCCGAACGG



CTGCGCAGGAGGTTCAGGCACCTCGAGTCGCTCAAGCTCAAGGGGAAGCCGAGGGCCGC



CATGTTCAATCTGATACCCGAGAATTGGGGCGGGTACGTGACTCCCTGGGTGACCGAGATC



GCGCAGTCTTTCGATTGCTTGAAGTCGCTTCACTTTCGGCGCATGATCGTGGAAGATTCGAA



CTTGGAGGTGCTCGCCACGTCGCGGGGACGCGTTCTGCAAGTGCTCAAACTCGACAAGTG



CTCTGGTTTCTCGACCGACGGGCTTTTACACGTGGGGCGTTTATGCAAGACTTTAAGAACCT



TCTTTTTGGAAGAAAGCACAATCATTGAGAAAGATGGTGCGTGGCTTCACGAGCTTGCTATG



AACAACACAGTCCTTGAGACTTTAAATTTTTACATGACAGAGCTATCCAGTTTTAGTGTCCAG



GACCTTCAAATTATTGCCAGAAATTGTCGATCGTTAACATCTGTGAAAATTAGCGATTGCGAA



ATTCTGGATCTTGTGGGTTTCTTTCAAGATGCAGCTGCTTTAGAAGAATTTGGTGGAGGTCT



TTTTAATGAGGAACCAGAAAGGTATGCTGCTTTATCGTTCCCAGCAAGATTATGCCGTTTGG



GTCTAACCTACATTTCAGAGAATGAGATGCCTATCGTGTTCCCTATTGCATCTCGGCTAAGG



ATGTTAGATCTTCTCTATGCATTTCTTAGCACAGATGACCTCTGCTTGCTGATTCAGCAATGC



CCCATCTTGGAAGTTCTTGAGACAAGGAATGTCATTGGAGACAGAGGATTAGAGGTTCTTGC



TCATAGTTGTAAAAGGTTGAAGAGGCTTAGGATTGAAAGAGGTGCTGATGAGCAGGGTATG



GGGGATGAAGGAGGCCTTGTTTCGCAAAGAGGATTAATGGACTTGGCTCGGGGCTGCCTA



GAACTGGAATACCTGGCTGTTTATGTATCTGATATCACAAACTCATCCCTCGAATGTATAGGA



ACTTATTCGAAGAACCTTTGTGATTTCCGTCTTGTTCTACTTGACCGCGAGGAAAAGATAACT



GATTTACCCCTGGACAATGGTGTCAGGGCTATTTTAAGGGGATGTGAAAAGCTAAGAAGGTT



TGCTCTTTATCTGCGGCCTGGGGGCTTGACAGATGTGGGTCTTGGTTACATTGGGCAGTAT



AGCCAAAACATAAGATGGATGCTTCTTGGATATGTGGGAGAGAGTGATGAGGGCCTTAGGG



AGTTCTCCCGAGGCTGCCCGAGTTTGCAAAAACTTGAAATGCGGGGTTGTTGCTTTAGCGA



ACAGGCGCTGGCTGATGCTGTGATGCGGTTGACTTCTTTGAGGTATGTCTGGGTGCAGGGG



TATAGAGGATCTGACACCGGTCGAGATATTCTGGCGATGGTCCGTCCCTTTTGGAACATCG



AGTTGATTCCTGCTAGAAGAATAGCTGTTGCCAATCAGAATGGGGAAAACGTGCTTAATGAA



GACCCAGCCCATATACTTGCATATTACTCTCTAGCAGGACCAAGAAATGATTGTCCTGACAG



CGTTATACCTTTGGCTCCAGCAAGGCTGCTTACCTTGTAGAGCTGTATATACACCCTTTTGC



CGAAGATGTCTTTTATCTTCTTAAGTGCTCTAGACCCCCTGTCATACGGTTCTGTATTTTATC



ACTCCTCCCTGAGAAATTTCTCCTCTTGCTTTACTTTTCGTCTTCCGTTTGTTGGAATTCCTTC



TTTTCTCTTTTATTTTGTCGCAATAAGATTGTGTACTTTGTAAAAAAAAAAAAAAAAAA





32
AGGTTTGGGTTTTTTTTTTTTTTTTAGGGGCGATCGGGGGATGGCGAACCGGGTGGATCAC



GAGTACGATTACCTGTTCAAGATCGTCTTGATCGGGGACTCCGGCGTCGGCAAATCGAACA



TCCTCTCGAGGTTCACGAGGAACGAGTTCTGCCTGGAATCTAAGTCCACCATCGGCGTTGA



GTTCGCGACGAGAACCCTGCAGGTTGAGGGAAAGACCGTCAAGGCACAAATATGGGATACT



GCTGGTCAAGAGCGATATCGAGCCATTACCAGTGCATACTACAGGGGAGCAGTGGGCGCTT



TGCTAGTTTATGACATAACAAAGAGGCAAACCTTTGACAATGTCCAGAGGTGGCTTCGGGAG



CTGAGGGACCATGCAGATTCTAACATAGTTATTATGATGGCTGGGAACAAGTCTGATTTGAA



CCACCTAAGAGCTGTCCCGGGGGACGATGGTCAAGCCCTGGCTGAGAAGGAGGGTCTTTC



ATTTCTTGAGACTTCAGCATTGGACGCAACAAACATTGAGAAGGCGTTTCAGACAATTTTGA



CAGAGATCTACCACATCATAAGCAAAAAGGCATTGGCAGCTCAGGAAGCTGCTGCTACTAC



GCTTCCTGGTCAAGGGACCACAATTAATGTCGCTGATGCCACAGGGAATGCCAACAAGAGA



GGCTGTTGTTCTACTTAAGGCGACACTGTGATTCAGGAGACAAAATTTGAGTGGTAATTAAC



CCCAGCAGCTTAGATATGAGCCCATTTTCTTTTGGGTCAACGAGACATTTGTAGAATATTTGT



GGTGTTCTTTTCCTCCCCCGTTTTATTTTTCTTTTTACTC





33
GCCTCGTGCCGAATGCAAGGCAAACAAGCAAGTGCATTATCTTCGTTCTGAGTGAGAGAGA



GAGAGAGAGAGACCAAAAGACAAGCAAGGTTTCACTACAGCTTCTAGAGAGAGAAAATGGA



GAGCTTCCCAGTGATCAACATGGAGAACTTGAATGGTGAGAAGAGAGCAATCACCATGGAC



AAGATCAAAGATGCTTGTGAGAACTGGGGCTTCTTTGAGCTGGTGAATCATGGGATTCCACC



CGAGTTTATGGACACGATCGAAAGCATGACAAAGGGGCACTACAAGAAGTGCATGGAGCAG



AGGTTCGGAGAGCTGGTGGCGAGCAAGGGGCTCGAGTGTGTCCAGACAGAGGTCCACGAC



TTGGACTGGGAAAGCACCTTCCACTTGAAGCACCTTCCTGTCTCTAACATCTCCCAAATCCC



AGATCTCGATGATGACTACAGGAGAGTCATGAAGGAGTTTGCACTGAAATTGGAGAAGCTG



GCGGAGGAGCTCATGGACCTACTGTGTGAGAACCTGGGCCTGGAGAAAGGCTACTTGAAG



AAGGCCTTCTACGGGTCCCAAGGACCGAACTTCGGCACCAAGGTTAGCAACTACCCGCCGT



GCCCGAAGCCCGACCTGATCAAGGGGCTCCGGGCCCACACCGACGCCGGTGGCATCATC



CTGCTCTTCCAAGACGACAAGGTTAGCGGCCTGCAGCTCCTCAAGGATGGCCAGTGGGTTG



ACGTCCCCCCAATGCGCCATTCCATCGTCGTCAACCTCGGAGACCAAATCGAGGTGATAAC



TAATGGAAAGTACAAGAGCATACTGCACAGGGTGGTGGCCCAGACCGATGGAAACAGGATG



TCCATAGCTTCATTCTACAACCCAGGCAGCGACGCCGTGATCTATCCGGCACCGGCACTTG



TGGAGAGCGAGGCAGAGGAGGCCAGCAAAGCAGTTTACCCAAAGTTCGTGTTCGAGGACT



ACATGAAATTGTATGCTGCTCTCAAGTTCCAAGCCAAAGAGCCAAGGTTCCAAGCCATGAAA



GCCATGGAGTCGAGCCCCAGTTTGGGCCCAATCGCAACCGCTTGATTTGGAGAATTTAGGA



CTTCTCTAAGTGTGGACGCAGAAGAATAAATTGGCTTTTTTTTTATTATTATTTTTAGGTTATG



ATTGGACCAACTGAGGAGATTCTATCCATCAGTTTAAGTACATATTTGAACTCTGTCCCAATA



TGTACTTTGATTTATGGATTGTAACGATGTACTCAATTGGAAATAATAGGAGCGAAAGATCAT



TTAAAATAAAAAAAAAAAAAAAAAAAAA





34
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGACCAAAAGAGAAACAAGGTTTCACTGCAATTT



CTCAAGAGAGAAAATGGAGAGCTTCCCAGTGATCAACATGGAGAACCTGAATGGTGAGAAG



AGAGCAATCACCATGGACAAGATCAAAGATGCCTGTGAGAACTGGGGCTTCTTTGAGCTTG



TGAATCATGGGATTCCGCCCGAGTTCATGGACACGGTCGAGAGAATGACCAAGGGGCACTA



CAGGAAGTGCATGGACCAGAGGTTCAGAGAGCTGGTGGCGAGCAAGGGGCTCGAGAATGT



CCAGACGGAGGTCCATGACTTGGACTGGGAAAGCACCTTCCACTTGAAGCACCTCCCCCTA



TCCAACATCTCCCAAGTCCCTGATCTCGAAGATGACTACAGGAAAGTCATGAAGGAGTTTGC



AGTGAAGTTGGAGAAGCTAGCGGAGGAGCTCATGGACTTGCTGTGTGAGAACCTGGGCCT



GGAGAAAGGTTACTTGAAGAAGGCCTTCCACGGGTCCAACGGGCCGAACTTCGGCACCAA



GGTCAGCAACTACCCGCCGTGCCCCAAGCCCGAACTGATCAAGGGGCTTCGGGCCCACAC



CGACGCTGGCGGCGTCATCCTGCTCTTCCAGGATGACAAGGTCAGCGGCCTACAGCTCCT



CAAGGACGGCCAGTGGGTTGACGTCCCCCCGATGCGCCACTCCATCGTAGTCAACCTCGG



CGACCAAATCGAGGTGATAACCAATGGGAAGTACAAGAGCGTGCTGCATAGGGTGGTGGC



CCAAACTGACGGGAACAGGATGTCCATAGCTTCATTTTACAACCCGGGCAGCGACGCCGCG



ATATATCCAGCACCGGCACTCATGGAGAGCAAGGCAGAGGAGGCCAGCAAAGCAGCTTATC



CAAAGTTTGTGTTCGAGGACTACATGAAACTGTATGCTGCCCTCAAGTTCCAGGCCAAAGAG



CCAAGATTCCAAGCCATGAAAGTCATGGAGTCGAGCCCCAATTTGGAGCCTATTGCAACCG



CTTGATTTGGGAAATTCTTTTTCGCAATTCTTTGCTTGCAAAAGATGTAGTCATACACATTATG



GAAGTCCTCTAGGGTTAGAAAGGACTCTGAATTTTTTGGTGGTGGAAGGAAATTTTTTCCTA



CCCCAAACTTGATAAAAATTGTCATTGTGACTCATGTTAGTATTTGACATGATTCGTGTTAAAT



TATTTATGAAATATTGCATGTTATAGTCAAAAAAAAAAAAAAAA





35
GCGAGGACATCATCACCAACGCCGCCATCGAAGAAGGGGCGAATCTGAAGCGAAAGAAGA



GATGAGCGGCGGCAGCGACCTCCCTGAAGAGATCCTGATCCAGATCCTCCTGAAATTGCCC



GTCAAGTCACTTGTACGATTCCGATGCGTCTCCAAGTCGTGGGACTCCCTCATCACCCACC



CATCCTTCGTCTCCCTCCACCTCCGCCACGCCATGGCGGGCCACGACCGCTCCGTCATCCT



CCTCCGGCACTACTCCCTCACCCAGCGCAAGGAGCGGAACACCCTCTACCTCGACGGGGA



GTCTTTCTTGGAGCACCAGGAGCTCGAATTCCCCTTGAAGACCCACGACACTTACTACCTCG



CCGGCTCCTGTAATGGGTTGCTCTGCTTTTCCGACTATATCATCAACAACCTCCAGGTAATC



CTCTGGAACCCTTCCCTCAGGAAGTGCGTGCAGTTGCCGATCCCGCGGTTCATTGATACTG



ATCTCACGCACACGTATGTTCTCGGGTTTGGGTTCGATACGCGGCGTGTCGATTACAAGGT



CGTGAGGTTGATTTACATTCTGGGGAAGAATTGGTCCGTGATAGTGCCACCGGAGGTTGAG



ATCTATGAGCTTAAAACTAATGCTTGGAGAGGGATCCAGACGGCCGTTCCTTATGTCATACC



AGAATCTTCGTCGCAGGCCTTTGTGAATGGGGCTATCCATTGGATTGGGTATAACCCAGCT



GATAGGCGATTGAAGGTGGCTTCAAGTCCTAGGTCGATTGTGGTATTATTCGATATGCAGGA



CGAGGTGTTTGGGGAAATGGAGTTGCCGAAAGGTGGGGATTATGCGAACAGGCTGAATTTG



TCGCTGGCTGTGCATCAAGATTTGATTTGCTTGTTGCATTGCCATCCGATGGAAGAAGATGG



GCATCAGTTGTATGGGGTTTGTTGGGTCTGGGTCATGAAAGAATACGGCGCAGCAGACTCC



TGGACTAAGCTGTTTACCATTAACATCAGTGAACACGGCGGGATCGGGAGGATTTTAGGTTT



TAGGAAAAAGGGGGACGCTCTGCTCGTGACTCACAATGACGAGCTGGTTTCATATGACTTG



AGGGGTCAGAGAATTAGTCGGCTTGGATTGTATGGTGTTGCGAGATCTTTTGAAGTCATCCC



ATACATGGATTGTCTAATTTTAGTGTGAGGAGAGCACACACTCTCCAGACAACCATATTTCAT



GGCTGGTTAGGTTGTAGGTAGATTATGTTGGATTTCGCTCTCCTGAAGGAGTGAAGCATATG



ACACAAATAATGGAGAACCAGAGTGATTAGAGATACTTAGACTTTAGTTGTTGTATACGGGTT



GATTGCTGTTTTCTCTAGAAGTTATTCTGGACTAGTGAAGTATGTCCTTTTACTTATCTGAAT



GATTTTTTATTTTTTGGGAGTTTCAGATGGTTGATTGGATGTATGCTACTGAAAGTTGGGGCT



TCTATTGCTACTGCCAGTTGCCCTAGCAGAAGAATGATAATAATTTCTTTGTTCCAAAAAAAA



AA





36
CCCGTAGCGTCGACCACGCCAACTACCTTTCATTCGTGCCCGTCGATACTCCAACGAACTC



CAGTCCTCCTCCCCCTCTCCGTCTCGGTCGCGCTCCCCGCACGCCGACCTTCGATTTCGAC



CAGCGGTTCTCTCGAGCTCCCGCGCGTCCGCCGATCCGAGCGTCCGCCGGATTCACCTCG



TCGGAGCCGCCATGGGTTGCTCCTCTTCGCTTCCAGATAGGGCTTCTGGGAGATTGGGCG



GGCTCAATTCGGAGAACGGTGCAGTGAACGACGCGAAGAACCTGCGTGTTAAGCTTGTACT



TCTAGGGGATTCTGGTGTTGGGAAAAGTTGCATTGTACTTCGCTTTGTCCGTGGTCAGTTTG



ATCCGACATCTAAGGTGACTATTGGAGCATCGTTCCTGTCACAGACCATAGCTTTGCAAGAT



TCTACGACAGTTAAGTTTGAAATATGGGACACTGCTGGTCAAGAGAGGTATGCTGCCCTGG



CCCCACTTTACTATCGGGGTGCTGCGGTTGCGGTAGTGGTTTATGATATAACAAGCCCGGA



ATCATTTCAAAAAGCTCAGTACTGGGTCAAGGAGCTTCAAAAACATGGAAGCCCTGATATGG



TTATGGCTCTGGTTGGAAATAAAGCTGACCTTCAGGAGAATAGAGAAGTGACGGTCCAAGAT



GGGATTGACTATGCTGAGAAGAACGGCATGTTTTTCATTGAGACATCTGCTAAAACTGCAGA



TAATATAAATCAGCTGTTTGAGGAAATTGCCAAGCGACTTCCACGTCCAACACCGTCATGAT



TGGGAAGTTCATACCGTGTTTAAAGCCGCAGATGATGTTATTGGAGTCTTCAACGGCGGTGA



TGTAAAATATCTATCCCAATGTATACCTCCTGTCCTGGAATTCTTTGGTCGACAGTTACTTTC



ATTTGTCCATGAATTCACTCCACATAAGTTGTAAGATGATCAATCCTCAATTGTACCAGAGAG



AGCTTGCGAAAAAAAAAA





37
GCAGCAGCAGGCGCAGCAGAAAGGAAACAAAAACAGGGAGGAAAGGAAAACGACCTTTCC



CACTCAAAAGCTCCTCCCTTTTTCATTTGCATTTCTGCATCCACACAGGCACAGGGAGACAA



GGGGACCGAGTCAGTGAGTCGGAACGGTTGACCGCGGAATCTCCCCCCCCCAACAAAAAG



CCATCGCCCAACTCAGGCCAACAGTCAAAACCCACCTTAACCGAATTCCCCCAGATCAATCC



CCTCTCTCTCTCTCCTCCACTGTAACGGAATCGCGACCCCCAAATCCTAGGGCTTTCTTTCT



CTCTCTTTCTCTCTCTATTTCTACCACCACCATCACCACCACCGATGGACGGCGGGGCTCCT



CAGCCGGCGGATACCGTCATGTCGGAGGCGGCGCCGGCGCAGCAGCAGCAGCAGCAGCC



GCAGCAGGCGCAGCCGCAGGGGATCGAGAACATCCCAGCGACGCTCAGCCACGGGGGCC



GCTTCATCCAGTACAACATCTTCGGCAACATCTTCGAGGTCACCGCCAAGTACAAGCCCCC



CATCATGCCCATCGGCAAGGGCGCCTACGGCATCGTATGCTCGGCTTTGAATTCGGAGACG



AACGAGCACGTGGCCATAAAGAAGATTGCTAATGCTTTCGATAACAAGATCGATGCGAAGA



GGACTCTCCGTGAGATCAAGCTTCTCCGGCACATGGACCATGAAAACGTTGTGGCAATTAG



GGATATCATTCCACCGCCACAGAGAGAGGTGTTCAATGATGTTTATATTGCATATGAGCTTA



TGGACACTGATCTGCATCAAATTATTCGTTCCAACCAAGCATTGTCTGAGGAGCATTGTCAG



TATTTTCTATATCAGATCTTGCGAGGATTAAAATACATACATTCTGCAAATGTTCTGCATAGA



GACTTGAAGCCCAGCAATCTTCTCCTAAATGCAAATTGCGATTTGAAAATATGTGATTTTGGA



CTAGCTCGTGTCACTTCTGAAACTGATTTTATGACAGAATATGTTGTCACAAGATGGTACCGT



GCACCAGAGCTATTGTTAAATTCTTCAGACTATACGGCGGCAATAGATGTATGGTCTGTAGG



CTGTATCTTTATGGAACTAATGGATCGGAAACCCTTGTTTCCTGGCAGAGACCATGTGCAAC



AGCTGCGTTTGTTGATGGAGCTGATTGGCACCCCATCAGAGGCAGAGTTGGGGTTCTTAAA



TGAAAATGCTAAGAAGTATATCAGACAGCTTCCTCTGTACCGTCGGCAATCTTTCACTGAAA



AGTTTCCCCATGTCCACCCACTTGCAATCGATCTCGTTGAGAAGATGTTAACGTTCGATCCC



AGGCTGAGGCTCACAGTTGAAGAGGCATTGGCTCATCCCTACCTAAACTCACTGCACGACA



TCAGCGATGAGCCGACTTGCATGAATCCATTCAACTTCGACTTTGAGCAGCATGCACTCACG



GAGGAACAGATGAGGGAGTTAATTTATAGGGAAGCGCTTGCATTTAATCCCGAGTATCTACA



GTAATGGAAGTCATGCTGTTAGTATTTGGTGGCTGTTCTCGAGTGTGATGCCCGCGCTTTAA



CATGGCGATGATTTATTTCTTCATGTACATATGGTTTATCCTATTGTTGGATGGCTCTGCTAT



TGAATTCTTTTCATGACTTCGAGAACCATAAGAATTTTCAAAAAAAAAA





38
TTCCCTCTTCCTCTTCCCTTCCGTTTCGAGCTCGCTCCATCTCCTCCGACGAAAGATCCGAG



CCCCCTCCTCCTCCCCCAGCACCATCCGGGCCCGATTCGGGTCGGGTCGGGTCGTCCGGA



GCGGACCCTCTCCTCCGCGCTCTCCTCCGATGGAGTCGTCGAGCTCGGGAGGTGCCTCGG



CGGAGCACAGCGTCCGCGGGATCCCCACGCACGGCGGGCGCTACGTGCAGTACAATGTGT



ACGGGAACCTCTTCGAGGTCTCCAGGAAGTACGTCCCCCCGATCCGCCCCATCGGCCGCG



GCGCCTACGGTCTCGTCTGCGCTGCCATGAATTCAGAGACAAATGAGGAGGTTGCCATCAA



GAAGATTGGCAATGCGTTTGACAACAGAATAGATGCCAAGAGGACTTTACGAGAAATTAAGC



TTTTATGTCATATGGATCATGAGAATGTTATTGGCCTTAAAGACATTATACGTCCACCAAGTA



GGGAGAACTTTAATGATGTTTACATTGTGTATGAATTGATGGACACTGATCTCCATCAAATTA



TCCGTTCCAATCAGCCATTGACTGACGATCACTGCAGGTACTTCTTGTATCAGTTGCTTCGA



GGTCTCAAATATGTGCATTCAGCAAGTGTTCTGCATCGCGATCTGAAGCCAAGCAACTTGTT



TCTGAATTCGAATTGTGACCTTAAAATTGGAGACTTTGGGCTAGCTAGGACCACATCTGAAA



CGGATTTTATGACTGAGTATGTAGTTACTCGCTGGTATCGTGCACCAGAACTGCTCCTTAAT



TGTTCAGAGTACACTGCTGCGATTGATATTTGGTCTGTGGGTTGCATACTTGGTGAAATTAT



GACTAGGCAGCCCCTATTTCCAGGCAAAGACTATGTCCATCAGCTGAGACTTATTACAGAGC



TTATAGGATCTCCTGATGACTCCAGCCTTGGGTTTTTAAGAAGTGATAATGCACGAAGATAT



GTAAGACAGCTTCCACAGTACCCAAGACAGCAATTTTCTAGTAGATTTCAGACTATGTCTCC



AGGTGCTGTTGATCTCCTAGAAAGGATGCTCGTCTTTGATCCCATCAGGCGAATAACAGTTG



AGGAGGCTTTGTGCCACCCTTATTTGGCCCCTCTACATGATATAAATGAGGAACCCATTTGC



CCGACTCCCTTCATTTATGACTTTGAGCAACCGTCATTTACTGAAGAAAACATTAAGGAGCTC



ATTTGGAGGGAGACTCTGAGATTCAATCCAGATCCCATGCATTAGGGATTTGCGACAGGTTG



TCGCTTTGTTTAGTAATGTTCTACACTTAACTGGTTGGATGTTTCATTCAAAAAATGAAACAA



GTGTGCTGTAGATAGCGAAATTAGTTTTGAAGTTTTCTACACAGCTGGACAAAAGTTCTTTGA



GCTTGGATGCTATGTATGCTTGTAATGTTCAACTTGTTCAGCCGATGATAAAAGGTCTTCACT



CTTGAGGCTTAAAAAAAAAA





39
GCCCAAGTTCGCATCTTTCGTCCTTTCCCCACGTACCCATTTGCTCATTCCGCCGGAATTCG



GCCGGAATTCCTCCCCCGCCGCCGCAATGGGGCAGGTCCCGTCTTCCGCCTCCTCCTCCC



CCGAGCCCAGCCACCGCGGCGGCGCGATCTCGTCCAGCCACCGCCTCGACTCCCTCCCCT



CCCTCGAGTTCGTCTCGTCGTTCGAGGACGAGGAGGACGCCGCCGCCGCCGACGAGGGG



GCCGCCGCTGGGTACGACTACACCGGCGACCTCCCCGACGAGTGCCTCGCCCACGTTTTC



CACTTCCTCGGCACCGGCGACCGGAAGCGGTGCTCCGTCGTGTGCCGGCGGTGGCGCCG



CGTCGACGGGGAGAGCCGGCACCGGCTCTCGCTGAACGCGCAGGCCGACCTGCTCTCGT



CGCTCCCCTCCGTGTTCTCCCGCTTCGACGCCGTCACGAAGCTCGCGCTCCGGTGCGACC



GGAAGTCGGTCAGCCTGGGCGACGAGGCGCTGGTCCTGATCTCCCTCCGGTGCCGCGGC



CTCGCCCGGCTCAAGCTCCGCGGCTGCCGCGAGGTCACCGATCTCGGGGTCGCGGCCTT



CGCCGAGAACTGCCGGCAGCTGAGGAAGCTCTCCTGCGGGTCGTGCTCGTTCGGCGCGA



GGGCCATCAATGCGGTGCTCGACCACTGCGTGAATCTGGAGGAGCTGTCCATCAAGCGCC



TCCGGGGAATCCACGACGGCGCCGAGCCCATCGGGCCGGGAGCCGCGGCGAAGTCGCTG



AGATCCATTTGCTTGAAGGAGCTCATCAATGGTCAGTGCTTCGGTCCTCTCCTGGTCGGAG



CGAGAAAGCTCTCGACTTTGAAGTTGATTCGCTGTCTGGGCGATTGGGACAATGTTCTCCA



GACAATTGGGAGCTCAAATCCAGGTCTATTAGAAGTTCATTTGGAGAGAATTCAGGTGAGCG



ATGGCGGTCTTTGCGGGATCGCGAACTGCAAGGGTATCGACAGTCTGCATGTCGTGAAGGT



CCCCGAGTGTTCGAATTTAGGTCTTTCTAGCATTGCTGAGAATTGCAGGCAATTGAGGAAGC



TTCACATTGATGGGTGGAGGATAAACAGGATAGGCGACGAGGGTCTGGTCGAGGTCGCCA



AGCAGTGCCTCCAGTTGCAGGAGCTGGTCCTGATCGGCGTCAGCGTGACCCATTCTAGCTT



GGCCGCAATCGGTTCCAATTGCAGGAAATTGGAAAGGTTAGCCTTCTGTGGGAGTGACACG



GTCGGTGATGCGGAGATTGCGTGCATTGCCGCCAAGTGCGAGGCCCTGAAGAAGCTCTGC



ATTAAGAATTGCCCCATTACTGATGTCGGGATCGAATCCCTTGCTCAGGGGTGTCCCAATCT



GGTGAAGATTAAGGTGAGGAAGTGCAGGGGAGTGAGCGGGCAAGTGGTGGAGCTGTTGAA



GGAGCGGAGAGGGTCGCTGGTCTTCAATTTGGATGCCTGTGGAATCGAAGCATTGGACGAT



ATCAGAGGAGTTCAAGAAAGTGTTATGGAGTTCCCTCCTGTGAATACTTCCGATGCGCCGTC



GAGTAGCAATGAGAGGTCAATGTTGTTTAGGGCGAAGCTAGGTCTTTTCGCGGGTAGGAAT



TTAGTGGCCTGCACCTTCAGGAGGTGGTCAAATGGTGAACATAGCACCAATGGAAACTTGT



GAATTCCAATTGTTGTAAGCGCTGAAAATTGTTTTGTTGACATTTCGTTGTGTTTAGACCTTC



CCTAGGCAATTCTTGTTCGCAATGATGTACCTATTATCGCCCTTTTGCCTCGTGCAACTTTTC



TTGGAAATGAAACTCGAGTTCTTTTAAAAAAAAAA





40
GGCTCCAAAACAACCAAATAACTCACACTGAGCTCTTCCTCCTCCTCCTCCTCCTCCGCCTC



TATATGGCCGTCCAGATCTAAACACCACTTCTGCCCTTCTCTCTCTCTCTCTCTCTCTTGCCT



TTCCCTCGGAGCCAATCAAGAAGAAGCTAGAGCTCCGGTCCTCGCTCCCGAGATTCATGGC



GTACTCGTTCCCGGAGGAGGTGCTGGAGCACGTGTTCTCCTTCATCGGCTCCGACCGGGA



CCGCAATGCCGTCTCCCTGGTGTGCAAGTCGTGGTACGAGATCGAGCGCTGGTGCCGGCG



GCGCGTCTTCGTCGGCAACTGCTACGCCGTCAGCCCCGCGGCCGTCGTCCGGCGCTTCCC



GGAGGTGAGATCCGTCGAGCTCAAGGGCAAGCCCCACTTCGCCGACTTCAACCTCGTCCC



CGAGGGCTGGGGCGGCTACGTCTCCCCCTGGATCACCACCCTGGCCCGCGCCTACCCTTG



GCTCGAGGAGATTCGGCTCAAGCGGATGGTGGTCACCGACGAGAGCTTGGAGCTGATCGC



CCGCTCGTTCAAGAACTTCAAGGTCCTGGTTTTGTCCTCTTGCGAGGGGTTCTCGACCGAC



GGGCTCGCCGCTGTTGCCGCTAATTGCAGGAACTTGAGGGAGCTTGACTTACGGGAGAGT



GAAGTGGAAGATATGAGTGGACATTGGCTCAGTCATTTCCCTGATTCATATACATCACTCGT



ATCCCTCAACATTTCCTGCTTAGGCTCTGAGGTAAGCTTCTCTGCCTTGGAGCGCCTGGTGA



GTCGCTGCCCCGACCTGAGGTCTCTCCGACTCAACCGCACCGTGCCACTTGATCGCCTTGC



CAATTTACTTCGACGGCCCCCACAGTTGGCTGAATTGGGCACGGGCGTTTATTCTGCTGAA



CTGAGGTCTGATGATTTCTCGAATCTAGTTGGTGCTCTAGCTGGCTGCCGAGAGCTGAGAA



GTCTGTCTGGATTTTGGGATGTGGTACCTGCATATCTTCCAGCTGTATATCCCCTATGCTCA



GGGCTTACATCGTTGAACTTGAGCTATGCTACCATCCAAAGCTCTGAACTTACAAAACTTATC



AGTCAATGTCACAGTCTGCAGCGCTTATGGGTACTTGATTATATTGAAGACAGCGGTTTGGA



AGCCCTGGCTGCATGTTGCAAAGATTTACGGGAATTGAGGGTGTTTCCCTCTGAGCCCTTC



AACCGTGAAGGAAATGTATCTTTAACGGAGCAGGGCCTTGTGTCAGTGTCTGAGGGTTGCT



CCAAGCTTCAGTCAGTTTTGTACTTCTGCCGCCAGATGTCTAATGCGGCCTTACTTACCATA



GCTCGGAACCGTCCTAACATGACTCGATTCCGACTTTGTATCATTGAACCACGTTGTCCTGA



TTATATAACTCATGAGCCACTCGATACAGGCTTTGGAGCCATTGTCCAACACTGCAAGGATC



TCCAGCGTCTCTCTCTATCAGGTCTTCTAACTGACCGTGTGTTTGAGTACATAGGGACTTAT



GCAAAGAAACTTGAGATGCTTTCTGTGGCATTCGCTGGAGACAGTGACTTGGGACTGCACC



ATGTGCTATCGGGGTGCGACAGTCTTAGAAAATTGGAGATCCGGGACTGCCCGTTTGGTGA



CAAGGCGCTTTTGGCCAATGCTGCAAAGCTGGAGACAATGCGATCCCTTTGGATGTCTTCTT



GCTCAGTGAGCTTCGGAGCATGTAAGCTGCTTGGTCAGAAGATGCCCAGGCTTAATGTCGA



AGTCATTGACGAGAGAGGCCACCCGGATTCAAGGCCTGAAAGCTGCCCGGTCGAGAAGCT



TTACATCTATAGAACGGTTGCAGGTCCGAGGTTCGACATGCCTGATTTTGTTTGGACAATGG



ATGAGGATTCTGCTCTGAGGCCTTCTTGACAGCTTTCATTCAACCGTTTGCTTTTTTTCCTCG



TGGCACTATGGTGTGGTGACTGTGACAGTCAAAGCAGGTACATGCTCTTCACCGCCCTCTTT



CATGCAGGTCTAATTTCTTTTTAGCTTAGTATTAGCAGCTGTTATTGGTGGTGACATTAGCTG



TGGGAAGGGTATATGGAGGCTCAAGAGCTCTTTAGCCGAAGATTTTGCACTTGGCTGAGCT



ATGGATACCAATGCATTGTTAAATAAAAGAGGACCCTTTTTGCTTTTGCTGTTGTTGTTGTTA



TTGTTGCTGTTGTATGTGTATCAAGACATGGTTATTTAATTTGGGTTAAAAAAAAAA





41
CTCCTTCTTCTTCCTCTTCTCTCTCTCTTTCCCCCCAACATTTTCACGAACACCTGCCGGACG



GAGAGAGACCTGCAGCTGGGTTGCCGGAGAGGAAGAGGGAGAGAGGGACAATGGCGCAG



TACGAGGAGGACAACGCCGAGTTCTACGTGCGGTACTACGTGGGCCACAAGGGGAAGTTC



GGGCACGAGTTCCTGGAGTTCGAGTTCAGGCCCGACGGGAAGCTGCGGTACGCCAACAAC



TCCAACTACAAGAACGACATCATGATCCGCAAGGAGGTCTGGCTCACCCCCGCCGTCCTCC



GCGAGTGCCGCCGCATCATCTCCGAGAGCGAGATTATGAAGGAAGATGATAGTAACTGGCC



AGAACCTGACCGTGTGGGACGGCAAGAACTTGAGATTGTAATGGGGAATGAGCACATTTCC



TTCACTACCTCAAAGATTGGTTCCCTTGTTGACGTGCAGACAAGCAAGGACCCTGACGGGC



TTCGGATATTCTACTATCTTGTTCAGGACTTGAAATGCTTTGTGTTCTCTCTCATCTCCCTCC



ACTTCAAGATCAAGCCAATCTAAGGAGGACTTCTTCCAAGCATCTGAATCCCAATTGTTTGAT



CCTTTTGGCGGTAGCCTCGTGGTCTGTCATTGATTGAGCAGCATGCATATTGTGGTATTGTG



CACTTTGAGTATTGACTGGTGGAATCTCCTTGTTGAGTTTTGGGTTTGTAACTAAAAGATGCT



TTTAACTCGAAATGCCAGACACCTCTCTCTCTCTCAAAAAAAAAA





42
GGCATTGTTCCTTCGCAGTCGAGTCGAGTCGAGTTCGCTTCCCGCTGCCGCTGACGAAGG



GTCCCATCTGCTCCTGCTCCTGCTCCTGCTCCTGCTTCGGCTTCATCCCGCTCTCCTTTTCT



CTGCTTCTTCTTCTTCTTCGTCTTCTTCCGACCAATCCCCCAAAAGAGAAGAGGAGGAAGAG



GGAGGGATAAAGTAGGGGGAGGAGGGGTTGGAAATGGCGAGGAGAGCGGAGGAGGAGTA



CGATTACCTGTTCAAGGTGGTGCTGATCGGCGATTCCGGGGTCGGCAAATCCAACCTCCTC



TCCCGATTCACTCGCAACGAGTTCTGCCTCGAGTCCAAATCCACCATCGGCGTCGAATTCG



CCACCCGCACCCTCCAAGTTGAGGGAAGGACTGTTAAAGCACAGATATGGGACACCGCTG



GCCAGGAGCGATACAGAGCGATCACCAGCGCCTACTACAGGGGTGCCCTTGGGGCTCTTC



TTGTATACGATGTGACAAAGCCGACTACTTTTGACAATGTGAGTCGATGGCTGAAGGAGCTG



AGGGATCATGCCGATTCCAACATTGTCATCATGCTAATTGGGAACAAGACTGACTTGAAGCA



CCTTAGAGCAGTGGCTACTGAAGATGCCCAGAGTTATGCCGAGAAAGAGGGCCTCTCGTTC



ATCGAGACATCTGCCCTGGAAGCGACCAATGTGGAGAAGGCTTTCCAGACTATTCTCTCAG



AGATATACAGGATAATTAGTAAGAAGCCTCTGTCCTCAGAAGATGCAGCCCCGGCCAACATT



AAAGAAGGGAAAACCATTGTAGTTGGCGAATCAGAAGCCAACACGAAGAAGGCATGCTGCT



CTTCGTCTTGAAGATCATCCTATGTTCTTTTCCCTTACCATTGTGGTCCTTGTTTCCTTAGTTT



CTCTGCTGGTTTATATGTTGTCTCCAATTTGTTTTTCTTCTTTCTCTTTCTTTTCCAATTTTTTG



ACTGTTTCCAAGATTATTATTGGGTCATTTGACGAAAAAAAAAA





43
GCTTTTCTTTTATCCCAACTCTCAAATTTATTCCCCGCCCACTCCTCCCTCATTTCCCCTGCA



CAGGAAAAAAGTCGGCTCACATATATAGCTTCCTGAATGCAATGGCAGTTGATTGCCTCACA



AGTAAAACCTCACCAGCCATGCCTCCGCAGCACAAAGATGAAGCCAGAGAGGATAAAAAAC



ATCTAGTTTTTGACGCCTCGGTGATCCGGCACCAACCCGACATCCCGAAACAGTTCATTTGG



CCCGACGAGGAAAAGCCGTGTGCGAACGCCCCGGATCTCGCCGTCCCGCTCATCGACTTG



GACGGGTTCCTCTCCAAAGACCCGAGTGCCTCCGAGGAGGCATCGAGGCTCGTGGGGGAT



GCGTGCCAGAAGCACGGCTTCTTCCTTGTCGTCAATCACGGCGTGGATGCTGGCCTCATAT



CGGACGCTCACAAGTACATGGACAAATTCTTCGGGTTACCGCTCAGCGAGAAGCAGAGGGC



TCAGAGGAAGCTCGGTGAGCATTGTGGATATGCCAGCAGTTTCACTGGCAGGTTCTCTTCC



AAGCTCCCATGGAAAGAAACGCTTTCCTTCGGCTACTCCGCCGAGAAAAGCTCGGCCAATG



TCGTGGAAGACTACTTCAAGAACACCATGGGCGAAGAGTTTGAGCAATCCGGGAGGGTGTA



CCAGGACTATTGTGAGGCCATGAGCAGACTGTCTCTAGGAATAATGGAGCTGCTAGGAATG



AGCCTAGGAATCGGCAGAGACCATTTCAGGGAGTTCTTCGAAAGCAACGATTCGATCATGA



GGCTCAACTACTACCCTCCGTGCCAGAAGCCGGACCTCACCCTAGGAACCGGTCCCCACT



GCGACCCGACATCCTTAACCATCCTACACCAGGACCAAGTTGGCGGGCTCCAAGTGTTCGT



CGACAACGAGTGGCGTTCCATCAGCCCGAACTTCAACGCGTTCGTCGTCAACATCGGCGAC



ACTTTCATGGCTCTATCAAACGGGCTATACAAGAGCTGTTTGCACAGAGCAGTGGTGAACAG



CCGAACTCCGAGGAAGTCCCTCGCCTTCTTCTTGTGCCCGAGGAGCGACAAAGTGGTGAGA



CCACCGAGTGAGCTAGTCGCAATGTCCTGTCCGAGAGCGTACCCGGACTTCACATGGCCG



GTGCTCCTCGAGTTCACTCAGAAGCATTACAGGGCCGACATGAACACGCTCCGAGCATTCA



CCAACTGGCTTCAACAGAGAACATCTGAACCAGTTCGGTGATGAAGATTTGTCACAAGTAGA



GAGATCTATTTGGAGGTCCGAAAAGTTGCGGCTAACAAAGGGGTGAAAGAGCCTCTCTGCC



AAAGCAAAGAAGATGACATTGACGACGACAAAGAAGAGAGATCAAAAGGGAAGTGGTGGGT



TTTTTTTAAAGGACGTTGGAGAGGGACAAACAGAGAGTTAGAGGAAAAGCCAAAATATCTTT



TACCTTCAAGGGTACGTCTTCTGTAGCCAGATAGTACTGGCACCCATGATGGTCACGATGAT



CAAAGGGCAAGAGATCAAGAAACATGAGAACCAATAAAGAGCTGTAATACATCAGCTAATTT



TTGTTTTGTTTTTTTCCTTCTCCTTTTGTCCTTGGTTAAGGTAGAAAAGTTTACCCCACAGTAA



CCCCTGCCTTGATGTAAATTTTGCATTTTGG





44
GCTCGTGTCCACCTACAAGTCAAATTCCGCTTCGATTGTCCGGTCCGACTCCCCGACCCAA



GGAAGGAACGACGTCAAAAAAAAAAAAAAATACGAACTTTCTCTGCCTCAAGACTCGCTAGG



AAGTTGTCTTCTTTGAGAGCTCCGATCGGCATCAATGGCTTCTCGCCGGCGCATGCTCCTC



AAGGTCATCATCCTCGGCGACAGCGGGGTTGGGAAGACTTCTCTGATGAATCAGTACGTGA



ATCGCAAGTTCAGCAATCAGTATAAGGCGACGATCGGAGCTGATTTCTTGACGAAGGAAGTT



CAGTTTGAGGACAGGCTGTTCACATTGCAGATATGGGATACAGCTGGCCAAGAAAGGTTTC



AAAGTCTTGGTGTGGCTTTTTACAGAGGTGCCGACTGCTGTGTTCTTGTGTATGATGTGAAT



GTAATGAAATCATTCGACAATCTAAATAACTGGCGGGAGGAGTTTTTGATTCAGGCCGGTCC



TTCTGACCCTGAAAACTTCCCATTTGTCGTTTTGGGTAACAAGGTGGATGTCGATAATGGCA



ATAGTCGTGTGGTTTCTGAGAAGAAAGCGAGGGCTTGGTGTGCTTCCAAAGGAAACATTCC



TTACTTTGAGACCTCTGCCAAAGAAGGATTTAACGTGGAAGCTGCTTTTGAGTGTATAGCCA



AAAATGCTTTGAAGAATGAACCAGAAGAAGAAATATATCTTCCGGACACCATTGATGTTGCG



GGTGGAGCACGGCAGCAGAGGTCCACCGGCTGCGAGTGTTGAAGAGTCCAACAGTACATC



AATTCCCTTGGGATGCGTATACGATGCGGCTCAAGGTGTATCAATTCGTGTTACAGATACCA



TTCTCTTATGTATTGTCAAAAGCAGAGTAAAAAAAAATTCTTCCTAAAGGATTGATGTAGAGA



ACCGTTGAACTTCCCAGTGTGCATTTGTATCATAAGCCAATCAGGGAGACCTTGTTTGTTTTT



TCATCTTTTCACACCTATTTGGTTCCATGATATCTTTGGTCACCCTGAAATTCTTAATATCTTT



TCCTAAAAAAAAAA





45
GGAATAAAAGGGCATCTACATTGACTTGGATCTAAAAAGATTCGATTTTTTGTATTTTTCCGA



GCTGAATTTCAGGAATTATAGCTTCCTTTCCAGTACCCATTGAAAGAGCACCCCCGTGGGCC



GTCGCTGCTCCCTCGCAGATTCATGGAGTGAGAAATCTGAAGGGGAGAACGCTGATGATGC



AGATCCGAATGAAACCCCACGTTGGGTTCTTCCTCCCGGTTGCCCTGCATCGATCCCTGTC



GTCGCTTCCTCCGAATCCAGTCGCCTGACCCGTGCAGGTACGCTCAGTGGGACATTGACCA



ACTCTCTTGTCCTAATTTTCCATCACAAGCTACTATATGGGAGCTAGCTAGGCACCAGAGCA



GAAGGTGTCTGTTCCGGCCAATACTACCTCGATTTGTCAGCTCCTATTTTATTGCTTGCTTGA



GAGTCTAATTCATATTCGTACATTAAACTCCCAAACTCTTCCCTCGATTGCCACATCATCAAC



CAGCAAAGACATTCAAAACTCAAAGATGCTCACCATCTCGGATGAGAAACTCTTTCACAACT



GCCTGCTCGCTCTCTACCTCATTGGACCGCCCACCTTCATCTCCCTACGATACATCCAAGCC



CCTTATGGCAAGCACCACCGCTCAGGGTGGGGCCCCACCATCTCCCCAGCCCTTGCTTGG



TTCCTCATGGAAAGCCCCACTCTTTGGCTCACGCTCTTGATTTTCCCCTTTGGCAAAAACTC



CTCCAACGCCAGATCCCTCATTCTCATCTCCCCTTTCCTCTTTCACTACTTTCATCGAACAAT



CATATATCCACTGCGCATCAGATCAAGCGGTGGTCAGAGAAGTACTCAACCAAATGCTGCAA



ATCGTTTTCCGGTCACTGTGGCCTTCATGGCATTTGGGTTCAATCTCTTGAATGCTTACGTG



CAAGCCAGGTGGGTGTCTAATTACGAGAGTGACGGTGCTGCTGGTGGGTGGTGGTTTTGG



GGGAGATTCTTGGTGGGATTGGTGATATTTGTTAGTGGGATGTATATGAACATGTCATCGGA



CATGGTGTTGGTGGGGTTAAAGAGGGAAGGGAAAGGGTATCGAGTGCCAAGAGGAGGGTT



GTTCGAGTTTGTGAGCTGTCCCAATTATTTTGGAGAGATTGTGGAGTGGCTGGGATGGGCT



GTGATGACATGGTCTTGGGCCGGCTTCGGGTTCTTCCTCTACACGTGCGCCAACTTGGTGC



CTCGGGCTCGTGCAAACCACAGGTGGTATTTGGATAAATTTGGGGAGGAGTATCCCAAGAG



CAGGAAAGCTGTCATTCCATTCTTGTATTGATCAATTCATAAGGATGCTTGCAAACAGGGAA



ATGAAAAATATGGATGAAACTGGACGTGATTTGTACCCAACGTTTCTTCTTGTTAGAGCTTTT



CCAAGAAAAATTTGTAATCCCCCTGAATAATGGAGTTACTATTGATCAGTGGATATTGCTTAC



TATGTTGTTCAAAAAAAAAA





46
GATCAGGGGCGGGGCCGGTGGGGACAACGAGAAAGATTCTCTCTCGGTCGCCGCCGTCG



CCGTCGTGTCGCCGTCGTCGCCAGTCACTTCGCACTGTGTCTGCCGGTCTCCGCTGGAGC



TCCTCTGTACCGCTTTAGCGAAGTCTACTCCAGCAAGTCAAGCAGACTACCTAAGCAACCCG



CTCCTCTCTCTCTCTCTCTCTCTCTTTCTTTCTCTCTCTATCTCATCGATCGAGTTCACTCCC



GAACGGAGAGAGGCGGAGCGGAGGAAGGAGGAGAGAAAATGGCGGAAGCGAAGACCGTG



CACTCGCCGCTCGTCACCTACTTCTCCATGCTGTCGCTCCTCACCCTCTGCCCTCCTTTCGT



CATCTTGCTATGGTACACGATGGTGCATGCTGATGGGTCTATCGTCCAAACTTTTGATTACC



TGAGGCAGCATGGACTGCAAGGATTCCTAGACATATGGCCCAGGCCGACTGCCGTCGCTT



GGAAGATCATCGCCGTTTATGCTGCATTTGAGGCGGCGCTGCAGCTCCTTCTTCCAGGAAA



GACAGTCAAGGGCCCTATATCTCCTGCTGGGAATCAGCCAGTGTATAAGGCAAACGGAATG



GCAGCATATTTTGTGACCTTGATCACCTATCTTGGCCTTTGGTGGTTTGGGATTTTTAACCCC



ACGGTTGTTTATGATCACTTGGGCGAAATATACTCCGCACTCATTGTTGGAAGCTTCATCTTT



TGTATTTTCTTGTACATTAAAGGTCATGTGGCACCATCATCTACCGACTCTGGTTCTTCGGG



GAATATAATAATCGACTTCTATTGGGGTATGGAGCTCTATCCTCGGATTGGCAAGGACTTTG



ATATTAAAGTCTTCACAAATTGCAGGTTCGGAATGATGTCTTGGGCAGTTCTTGCTCTAACCT



ATTGCATAAAGCAGTACGAACAGAATGGAAAAGTTGCTGATTCAATGCTCGTGAATACAATA



TTGATGTTAGTGTATGTCACCAAGTTCTTTTGGTGGGAAGCCGGCTATTGGAACACAATGGA



TATTGCACACGATCGAGCTGGCTTCTACATCTGTTGGGGATGCTTGGTATGGGTCCCATCCA



TCTATACCTCTCCTGGCATGTATCTCGTCAATCATCCTGTTAACCTGGGAACTCAGCTCGCA



CTATATATTTTGGTAGCAGGCATTCTGTGCATATATATCAATTATGATTGCGACAGACAGAGG



CAAGAATTTCGCAGAACAAATGGCAAGTGCTCAGTATGGGGGAAGGCTCCATCAAAGATAT



CGGCTTCGTACACTACAACATCTGGAGAGAACAAAACTAGCCTCCTCTTGACTTCAGGATGG



TGGGGCTTATCACGTCATTTTCATTATGTGCCCGAGATTCTTGGAGCCTTTTTCTGGACTGT



CCCTGCACTATTTAATCATTTTCTGCCTTACTTTTATGTGATCTTTCTCACAATCCTATTGTTT



GACCGGGCAAAAAGGGACGACGATCGGTGTCGATCAAAGTATGGGAAGTACTGGAAGCTAT



ATTGTGAGAAGGTTCGATACCGAATTATTCCTGGTATTTACTGAGGTTCAGCAAGAACTCCT



GTATGGGGAAGATATGGTCGGGCGAAAGGAGTCCACATGGATCGGCTTTGGCTCGTTCTCA



TGTACTTCAGAAGATGTCCCTGTACTTGGTTTTATAGGAGATGCCAGCGGTAGAGCTACTTT



TCGTGTTTCATGCATGCAGCAGCATTTAACATTGCGTTTATCTTTGCTACTCCAATTCGGAAT



GACTTTGTATCGAACTCAGAGTATCGGCACTCAGTAACTGTAGCTTTAGTTTGAACCGGCTG



CCCTGAACGTTGAGGTTTTTCAGACTGCAGTCTATTTCTGCTTGTATGTTGACTTGACGTAGA



AATTGCGTGGTGGGACTTATTTCGAACGGTGTGTGATTTAA





47
GCTCTCTCTCTCTCTCTCTACTCTTTCTCTCTCTAACTCTCCGTCCGCCATTGAAGCTTCTCC



TCCAGCGCGGAACCCTAGAGGCATGAAGGCGATGAGGAGCACGAAGCCGCTGAAGCCCCT



CAAGCTCGCGGTCCCCGCTCCCGACGCCCCGATCGCCTCCTTCTTGACTGCGAGTGGCAC



GTTCCATGATGGGGATTTGCTATTGAACCACAAAGGTCTGCGGCTCAAGTCTGAAGAAAAG



GAGTCTTGTCTTTCCAATGGTAAGGAACTTGATCTTGACTTCTCATTGGAAGACCTTGAGACT



ATCAAAGTCATAGGAAAGGGAAGTGGTGGTGTGGTACAACTTGTTCGCCATAAATGGGTTG



GAAAACTATTTGCTCTAAAGGTCATCCAGATGAATATACAAGAAGAGATCCGTAAACAGATT



GTACAAGAGCTAAAGATAAATCAAGCTTCTCAATGTCCACATGTCGTGATTTGCTACCACTC



GTTCTACCACAATGGAGCTTTCTCCTTGGTGTTAGAGTACATGGACCGTGGATCCCTGGCTG



ATGTGATCAGACAAGTTAAGACTATTCTAGAACCATATTTAGCAGTGGTCTGTAAGCAGGTC



TTACAAGGTCTTGTTTATTTGCACAATGAGAGACATGTAATACACAGGGATATAAAACCATCC



AATCTGCTTGTGAACCACAGAGGTGAAGTCAAGATTACAGATTTTGGTGTCAGTGCTATGCT



AGCGAGCTCAATGGGTCAACGAGATACATTTGTTGGAACTTACAATTATATGTCGCCTGAGA



GGATTAGCGGGAGCACATATGACTATAGCAGTGATATCTGGAGTTTGGGCATGGTAGTACTT



GAATGTGCTATAGGACGCTTTCCTTACATGCAATCTGAAGATCAGCAAAGCTGGCCAAGCTT



TTATGAGCTTTTGGAGGCGATCGTCGAAAGTCCACCACCTTCTGCTCCAGCAGATCAGTTTT



CCCCAGAGTTCTGCTCATTTGTATCTTCCTGCATACAAAAGGACCCTCAACAAAGATCTTCG



TCTTTGGACCTTTTGAGTCATGCTTTCATAAAAAAGTTTGAAGACAAAGATATCGATCTTGGG



ATTCTCGTAGGTAGCTTGGAACCTCCCGTAAGTTTTCCGAGATGCTAAGCTGTGGGTGCTTA



TGGGGTAAAATCCTCTTACTCATATGTATCCTTCCTGCGCGTGGTTGAGGATTCGCATAGAG



TGACTTCGCTTGAGCAATTGAGCAAATGATGATAGAAGTCTCTTACTTATAGAAAGAGCAGC



ATGCCAAGGTTCTGTACTGAGAAAATTCTGCCTTCTACTTAATCCTACCAGCTTAAGTGAGCT



TACCCGAGATGTACTTGTTTTGGCTCCATAACCTTAAAGAGCTGACTCCTGAAAAAACAAGA



AAACAAGAAGACAGGCATCTATAATCCATGCTTAGCCTTTATAATCCATCTTCTTAAACATTTT



CTGCTCATGTATGCGAGAAGAAAGGCAGATGCATCAAGCCTTTTCTGATGCTGCCCTTGAAC



AATTCCCAAAAAAAAAA





48
GAAGAAGGGGCCGGGCTCGAGCCCAGAGAGAGAGAGAGAGAGAGGGCCCACGGAGGGC



CCACGGAGACGCTCCCGCGCGAGGAGGGCTTTCTGTCGCGCTGCAGGAGGAAACGGACA



GCGAACGCTGCTTCGCTCCCAATCTTTCAATTTGTTTGAACTTTTGAGTTGAAAGGGCCGAA



AGGCGAATCTCAATGGCTTGGCTTCCATCACTTCCCTGATTTCTTCCCTCCATTTCCACCCC



CACTCTCCCTCCACCCACCATTCCGAGCGCACCAGCCGCGTCCGACCAATCTTGGGTTGCT



CTCGTTTCTACCCAACAAGGTTTCCTTGGGATGGATTCAACCACACACAGTTTCCAGCGTCG



GCCACTCTCGATAAAACTCTGGCCGCCTAGTCAAAGTACTAGGATTATGCTTGTGGAGCGTA



TGACAAAAAATCTAATAGCTCCATCTGTATTGTCTAGAAAGTATGGCCTTCTGAGTAAGGAAG



AGGCCGAGGAGGATGCCAAGCGCATTGAAGAGAGCGCATTTGCTATCGCCAATCAACACAT



GGAGAAGGAGCCAGATGGTGATGGGAGTTCTGCAGTACAAGTTTATGCTACACAGTCAAGT



AAACTTATGCTGGAAGTCATCAAAAGAGGCCCAAGGATGAAGGTGGATGGCGAGGCCATTT



TACCTGCAAAAGCTATTGCTGCAAGTGAAACTGTCTTTGACATCTCTGGAGGTCGACGGGC



CTTTATTGATGCGGAAGAAGCTGAGGAGCTTCTTAAACCATTGAAGGCACCAGGGAACTTCT



ACAAGAAAATATGTTTCAGCAACAGAAGCTTTGGCTTAGATGCTGCCCGAGTTGCTGAACCT



TTTCTAGTATCTGTCAAGGATAAATTGACAGATGTTGATCTGTCAGATTTTGTTGCAGGAAGA



CCGGAAGCCGAAGCTCTTGAAGTGATGAATATTTTTTCTTCAGCCCTTGAAGGTTGCAACTT



GAGGAGTCTGGACCTATCCAACAATGCATTGGGAGAAAAGGGTGTCAGGGCATTTGGAGCA



CTTCTAAAGTCTCAAAATAATCTCGAGGAACTTTATTTGATGAATGATGGTATCTCTGAGGAA



GCTGCTCTGGCAGTTTGTGAGTTACTTCCTTCTACTGAGAAGCTTAGGATCCTTCACTTCCA



TAATAACATGACTGGAGATGAGGGAGCGCTTGCCATTTCTGAGATTGTGAAGCATTCTCCGG



TGTTGGAGGACTTTCGATGTTCTTCTACGAGGGTAGGCTCAGATGGTGGAGTTTCTCTGTGT



GATGCACTTAGCGCATGTTCCCGGATCAAGAAGCTTGATCTGCGGGATAACATGTTTGGTGT



CGAATCTGGAGTTGCTTTGAGCAAGGCTATCCCTTCATTTGCTGACCTAACAGAGGTGTATT



TTAGTTATCTAAACTTGGAGGATGAGGGCACAGAAGCTCTTGCCATTGCTCTCAAGGAATCT



GCACCTTCCCTTGAAGTTTTGGAAATGGCAGGGAATGACATTACTGCAAAAGCTGGTGCTGT



TTTAGCAGCCTGTATTGCAGCAAAGCAGTTTTTGACCAAGTTAAATCTGTCTGAGAATGAATT



GAAGGATGAAGGTGCAATATTGATCGGTAAGGCTTTGGAAGAGGGCCATGGACAGTTGGTT



GAAGTTGATTTGAGCACAAACTCGATTAGAAGGGTTGGAGCAAGAGTCCTAGCCCAGGCTG



TTGTGCAGAAACCTGGATTTAAAATGCTGAATATAAATGCTAATTTCATTTCGGAGGAAGGG



CTTGATGAGGTAAAGGATATATTCAAAACTTCTCCTAATATGCTTGGTCCACTTGATGAGAAT



GACCCTGAGGGTGAAGATTTTGATGAGGAGGCTGATGAGGAAGGCGCTGGTCACGAGGAT



GAATTGGAAGCCAAGCTCAAGGATCTTGAAATAAAGCATGAGGAGTAGTTTGGTTGATTCTC



TGATTGTTTGATTGAGAGAGTTTTTAGTAATTTTAAAACTGGTTCAGCTCTATTTGCAATGTCT



AGTTGCTTAATTTTAGGTTAGTTAGGTGATGTTCTTGTCAAATCTGTCATTGCATGTGAAGTT



CAGAAACATGTAAGATGATGATTTTTCTTGCTGGCAAGTTTAGCAGATCATCATAGCAAAGCT



CCATCTGAAGGGTATTTGATAAGGTTACTTGGGAAAAAAAAAA





49
CTCTCCTGGTTCAAAAACCTAGAGAGAGAAAGAAGAGAGAGAGAGAGAGAGACGGAGACC



GCAGGAAATTCATCGACGAGAGCCGCTCGTCTCCGATCCGCCGCCGCGCGATCGCCGATC



GATCCGGCCGGAGCCGTGCGGAGATCGGTAGGGTAGATTGCCGAATCGGGGCTGGACCT



CGCGACCCGCGATCGGGATTCGGCACGGAGGTCCTGCGCGCGATCGGATCTGGTGGGAT



CGATTTCGAAGGGCGTAGAAGGAGAAGAAGCAGGAGGAGGAGGAGGAGGAGGAGAAGGA



GGAGAATGGTGAAGCTCACGATGATCGCCCGCGTCACCGACGGCCTCCCGCTCGCGGAGG



GGCTCGACGACGGCCGCGACGTGAAGGACGCCGAGTTCTACAAGCAGCAAGTCAAGGCGC



TGTTCAAGAACCTCTCCAAGGGCCAGAACGAGCCCTCCAGAATGTCGGTCGAAACCGGCCC



TTACTACTTCCACTACATCATTGAAGGGCGCGTCTGTTACTTGACCATGTGCGATCGATCTT



ACCCCAAGAAGCTCGCGTTCCAGTACCTGGAGGACCTCAAGAATGAATTCGGGCGCGTGAA



TGGGGCGCAGATCGAAACCGCGGCTCGGCCGTACGCCTTCATCAAATTCGATACGTTTATA



CAGAAAACAAAGAAACTTTATCAGGACACTCGTACCCAGAGGAACATTTCGAAGTTGAATGA



TGAACTCTATGAGGTCCACCAGATTATGACCCGCAATGTCCAAGAGGTACTTGGCGTTGGC



GAAAAATTGGACCAGGTCAGTGAAATGTCTAGTCGGTTAACATCAGAATCTCGCATATATGC



CGACAAGGCCAGAGACTTGAATCGACAGGCACTAATTCGAAAATGGGCCCCAGTTGCCATT



GTTCTGGGAGTGGTCTTCCTTCTCTTCTGGGTCAAATCAAAGATATGGTGATGTGACTGCCT



TGCCTGTACTTCTGTTCTACTGCAGTGGGCTGCTGGGTTGCTGAGAGATTCATTCTCAACGA



TTTTAAATGGGGCACGGGATTTTCACAGAGAATCATATGCGTTCAAAAGTTAGTGTAGTTCTT



CTAATTGCATTTTGTATTGGATGCTTCATTCCTTATGCAGTTGTGGCAATAGATTTGCCATGT



TAAGTAGTGAATAGAGAACCCTCCCTTAAGACAGGAGCAACATCAATATCTTATTGTCGACA



AACTAGCAGAGTGTTTTCCGTACAGGAGGCTGCGTATAACTTTTGTTCATCAATACCTATAAT



CATCTCTTATAGTAAAAAAAAAA





50
CGCTCCTCTCTACAACAATCTCGTGCTCTTTTCCGGCAAACTCCTCCTTCGTCTTTGTCCATC



TTTCTTGCTATATTATAAGTTACCAAGTCAAAAACCCGACAAGCCTTTTTTCTTTGAAGACGAT



GAGTTACGTTTCAAGCAACAGAAAGCCACTGTTGTCTCGGAAAGCAACCAACGACGGTCAT



GCCGAGAAGTCTCCCTATTTCGATGGGTGGAAGGCCTACGACAAGGACCCATTTCATCCTA



CGCAGAATCCCAGTGGTGTCATCCAAATGGGTCTTGCAGAACATCAGCTCTGTTTCGACTTG



GTTCAAGAATGGCTCGTCAGCAACCCAGAAGCCTCCATCTGCACTAAGAAAGGAGTGGACA



AATTCAGGGACATTGCCCTCTTTCAGGATTATCATGGCTTGCCCGCGTTCAGAAACGCTGTG



GCGAAGTTCATGGGGAGAGTGAGGGGGGACAAGGTCAAGTTTGATCCCGACCGGATTGTC



ATGAGCGGGGGAGCCACAGGAGCTCACGAGATGATCACATTCTGCCTGGCTGATCCTGGC



GATGCGTTCTTGGTGCCAACCCCTTACTATGCAGGATTTGATCGAGATTTGTGTTGGAGGAC



TGAAGCACGACTTCTCCCGGTAGTCTGTCACAGCTCTAACAATTTCAAGGTCACCAGGAAG



GCTTTGGAAGAAGCATACGCAAAAGCTGTTGAGGCCAACATCAGCGTAAAAGGGTTGCTCT



TAACCAATCCATCAAACCCACTAGGGACCATCTTAGACCGAGACACGTTGAGAGAAGCCAT



GAGCTTCATCAACGAGAAGAACATCCACCTCATTTGCGATGAGATATATGCTGCTACAGTCT



TTCGTCAGCCTGATTTCATAAGCATCGCAGAGATAATCGAGGAAGATCAAGAATACAATCGC



AACCTCGTGCATATAATTTATAGCCTCTCAAAAGATATGGGTTTCCCTGGCTTCAGGGTTGG



GATTGTGTATTCATACAATGATGCCGTGGTGGAGTGCGGCCGGAGGATGTCCAGCTTCGGT



CTAGTATCCTCCCAAACTCAGTACCTAATTGCATCCATGTTATCGGACGATCAGTTCATTGG



GAAATTCCTGTTGGAGAGTGCGGAGAGGTTAGAGACGAGGCATAAGAATTTCACTGACGGA



CTTCATCAAGTAGGCATCAAGTGCTTGAACGGCAATGCGGGTCTCTTCTTATGGATGGATTT



GAGGGAGCTCCTGATGGAGAGCACCGTAGAGGCAGAGACGGCTCTGTGGCGGGGCATAAT



TAACGAATTCAAGCTCAATGTCTCACCGGGTTCTTCCTTTCACTGCTCAGAGCCAGGATGGT



TCAGAGTTTGCATTGCCAACATGAATGAGGAGACCATGAAGGTCGCTTTAGCACGAATCCG



AGAGTTTGTGCGGAGGAATGGCGATAAGCTGAACAGGAAGGAGAAGTGCCGGCAGAGCGA



CCTAAGGCTCAGACTCTCGTTCCGAAGAATGGATGATGTGTTGAGGTCGCCCTGCATTATGT



CCCCTCACTCGCCCATCCCTCAATCACCACTGGTTCGAACCAGAACTTGAAGTTGGCAATC



GCGTGATTCTACAAACGGGCATTTTTCCCATTAAATCCAAAGCTTTCCAAATGTAAAATAGGG



AATTGTATTCTTTATTTGCTTGTAACTGGGTGCAGTGCAGAATGCATCCTAATTTTTCTGCAC



CCCATTTTGTTCATTCTTTCATCAGGCACGGTATTTTAATTTTTTCCTTCTGTATAATCCCTAA



GATGGCCCTAAGTTCCATCAGGATTGACATTTTCAACAATATTCAGACTGTCGTGTTGTTTTC



AAAAAAAAAA





51
CTTTAAGTTCATCGTATCCCCTTGTCCTTTTGTTCATGGATTCCGGAAACTCACGGAAGAGAA



AATTTGCAGGAATCCTTTACCTAATTATCTTGCGGTGCATGCGTAGGTATCCACCAGTTTCAT



CACCACGCACTTTCAGTTCTCCCGATCCCCCTTTTTAAACCCCCTCTCTCTGCTCACGCCCT



TCTTTCAAGATCTGATCAAGATTTTTATCTATAGATTCTTCTTTATTTCAAGATAAGCGATTCG



TTTGGTGTGTCTTGCAAGATCTGAATGGACCTTGGAGCTTGCAAGAACCTCTCCTCTGTCGA



GCCGGTTATGGGCTTGATCCTTGGTGGGTTTTGGCGGAGGAATTCAAGAAAGTCGGCGGTT



CTTTCTTGAGTGGTGAAACAGGGGAATTCCTTCCTCCTGTTGTTGCCCTCTGAACGTTCTTG



CGTCTCTCTACTTTCTGGGAAAATAGCGAGTGGGAGAGCTGAAATCATGTGAGGGGAGAGA



AAAGGAAAAAAAGGTTTTGAAGAATCTGGCGCTTGGCTGTTTCGTGTTTCGTGGTGGGTCTG



TTCTGGAAGAGGAGCCCGGAGAAGGTAAAGGATAGAATTTTATACTCATCAAGAAAGGAGAT



CAGAGGAAAACCGAAAAGGGGCAGAGAGCATAAGCACAGTTCCTCACAGCAGGAGCGGCA



AGGGAATCCATGGCGACTCTGGTCGAGCCCCCGGATGGAGTTAGGCAGAGAGGGAAGCAG



TACTACTCAATGTGGCGGACCCTGTTCGAGGTGGACGCCAAGTACGTCCCCATCAAGCCCA



TCGGGCGAGGGGCGTACGGCGTGGTGTGCTCGTCAATCAACCGGGAGACACACGAGAAG



GTCGCCATCAAGAAGATCCACAACGTGTTCGAAAACCGGATCGACGCCCTCCGGACCCTGA



GGGAGCTCAAGCTCCTGCGGCACATCAAGCACGAGAATGTGATCGCCCTCAAGGACGTCAT



GCTCCCGGTCCACAGCGCTAGCTTCAGGGAGGTGTACCTGGTTTACGAGCTCATGGACACC



GACCTGCACCAGCTCATCAAGTCCCCGCAGCCGCTGTCCAACGAGCATTGCAGGTTCTTCA



TTTTTCAGTTGCTGAAAGGGCTGAAGTATCTGCACTCAGCCAACGTTCTTCACCGCGACCTC



AAGCCCGGAAACCTCCTGGTGAACGCCAACTGTGACCTGAAGATATGCGACTTCGGACTCG



CGCGGACCAACCAAGGCGACGGGCAGTTCATGACTGAGTACGTGGTCACGCGCTGGTACC



GTGCCCCTGAGCTGCTGCTCTCATGCGACAACTATGGGACCTCAATCGACGTCTGGTCCGT



GGGCTGCATCTTCGCCGAGATCCTCGGGCGCAAGCCCTTGTTCCCCGGGACAGAGTGCCT



CAACCAGCTGAGGCTGATCATCGACACGCTGGGAAGCCAGGGGGAGGAGGACATCGAGTT



CATCGACAACCGGAAGGCCCGGAGGTACATCAAGGCGCTGCCCTTCTCGAGGGGCACCCA



CTTCTCCCAGCTGTACCCGCAGGCCGATCCCCTGGCGGTGGACCTGCTGCAGCGGATGCT



CGTGTTCGACCCGAGGAAGAGGATCACAGTGACGGAGGCCCTCCAACATCCGTACATGGC



AGGCCTGTACGACCCGCGGGGCAACCCGCCGGCTCAGTACCCGATCAACCTCGACATTGA



CGATAGCATGGAGCAGCACATGATTAGGGAGATGATGTGGAACGAAATCCTTCACTACCAT



CCTCATCAGTATGCTTCCCTCCATGGATAAAATAGCGGAATCCTTCACCATCGACATGCCAG



AGCAAGAATTTTCTATCCTCTGTTCCCTGAATTTTCCCCTGAAACTTTCTTGTTGGTTCCTGC



ATTGAGAGAGACCTAATTGCTTGATGTCCTGTAATTTGTAAAAAGTTGCAATGGCCACACCA



ACTAAGATAGCACATTGCAATTTCTTTAAAAAAAAAA





52
CTCGTTGCTTCGCGGTCGAGGGAGGGCGGGGGGGGGATCGACCGGATGGGGCAGCAATC



GCTGATCTACAGCTTCGTGGCCCGGGGCCCCGTCCTGCTGGCCGAGTACACCGAGTTCAG



CGGCAACTTCACCAGCGTCGCCTCCCAGTGCCTCCAGAAGCTCCCTGCCACCAGCAACAA



GTTCACCTACAACTGCGACGGCCACACCTTCAACTACCTCGTCGACGATGGCCTCACTTACT



GTGTGGTTGCAGTTGAGTCTGTTGGGCGCCAGATTCCAATGGCTTTCCTTGAGCGGATCAA



GGAGGACTTTACTCACAGATACGACGCAGGAAAAGCTGCAACAGCATCTGCTAATAGCTTG



AACAGGGAGTTTGGGCCTAAACTCAAGGAGCACATGCAATATTGTGTTGATCATCCGGAAG



AGATCAGCAAACTTGCTAAGGTGAAAGCTCAGGTATCAGAAGTGAAGGGAGTAATGATGGA



AAATATTGAGAAGGTTCTTGATCGTGGTGAAAAAATCGAACTTCTGGTTGATAAGACAGACA



ATCTTCGTTCTCAGGCTCAAGACTTCAGGCAGCAGGGAACCAAAATGCGAAGAAAAATGTG



GCTGCAGAACATGAAAATAAAGCTGATAGTTCTGGGCATTATTATTGCTTTGATTCTGGTCAT



TGTTTTATCTGTTTGTCATGGCTTCAATTGTGGTCATAAATAGTGGAGTGGTGCTGCTAATAG



GTTCTTATGAACCTGTCTTGAAGGTATTTTGCCTGTAAGTTTTCTTTCCTCTTTTGTTCTTTAC



ATGGTCCTTCATTATACTATAGCCTATAGAAGAAATACATTTGCATGTATAGTTTGTATTCTTG



GACAAGTTCTATAATCATCGCGCCCCGGATTGTAATGTCAGCGACCTATGAGTGCTGATAAA



AAAAAAA





53
AGCTATTATCCTTTGCTTCCAAGTGCTTCTCCGTCGTACTTGGCGTGTATAAGTCGAATCTC



GCCTGAATTTGCTGATGTTTCTCTAGATCCTTAGATTAAGGTTTGATCTGTGTATATGCTGTG



TCGTTGCCTGAGAATGGTTCTGGGTTTGATGATGGCGATATTGGTCGAGGCGGCTGTGCTG



TGAGATTCTTTGTCGAGATCGCCGGTTGAGCTTTTCGGGAGTTTGTGTATTGTTTGGAGGTA



GTTTTGCGAGAAATGTAGGACATTGATGTCGTCGTTGAGTTTAATAACTTAGTTCTGTTCAGT



TTCTTGGTTTTCCGTGGCAGAACGGCGAGTGTGGAAATGGCTGATGTAGCGGGTCGTCGTT



GAGTTTATTAACTTAGTTCTGTTCAGTTTCTTGGTTTTCCGTGGCAGAACGGCGAGTGTGGA



AATGGCTGATGTAGCGGGTCTGACTGAAGCGGCGGGGTCCAGATTCAGTTCGCTCGAGTT



GATTGGGAGAGGATCTTTTGGAGATGTCTATAAAGCATTTGATAAGGAGCTCAACAAAGAAG



TTGCTATCAAAGTTATTGATCTGGAGGAGTCAGAGGATGAAATTGAAGACATTCAGAAGGAA



ATTTCTGTTCTATCACAATGTCGATCTCCATATATTACGGAATATTATGGTTCCTATCTCCACC



AGACCAAGCTATGGATAATAATGGAGTACATGGCCGGTGGCTCCGTTGCTGATCTACTTCAA



TCAGGTCCACCTCTTGATGAGATGTCCATAGCCTGTATTTTACGTGACTTGCTGCATGCAAT



CGAATATTTGCACACTGAAGGGAAAATTCACAGGGATATTAAAGCGGCCAACATTTTATTGA



GCGAGAACGGTGATGTTAAGGTTGCAGATTTTGGTGTTTCTGCTCAATTAACTAGAACTATAT



CAAGGAGAAAGACATTTGTCGGAACCCCATTCTGGATGGCTCCGGAGGTAATTCAGAATTC



GGATGGGTACAACGAGAAGGCAGATATCTGGTCTCTAGGGATCACTGCGATTGAGATGGCA



AAAGGTGAACCTCCGCTTGCAGATCTTCACCCAATGAGAGTTCTTTTTATCATACCTCGAGA



AAATCCCCCACAGCTGGATGAGCATTTTTCTCGTTCCATTAAAGAATTTGTTTCCCTGTGCCT



GAAGAAAGTACCGGCAGAGCGGCCCAGTGCCAAGGAACTTCTGAAGCACCGTTTCATAAGA



AATGCCAGGAAGAGTCCAAGGCTTCTAGAGCGAATAAGAGAGCGTCCAAAATATCCGACAG



TGGAAGATGGAGAAACACCTATGATTGGTAAAGGTGTAGTGGAGGGATCAGACACTGTGAA



GATTAGAAGAGACATAAAAGGAGAAGAAACAGTAAGAGCCAGTAATCAAGGGCGAGGAGGG



AAGAATACTGGATGGGATTTCAGCATTGGTGGAGTGCAGGGAACAGGGACTGTTAGGACCA



ATCTATTGCCACCTCAAGTCAGAGAGAGGAAATCAGAGAATTCCCACAATCAGGCTACCCCT



AGAAGAGTGGCGGATGGTGGTAACTCATGGTTGTCTGCATCTGGAAATTCACCTCAGGCTG



CAGAAATATCACTTCGGAAAGATGCTAGAGATTTGCATTATAATAATCACCACGATGACGAA



GATTCATCTTTGAGCGGATCGGGTACGGTCGTGGTACGAACTCCTAGAGAATCTCAACCAT



CACCCTTGCTTCGCGATCAAAGCACTCTGTCTAGCAGCTCGTACAGTTCTGTTGAAGATGCT



TCTACAACAGGAACTGTAGTTTTCCGCGGTCAACATGATGAGTCTGATTCTCCTCGGACACC



AAAATCGAGACTCGGGATTCAGGAGAGAAGTTCCAGTGCTTCACTGGAAGACAGTGCAGCA



AACCTTGCAGAGGCTAAGGCGGCTATGCAAGGCGCTTTTAAAAGAGGAAATGCAAGAGAAA



AGAGATCTGTACTAGGTAAGTTTAATGACGGGCAGGAAAATGGGAATAGAGAACAACTTACA



AAAAGCCCTGATTCGTCGAGGAATTCCTATGAGTATTTTGATGCTCATAAAGTTCTCCCGAG



GTCCCGCCAAGCAAGCGATGATGAGGACATTGCAAAAATTTTATCTTCATCTGCTCCATTAT



CGGTTCTGCTCATCCCTTCCTTGAAAGAGACAACTGGTGATGATTCTGATGGGCCAGTTGTC



CATGCTGTTTCAACCTCACTCACTAACTTAGAGCGCATGAAGCCAGGATCATGTGAGGTTCT



TATAAGCAAGTTGCTACAGAGATTGGCAAGTTCAAAAGAATCCTCGTTGAAAGACTTGCAGG



ATCTGGCAACTCACACCTTTTCCAAGGGCAAGATATCCCCAGAAAAGTCGGGAAATGCGAA



CACTGAAGCTGATAATCGCAAGAAACAACAGAACAAAGAATTCAATTCTAATGCTAATTTAAG



CCCACTAGCAAGATTTTTGCTCTCAAGATGGCAAGGCCAAGTATCCCGAGATCTTAACCCAA



CTTGAGAGAGAAGAAGAGAATAGTATCTATTTGTTTGTATTGTGCTTCGTGTCGATGCATTTA



TTCTGATTCACTGTACATAGAAATGATAGTGTATTTATTAGCAACCAACCTTTGTCTGAGTAA



ATTGCCTCTGATGGTAAGAGTTGCTGCGCGACTAGGAGGTTTGTTGTTGGTGCACTAACAAT



GTAAAAAAAGACAAAATGGACCATCATTCTTATTTATCGATGGTTGAATTTTGGCTTTTATTTT



CTCGCCAGAGCTTTCCCGCCGTTTTCGATCAATACAAAGAAGAGCAGTACCATGGATTTGAC



AGAGTAAAAAAAAAA





54
AGAAAATACAGAAATCTCAGCACGATCCCCATCTCCTCCTTCGCCAAAGTCGTTGGGAACTT



CCCCCCTTCTCCCTCTCGCTCCGTCCACGAAGCAAGCAAGCTCTCCGCGAAGATCCCTTCC



TTGTTGTTACCAAATTGGTTGAAGCTTCTTGTGGGTTGCTGGACCTGCAGATTTTGGTTAATA



AATGAGTCAGAAGGGCCTTATATATAGCTTTGTGGCGAAAGGGACTGTTGTTCTGGCCGAG



CACACGCAATTTTCGGGAAACTTTAGTACTATTGCTGTGCAGTGCTTGCAGAAGCTGCCTTC



TAATAGCAGCAAGTACACATACTCCTGCGATGGGCACACATTTAACTTCCTAACGGATAGTG



GATTTGTTTTCCTGGTTGTTGCTGATGAGTCCGTCGGAAGAAGTGTGCCTTTCGTGTTTCTT



GAGCGAGTGAAGGATGACTTTATGCAGCATTATAGTGCCAGCATTGCAAGTGGCGACCCAC



ATCCACTTGCAGATGATGATGAGGATGACGATTTGTTTCAAGATCGTTTTAGCATTGCATACA



ACCTTGACCGAGAGTTTGGGCCAAGACTTAAGGAGCATATGCAGTACTGCATGAGCCATCC



AGAGGAGATGAGTAAGCTATCCAAATTGAAGGCTCAGATATCAGAGGTCAAAGGGATTATG



GTTGATAATATTGAAAAGGTGTTGGACCGTGGGGAGAGAATTGAACTTCTGGTTGACAAAAC



AGAGAACCTACAATTCCAGGCCGACATTTTCCAAAGGCAAGGAAGGCAACTGCGTAGGAAG



ATGTGGTTTCAGAATCTCCAAATGAAGGTTGTGGTGGCTGGAGCAGTTGTCATAGTAATATT



CTTGCTGTGGCTTATAGCAAAGTGGGGAAGTAAATAAAACTTGTTCTCAGGGTCGACGCGG



CCAAGGTACAATATGATTTTGTATCTGGATATGTTTGTTGGTATGTGGAGCTAGCCTACCACT



TAGGATTT





55
CGGCACTCGCCATCGGAGCAGCTGGTGGGATTGCTCGCGGCTTTCTGCTCATGGAAGGAG



AAGAAGAGCAGAAGCCGGCGGCGACGAAGCGGAGGAAACCGAGATCGGGAGCGCCTTCT



TCCGCCCCGATCAACAATCTCGATGACGGGTGCCTCATGCACATCTTCAGCTTCCTTTCTCC



TATTCCAGATCGTTATAACACCGCCCTCGTTTGCCACAGATGGTGTTACCTGGCATGTCACC



CTCGGCTGTGGCTACGAGTAGACCGGTCTGTAAAGGATTCATCAGAGCCAGGAGTTTTCCC



CAATATTGAGTTGGCTGTCTCTGCTGCAAGACCTGGAGATACTATTCTGATTGCAGCAGGGG



GAAGTCATGTTGCCTCTAATATTCAGATAAAGAAACCACTTTGCCTGATTGGTGGAGGTGAA



CTTCCAGACGAGACAATGCTTCTCTGTTCACGAGGTTCAGACAGTGCCCTGGAGTTCCTTTC



CACCTGCAAACTGTCGAATCTAACTGTGAAAGCGGAGCTTGGATGCTGTCTGCTTCATAGGA



GCGGAAGGCTGATTATCGACGGTTGTATTCTCCAATGCGAGACAGACCCTTTAGACTACCTC



TCGTGCCCAATTGTGAGCACAGCTACAGGCAGCAAGGTCGTTTCCTCTCCTAATGGGTGTC



ATGGCGATGGTGTTTCGGTCTCTCGGACACGAATTGAAGGTGGTGCCAAAGCCGTATTGAC



TAGTGGGGACCTGGCATTGCAGCGTGTTCGGGTTATATGCGCTCGTACTTCTATGTTCTTCT



GGTTCGACGTCGAGTGTCCCTCTTGACTCGATATCTTTGTGCTGTTGTCTGTAGTATATATCA



GTACCAGTTAGTTTTACTTTTTAAAGATGTTAATGAATATTGCTGTGATGGTGTGGATACTGT



GGAATTTTCATCGTATCCTGTCATCCAAATCCTTATTTTCTTTTGAGATAATTAACCAATAAAA



AAAAAA





56
CGCCCTCGATCTTGCAAGACCAAAAAAACACAGTGAGTCCTCCGTGCGCACCCGAAGAACC



ACAGGATAAGATAAGCCGCCTGAATCTTCTCTTCTCCTCCCCCTTCAACCGCCCACCTCCCT



CGCCGCCTCCGCCTCCGCCGGCGATGGGCCAGTCGTCGTCCTCGACGGCCCCCGCGCTC



GGCGGCCGCGGCGCCGACCCCGACCCCGACCCCGACCCCGACGACGGCCACTCGGCGG



CCAAGTCGAAGGCCGTGATCTGGCCGGTGCTCGGGGAGGCCGCCGCCGAGGAGTGCGCC



GCCCCCGATCTCTCCCTCTCCATCTCCGATCTCCCCGACGAGTGCCTGGCCTGCGTCTTCC



AGTACCTAGGCTCCGGCGACCGGGCCCGGTGCTCCCTCGTGTGCCGCCGCTGGCTCGCG



GTCGAGGGCCAGAGCCGCCAGAGGCTCGCCCTCCACGCCCAGTCGGAGCTGCTGGAAGC



GGTCCCGGCGCTGTTCGCGCGGTTCGACTCGGTCTCGAAGCTCGCGCTCAAGTGCGACCG



CAAGGCGCTGAGCATCGGCGACGACGCGCTCGTGCTGATCTCGCTCAAGTGCAGGAACCT



CACGCGCCTCAAGCTGCGGGGCTGCCGCGCGCTCACGGACACGGGGATCGCGGTCTTCA



CGAGCAATTGCCGGGGGCTGAGGAAGCTCTCGTGCGGATCCTGTGCGTTCGGAGCCAAAG



GCTTGAACGCCGTGATTGATCACTGCGCCTCCCTCGAAGAGTTATCTGTGAAGCGGCTCCG



GAGTCCCACTGAAGGTGCTGCGGCGGAGCCGATTGGGCCTGGTGCGGCTGCCGCCTCCC



TCAAAACGATTTGCTTGAAGGAGCTTTACAACGGACAGGGCTTCGGTCCGCTGATCATCGG



CTCGAAGAATTTGAGGACGTTGAAGCTGGTGAAATGTTACGGAGATTGGGACACGGTGCTC



CAAGTTATGGTGGAGAGGGTCGCAAAATTAGTGGAGATCCATCTGGAGAGGATCCAGGTAA



GCGATTTTGGCATTGCCTCGCTATCTAATTGCTCGGATCTCGAGATACTGCATCTGTTAAAG



ACACCGCACTGCACGAACTTAGGGCTCATATCGGTTGCCGAACGTTGTACGTTGTTGAGGA



AGCTCCATATTGATGGATTGAAGCTGAACCGCATTGGCGACGATGGTTTGATTGCTGTCGCA



AAGCGTTGCCCTAATTTGCGAGAACTTGTTCTTATCGGCGTCAATCCTACGGAGTTGAGCTT



GGATTTGCTAGGATCTAACTGCCTCACGTTGGAGAGACTGGCGTTTTGCGGTAGCGATACG



GTTGGAGACGCTGAGATTATGTGCATCGCGGCTAGGTGTGTGGCGCTCAAGAAGCTTTGCA



TCAAGAATTGCCCAGTTTCGGACGAAGGAATGAAGGCATTAGCCTCTGGTTGCCCTAACTTG



GTGAAACTGAAGGTTAAGAAGTGTGGTGGAGTGACTTCTGAGGGTGCAGCTTGGTTAAGAA



TGAGAAGGGGATCGCTTGCGTTGAATTTGGACTCCAGTGACCAAGAACAGATAGACGCATT



CGCCAGTGATGGTGGAGGAGAAGAAAATCATGTGGAGTTTCCTCCCGTACCTAGCCAAACA



GCCGGCGCTAATATTGCATCATCGAGCGGCACCAGTCGGTCATCTTCCTTTAAATCGAGATT



GGGCAGTTTGAGAGGAAAGAGTTTGATGGCATGCACGTTCAGAAGATGGTCAAGTGGCAGT



AAAGATTCCTAAAAGCCAAGATCTTAGGGGAATCTCTGAACAGCCAGGGTAAACCAATGACT



GTCCCTCGGCGCATCAAATTTGAATTGTTGACTTTATGGGTCTGAAGGTTTCGAACTTTGAT



CTTCAGATGATCAGCTTCGTGCCATCACCGATTGTTGTCCTAACATGCCCAAACCTGTTTTAA



TTGGTGTCGGTCCTAAAAAAAATCGTGCTTGAGTTTGCTGGAATTAAATTCCCTGAGTTTAGA



GTGGTTTTTAGCAATCAATGGTTAGGGATACTATTCCCTTCGCTAAATGTACAGCTTTAGAGA



AACTTTGTTCGGAGAATTTCCCCATTTCGATTAGGGGTAGAAGCCCTAGTCGGCTGTTGCCC



GAACTTGCTGATGGCGATGCTCAGAAGGTATGTACTGTTTGTGGAGTGACTAGTGAGATGC



AGTTTGTGAGGAAAGCTCGTGTTTGAAATTGATGCTTTAAATTGGAGGGAAAAAAAAAA





57
CGTGAACGTCTTGCGCTCGGTTCTTGAGCTCGTTCTTGAGAGCTGAACGGAGACGATGGGC



GAGGAATCGTTCATATACAGCTTCGTGGCGAGAGGGACGATGATCTTGGCGGAGTACACGG



AGTTCACGGGCAACTTCCCGGCCATAGCCGCTCAGTGCCTCCAGAAACTCCCTTCCTCCAA



CAACAAGTTCACCTACTCCTGCGATCACCACACCTTCAATTTCCTCCTCGAAGATGGCTACG



CTTATTGTGTTGTCGCCAAAGAATCAGTGGCCAAGCAAATCTCCATTGCATTTTTGGAGCGT



GTAAAAGTTGACTTTAAGAAAAGATATGGTGGCGGCAAAGCAGATACAGCTGTTGCCAAAAG



TCTGAATAAGGAGTTCGGGCCAATTATGAAGGAGCACATGAAGTACATTATTGAACATGCTG



AAGAGATCGATAAGCTCATAAAAGTGAAGGCTCAAGTTTCAGAAGTTAAAAGCATAATGCTG



GAGAATATTGACAAGGCGATCGATAGAGGGGAGAACCTGACCATTCTAGCCGACAAAACAG



AGAATCTGCGTGATCAGGCTCAAGCATACAAGAAACAAGGGACACAAATCCGGCGAAAGAT



GTGGTACCAGAACATGAAAATCAAGCTGGTCGTGTTTGGTATCTTATTATTTCTGATCCTTGT



AATTTGGCTTTCAATTTGTCATGGATTTGATTGCTCCAACTAGTATATTATCATCACATGGAG



AAAGGTTCAGCTTCAATTAGAGAGAGAAGAGAGAGAGAGATCTTGTAACTATACTGGCGGA



GAAATGTATCATTTGTTGTTACTTGGGACTGAAAAAAAAAA





58
GCATCAAAATTGACATCGCCTCTCCTCTAATGCCTCGGTCGTCTCTCTTCTCTTCCATTTCGC



CCTCGTTCTCCACGGCCGTTCCAATCCGACCTCGCCGGAATCTTTGAATTTCCTTTTATTGTT



TCCGATCGAGGGGGGTTTCGGCCGGCGGGAGGAGCTGCGAAGATTTCCCTCGCGCGGCG



GATGGCGGGCGGGTACAGGGCCGACGACGATTACGATTACCTGTTCAAGGTGGTGCTGAT



CGGGGACTCCGGCGTCGGCAAGTCCAATCTGCTGTCCAGATTCACGCGCAACGAGTTCAG



CTTGGAGTCCAAGTCCACGATCGGCGTCGAATTCGCCACTCGCAGCATCCGCGTCGATGAC



AAGGTCGTGAAGGCCCAGATTTGGGACACCGCCGGCCAAGAGAGGTACCGAGCAATCACT



AGTGCATATTACCGAGGTGCTGTTGGCGCATTGCTTGTCTATGATGTAACTCGTCATGTCAC



ATTCGAGAACGTGGAGAGATGGTTGAAGGAGCTGCGGGATCACACCGACTCTAACATTGTT



ATAATGCTTGTGGGGAATAAGGCTGATTTGCGACATTTACGTGCTGTTTCTACTGAAGATGC



CACGGCATTTGCGGAAAAGGAAAATACCTTCTTTATGGAGACCTCTGCGCTCGAGTCTATGA



ACGTTGAGAATGCGTTCACTGAAGTGCTCACCCAAATACATCGAGTAGTCAGTAGGAAAGC



CCTTGAGGCTGGGAATGACCCTGGAGCTCTTCCTAAAGGACAAACCATTAACGTTGGATCA



AAGGATGATGTCTCAGAAGTTAAAAAGGTCGGTTGCTGCTCTTCTTGAGGATTTACCCGTCA



AACATTTGAAGGAAATGAAATTTTCTCCAGTAGTCTCATGTGTCCAGATGCTTTAGTTTCTCT



ACTCTCTTTGGTTTTCAGTTTTCTACTTCATACTTGTTGTACTCTCACTTGTATAATTCTTTCCT



TTTCTCTGGCTCTTCCCTTCTTTTTTGTCTTGGGGTTGTGATTGCTCTAAATTATTGGGACAA



GCTCGAAAATT





59
GCATCTCCCACCCAACCCCTACTCTCTCTCTCTCTCTCTATCTCTATATCGTCCTGTCAAGAA



GAAGGAAGAAGACGAAGAAGGAAGGTGAACAAGAAGCAAGAAGAAGATGCAGCAGTAGAA



AGGTGAGATCTCGATCTCGCACCGATGCTCTCGAATCGAACCTGTTCCTCCCCGATCCCCC



CGCATCGATTCGCCTGAACCACAAAAGAGTTCGCATCCTTTTCCCTCCTTCGAGGCGTAGA



GCAGTTAGGGCCTTGAGCATTCATGGCGGAACTCGCGGGCGATCTGCCCGGCGAGCTGGT



GACCGAGATCCTGGACCGCCTCCCGGTCGAGTCGCTGCTCCGGTGCCGCTCCGTCTCCAA



GCGGTGGCGCGGCATCATCGACAGCCGGGAGTTCGTCCGCTCCCACCTCGCCCGCTCCTT



CGAGTCCACCGCCAACCTCACCCTCTTCTTCCGCCACTCCTCCAGCCTCTACTGCATCGAC



CTCACCTCCCTCCTCCGCCACGGCGGCGTCGCCGAGATGAACTACCCGCTCATGTGCTACA



GCGACCAGATCCGCGTCCTCGGCTCCTGCAACGGCCTGCTCTGCATCTCCAACGCCGCCG



ACGACGTCGTCGTTTGGAACCCCGCCACGCGGAAGCACAAGTTCCTGCCGTACTCCGCCG



TCGAGGTGCGGCGCTCCTCGGTTTTCTCCGTCTGCGTCTACGGGTTCGGGTACGACGAGA



GGCGAGACGATTACGTGCTGCTCAGGCTCGTCCAGCTCGTGACGGAGCCGATCGAGTCGG



AAGTTAGTATCTACAGCTTGAAGGATAACGCTTGGAGGCGGCTCAAGGACATGCCGTACTC



CCTCGTTTATCCCCGCAAGATGGGGGTTTTCGTGTGCGGCCATCTGCACTGGATAATGACT



CGGGAGCTGGTGTCGGATTCGGCGAATCTGCTGGTGGCTTTCGATTTTCGAATTGAGGATT



TTAAGGTGGTGGACCAGCCTGAAGGTATCGATAATAAGCTTGACATGGATTTGTCCGTCCTG



GGAGGGTGTCTCTGCCTTAGCATTAACGGGAACCACATGGGTGTCCATGTGTGGATTATGA



AAGAGTATGGATTGAGAGATTCATGGACTAAGTTGTTCTCGATACCGCAATCTGAAGTTGCC



AGACCTCTTGGGTTTGTCCGGCCGTTGGCTTACGCCAGCAATGGTCGTCAAGTTTTGGTAA



GACAGGACAGTAAGAATCTCATTTTGTATGATCTAGAGACTAAGGGCATGGAGAGGGTTGAT



ATAAATGGCATGCCAAATTCCTTTGAAGCAGAAATTTGTTTGAGAACCCTTGTTTCGGTCGAT



GATTATGGAGGATACACCAAGAAGAAGCAGCAAGAAGCGGAAGAGATTGAGAATAGGACCA



AGAGGGATGACTTCCTCTCGGTGGGCTTCAAGCTTGTTCTCTAATCGAGACATAGTTGTGCA



AGGGGGGTGTCACAAACTACTCAGCGAAGGAAATGCAGTAGGAGAAGTTAAGTTTTTTGCC



TCAGTATTTAGATTCATGGCTCAACTTTCGACAATATGGACCAATGTATCATTGGGAAAGGTT



TGGCAAAAAAAAAA





60
CTTCTTCTTCTTCTTCTTCTTTCTCCTCTCTATGGCGGACACCGCAACTCGAGCGATTCCTCC



GAGAATGGAGTTCTCCGACGAGGCTGCGGCCGGCGGAGCTGCGGCGCCGGCGGCTGCGG



CGGCGGCGGCGGAGGAGGAGGAGGAGGAAGAGGAGGCGCCGTCGCCGGCGGCGGAGAT



CAGCGAGGTCGAGAAGAGCAAGATCGGCATCATGCGGGCCGTCGTGGAGCGGGACGACC



CTTCCGCCAAGGATGTCGATGATTTTATGATACGGAGGTTTCTGCGAGCTCGGGATCTAGAT



ATAGAGAAGGCTTCCAAGCTATTTCTGAAGTACCTGAGCTGGAGACGGTCTTTCGTCCCCAA



TGGGGTCATATCGGCATCAGAAGTTCCAAATAACCTTGCTCAGCGGAAGTTGTTTATGCAAG



GTCTTGACAAAAAGGGACGGCCTATAATAGTTGTGTACGGGGGTAGACATAATCCTTCCAAA



GGAAGTCTCGAGGAGTTCAAGCGTATGATACTTCTCTGATTCTTCCGGATTTTCTTCTAATCA



ATATGAATTTATCGCTTCATGCAAGACTTACCATCATCATATTATTGAAAAGAAATTTAGGCA



GAAAAATACTGAATTTGGCTAAAGTTGAGTTGTTTTTTACTGTGGCGAAGGTTTTGTGGTCTA



CACTCTTGACAAAATATGTTCCAGGTAACTCTTCTCCTTATTAAGACTCTGCACATCACGGAA



ATCTAAAAACATTGCAAACTGAGGATTCTTCCAAAAATGAAATCCTTCAGAAGCATTCTGGTT



AAGGTGTCTATCTTGTGAGGCACAAAAATTGCACGTGTCACCTAATTGCATGATTGGAAAAG



AATGGCCATATTAGTTGCAAATGAAGCCCTTGAAGACTATATCTAGAGCCACCCTCCTCAAT



GGGAAGTATCGGAAAGTTTTTACCTGGTCCCTTATTGGTTTCTCAATTCCCAGTTTCTTAAGA



ACTGTGATCAACCCAAGTCTTTCTTTTGAATTCGCTATCCAGTGTTGGTCAAATTTTAGCCAA



TAATTTAAGTTGTTTCTTGGGTGTTGATCTTTCAGAATGCCTGGAGGGCAGGAGAAGTTTAT



GGGCATAGCAGATCTCGAAGGATGGGGATACAAAAGCAGCGACATTCGTGGATACTTAGCA



GCATTGTCAATCTTGCAGGACTGCTATCCGGAGAGGCTGGGCAAGCTCTTTCTTATTCATGT



GCCTTACATATTTATGACTGCATGGAAGATGGTTTACCCATTCATCGACCCTAAGACGAAAA



AGAAGATTGTTTTTGTCGATAACAAAAAACTGAGAACTACTCTGCTCGGGGACATCGATGAA



AGCCAGCTCCCGGATGTATATGGAGGCAGGTTGCCACTAGTTGCCATTCAAGACAGCTAAA



TTCTGCTCAAATTACAAGAATTTTCTCCTCATTTCTTTTCTGGCCGTGGGTCTATATTGTAGAA



TATAATGAAGATATAATTTGATAAAATGCGGAACAACAGCCAAATATTTCATGGCTGAACTCT



CTTGATAAAAAAAAAA





61
AGAACAAGACCCCGTCCCTCACTACTACTGCACGCGCGACGCGACGGGAGATATGGCTGC



TCGGCTCTTTTCAAGCCTCCTCTCTCGCTCCTCCTCCGCCGCCTCCTCCTCCTCGTCGTCTT



CTTCTGCTCGTGCTCTGCTTTCTCGAGCGAGAAAACCGCTACTGGGAAGAGAAATCAAGAG



CTACAGCACAGCAGCTGCTATCGAGGAACCGATAAATCCAGGCGTCACTGTGAACCATACT



CAGCTTTTCATAAATGGGCAGTATGTGGACTCAGCATCAGGAAAAACTTTTCCGACCTTTGA



CCCCAGGACCGGAGAAGTGATTGCTCATGTTGCTGAAGGCGAGGCTGAAGATATAAACCGA



GCTGTAGCTGCTGCTCGCAAGGCATTCGATGAGGGACCATGGCCTAGAATGACTGCTTATG



AAAGGGCAAATGTACTATTTCGCTTTGCCGATTTGCTTGAAAAGCATAATGATGAGATTGCA



GCACTCGAGACTTGGGATAATGGGAAGCCATATGAACAGGCTGCCAAAATTGAGCTTCCAA



TGATCGTCCGTCAAATTCGATATTATGCAGGTTGGGCTGATAAGATTCACGGTCTCACAGTT



CCAGCTGACGGGCAGTATCATGTCCAAACCTTGCATGAGCCAATTGGAGTTGCAGGTCAGA



TTATTCCGTGGAATTTCCCTCTTCTGATGTATGCTTGGAAGGTGGGACCTGCCTTAGCCACA



GGCAACACCGTTGTACTGAAGACGGCAGAGCAGACACCACTTTCTGCTTTATATGCAACCAA



GCTCTTGCATGAGGCTGGTCTCCCCCCTGGAGTGTTGAATGTGGTTTCTGGTTTTGGTCCAA



CTGCAGGCGCAGCTCTTTCCAGTCATATGGATGTTGATAAGCTTGCTTTCACAGGATCAACC



GACACAGGGAAAATCGTACTTGAGTTGGCAGCAAAAAGCAATCTTAAGCCAGTGACTTTGGA



GCTTGGAGGGAAATCCCCTTTTATTGTATGTGAGGATGCTGATGTTGACAAGGCTGTTGAGC



TAGCCCATTTTGCTCTTTTCTTCAATCAGGGTCAATGCTGCTGTGCTGGATCTCGTACATATG



TACATGAAAGCATATATGAAGAATTTGTAGAAAAGGCAAAGGCACGGGCAACAGTGCGTAGT



GTGGGTGATCCGTTCAAAAGTGGCATCGAACAAGGTCCTCAGGTAAGTTAGCCGATTCTCC



TGTATGAGGAAATTTGAATGGATAAGATTGATATCTTGCGAATGGAAGTAAACTCCTGCTCTT



ATGACTCTTTTGTCAAATGTAATTGACAAATTTGATATTTTTGTCGATTTCACATAAATTTACT



GGATGGAAATTGAAATGCAACTGAAATAAATCCTTGATAAATGGAGCTAGTCGTTTGACTAG



TACCTGTATGTAGATCTAATGGAAGCTACAGAGTTCTGAGCGTTCTTTATCTTTACCTCACAT



CAGATAGACTCGGAGCAGTTTCAGAAGATTTTGAGGTACATAAGATCTGGAGTAGAAGGTG



GAGCAACTCTTGAAACAGGAGGAGAAAGATTTGGAACCAAGGGACACTACATTCAGCCAAC



TGTATTCTCAAATGTTAAGGACGATATGTTGATCGCTAAGGACGAGATTTTTGGTCCCGTGC



AGACCATTTTGAAATTCAAGTGAGTATAAGACCATCTCCTCAAGCTCATTACTAGAGCGGCTT



TCCGGTTAGGATGCATGGTACGATTGTCTGTTGACATGGTGACATCTTTGTCATGTTTAATTG



CAGGGACCTCAAGGAGGTGATTCAAAGGGCAAACAACTCACGCTACGGGCTGGCAGCTGG



AGTCTTCACCCAGAACATAGACACGGCGAATACCTTGACCCGCGCTTTAAAAGTTGGAACA



GTTTGGGTTAACTGTTTTGATGTCTTTGATGCGGCTATTCCATTTGGCGGGTACAAAATGAG



TGGCCATGGAAGGGAAAAGGGCGTGTACTCTCTGAGCAATTACTTGCAGGTCAAAGCTGTG



GTCACTTCTTTGAAGAATCCAGCATGGCTCTAAGCTGAAGTTTGCTTTCATCTTTGGATTTTT



CGACCCTTGATATTTTTTAATAATAAGGGAAGTAACAGATACTGGAGTTCAAATTATTATCGT



GACAGTTGTGATGGGAGTTTTGAGGCGGTGACGACGACGATTGTAGGACGCTGGTGAAATT



GCTTCTGTAGCAAACAGTGCCGTGAAGAATTCACTTTTTGAGTGTTCACGATCAAATTGTGC



TACTATACATTATTGATGTTACTTTTGCCATCTTCCAGGCTTG





62
GCATGAGTTCCTCCTCCTCCTCCGGCGGCGGCGGCGGCGGCGCGAAGCTCCCTCACGAC



GTCGCCGTCGAGATCCTGAAGCGGTTGCCGGCGAGATCCCTCCTCCGATTTAGGTGCGTCT



GCCGATCGTGGCGTTCCGCCATCGACGACCCTCGTTTCGTGGCCCTCCACTGGAGCCACT



CCGCCCTCCACGCCTCCAGTCGGCATCTCGCGTGTCTAGACTGCGGCGACGACGCCGTCC



AGAACCGGTGCTCTCTGTTCCCCAACGCCCCTCTCGCCCTGCCTCCTCCCCCGTCGCAAAT



CGAAATCCCGTTCGTTGCTCCTCCCAACCGTTACGCCCTCGTCGGTTCGTGTAACGGTTTG



ATCTGCGTCTCGGAGAGTTCCAGTGACGGCACTGAGCGGGCGCTGTATTTTTGGAATCTAT



TCACCAGGAAGCATAAGGCGGTTCGGCTCCCCCGTCCGGAGCGGATGCCACCCTTCTCCG



TGGGGGGCGCTCATGTAGTTCTGGGGTTTTGTTTCGATGCGAAGTCTAATGACTATCGTGTT



GTCAGGATTATCCGATACCTAGGTATTCGCCGTCGACGCTTCCGCAATAAGAAGCCTCGAG



TCGAGGTTTATTCGTTCCGTACAGATTCATGGAAGACCTTGGAATGTGAGGTTCCTCTTCTC



TGTGACAGTGCGGTCTTCTTGAATGGGAACCTGCACTGGTATTCTTTCAATGGGGAGGGGG



ATGGATACGGATCCATAGTCTTGTTCAATGTCGCAGATGAGGTGTTTGATGAAATAGCTCTG



CCGGAAGGGATCAGTCCCCATTTTGTGTTGTCCGTGACGGTATTGAATGAATCGCTGGCTG



TGTTCTTTAGTCATAGGGAGGCTTGTTTCGTTTGGGTTATGAAAGACTACGGCGTGCCAGAG



TCTTGGAGTAAGCTGTATACTTTCGAGGTTACGGAACCGGTAACAGGATTTGATGGCTTTAC



ATGGAATGGCGAGCTTCTTATGGAAATAAATTGTGAAGAACGAGTTTCTTGGAATCCGATCA



CAGCACAACTCTCAATTCTTCCATTGTCGGCGAGATACAAATTGGTCCCCGTTGTAGAGAGC



CTCGTTCCACCTTAGATATGACTCGATTGCTGCTATATCGTCAGGTGCAAGGTGCTGGAGCT



CTTCTTTATTAACAGGAATTCTGGTGATTGGCAATGCAAGTACAGCTGGCTCTAACAAAAATG



GGGGAGTGGCAAAGGACAGCAGAAAGTGATGTTGAAGTTTCTTCGGAATATAGTTTACGTG



GAAGGCAAGAAACAATCTGCTTCATGGTTAAGCTACTTCTCCCTTCGAGCATGTTCTTAGATT



GATCGATTTGTTACTTAACATCAATTTGAAGGCTATCTAGTTTCAAAAGGATACATGTCGTGC



TTATGATTATCTATATAATGTAATGTGTGAGATTTGCTTATAAAAAAAAAA





63
CAAGCGCACTGCATTGATTTTCGAACATCGCCGGACGAGACACACACAATTCGCTCTCATTT



TCAAAATCGATCTATCCAAAACCCTCTTTCTGTCTTTAGGCCATTTCTCCTCTTTGCCATCTC



ACAGTCTCACTCGCCTTTCATTCGACGCTCGTCGCTCTCTTTCCCCGAACGTTTGAAGAAAA



CGCGACGGTTTTTGAGGTTGTGTTGTGATGGATGCTGCACCATTGACTTCTCAGCGCCGAC



CATTTTCAGTGAAACTATGGCCCCCGAGCAAAAATACTCGTGAAACACTTGTAGAACGGATG



ACAAGGAATCTCACAAGTGAATCCATTTTCACTAGGAAGTATGGAAGTTTGAGCCCGGAAGA



AGCTGAGGAAAATGCAAAAAGAATTGAAGATGAAGCTTTTACAACTGCTAATCAACATTATGA



AAAAGAGCCTGATGGTGATGGAGGGTCTGCAGTGCAGCTCTATGCTAAGGAATGCAGTAAA



CTTATACTGGAAGTCCTCAAAAAAGGCCCAAAAGGCAAGGATGAAAAGCCGCCAACTTCTG



ACAGTGCTAAGGCCCCTAGAGAGACATTTTTTGATATTTCCAAGGGCCAGCGGGCCTTCATT



GAAGCAGAGGAGGCAGAAGAACTTCTGAGACCATTGAAGGAGCCTGAAAATTCTTTCACCA



AAATATGCTTTAGCAATAGAAGCTTTGGATTAGGAGCTGCTCATGTTGCTGAACCCATTCTG



ATTTCCCTGAAGCAACAATTGAAGGAGGTAGATTTATCTGATTTCATTGCAGGAAGGCCAGA



AACAGAAGCTCTTGAAGTCATGAGCATATTTTCAGCTGCCTTGGAGGGTAGTGTTTTGAATT



CTCTAAATCTTTCCAATAATGCTTTGGGTGAAAAAGGCGTCAGAGCATTTAGCGCACTCCTG



AAATCACAGAGTCAATTGGAGGAGCTCTATTTAATGAATGATGGAATTTCTGAAGAAGCTGC



TCGTGCAGTATGTGAGTTGATCCCTTCCACAGAAAAACTTAGAGTTCTTCATTTTCACAATAA



CATGACAGGAGATGAAGGGGCGATTGCTATTGCTGAGGTTGTGAAATGCTCTTCATTAATGG



AGGACTTCCGCTGCTCCTCCACAAGGATTGGCTCTGATGGAGGTGTTGCCTTATCAGAAGC



ACTTGAAAATTGCATCCATCTGAAGAAACTTGATTTGAGGGACAATATGTTTGGTGTAGATGC



TGGAGTTGCTTTGAGTAAAGCTCTTTCCAAGCACACTAATTTGACTGAGGTTTACTTGAGTTA



CCTGAATTTGGAAGATGAGGGGGCAATTGCTATAGCCAATGTTCTTAAAGAGACAGCCTCAT



CTCTTACAGTTCTAGATATGGCTGGCAATGACATAACAGCGGAAGCAGCTCCAACTTTATCT



GCTTGTATAGCTGCAAAGAATCTTCTCACCAAATTGAACTTGGCTGAGAATGAGCTCAAGGA



TGAAGGTGCTATTCAGATTGGCAAAGCATTGCAAGAAGGCCATGAGCAGTTGACGGAAGTT



GATTTGAACACCAACTCGATCAGAAGGGCTGGAGCTCGATTCTTGGCCCAGGTTGTGGTGC



AGAAGCCTGGTTTCAAGTTGCTCAACATCGATGGAAATTTCATTTCGGAAGATGGGATTGAT



GAGGTCAAGAGTATATTCAAGAAATCCCCTGAAATGCTGGCTTCCCTAGATGAGAATGACCC



TGAAGGAGGTGATGAAGATGAAGAGGACGAGGAAGGTGAAGCGGAAGGTGAAGCTGATGA



AGGTGAGCTGGAGTCAAAGTTGAAGAATCTTGAAGTAGGTGAAGAGTAGGATATGTTCTTTC



TAGTTTAAGGTAATTTGAATTGGCTGTCCAAGTTAGTTCAGGAACAGCTTTAATAGCCAGGAA



CATTTTTGCTGAATTTTTAGCTCATTACATCGTCGAGGCTCATGAACCATGAGCAGGATAATC



GTAGCTCCTAGAGATGAGCATTTTTTTTACTCAGGAGGACGACCTTGGAGGAGCTGTTCGTA



GGGTACTCATTTTACAGTGTACCGGGTAATCTTGTCGTATGAAGGGATTACCAGAACTTCCG



TTCTAGTTACTAGCTACTAGCTACTAGCTAGTGAATTGTTTTAATGCGCTTTCTTCTCTCCTA



GCTGATTTTATTCATTAAAAAAAAAA





64
GCTCTCTCTCCCTCCCTCCTTCCCTCTGATGGCACTCGTCCGCGAACGCCGGCAGCTCAAC



CTCCGCCTCCCGCTGACGGATCTCCCCAACCGCCGCCCGCTCTTCCCGCCGCCCCTCTCC



CTCCCCCTCCCTCCCTCCGCCGCCGCCGCCGCCTCCGCCACCGCCGCCGCCGGCTCCGG



CGCCGCCGCGACCTCCCTGTCCGACCTCGAGAGCCTCGGCGTCCTCGGCCACGGGAACG



GCGGCACCGTCTACAAGGTCCGCCACCGGCGCACCTCCGCCGTCTACGCCCTCAAGGTCG



TCCACGCCGGCTGCGACGCCACCGTCCGCCGCCAGGTCCTCCGCGAGATGGAGATCCTCC



GCCGCACGGACTCGCCGCACGTGGTCCGGTGCCACGGCATCTTCGAGAAGCCGAACGGC



GACATCGCGATCCTGATGGAGAACATGGACGCCGGCAGCCTCCAGACGCTCCTGGAGGCC



TCCGGGACCTTCTCGGAGAAGCAACTCGCCGCCGTCGCCCGCCACGTGCTGAACGGGCTC



CACTACCTCCACTCCCTCAAGATCATCCACCGCGACATCAAGCCGTCGAACCTGCTCGTGA



ACTCGGCGATGGAGGTCAAGATCGCCGACTTCGGGGTGAGCAAGATCATGTGCCGGACCC



TCGACGCGTGCAACTCCTACGTCGGCACGTGCGCGTACATGAGCCCCGAGCGGTTCGACC



CGGACAGCTACGGCGGCAACTACGACGGCTACGCCGGCGACATCTGGAGCCTGGGGCTG



ACGCTGCTGGAGCTCTATCTGGGTCACTTCCCGCTGTTGGGTCCCGGCCAGAGGCCCGAC



TGGGCGACGCTGATGTGCGCGATCTGCTTCGGGGAGCCGCCGAAGTCGCCCGACGGGTC



GTCGGAGGAGTTCCGGAGCTTCGTCGAGTGCTGCCTGCAGAAGGAGTCGAGCAAGCGGTG



GTCGGTGGCGGAGCTGCTGAACCACCCTTTCATAGCCGGCGGTAAAGATCCGGCGGGATC



CTTGTGAGGTGGAAGCACGCGGGTCGGGTTGAGGCAAAGTATTTTACCGCTGGAAAACCC



GGAAGTCGAGGCGGGCGCACGCAGAACGGGCCCGCCCGGGACAAATCAAGTACGGGTCG



GGTCGAGATTCGCTTCGCGATGAGTTTTTGTACATATAGGGCGGACTTCGGGTCGCAAATT



CGGGCGCTCTCTGTTTCTTTTTTCTTTTTCAATGTCCTCTTTAGGATGCTTCGGGCAGTGAAA



TTGCTGTTCGAGAACTAATGAAGGACCCTTCTTGACTAGTTCAAAAAAAAAAAA





65
GCGGAAAACCCGAATCCCGGGAAAAAGAAACAAGCCTCGAGATCACTGATCAGAGAGAGAA



GGAGGGAGATGGTGAGCGCAGCGCAGGCGGCGGGCGGGAGCCTGAGCCTGAGCCTGAG



CCTGCGCGATCGCGAGATCCTGACCTCGGTGAACTCGGTGGCGTCGAGCTTCTCGCTCCT



CGGCTCGGGCTTCATCGTCCTCTGCTACCTCCTCTTCAAGGAGCTCCGCAAGTTCTCCTTCA



AGCTCGTCTTCTACCTCGCCCTCTCCGATATGCTTTGCAGTTTCTTCAACATAATTGGTGATC



CATCCATAGGATTCTTCTGTTATGCTCAGGGTTATACCACCCACTTCTTTTGTGTGGCATCCT



TTCTTTGGACAACAGTGATTGCATTTACTCTTCACCGGACTGTCGTTAGACACAAGACTGAT



GTTGAAGATTTGGAGGCTATGTTTCACTTGTATGTATGGGGCACATCCGTGGTTATGACCAT



CATACGCTCTATTGGCAATGATCACAGACATTTGGGTGCATGGTGCTGGTCACAAACAGGG



CGCACAGGAAAGGCAGTTCACTTCATTACGTTTTATGCGCCACTCTGGGGAGCAATCCTTTA



TAACGGTTTTTCATACTTTCAAGTGATACGCATGTTAAACAATGCCACACGTATGGCCGTTG



GCATGTCAGATCGAGCATACCACTTAGATGCAAGACCTGATATGAAGGCTTTGAACAGGTG



GGGATACTACCCGCTCATTCTGATAGGATCATGGACTTTTGGTACAATCAATCGCATACATG



ACTTCATTGAACCTGGACATAAGATTTTTTGGCTGTCTCTTCTTGATGTTGGCACTGCTGCTC



TGATGGGTCTGTTCAACTCAATAGCATATGGCCTGAATTCTTCCGTGCGACGGGCGATTCG



CGAGAGATTGGATCTAGTAACGTGGCCGGAGACGATTAGGCCATGGTTGCCTAACAGTTCA



AGGATCAGACACCAACAGCAAGAGAGTGAACTAGTGTCACTGAAAAGCCAAGATCCGCACT



GACGATTCCAAGATTATGCCCATCTTCTTCGACGAGTGGTCGAGTATAGCCATGGAGCTACT



GGTTTTGAAACCCTCATCAGACTGATCCAAAGTTCTGGTAGATGCTCACGGGATGGACCTTC



TTCTGTCATTTTAATGAAACAGCCGGTAATCTTTTCGCGACAAAGGGGTAGCGTTGCCCATC



TGCAACTGGTAGCTGCAATCTTGTACATTAGGAAGGTAAAAAGCCCTTTTTGCGATTGTGAT



TCCTTCCTCCGCTGGGGACTCGGGTGCCGGCTCCCCATTTTGTAGGTCGAATTGTACAACA



ATCTCTCGTCTCCCTAATATCCGTTACGATCATATTCTTTCGACAATAGACTGATCCCTGACT



GCTTTACGTTGTTTCAAAAAAAAAA





66
GCTCATATCGAACCTGTTCCTTCTGGATCATGTGAATCGATTGACCAAAAGAGGAGCGTTTT



CTCATCGTCTTCCTCTTTGTCGCAGTTTGTCTCGAGCTGTAAGGAGATTCGCCACAATGTAG



CCGTCACGGCTCGTCTCGAACTGTAAGGAGGCGAGATTCGGAAGTACTCTGGGAAATGGC



GGGCCTTTCGGACGATCTGATCACCAAGATACTGGACCGATTCCCGAAGGAATCGCTGATC



CCCTTCAGGTGCGTGTCCAAACAGTGGCGTCGCTTGATAGACGACCGTTTCTTCAGGAAGT



CGCTCCTCTACCTCGTCCCCATGTATTCCTCGAGTCTCTACCGTATCGGTCTGCGTCGCCTG



GGTGACTTGGTGGAGATTGAGAACCCTTTCGAGTCGGAACAGATCGTGTTGTTGGGGTCTT



GCCGTGGCTTCCTTTGCATTTATAATGAGATCGACGGCCAGATTGCTATATGGAATCCGTCC



ACTAGGAGTTGTCAGCTCTTGCCACCTGCAGATGCTGAGATAGCCCATAGATTGGGTCCCC



CTGCTTGCGTTTATGGATTTGGATATGACTATTGGAATGATGAGTTCGTGTTGTTGAGGCTG



GTTCAGACCATGGAAGATCCAATTCTATCAGTTAGCATCTATAGATCAAGAGGTAGCGTGTG



GAGGCGGCTCCAGGGGATACCACCATACTCTTTGGTTGAACCGCGCACAATGGGGGTTTTC



TTGCGCGGCCGTCTGCACTGGATAATGAGACGCGACCCGATGCAGAACTCGGCAATAGTTC



TGGTGGCTTTTGATATTCATACTGAAAACTCCGTGGAGGTACAACAGCTTAATTTTATTGACA



ATAGGCTTCCAATGTATTTGGCCATCCTGGAAGGGGGTCTTTGCCTTATTATTAATGATGAG



CGAGGGGGTGTCAGTGCGTGGATTGCAAGTGAATATGGATCGGAAGAGTCATGGGCTAGG



CTGTTCTCGATAGCTGACTACTCGATGGGTCGGGTACTTCTCCAGCCACTGGCTTACTCCCA



GAACGGTCGTCAAGTTTTGCTCCTGTACCGTGAGACTCTCGTTTGGTACGATTTAGATACCG



GTGACGTTGAGAATATAAACAGCATGCTAAGCATCTCCAATACACCTATTGTTGGAGACTAC



TTAGGGTCTCGTCGTCGGAGACTACAAGGTGCGTGGAGGCAGCTCGAGGGTATGTCGTAC



TCTCTGGGTAATGCGTGCAAAAGGGGGATTTTCCTGCATGGCCGTCTGCACTGGATAATGA



CTCTCCAGCTGGTGCTGAATTCGACAAAAGTGTTAGTGGCTTTTGATATTCGTTCAGACAAA



TTTATGGAGGTGAGCGAGCTTAATTTTATAGATAATAGGCTCAACATGGATTTGACCCTCTTA



GGAGGGTGTCTTTGCCTTATCATTTATGGTGAGCAAAGGGGTGTCCATGCGTGGATTATGA



GGGAATATGGATTAAACAGACCATGGTATATGTTGTTCTCGATGCCTGGCCACTCAAGGCC



GCTATTGGCTTACTCCCAGAACGGTCGTCAAGTTTTGGTGGCAGTGGGCGGTAAGACTCTC



GTTTGGTACGATAGAGTCTGGTACGATTTACATACTGGGGGTGTCAAGAAGTTCGGTAAAAG



GGGCATGCCAAGTTCCTATGAAGCAGAAATTTATTTGCGAACCCTTGTTCCGGTCGGTAAGC



CGCCGATATGAGGAGGGACGACTTCTGAGCTAATGACTTGTTTGGAGGATCGTCGATGATC



TGCATCGTAATCATCCAAAGTGAAGTCAAATCTGATGTAATCTGGAGTGTACTCTGAATGCG



TGTTGTGGTTTGAATGTACTTAGATGCCAGTAGTTTCTAGCCTGTTGCATCCGCTTATTTGCT



ATATTAACGTATATTCAGCAAAAAAAAAA





67
GGTGTTTATCGCGTGCTGGAAACAACGAAGGAAGGAACGAAGGAAGCACTTCGCGTGCTGA



GATTACTTACTCTCTTCGGCGGCGTCCCGGGCGAGAGCTCCGATTCGGTTCGATTCGATTC



GATTTGCGATGGCCGGAGGAGAAGCCTTCTCCTCGAATCCTCCGCCGCCCAAGCCGGCGA



TTCTCGGGAACAACAGCAAGACCATCAATGCGAAGCTCGTGTTGCTGGGGGACATGGGTGC



CGGCAAGTCCAGCCTGGTCTTGCGCTTCGTCAAGGACCAGTTCTTTGATTTTCAGGAATCAA



CTATAGGAGCAGCATTCTTCTCGCGGACAGTGGGTGTCAATGATGCATCAGTGAAGTTTGA



GATATGGGATACTGCAGGTCAGGAAAGGTACCACAGCTTGGCTCCTATGTACTACAGAGGC



GCTGCTGCAGCTATTGTTGTCTATGACATCACTAGCACCGAGTCATTTGAACGGGCTAAGAA



GTGGGTGGAGGAACTTCACAAGCAAGGAAATCCCAATTTGATAATAACACTTGCTGGAAATA



AGACTGATATGGAGGATAAAAGAAAAGTGGCAGCTGAGGAGGCATGCATGTATGCAGAAGA



AAGGCGACTCGTGTTCATAGAAACATCTGCTAAGACTGCCACTAATGTTAGCAAACTGTTTT



ATGAAATAGCAAAGAGGTTGCCTAGAGTTCAGGCTATGCAGAATTCAGCGCCAGCGGGAAT



GGTTCTAGCAGATACAAGCTCTGAAGAAACCCGATCTGCATCCTGTTGTTCATGAGTTCTTA



TCAACTCTCTGTCCATTCCTTTCCTTTTTCCCCTCACTTTCTATAGTTGTCTCCACTCAAAGTA



CCTTGATCTTTTAGTTCTTGATGTATATGAATAAAAACAAATCCGAACACCACTTGTGAAATT



GGAAAACCAATTGGAGTTGGGGAGTTAGTCCATTTAAACCCAGTAAATTCCTCGGTGAAAAA



AAAAA





68
GGGAGAGTTCAGAGGTAAAGGAGGAAAGCAAAAAAATGGAGATTCCTATGATAGATTTGAG



TGAGCTTGATGGTAAGAACAGGAGCAAAACAATGGCACTGCTTCACCATGCTTGTGAGAAAT



GGGGCTGCTTCAAGATTAAGAACCATGGAGTTGACCCAGAACTGATGGAGAAAGTGAAGCA



TTTTGTCAACACCCACTATGAGGAGAATTTGAAGGCAAGTTTCTATGAGTCAGAAACTGCCA



AATGCTTGGAAAATGCCAATGGTGCCACATCTGATCTAGACTGGGAATGCACCTTCTTTATC



TGGCACCGCCCGAAGTCGAACATTGAGGACTTCCCGAACCTCTCGAATGATCTTCGGAAGA



CAATGGATGAGTACATTGCTCAGCTGGTTAAACTAGCAGAGAACCTCTCAGAGCTCATGTGT



GAGAATCTTGGCCTAGGCAAGGACCACATAAAGAGGGCATTCTCAGGGAAAGATGGGCCCT



CTGTGGGGACGAAGGTGGCGAAATACCCGGAATGCCCCTATCCGGAAAAGGTAAGAGGAC



TCAGAGAGCACACTGATGCAGGTGGTATCATACTGCTGCTTCAGGATGACCAAGTCCCAGG



ACTTGAATTCCTCCATGATGACCAGTGGGTTCCAATCCCACCATCCACAAACGACACCATCT



TCGTCAACACCGGAGACCAACTTGAGGTGCTGAGCAACGGCCGGTACAAGAGCGTCTGGC



ACCGTGTCATGGCTGTGGAGAGCGGGAGCCGGCTCTCTGTGGCCACGTTCTACAATCCCG



CCGGCGATGCGATCATCTCGCCTGCGCCGAAGCTCCTGTACCCTGAGAAGTACACTTTTGG



GGAGTACCTGAAGCTTTATGCCACTACCAAATTTCAAGAAAAAGAGCCCAGGTTTGAGTCGA



TGAAGAGTGTGATGAGCAATGGATACAATGGAGTTGTCTAAGAGCTGCCAATAACTAAATGG



ATCAGGCTCATTTGTCTCTGTTTGGATTTTGTTTTTACTTTTTCTTGCTTTGATAGAAACATGG



TCTTGTGGTTATATATGCCAGTTGTCTCTTTTACAGTGAGTTTTGTGTAACTCCTAAAGAAGA



GATGGTATAAGTCTGTCTTTATCAGCTTTCTTGGCTCTCTTTGTGCTGATGTTGAATGGGCTC



CAATGAAAAAAAAAA





69
AATTTCCTGGGTGGCTGCATTTTCTTTACTGGGCTGCTGCTGGAGAGACAGAAGAGGAGGA



AGAATTCATGGCTACAGTTCCTCAAGAAGCGATCAATGAGCTCCAAGCTCTGATGGATCGAG



TTGACGAGCCGTTGATGAGAACATTCGAGAACATTCATCAAGGGTATCTTAAAGAAACTTTG



GTGCGTTTTCTAAAGGCGAGAGAAGGCAATGTTGCCAAAGCCCATAAAATGTTATTGGATTG



TTTGAAGTGGCGTGTTCAAAATGAGATTGATATCATTTTGTCGAAACCAATTATCCCTGATGA



CTTGTACAGAGCTGTGCGGGATTCACAACTTATTGGATTGTCAGGTTACTCCAAGGAGGGA



CTCCCAGTATATGCTATCGGGGTTGGGCTTAGCACCTTTGACAAAGCTTCAGTTCATTATTA



CGTGCAATCACATATTCAAATCAATGAATACAGAGACCGTGTAATTTTGCCTTCTGCATCCAA



AAGGTACGGGCGACCTATTACCACTTGTTTGAAGGTTCTAGATATGTCCGGCCTGAGGCTTT



CAGCCCTCAGTCAGATAAAGTTGTTGACTATTATATCGACTGTTGATGACTTGAACTACCCTG



AAAAGACGAATACCTATTACATTGTGAATGCTCCATACGTCTTTTCTGCTTGTTGGAAGGTTG



TGAAACCACTTTTGCAAGAGAGAACGAGAAAGAAAGTTCAGGTGTTGCCTGGTTGTGGACG



TGATGATCTACTAAAGATAATGGATTACAGTTCCCTCCCACATTTTTGCAAGGGGGAAGGTT



CGGGTTCTGGTCGGCATACATCATACGGTCCAGAAAATTGCTACTCGTTGGACCATCCCTTT



CACCAACAGCTTTACAGCTATATCAAGGAGCAATCTCAGAGACGTCAACCCATCCAACCCAT



CAAACAGGGCTCTTTTCATGTTGCGCTGCCTGAGGCCGCTGCAGAAGGGACAGAGATCGCT



AAAACCATAGAATCCGAGCTACAGAAGTTTGAAAACGGAAGTGGGATGCCTGACTCACTGG



ATGGCCTTAAAATCAATGGCGAGTGAAGCCGTTGGGATCAAAATGCTTCGGACGACCATTT



GCAGCGATGAATCTAACAAGAGCTGATCATTGCCTTGATTCAACTACGTGAACGATGATGTG



TGGGCCATTTCCAGTCACGCGACGTAACAGCACAGTATGGGTGGCTCTCCCTATTGTCTAT



GTTATCTTCTTGAGGTAACCTGATCCAGCCGGATGTACCTTAGTGTACTGAATAGCCTAAAG



CCATGTTCCTATCAGATGTATGACCTGGCATGTTGTAATATTCATTTCCATATGCAAGTTAAC



ATCATTTCCACCTAGGGATCTCTTGGAGGCTCTCAGATTTTAAAGGAGATGTTCCTCATCTTC



TTTACACGATATGACTGTCGGATGTTGCAAATGTTTACTAGCAAGTCTAGCTAGTCAATGTCT



TCGGTTTCGTTGTTCAAAAAAAAAA





70
GGATGGCCCGAGCGGGGAACAAGAACATACAAGCCAAGCTGGTACTTCTTGGGGACATGG



GAGCTGGAAAAACAAGTCTGGTGCTGAGATTTGTCAAGGGCCAATTCCACGAGTACCAGGA



ATCCACTATCGGCGCAGCCTTCTTTACTCAGGTCTTGTCCCTGAACGAAGCGACTGTGAAGT



TTGATATATGGGATACGGCCGGACAGGAAAGATATCACAGCTTGGCTCCAATGTACTATCGA



GGTGCTGCTGCAGCTGTCGTTGTCTATGACCTCACTAGCATGGACTCATTTCAACGAGCCAA



AAAATGGGTTCTAGAACTGCAGAGACAAGGGAATCCCAAGTTAATAATGTTCTTGGTGGCGA



ACAAGGCGGACCTGGAGCAGAAAAGGCAAGTGCTGAGTGAGGAAGGCGAGCAATATGCTA



AGGAAAATGGTTTGTCGTTTCTTGAAACTTCAGCAAAGACTGCACAGAATGTCAATGAGCTT



TTCTATGAGATAGCGAAGAGAATTGCAAAAGCTACTCCTTCACGACCGACTGGAATGAAGCT



GCAGAGACAAGAAAGTCGAAGAAGCTTATTTTGTTGCTCGGGGTGATTCCAGTGCTTGCTCT



CTTAAGGAAATTGCTGCGAATGGCTGTGGTGGATGCACCTCTTGTGGTTGTCGATGTTGAA



GATGGAATCTCATTCTGACCCTGGCTCGTGAATACTTTCATATGTACACAGTATTTCACCGG



ACAAAATCCTTTGCTTACCATTTCAATTGTATCAAATTCTCCTTCATGTGGAAAGGGTTATGA



AAACTCGTAAGCAATAAGAAATGTTGCTCCAAAAAAAAAA





71
GTCGGAGGGGAGTAACCATGTCGACACTCAGCGAAGACGACGAAACCGAAATCCTCCTGC



GGCTTCCCGTGAAATCTCTGCTCAAGTTCAAGAGCGTGTGCAAGCCATGGAACTCACTGAT



CTCCTCTCCCTATTTCGCCAAGACCCATCTTCAGATTTCCGCTTCTTCCCCAAGAATCCTCCT



CGCCACCAACCCTCCTCTGTCCGTGAGCTGCGAATCACTCCATGATGATGATCGTGCCGGC



CATGAAGGTACGCCTCTAACCCAGCTTCGGCCTCCGGTTGAAGCTCCCGACGGATGTCGCC



CCCGCATCGTCGGATACTGCGATGGTTTGGTCTGCTTGGAGTACGACGATCATCGGATTGT



TGTCCTGTGGAACCCGGCAACAGGGGAGTCTAGAAACATCCCAAACGCTAGCTGCTCGTAT



AACCGACCGACCATTTGCGGACTTGGCTATGATCCATCGACTGATGATTACAAAATATTGCG



GCACTGTTCCGTTGCGGATGCGTATGGGTTTCCAGAATATAGCGTGTTCGATGTTTTCGCGC



TGAAGACTGGTTCTTGGAGGAGAGTTCATGACAAGCATGATGAATTTAACTATTGGCCGGAA



GCTGGGACCTATGCGAATGGTTTCCTTCATTGGCTAGTCGTGGGGAGAGATCCTTGGGAAC



ACAAGAAGATTGTTTCGTTCAGCATGAGCAAAGAGAAGTTTGAGGATGCGTTGTTGGCGCT



GCCGGAGGCCAATGAAGGTACTGGGTTCAGAGTATTGGGAGTTGCCGGTGAATGCCTTCTC



ATATATAAAAGCATGGCGGAGGTGGACACTTTTATGGCATGGATGATGAGCGACTATGGTGT



GAGATCGTCGTCGTCTTGGATGGAGTTGTGTAGTGTTACTCTCCCGAATCAGACATTAAACA



CTTACTTCTACATGAGGCCATTGTGCTCTACCAGAGCAGGGAAGATAGCATTCAGTTCGATC



GGCACAACCCGCTTATCTATGATCCTGAGAAATGTTATGACAAAGTGGTTCGTGAAGGAGGA



TAAATTAGACTTTGTAGTGTACGTTGAGAGTTTTGTTTCACCTCATGGAGCAAAGCTGCAGAA



TCAATATGTGTCTCGGGTGAAGGAGCCTATGGAGAGAAGTGACTTCATTGGTGATCACTCA



GTATTTAAAGAAGGGGAAACTTCATATAAGAAAGCCAATAGCCATCTTAGCAGTAAAAGGAG



AAAAGCTTCCTAGAGGGCTAGTTGTGATGTGGATGCGCAGGTCGATATATTGTGAAGTCAAA



GGGGTGACTCAGTAACTGCTTTAGGCACTTTGTTCTTCTCTTTTGTGGGTTCCTTCTGGATTA



CTTTGTGTGTCTGTGTTTGGTCGGGATGGCAGACTTGTTTCTTTGTTTACTTGTATAACATTT



TTGTAATTCCTCTTTCCACAAATCAAAGCCCTGATGAAAACCAAAAAAAAAAAAAAAAAAAAA



AAAA





72
AGAGAGAGAGAGAGAGAGAGAGAGAGATGGAGATATTCCCAGTGATTAACTTGGAGAAGTT



GAATGGCGAGGAGAGAGGAGTTACTATGGAGATGATAAGAGATGCTTGTGAAAACTGGGGC



TTCTTTGAGTTGGTGAATCATGGGATATCCCATGAGCTGATGGACACGGTGGAGAGGCTCA



CAAAGGGTCACTACAAAGAATGCATGGAGAGGAAATTCAAGGAAATGGTGGCAAGCAAAGG



GCTCGAGGCCGTTCAGTCTGAAATCGGCGACATTGATTGGGAGAGCACCTTCTTCTTGCGC



CATCTCCCCGTCTCCAACATCTCTGAAGTCCCTGATCTCAAAGAAGATTACAGGAAGGTGAT



GAGAGAATTTGCACTGGAGATAGAGAAGCTAGCAGAGCAACTTCTAGACCTGTTGTGTGAG



AACCTCGGTCTGGAGAAAGGGTACCTGAAGAAGGTGTTCTATGGATCCAAAGGGCCAACAT



TTGGAACCAAGGTGAGCAACTACCCTCCGTGCCCGAACCCAGAGCTTTTTAAGGGCCTCCG



GGCCCACACCGACGCCGGTGGGATCATCCTTCTCTTCCAGGACGACAAGGTCGGCGGCCT



TCAACTCCTCAAGGACGGCAAATGGATCGATGTCCCTCCACTGAGGCATTCGATTGTCATCA



ACTTAGGCGACCAGCTAGAGGTCATTACAAATGGCAAGTACAAGAGCGTGGAGCACCGGGT



TATTGCGCAGTCAGATGGGAATAGAATGTCCATAGCATCGTTTTATAACCCTGGAAGCGATG



CTGTCATCTGTCCTGCACCAGCACTATTGAAGAAAGAAGCAGGAGAGGAAGGCCAAGCTTA



TCCCAAGTTTGTGTTTGAGGACTACATGAAGTTGTATGCAAGGCTTAAGTTCCAGGCGAAGG



AACCGAGATTCGAAGCCATGAAAGCCACGGAATCCACCATTGCTAGGGGTCCTATCGCAAC



TGCTTGAGTGTTGAATGACAAGTTTCTTGTTACTAAGAATAGGGTCTTGTTTCATGGTCTACT



AATGTAATGAATCTCGCTCTTTATCTAGTGCTGGAGAGTGGCTGCTTTGCTTGTGTTAAGTAA



TGTGTTTATCATGACCTTTGAACTAGTGATTTCTGAGGCTTTTTATTTGAAAAAAAAAA





73
ATCCTTCACTCCGACTCTCCACCCCCACCATCTCCTCCTCCGCCACACCACTACCAACACCA



CCACCATCACCACCATGCAAGTCTCTCAACCTGCTCGTCCTTCCGATCCAATATACAGGCGA



GACGATCACTTGTCACAAGCATGCAAAGACTTGGTGTCCTCTCTCCCTTCTGAAGAAGGCTG



GGTCGCAACCTCTTTCTGCTTGTACCAGGGCTTCTGGTTCCCCACTTGGCTCTTCAACGGTG



TCCTCGCTTGCCAAAACCACTTCCAAGCTCAACCCTCTGACATCCTCCTCGTCACCAACCCG



AAATCCGGCACCACCTGGCTAAAGGCCATCCTCTTTGCTCTCTTGAACCGTGCCAAGTACTC



TGACTCCGACTCAAAACAACGCCACCCTCTTCTAACCCAAAACCCCCACGATCTTGTGCCCT



TCTTGGAGGTCAAGTTGTATCTCCAGCAAGAAAATCCCGATCTCACTACTTTCGAGTCCCCG



AGGCTCTTCGCCACCCACTTGCCCTATTCGTCACTTCCAGGGTCGGTGAGGGACTCCAGGT



GCAAGCTGGTTTACCTGTGTAGGAACCCTAAGGACATGTTCATCTCGCTGTGGCACTACGT



CAACAAGCGGAGGGCCGAAGAGAAGGGCCAGATTCCGCTCCCAAAGTGCCTTGACAAGTT



CTGTCGAGGATTGAGCCCCTACGGGCCTTATTGGGATCATGTGATGGGTTACCACAAGGCG



AGCTTGGAGATGCCTGAGCAGGTGTTGTTCTTGATGTACGAGGAGTTGAAAGAGGACCCGC



GTGTTCATGTGAGTAGGTTGGCTGATTTCTTGGGGTGTCCGTTCAGCGATGAAGAACTGAG



AGACGGCACTGTAGAGGGAATAATGAGGATGTGTAGCTTCGACAATTTGAGCTCATTGGAG



GTGAATAAGAGCGGGAAGCTGTGGACTGGACAAGAGAACCAGTGGTTTTTCAGGAGAGGG



AAGGTCGGAGACTGGGTGAATTATCTGAGTGCTGAGATGGCCGACAAGATTGACCAGGTAA



TGGAAGAGAAGTTGCGTGATTCTGGGTTGAACTTTCAGTACAAATAACTCACTCGTTCAATA



ATTTCCGTGGGCTGTGTTAATTTTAAAGATGTTTGGTTTGATGGTGGAGAAAAAAAGGCACA



AAAAGTTAAAAAGGAAAAAAAAGGAAACGACTCGTTTGTTCGCACTTTATGAAAGTGTGATTC



TTATGCTATAGGATCAAAGATTTTTAGTGGCAGTGTCGATCGTGGCTTCGTATCAATAATGAG



ACGCTTCAAGGTTGTGTTTCTGGGCACCAGCTTTGTTGTACTATTGGCTTTTGCAGATGCTA



TTTGGCCAACACTTAGTTGGCCAATAAAAAGCAGCTTTCCATCTTTTTCTTTTTGCCGTGTGA



AGCTTTGTGATGTATGGTCTTGTGTAGATCGAATTGCTAAACAACTGATATGTGTGGTTTGGA



TTAAAAAAAAAA





74
TGGGGTTCTCTTTCTCTCTCTATAAGACGCATTGCTCCCTCTCCCTCCCCCTTTTGGCCCTC



CGTGCGCTCCAAAGCTCGCTCCTTTGAACCCCGCGCGAGCGAGACGGGGAGGTGGGCAG



CCAGCTTTTCGCCTTTCTCGAACTGGGTCGGCTCCCTTTTTCCGCCTCCCGCCTCCCAGATC



TCGCCCTCGCCCCCTCGCCGGCGGCCGGGCAAAGGCAAAGGCAAAGGCAAAGGCCGAGT



CTTTTTGATCGGCCGGTGATGCTCAGCGGCTGACGTGGGCCGCTCCTCCCCGGTTGCGCT



GCCCGCATGGATCCGACGAAGAAGCCGCGGGAGTCGTCCTCGTCGACGGCGTCGGCGGC



GGCGGCGGAGTTCCCGGACGAGGTGCTGGAGCGGGTGCTGGCGCTGCTAGCCTCGCACA



AGGATCGGAGCGCCGCGTCCCTCGTGTCCAAGGCCTGGTACCACGCCGAGCGGTGGTCC



CGGACGCGGGTCTTCATCGGGAACTGCTACTCGGTGACGCCCGAGATCGTCGCCGGCCGG



TTCCCGAAGATCCGCAGCGTCACGCTCAAGGGGAAGCCCAGGTTCTCGGACTTCAACCTG



GTGCCGCAGAACTGGGGGGCCGACATCCGGTCGTGGCTCACGGTCTTCGCGGAGCGGTA



CCCCTTCCTCGAGGAGCTGCGGCTCAAGAGGATGACCGTGACGGACGAGAGCTTGAAGTT



TCTGGCCCTGAAATTTCCAAACTTCAAGGCTCTCTCGCTCATGAGCTGTGATGGGTTCAGTA



CCGATGGTCTTGCGGCCATTGCGACTCGCTGCAGGAATTTGACTGAGCTGGATATACAAGA



GAATGGCATTGATGATATTAGTGGTGACTGGTTGAGTTGCTTCCCTGAGAACTTCACATCTT



TGGAAGTGCTGAACTTCGCAAGTCTAAATAGCGATGTTGATTTTGATGCTCTTGAGCGGCTT



GTAAGTCGGTGCAATTCACTGAAGGTCCTTAAGGTTAATAGAACTATTTCACTAGATCAGTTA



CAGAGGCTGCTTGTCCGTGCTCCTCGGTTAACTGAGCTCGGTACTGGCTCGTTTTTGCAAG



AGCTTAATGCTCACCAGTACTCAGAGCTTGAACGAGCTTTTGGTGGCTGCAAGACTCTACAC



ACGCTCTCTGGATTATATGAAGCTATGGCACCATATCTCCCAGTTCTATACCCGGCCTGTGC



AAATTTGACTTTCCTGAATTTAAATGATGCTGCTTTGCAAAATGAAGAACTTGCCAAGCTTGT



TGTTCACTGTCCATGTCTTCAGCGCCTCTGGGTACTTGACACTGTGGGAGACGAAGGGCTG



GGAGCTGTTGCGCGGAGTTGTCCACTCCTAGAGGAGCTTCGGGTCTTCCCGGCCAACCCTT



TTGACGAGGAAGTTAATCATGGTGTTTCCGAATCAGGGTTTCTTGCCATTTCATATGGCTGC



CGGAGACTTCACTATGTACTCTACTTCTGCCGTCAGATGACAAATGCAGCTGTAGCCACAAT



TGTGCAGAACTGCCCTGATTTTACACACTTCCGTCTTTGCATAATGAACCCAGGGCAACCTG



ATTATCTGACAAATGAACCTATGGACGAGGCTTTTGGTGCAGTTGTGAAGAGGTGTACGAAA



CTCCAGAGGCTTGCTGTTTCAGGTCTCCTAACTGACCAGACATTTGAGTATATTGGGACATA



TGCTAAAAATCTGGAAACGCTTTCTGTAGCTTTTGCTGGAAGCAGTGACCGGGGGATGCAG



TGTGTGCTGAGGGGTTGTCCAAAGTTGAGAAAACTTGAAATCAGGGATTGTCCATTTGGTAA



TGCAGCTCTTCTCTCGGGATTGGAGAAGTATGAGTCTATGAGGTCGTTGTGGATGTCGGCC



TGCAAAGTGACAATGAATGGGTGTGCGGTATTGGCTAGGGAGAGGCCTAGATTGAATGTTG



AAGTAATGAAGGATGAGGAGAGCAGTGATGGTCAGGCATATAAAGTTTATGTTTACCGCACT



GTTGCTGGACCAAGGAGAGATGCCCCACCTTTTGTTCTTACTCTCTGAAGTGATTATTTCAA



GGCATTTGTTGCTATGTGAATTTGTCTGATTGAAGTGGGGAGCACCGGTGCAGAGAGTCTG



AGGGTGTGGAATTCACAGAAAGCTCGAACATTCTGTTACCTATGTTTCTGCGGTTCAGCTAA



TTCCAGATTGTGAAGGCACACAAAATGGATAATCTGGTGGGAAAAACAACGTGTAGTGTCTG



CCTCCATTTGCTTGAAGGTGCTGGAAAGCGTATGATGCAGTCGGTGAGATGGAGTTCAAAA



GAAACACCAGAGATCTGCCAAATGTCTCGAAGCATCGGCCGACAGCTCGGGGACTTGAACC



CATGAAATTTTCCCCTTGCAAGCGCATCAATCTCTGCAACATTCTTCATCAATTGCAAGACAT



CATCAACAGCTGGGAGAAAAGATGATGATTTTCCTGATGTTTTGACTCATCTTTCCCTGGTG



ACTTCCATCCACAGCAATTGCAAGGAATCCTTTATGGATCTCTCGCTTGCAATGTATG





75
ATTTTTTCATGGGGATCGTCAAGCTGATAAAACCGCACGAGGTTCTGACGAGTCCGGATAAT



CCCCTTTTAATTAATCAAGCTTGATTAAACCGCAGCTTAATTTAATTAAGTTGATTAATTAAAT



CGGATTCCCCGAAATGGGATGACGTGCTATAAGGACGTAGCCACTGCCGTCCGCTCGTGCA



CCCAAGGCGCAGCACCGCACGCTCTCTCTCTCTCTTCTTTCTCTCTCTATCTGCGCGTCCCG



ACTTCTGGTTCGAGCTTGTGCTTAGCTTTGCAAGAGCAGACGAAGCCGAGGTGAGAGGATC



GAGCAGCGTTGCAGCGGAGCGACCGGGCGAGCATGTCGTCGTCGGCCGTGCAGTTCGCC



GCCGCTTCTCGCGACGGCCACGAGAACAACGGCGGGGGCGGAGGGGACAGCAGCGGCG



AGCGGCTCGACCCCACCGCCGTCCTCCTCCCCGTCGATCCCGGGGCCCCCGACCTGTCCC



TCCCCCGGGAGACCTTCCTCCGGGCGGCCCTCTCTCTCAAGGACCAGGTGGTGCAGGCGA



CGTGGCGCGAGGGCGGAGCGGCCGATCCGACCGCGTACACGGGGCTGCTCGGGACGGC



GTTCCTGTGCCTGAGGTCGTACGCGGCCACCGGCGACCGGGGCGACCTGCTGCTGTCGG



CCGAGATCGTCGACGCGTGCGCTTCCGCGGCGCGTGCTTCCACGAGGCATGTGACGTTTT



TATGTGGTAAAGGAGGGGTGTTCGCGGTGGGCGCGGTGGTTGCCAATCTTCTGGGGGACC



ATCATAAACGTGACTTCTTCCTCAACCTATTCCTCGAGGTGGCACAAGAGAGGGCTCTCCCG



GTTGGACCTGAGGAGGGCGGTTTTGGGATGTCGTACGACCTTCTCTACGGCCGAGCTGGTT



TCCTGTGGGCGGCTCTATTTCTGAACAAGAACCTGGGAGAGGAGACGGTGCCGAACAATGT



TCTGATGCCTATTGTTGACGCCGTGCTGGCTGGGGGCAGGGCCGGTGCGTCCGATATCGC



TACGTGCCCATTGATGTACAGATGGCATGGGACCCGGTACTTGGGCGCAGCCAACGGCCT



CGCTGGAATCTTGCAAGTGTTGCTTCACTTTCCACTCTGCGAAGAGTACCTCGAGGATGTTA



AGGGGACTTTGAGGTATATCATGAGCAAGAGGTTTCCGCACAGTGGGAATTACCCCTCGAG



CGAAGGGAACCCGAGGGACAAACTGGTTCAGTGGTCTCACGGCGCGACGGGGATGGCCAT



CACTCTATGCAAGGCATCACAGGTTTTTCCACATGACAGAGACTTCCGTGATGCGGCCATAG



AGGCGGGGGAAGTTGTGTGGAAGAACGGGCTCGTGAAGAAAGTGGGGCTTGCTGATGGCA



TTTCAGGGAACGCGTACGCCTTTCTCTCGCTGTATCGCTTGACGGGGGAGAGAATCTACGA



GGACAGAGCCAGAGCGTTTGCGAGCTTCCTCTACCACGATGCCAACAAGCCCGTCGGCAC



GGGGCACGGGCACGTTGCGGACTATGCCTTCTCCCTCTACCAAGGGCTCGCCGGGGCGG



CTTGCCTCTGGTTCGATCTCGTTGACGCGGAGAACTCCAGATTCCCAGGGTACGAGCTATA



AGGGAAGGAACGCGAATGCGAACACACGAGAGTTTACGTATAGCTCTTTCGTGTACATACTA



ATGAGAGGTATGCCGTTACAAATCACGTACGCTGTTGCTCTATTGCTACAGTCAATATATGTA



AGGATTGCAACTTGACAATCCCACGTTTGAGGCAAGAAATTGGTATCCGAAAAAAAAAA





76
AACCATCAAGTTCAGCCTTCCCCGCCGTGCAGCACTTCACCTAGATGCTTGTCGACGAATTC



CAGTTGGCGACCTAAAGCGCTTCTCGACCAGCCAGCAGTTGCCCAGACGATTTCCGGTGAC



CTCCGCGGCATCCCCACACCGGAGACCCTTCACTGCTGCAGCTGTCCTCTGCTGATTCCGG



GCTTGGGTTGCCATTCACTGTTGTTCCTCCTGCCGATTGCTGTTCGCTACAACAGATCACGA



CACCTGTAACATCGGCAAGCTCCCGGTTCGAAGGACCGCTCACAGACCTTCACGAATTCAA



GATCCTCACGTATCCAAATTTCTTGAAGAGATTAATAAAGGTGAGGCCTTGAAGGGATAAGT



CCACCATCTGGAGAGCAGCCCGTGACTTGCCTCGTGTCCATGCCTACAAGGCCTTGGTGTC



ATTGGTGTTAACTGTCCATTGAAGGAACACTCAACCCAGTAGCGAACCAGCAAGCTACCTTG



CTGTTACGCACATGTACTGACGAACCCAGCCTTGCCGAAATTTTTAGACGATCTCAACGACT



CGCTCCTGCACCTCAATTGTGAACCCCCCACCTTCCGACACTAGCCGCCGTTCTTGTTCGTA



TCCAAACCGAGTCGATTCTACGAAGTTCTTATTTTTGCAGGTTCGTTCACCGTGAGCCCACG



GTCGTCCTTTACTGAGGAGCACCACCGTGCCGAGCTTCAAATTTTGTTCTTGTCGAGTTCAA



ATTTTGCAATATTACTTGTGAAAATTTAGGATTAATAGGCTTCAAAGCTTCTCCTTACAAAGAT



GCAAATCTTGCCCAGTCCTGAAGAATCCATCACCTGTAGTGGCCCGCACTATGACAGAGCG



AAAGAAGCAAAGGAATTCGACGAGACCAAAGCCGGCGTCAAAGGCCTCATCGACTCCGGC



ATGGCCAAGGTCCCTCGGCTCTTCATCCACCCTCCCCAGAACCTGCGCGACTTGTCCTCTG



ACACAGAGGGGTCCGCCACTGACCTCAAGGTCCCCATCATCGACATGATGGGCTGTCAGG



ATTCCCAGCTGCGGCGAGACGTGGTCGACGACCTCCGTAGAGCGTCGGAGACGTGGGGGT



TCTTCCAGATAATTAACCACGGGATCCCGGTCGATGTGATGGACGGCGTGTTGGAAGCTGT



CAAGCAGTTCCACGAGCAGCCTGAGGGAGTGAAGGGAGAGTGGTACTCCAGGGACGACGC



TAGGAAATTTAGGTACTACAGCAATGGAGACTTGTTTTGGTCCAAAGCAGCAACTTGGAAGG



ACACTCTCCTGTTTGATTTCCCGTTTGGAGAGCCAGACCGAGAGGCAGTCCCTCTTCTATTC



AGAGAAACGGTTTTTGAGTACGAAAAACACGTGGAAAAATTGAAGGGATCTCTGTCTGAACT



ACTATCAGAGGCACTGGGGCTCGATTCAGGCTATCTTGGTGACATTGAATGCATGGACTCC



AAGAGAATAGTAAGCCATTATTACCCAACTTGCCCTGAGCCAGAGCTGACTCTGGGCACAAT



CAATCACTCAGATGCCACATATCTCACTCTTCTCCTGCAAAACCACAATGGTGGCCTCCAAG



TCCGGCACCAGAACCAGTGGGTCGATGTCTCCCCGGTGCCTGGAGCCATCCTAGTCATCAT



TGGAGACTTCATGCAGCTTGTTAGCAACGACAAGTTCAAGAGTGTGGAGCACCGGGTCCTT



GCCAGGCGGGCTGGGCCCCGGGTCTCAGTCTTGTGCTTCCTCTTCCCAGGGGAGACGCGT



AAGTCGAAGCCGTACGGGCCGATAAAGGAGCTTCTCGACGAGAACAATCCGCCCATGTACA



GGGAGACCTCTTTCACAGAGTATTTTGGGTATTACCTCTCCAGTGGCAATGGCCTCAATGGC



GAATCTGTGCTTCCTCATTTCAGAGTAAGCGAGCCCAAGTAGAGAGTAGAAAATGCAACAAA



AATCTTTGAAGAAGGTGTCGGCCTTCACATGAAATCCGATGGCTGTCTTTTCATTGAATGTA



GCGATAGGACCACACCTCGAAAAGAATAATCAGAATCTACTTTGATTTGATCGAGACTGAAA



CAAGAAATTGCCAAAATATGATGGCATGCTCCTTCAGTCTCTGTGAAAGCATTTGAATCTCTT



TCCCCTAAATTTATCGCGAGTTTCATCAAAAAAAAAA





77
ATAATGGATGCCGGAGATCTCGGTTCGGAGAAGTCTTCTGAGACCACGCGTGAGCTCGTCG



TCATGTCGTCGAGATTTTCAGATGGGTCCTGCTCTCGAGAAGTTTAGTGTCGGATGGATTGA



ACTGGCTGCCCAGCTTCAATGCAATGTTAAAGAAATTAGCTTCCGGGATTTTTATCTCTTCTC



TGCTCATTACCGTTTCAGTGGCTGATAATGGATTCCCACGATGCAATTGCGATGACGAGGGA



AGTTTGTGGAGCGTGGAAAGCATTCTGGAGTGCCAGAGAGTGAGCGACTTCTTGATCGCCG



TGGCCTACTTTTCGATCCCAATTGAATTGCTGTATTTTATTAGCTGCTCGAACATCCCGTTCA



AATGGGTCCTGTTTCAATTCATTGCCTTCATTGTTCTGTGCGGATTGACCCATCTGATCAATG



GGTGGACTTATGCCCACCATCCCTTCCAACTCATGGTCGCACTCACCGTGTTCAAGATTTTA



ACTGCTCTCGTCTCTTGTGCCACGGCGATAACGCTCATCACCCTCATTCCTCTGCTTCTCAA



AGTGAAGGTGAGAGAGTTCATGTTGAAGAAGAAGGCTTGGGATTTGGGGCGAGAGGTAGG



GATCATAATGAAACAGAAAGAAGCTGGTTTGCATGTGCGGATGCTCACACAAGAGATTCGCA



AATCACTTGATAGGCATACTATTTTGGACACGACCCTGGTCGAGCTGTCCAAGACACTGGG



GTTGCAGAACTGTGCAGTTTGGATGCCTAACAATGGTAAAACCGAGATGAACTTGACGCATG



AGAGGGGAAGGAATTACTCAGGAACCTATCACATCCCTATTCCGATAACTGATCCAGATGTT



GTTTCAATTAAGCAGAGCGATCAGGTGCATATTTTGAGACCTGACTCAGAACTCGCAACTGC



AAGTAGTGTAGGGCCTGGGGAGTCCGGCCCAGTAGCCGCAATTCGGATGCCAATGCTTCG



TGTCTCCAACTTCAAGGGAGGGACCCCTGAACTCCATCCAGCATGTTATGCGATACTGGTC



CTGGTCCTTCCGGGTGGAGAGCCACGATCTTGGAGCAATCAAGAACTCGAGATTATCAAGG



TGGTGGCCGATCAGGTGGCAGTGGCTCTCTCACATGCAGCAATCCTTGAAGAGTCTCAGTT



AATGAGAGAGAAACTGGAGGAGCAAAACCGGGCTCTACAGCAGGAAAAGAGGAACGCTAT



GATGGCAAGTCAGGCCCGAAGCTCATTCCAAAAGGTCATGAACGATGGGCTAAAGAGGCCT



ATGCACACGATCTCAGGGTTGCTCTCGATTATGCAGGATGAGAGTTTGAATGCGGACCAAA



AAATTATTGGAAACGCAATGGCAAGAACCAGCGCCGTCTTGGCAAATTTGATAAATGATGTG



GTGAACATGTCAACGAAGAATAGCGGGAGATTTCCATTGGAAGTAAGATCATTTTCTATGCA



TGACATGATAAGAGAAGCAGCTTGCTTGGCTAAGTGCTTGTGTATCTACAAGGGGTTCAGTT



TTGAATTGGACATTGATAGGTCCTTGCCGAACAACGTAATGGGCGATGAAAGGAGGGTTTTT



CAGGTAATTCTGCATATGATCGGTAACTTGCTGAATGACAGTAATCAAGGGAAATTAGTTAC



CCTTCGAATTCTTCGTGAGAAAGCCAGTGGAAGTCAGGGAAGGTATGATCGAGGTTGGGTG



ACGTGGAGGTCCGAATCAACTGATAGAGGTGTGCGTATCAAATTTGAAGTTGGAATAAGCG



ACGACATTTCTCTGTTGGAGAGGTCAGTTTCGACAATCCAGCTTGGAGGTCGGAAATACAAC



AGTGATGGGGTTGAGGAGGACTTCAGCTTCAGCATCTGCAAATGGCTAGTACAGTTGATGC



AAGGTAACATCTGGGTAGTCCCGAACACTCAGGGCTTCGCTCAGAGCATGACACTTGTCCT



ACGGTTCCCACTCCGAGAGTCCATCTCAGTGACCATTTCTGAACCGGGGCCATCTCCAGAT



TATACACTCTCCAACTCAGTCTTCACAGGCTTAAAAGTATTGCTCGTGGACTCTGACGATGC



GAACAAGGCCGTCACCCGGAAGCTTCTTGAGAAGCTAGGCTGCAAGGTGTCCACTGCCTCT



TCGGGATTCGAGTGCCTCGGCGCTCTCCGCCCCTCTGAATCTTCTTTCCAGATTGTCCTTTT



GGATCTTCACATGCCCAGCTTGGACGGGTTTGAAGTGGCAAATAAGATTCGCCAGTTCCAC



AGCAGTACCAATTGGCCAGTGATTGTCGCCTTGACCACTAGCGGTGACGATATTTGGGAAC



GATGTTTGCAGGTCGGAATCAACGGAGTTATCAGAAAACCAGTCCTCTTGCACGGAATGGC



CAACGAGCTTCGGAGAGTCCTGTTGCAGCCAAGCAAGACGCTGCTATGAAATGTGGATGAA



GCTTCATTCCAAGATGTAATGCCTCAATGTCAATAACTTACCCTTCCTCCTTATTACCTACCA



AGATTTTCAACATATAAAAGTTGTCCTACACACAAAAGAAGGCTCAGTCACCATTAGAAATGT



AACATACTAGTCCTTTTTCATGCCCTTGCTTTTTATGCATTTTGTAGTGATCAGAGATCCTTTC



TAGATTGCCATTTTGGCAAAACATGTCAGCTCTTCGAGAAAACTAAATTATTGCTTGCTAGTT



TTTAAACGATACATGTATGCAACTCACATTTCAGTGAAATAGATATGAACTCTTGGCCCAAAA



AAAAAA





78
CTCGCCCTCTCCCTTTCTCTCTCTACCCTTCACTCTCTCTCTCTCTCTCTCTCTAGAGAAAGA



AGGAATTGAACGATAGCAATGGCGGGTTACAGAGCCGAAGACGACTACGATTACCTGTACA



AGGTGGTGCTGATCGGGGACTCCGGGGTGGGCAAGTCCAACCTCCTCTCCCGCTTCACCA



AGAACGAGTTCAACCTCGAGTCCAAGTCCACCATTGGCGTCGAGTTCGCCACCCGCACTCT



CACTGTCGACGGCAAGGTCGTCAAGGCTCAGATTTGGGACACCGCCGGTCAAGAAAGGTA



CCGTGCCATCACTAGTGCTTACTATCGTGGAGCTGTAGGTGCACTCCTTGTGTATGATGTCA



CTCGCCATGCAACATTTGAAAATGTGGATAGATGGCTGAAAGAATTAAGGAACCACACAGAT



CCAAGCATTGTGGTGATGCTTGTTGCGAACAAGTCTGACCTTCGTCATCTTATAGCAGTCTC



AACAGAAGATGGGAAATCCTATGCTGAGAGGGAATCGCTGTACTTCATGGAAACCTCTGCA



CTAGAGGCAACAAATGTAGAAAATGCCTTTGCAGAAGTGCTAACGCAGATCTACCGTACCAC



TAGTAAGAAGACAGTGGAAGGAGATGATGGATCTGCTGCTGCGTTCCCTTCTCAAGGAGAA



AAGATAAATATCAAGGATGATGTCTCTGCTTTGAAGAAAGTTGGCTGTTGCTCAACTTAAGGT



TGGAGGTGATTGTTGCTTGCATAGATTAATACTTTGATTTCAGTTGTATAACATTTTTCATGCC



CAAAAGCTGAAGAAAAGTTAGCTAGAAGAAACTTATGAGACACTAAATTTGTGCAGCAAAAG



CTTAGTACATCATGCCTTTGGCATGGCAGTAGGATAGCTGCATAAGTTAGTTATTTCTCTGTT



CTGATTCATGCAAAGCCATTATTTAGGCAGTTTCATCTTTCTGAGAATTAACAAGATGTTGCT



TTAAAAAAAAAA





79
GCAACCAACCTCCTCCTCCACCTACGCCACCACTACCACCACCATCACCACGCAACGCACC



GCGGCCGCGGCCGCCACCATGCAACCCTCTCAACCTCCTCCTCTCAATGAAAATTACTTGC



GAGACGACGTCAAGTCGCAAGAATGCGAAGACTTGCACTCCTCTCTCCCTTCGGAAGAAGA



CTGGGTCCCCACCTCTCTCCCTTCGGAAGAGGACTGTGTCCCCTCCACTCTCCGCTTGTAC



CAGGGCTTCTGGTTCCCCTCTTGGGTCTTGAACAGCGTCGTCGCTTGCCAAAATCACTTCCA



AGCTCACCCCTCCGACATCCTCCTCGTCACCAGCCCGAAATGTGGCACCACCTGGCTAAAG



GCCATCCTCTTCGCTCTCTTGAACCGTGCCAAGTACTCTGACTCCAACTCACAAAAACGCCA



CCCTCTCCTAACCCAAAACCCCCACGACCTCGTGCCCTTCTTGGAGTTCAGGCTCTATCTCC



AGAATAAAAATCCTGATCTCACTGCTTTTGCATCCCCGAGGCTCTTGGCCACCCACTTGCCT



TATTCCTCTCTTCCACGGTCGGTGAGGGACTCCAATTGCAAGCTGGTTTACTTATGTAGGAA



CCCTAAAGACACTTTCATCTCGATGTGGCACTACTTCAACAAGTTGAGGCCCGAAGAGAAG



GGCCAGCTTCCACTCCCGGAGGGCCTCGACAAGTTCTGCCGAGGTGTGAACTGGTGTGGG



CCTTATTGGGACCATGTGCTGGGTTACCACAAGGCGAGCTCGGAGATGCCCGAGAAGGTTT



TGTTTGTGAAGTATGAGGAGATGAAAGCGGACCCGAGCGTTCAAGTGAGGAGGTTGGCCG



ATTTCATGGGGCGTCCATTCAGCGAAGAAGAACTGAGAAACGGGACCGTGGAGGGAATATT



GAGGATGTGTAGCTTTGACAATTTGAGTGCACTGGAGGTGAATAGGAGCGGCAAGTTGCCA



TCTGGACTAGAGAAGAAGTGGTTCTTCAGGAAAGGCGAGGTTGGAGATTGGGTGAATTACA



TGAGCGCTGAAATGGGAGAGCAAATTGACGGTGTCATGGAAGAAAAGTTGCATGGTTCTGG



TTTGAAGTTTTAGGACATATGACCCACTCGAAGATGTTTGGTTTGATGGTGGAAAAGAAAAAT



GTGTGTAAAAAGAAGAAAAAAGAAGCAAAAACGATTCGACTCTCCGCACTTTAGGGGGTCAA



TGTCTGGATGAAAGATCTTCAGTGGCATTGTCAGTCCTGGTTTCGTCTCCATAGTGAGATGC



TTTAAGGTTGTGATTCTAGTCTTCATCTGTGTTTTGTACTATTGGCGTTTGGCAGAAGTTATTT



GGCCAGTACGTAGCTGGCTAAACAAGAGCTGCCTAGCTGCTCCCTGGGAGCTTGTGGATGT



ATCTTCTGTTATTTATTTCAATTCCATTTTTCTTTTTCAAAAAAAAAA





80
GTTCGCCGAGCATCATCGAAGCGACCGTCCGTCCTCCCCTCCCCTCCCGATCGCGCATGA



GGTTTCCTCCTAGATCCGGCTGATCGACTAGGGGGGCGATGGCGATTCTGTACGCGGTGG



TCGCCCGGGGCACCGTCGTCCTGGCGGAGTTCAGCGCCGTCACCGGCAACACCGGCGCG



GTGGCGCGCCGGATCCTCGAGAAGCTCCCCTCGGAGGCGGACTCCAGGCTCTGCTTCTCG



CAGGACCGCTACATCTTCCACATCCTGAGATCCGACGGCCTCAGCTTCCTGTGCATGGCCA



ACGACACCTTCGGAAGGAGGATTCCTTTTTCATACTTGGAAGATATTCAGATGAGATTCATG



AAAAATTATGGCAAAGTTGCACACTTTGCACCTGCATATGCCATGAATGATGAGTTTTCAAG



GGTTCTGCATCAGCAAATGGAATTCTTCTCTAGTAACCCCAGTGCAGACACTCTGAATCGGG



TCCGAGGCGAAGTTAGCGAGATGCGAACTATAATGGTGGATAACATCGAGAAGATACTGGA



CAGAGGTGATCGAATTGAGCTACTTGTTGACAAGACTGCTACAATGCAAGATGGTGCCTTTC



ACTTCAAGAAACAGTCCAAGCGCCTTCGTCGAGCTTTGTGGATGAAAAATGCAAAGCTTTTG



GCACTGTTAACATGCTTGATTCTTGTGCTGCTTTACATTATTATTGCTGCTTGTTGTGGAGGC



ATCACTTTACCCAACTGCAGATCTTAACCTCTATAGTTGCTGGTGTTGATCTCCGGTAAGTAT



ATATGCCATGGGTGATATTTGGGTCACATTCAGGGTCCTATTTGTAACTTGAGAAGCGCTCA



AATGGAATTATGATGCGCCACTGTCTGCTAAATATCACCCTGTTGGGAGGTGCTATTCTGGT



TTTTGGGGAGTCTGATGGGGTCCATCGCTTCCATTTTCTTGATGAGTTTGTTGTGTATTTTCA



CGGGGCATCTCTACACTGATGTAAATAATGTACTTATTTATAGCTGACAGTCGAGCTTTTGCC



AAAAAAAAAA





81
GGCAAAGTTTAGGAGAAGAATATGACAGGAACCATGATCGGAGTCACCAACGCCAATGAAC



AACAAGCCCTCGACAGAGCCCAAGAGGTCCGACAATTTGAAGACTCCAACCTTGGAGTCAA



AGGCCTCCTTGACTCGGGCCTCTCCACCCTCCCTCCCATGTTCATCCACCCGCCCGACCTT



CTATCCAGCCTCAAGCCTGTGGTTGGGCTCAAGACCGATTCAATCCCCATCATTGATCTCTC



CGGCTCCAACTCCGACCGACGACCCTCAGTCATCGAGGAAGTTGCACGTGCTGCTCGTGA



GTTTGGCTTCTTCCAGATAGTCAATCATGGCGTGCCCACGGAGGTCCTGGGTCAAACGATC



GCGGCAGTGAAAGCGTTCCATGAGCAGCCAGCGGAGGTGAAGGCTAGGATCTATCGAAGG



GAATCTGAGACCGGGGTCGCCTTCTTCGCCTCCAGCGTGGACTTGCTTCACTCCAACGTGG



CTTGCTGGAGGTAATGTGAATGTCAATTTCTATGTTGGGTCGACAAGACAGGAACATTAGTG



ACTCGAAATTAAGAAAATTACCAAAAAAGGTCTTAAATATGTTGCATGGGAGGCTAATTCAAT



TTTAAACATTTTTGACAGTTTGCAATATAGTCATTCAAGCTAATTTTGGCAAGAAATTATTAAA



GTGGACATCGTTTGTTTTATGTGACACACCTGACACTAATATTCGTAATTTTTGTATTTTTTTA



ACTTCTTTTTTTTTAATTTTTTTTTTACGTCGGCCATGCCATGTAAAATTGCTTACATCCATGG



CAACGAAGTTCTATCAAAATTTTATATTATCAAATGGTTAAAAGATTTCAAATTAAATTAATCAA



ATTGAAATAGCAAAAAAGCCACCAAAAATTCCAAATTTTACTCATTGTGACAAATATACCTCA



AACTTTTTTTGTGAGATAAAATACCCCAACTTTACCAATTGTGACACATTTAACCCAAACTTTT



TTGACACAAAAGTCCCAAATTTATACATGCATGACACATTTACCCCAAACTATAAGGTATTTT



CGTTTTTTACTTTTTAAATTTTTTTTCTCTTTATTTTTCTGCTTTCTTCTCCTTTCTTCCCTCCGC



TGGCATGGTGGAGAGAAGCCGGACTCAGGCGAGGATCCTTAGGTCGGGCGAGGATATCCC



TCACTAGATTCGGCAAGGGCAACCCTCGCCTCACCCAAGCGAGGGCTGCCCGAGCTAATG



CCAAAGAGGCACTCACCGGATTTGGCCCAAGCGAGGACCACCCTCACCCGCCCAAGTGAG



GGTGACCCTTGCCCGATGCCAGTGAGAGCGGTCCTCGCCTGAGTCCAGCTTCCCTCCACTA



GCCACGGCGAAGGGAAGAAAGAAGAAGAAAGAGGAAAAAAAATTAAAAAAAAAAAAAACGA



AAAATGCCCTTCAACCATGGAGTTGGGGTAAATGTGTTACAGTTGATAAAGTCTGGGATTTT



TTGTGTCACAAAAAAATTTAGGGTAAATTTATCATATTTGGTAAAGTTTGGGGTTTTTTGTGG



CATTTTCCCATTAAAATATTTAGAACCGAATTGATTTTTGTACTATATATATATATATATATATA



TATATATGACTTTTTCAGTAATTATCATCTTGAATTGATGTGAATATTAAATTGTCCTTTTGTAT



AATCGAAATTTTCATTGTCCCAAAAGAAGTTTCATACACACACATATTTGCAAATTATATGAAT



TTATCAGTGACAATACAATGAATGGGACGAAGTACTAATGCGCACCAATTTATCAGTGACAA



TACAATGACGGGGCACAGAGTATTAACGTGCACGAATTTATTTGGTCTTTTTCTTAACCATAA



ACATCTTAAACATTTACACTATATAAATTAGGACACTTGAGTTCATATAATTTTCATACTTTTTA



AAAATCTATATAATATATTAAATTTGAACAAGCGAGAAGAAATGTTCCTCGGTGATATACAAG



AAGCACAAACAATGTGCAAAAAGCAAATAGAAAGAGTGTTTGCGTTTTTTTCTTAATTAAGGT



GAAGAATAAGAAGAAATTAGTTCAGTGCACGAAGTAAATATTACAGGGATTCGCTCCGGATA



AGGTCGGGTCCTGTACTCCCAGACGAGGAAGAAATACCGGAGGTGTGCAGAAATGAGGTG



ATGGAGTGGAATCAACAGACCCAACACCTCGGAGTCCTCCTGATGGGTCTGTTGAGCGAGG



GGTTAGGATTGAGTCCGAGCAAGCTCCAGGACATGACGTGCGTGGAGAAGCGAAACATGTT



GGGGCATTACTATCCTTACTGTCCCCAGCCTGATCTGACTGTTGGCCTGAAGCCCCACACC



GACAAGGGGGTGATCACGGTGCTCCTGCAAGACCAGGTTGGCGGGTTGCAGGTGAAGCAC



GGCGAGGCGTGGCTGGATGTGACGCCCTCTCCAGGTGTTCTCATTGTGAACATCGGCGAC



CTTCTCCAGATCATGTCCAATGACGAGTACAAAAGTGTGGAGCACCGAGTGTTGGCCAATC



CAGGCCCTGAACCACGCCTGTCGGTAGCGGTTTTCTACTATCCGCTTGAATGCGAAAACCA



GATCGGACCGATCCCAGAGCTCGTGTCACCAGAGAAACCTGCTGCTTTTCGACAATTCAAG



CTTGGCGAGTACCTGAAGAGATTCCAAACTGAGGTGCTGGATGGGAAAACTTTGAAAAATCA



CTTCAAGACATGATATAAGAGGCATCTAGGCTAATATAGATGGTGCAAGAATAAGATGCTTC



CTTATTTTTAATAAGAAGCAATCGCTTATTAAGTTGTAAGTTCGGTTTGGATTCGCTAGAATTC



CAAGCCATTGTCCTAGTTCAAGGACGCTGTGTGCCTATATTTAAGAACGAGTCATCTCGTTT



CCTCCACAATAAGTCGGTATGTCTGGTAACAGGAACATATACTACTTCCTCATCCTATTTTAA



CTGCACTTCTCATCGAAATTGTCTGTCCTATAACTCTCTTAC





82
CCGCCTTTAATATATAAATATCGTCCCCTCCCTCTCCCTCTCCCTCTCGTGTCCAAGTAAAAG



GAAAAAGAAAAGAGACAGAAAACAGAAAAGCGGCGGCGATGGTGGTGGCGAGTCCGAACC



CACGACGGGCCGAGAAGATCCAGGCCGTCGAGCTCCCGGCGATCGACCTCTCGCCGTCG



GGGAGATCCGCGGCGCCGCGGCTCATCGTGGAGGCCTGCGAGAGGTACGGCTTCTTCAA



GGCGGTCAACCACGGCGTCCCCGCCGAGATCGTGTCGAGAATGGACGAGGCGAGCGCCG



GCTTCTTCGCGCGGCCCGCCTCCGAGAAGCGGCTCGCCGGGCCCGCCGACCCGTTCGGG



TACGGGAGCAAGAGCATCGGGTTCAACGGCGACGTCGGCGAGGTCGAGTACCTCCTCCTC



GAGTCCGACCCCGCCTTCGTCTCCCGCAGGTCCGCCAGCATCTCCGACGACCCCACCCGG



TTCAGCGCTGCTGTGAATGTCTACATAGAAGCAGTCAAGGACCTGGCCTGTGACATATTGG



ATCTTATGGCCGAGGGCCTGGGGGTCCGGGACACGTCGGTTTTCAGCAGGCTCATCAGGG



CCGTCGACGGCGACTCGGTCTTCCGGATCAACCACTACCCCCAGTGCGCGGTCCTTCACG



GCGAGGTCGGGTTCGGGGAGCACTCCGACCCTCAAATCCTGACCGTCCTCCGATCCAACA



ATGTGGGCGGCCTCCAGATCTCACTCGAAGACGGGGTGTGGACCCCGGTGCCCCCAGACC



CCGCAGCTTTCTGGATCAATGTGGGCGATCTTTTGCAGGCCATGACGAACGGGAGGTTCTC



GAGCGTGCGGCATAGGGCGGTGACCAACCCCTTCAGGTCCAGAACGTCGATAGCGTTCTT



CGGGGCGCCTCCGCTGGACGCGCGGATCGCTCCCCAGCGGGAGCTCGTCACTCCTCGAA



GGCCCCGTCTCTACAACCCCTTCACCTGGGCCGAGTACAAGAAAGCCGCCTACTCCCTCAG



GCTCGGGGACAAGCGTCTCGACCTCTTCAAGGCCTGCAGAGAAGACGGCGGCATCGATCT



GTGAGCAGATGGAGGAGATGGGTCGTCTCTTTTCTGCCCTTTTCTCTCTCTCTTGTTGCTGG



GCCTGTCGTGAAGGGAATTTTGGGTTTGCGTGTTCTGCTCCCCTTCCTCTGTTTTTAGCAGC



AAAGAGAAGCTCTCCTAGTGTTGGTGTACTGTTGTAATCAATGGAAAGGTATGTTAGGCGAC



GATATTATGTTTTGGCTTTTATCTATCAATCGACCCATCGGTTGATTTTATCTAAAAAAAAAA





83
GTCCAGATTGCTCTCGACATGTACAGAATACAAGCAGGGTCGGCAGCAGCGGCAGGGGTC



GAGCCTGGATACTGTGTTGAGACCGATCCCACCGGTCGGTATGCTCGGTTTGAAGAAATTC



TGGGCAAAGGGGCGACCAAGACAGTTTACAAGGCGATCGATGAGGTCCTGGGAATGGAGG



TGGCGTGGAACCAAGTGAAGCTGAATGATTCGTTTCGGTCTCCGGACGAATATCAGCGTCT



GATCTCGGAGGTTCACCTCCTCAGCACCCTCAATCACGACTCCATAATGAAATTCCACACTT



CATGGGTCGACGTGGATGGGACGGCCTTCAATTTCATCACCGAAATGTTCACTTCAGGCAC



CCTCAGAAATTACAGGAAGAAATACCCACGATTGCACATCCGAGCCATAAAGAATTGGGCTG



TTCAAATACTTCACGGCCTCGTGTATCTGCACAGCCACGATCCGCCAGTAATCCACAGAGAT



CTGAAGTGTGATAACCTCTTTGTTAATGGACATCTGGGACAAGTTAAAATTGGTGATCTTGG



ACTTGCAGCGATCCTTCATGGTTCTCGAGCAGCTCATAGCATCATAGGCACTCCAGAGTTTA



TGGCACCAGAACTCTACGACGAGAATTACAATGAGCTGGTCGATGTCTACTCATTCGGCATG



TGTGTCTTGGAAATGCTTACTTGCGAGTATCCTTACATTGAATGCACCAATCCGGCTCAAATT



TACAAGAAAGTCACGTCGGGAAAGTTGCCAGAAGCATTCTACCGTATCAAAGACTCAAAAGC



TCGGAAATTTATTGGAAAATGCTTAGCAAACGTCTCATGTAGAGTATCGGCAAGGGAGTTGC



TACACGACCCATTTCTTCTAAGTGATGAAGGTGACCGCCTCCCAGGATTGAAGTTCAAAATG



CCGGAGCCATTCTTGAATGGGAGAGATGTAGATAATCTGCGTGCAAGGGATAATCCACTCA



GGACCGACATGATGATTACGGGAAAGTTGAATCCTGAGGGTGACACCATTTTTCTGAAAGTT



CAGATTGCTGATAGAAATGGTTTGAATCCCAAGTATCTTCCTGCAATCCATTAGAACTATTGA



GAGCACAGAATCACTGTACACAATTTCTCTGATGCATCAGTACTAAGTTTTGTAAATTAGTTA



AGAAGAAAGCATGCAGATTGTGGATTATTATCCGGTACCATTTGCAAAAAATCGATGCCTCA



AACTAGTTATATATTGCCCTAAATAGAAGTTGAAGGGGAAAATGGCTGAACGCATATAATTCT



CAGAACTCGTTAAATTAGAGACTATAGAAATTTCTGGCCAGACTTATCTTCACAGATCTTCCA



GAGTGATGAAACTAATGAAGGTTGTCTTCATTTCCTTCCCATTACCCATGCAGGTTCAGCGA



GAAATGTCTATTTTCCTTTTGACGTTCTAAATGACACTCCGATTGATGTCGCAAAGGAAATGG



TCAAGGAACTGGAGATCATGGACTGGGAAGCGGAGGAGATAGCCGACATGATTGGTGGAG



AAATCTCTGCTTTAGTACCTAACTGGACGAAACAGGACATGACAGACTACAATCAGGAAAAT



GACGACGGCTTTGCTCCACCTTTTCTCTCATTCTCTTCAGGTTCGTCATCACAGGCATCGCC



ATCGGGCTTTACGGCCTACAGGGAAAATGAAATCGCGTCTGACTACGGTTGTCTCCAGGAT



GTGCCAGATGATATGAGCTCTCCAAGCTCCATACATTCTGGCACATATTCCCACACAAGTTA



CTTCTGCCCGGAAGATCAAGAAGTGAACCCCGGTCCTTCAAACCCAGATCAACACCTTATCA



GCAGAAGCAACAGACATACGAGGTTTTGCGCCGACGACTACCAAAGGCCAAGGCAATTCAA



GGATAGGAGTCAGACCTTGCAATGCCAGGTCCTGACAGGGTCAGATAGAGATTCTTCCTCC



GTCATTAACCGGAGGATGGCCGGCCACAGACTTTCACGGAATAGGTCTCTGGTAGATGTTC



ATAGCCAGTTACTTCACCTCTCATTGCTGGAGGAGGTGAGCAAGCGGAGGCTGTCCAGGAC



AGTCGGAGAAGTTGAGAACATCGGGTTTCAGGCACCCTTTGAGATATCAAGAAACGCCCCC



TGGATTGGCGGATCTAGTTTCATCAGCAGCTCGAGGAATAAAAAGGGCCACAGGATTCAAA



ACAGAAGAAACTGAAATCTGCCCTCTCTCATGAGCATCTAAAGATGGTAATTTGTATCAAAAT



GTCAGCAATTTAGGACTGTATCCACCCTGCAAAGATCAAAAGTATTAGCCTTGTAGCTTAAAT



AAGTTTCAAAAAAAAAA





84
TGTCAGTCTCCCTGTCCCCGCCTCTCCGTCTCATCATCCTCCTCCTCGTCCCTCGTCATCGC



TTTCCTCCATCAAATCAGCGTCTCCCTCCCTCCCTCGCTCACTGTGATCCCAGACCAGCGCC



GGCTGCTCCCGGGCTCGAAATCTCCGGCGACGTCGCCCGCCCGCCGACCGACCGACCGA



CCGAGCTCGCCGGAGCCATGGACGCCGGCTACCTGTTCAAGGAGGAGACCTCCCTGTACA



ACCGCATTGTCCTCGGCAGCCTCCTGCCGGCCTCGGCCTGGGAGCCGATGCCCCGGTTAC



TCCAGACCTGGCTCCGCAACTACATCGGCGGAACCCTAATTTACTTCCTCTCCGGCTTCCTC



TGGTGCTTCTACATTTATTACCTCAAGCGCAATGTTTACGTCCCGAAGGATGAGATTCCTAC



GAGGAAGGCAATGTTGCTGCAAATATATGTTGCAATGAAGGCAATGCCATGGTACTGTGCTC



TTCCAACACTTTCCGAATACATGGTTGAAAATGGATGGACGAAATGCTTTTCAAGAATAAGC



GATGTTGGTTGGCTTGCTTACCTAGTGTACTTGTCAATATATCTTGTAATGGCGGAGTTTGG



GATATATTGGATGCACAGAGAGCTGCATGACATTAAACCCCTTTACAAGCATCTTCATGCAA



CACATCACATCTACAATAAGCAGAACACACTTTCTCCTTTTGCCGGCTTGGCGTTTCATCCTC



TAGACGGGATACTGCAGGCGGTGCCACATGTTATGGCACTATTCCTTGTGCCAACCCATTTT



ACAACGCACATTGCTCTCCTTTTTCTCGAGGCCATATGGACAGCAAATATCCATGACTGCAT



CCATGGTAAGCTTTGGCCTGTGATGGGCGCTGGTTATCACACCATCCACCATACCACCTATC



GCCACAATTATGGTCACTACACCATCTGGATGGACTGGATGTTTGGAACACTCCGAGACCC



CATAGATGATGGATCCAAGAAGGAGATGTAATTTATGAAGGGTTTCGTGCCAATTGTTGTCC



AAATTCTTATTTGACTTGGGTACTTGAATTTTTATTTGCGTTGCTTCTTAATCGTAGTACTTGC



TTGTAAATGTTGGTCCCTATTGAGATTGTTCAGCATCCTGGACTAGCAAAGACTTTTAAAGTA



GAAGAGGAGATTTATACTACAAAAAAAAAA





85
AAAACAATGAAAAACCCACACTCGCTAGCAAGGGAAAGGTAAGTGCTTCACTTTCATGTGCT



TGTTTCGATTCGTACTCAAAACAACAAGCCTAGCGGTTCCACCACCATGGCACACCAGCAAC



TTTGTTCGCAGTCCGCCATAGCAGGTACTGAAGAGCATGAGCGGAAGGAGACTGATGAACT



CATTGCTTCACTTCCCCAAAGGAAAGGCGCGGTTCGTCCTTTCCAGTGCCTTTACCAAAACT



TTTGGAGCCCCATCTTCGTGCTTCCCAACGTGATCACGTTTCAACGGCACTTTGAAGCCAAA



CACAAGGATATTGTTCTGGCCTCTCAGCCCAAATCAGGGACCACCTGGCTAAAGGCCCTAG



TGTTTTCCATCGTTAACCGCTTCCGCTTCGGCATCTCCAACACGCCCTTGCTCACTTCAAAC



CCCCATGAACTCGTTCCATTCTTCGAGTTCCAGCTGTACGGAAGTAAACTGAGGCCCAACCT



TGATGGCCTGGCAGAGCCGAGGCTCTTCGCAACGCACATCCCTTATCCATCCTTGCCGGAG



TGCATCAAGCGGTCTGAATGCCAAATCATTTACATTTGCCGGAACCCGTTGGACACCGTGGT



TTCCTCTTGGCACTTCTTCCTTGAGAAGGCGCGATTAGAAGACCAGCCAGAGTGGTCATTG



GAAGAGCATTTCGAGACCTATTGCCAAGGGACAATCTCGTTCGGGCCCTTTTGGGATCACA



TCATGGGGTATTGGAAGATGAGCTTGGAGTGGCCATCCAAGGTGTTGTTCCTCAAGTATGA



GGACCTGAAGGAGGATACTGTAGTACACCTGAATAGGGTGGCCGAGTTTGTGGGTCTTCCC



TTTACTGAGGAGGAAGAGGAGGCAGGTGTGATTGAAGAGATAGCCAAAATGTGTAGCTTGA



AGACCCTAAAGGACCTAGAGGTCAACAAATCCGGCAAAGTAGCCTTGACGATCGAGTTCGA



GAAGAGAAGCTTTTTTAGGAAAGGGGAGGTGGGTGATTGGGTTAACCATCTCACTCCTTCC



ATGGTGGATCGCCTCAATAGCATCATCCAAGAAAAGATGAGCCCCTTTGGGTTGGAATTCAA



AACGTGTTGAGCGTTAAATACTTTCACTTTCTCTACTTGTGTCACTAGAAATAAGTGAAATTA



ATAATGGATCTGCAATCTTCCTTATTGATGTAGTATAGAGAACTTAAGAATCCTTGACTTCTC



TGTCGCAAGAGAAGAAACAAGTATTTGAAGCTGGTCAGGTGTGAAGAAAAAAAAGGAAGCA



TTGGTAGCATCGGTAGACTACATCTATGCTGTAAACTATTCCTATCCTATAATAGTTGCATGT



ATTGTCTACGTGTTCAGTCAATTAGAGATCATGTATTCACAAATTTACTATTAATTCATCAACT



TTTCAAAAAAAAAA





86
CTCTCGTACCCCCCACCACCAACCATGCCTGAATCCCGTGAAGACTCTGTCTACCTCGCCA



AGCTCGCTGAGCAGGCTGAGCGTTACGAAGAAATGGTCGAGAACATGAAGCGCGTCGCCT



CGTCCGACCAGGAGCTCACCGTCGAAGAGCGCAATCTCCTTTCCGTCGCATACAAGAACGT



CATCGGCGCCCGCCGTGCATCGTGGAGAATAGTATCCTCCATCGAGCAGAAGGAGGAGTC



GAAGGGCAATGAGGCCCAGGTCTCCATGATCAAGGGCTACAGGGAGAAGATCGAGCAGGA



GCTTGCGAAAATCTGCGAGGACATCCTCGAGGTGCTCGACAAGCACCTGATCCCCTCTGCG



GCCTCGGGCGAGTCCAAGGTCTTCTACCACAAGATGATGGGCGACTACCACCGCTACCTTG



CCGAATTCGCAACCGGCGATAAGCGGAAGGACAGCGCTGACAAGTCGCTTGAGGCCTACA



AGGCCGCATCTGACGTCGCCGTCACCGAGCTCCCCCCGACACACCCCATCCGTCTTGGTC



TCGCCCTGAACTTCTCCGTGTTCTACTACGAAATCCTCAACTCGCCCGACCGTGCATGCCAC



CTCGCAAAGCAAGCATTCGACGACGCCATCGCCGAGCTCGACACGTTATCAGAAGAGAGCT



ACAAAGACTCGACCCTGATCATGCAACTGCTCCGGGATAACCTGACGCTCTGGACCTCGGA



CATGCAAGACTCTGCTGACAAGCCCGCCGACACAAAGGAGGAGGCTGGGGATGCACCGGC



AGAGGATTAGATATTGCACGCGCTCGTTTCTTGTTACCCCTCACTTCATGCCATGCTACATC



CCCCCCTTCCGTACACGTCCTCCAATCCAATGTTATTTCTTATTAGCGCTAAGACCTTACCTC



TGGATCCCTTCGTTGAAAATAATGAATCCCTTTCTGCTCTATAAAAAAAAAA





87
AGCGTAGTTCTTTCCCGCAGCTCTCTACTTCGCTCTTCTTCTCAACCCCTGAAGCCACCATG



AGTTCCTCCTCCTCCGGCGGCGACGGCGGCGGCGGCCCGAAGCTCCCTCACGACGTCGC



CGTCGACATCCTGAAGCGGTTGCCGGCGAGATCCCTCCTCCGATTTAGGTGCGTCTGCCGA



TCGTGGCGTTCCGCCATCGACGACCCTCGTTTCGTGGCCCTCCACTTGAGCCACTCCGCCC



TCCACGCCTCCAGTCGGCATCTCGCGTGTCTAGATTGCGGCGAAGACGCCGTCCAGAACC



GGTGCTCTCTGTTCCCCAACGCCCCTCTCGCCCTGCCTCCTCCCCCGTTGCAAATCGAAAT



CCCGTTCGTTGCTCCTCCCAACCGTTACGCCCTCGTCGGTTCGTGTAACGGTTTGATCTGC



GTCTCGGAGAGTTCCAGTGACGGCACTGAGCGGGCGCTGTATTTTTGGAATCTATTCACCA



GGAAGCATAAGGCGGTTCGGCTCCCCCGTCCGGAGCGGATGCCACCCCTCTCCGTGGGG



GGCGCTCATGTAGTTCTAGGGTTTTGTTTCGATGCGAAGTCTAATGACTATCGTGTTGTCAG



GATTATCCGATACCTAGGTATTCGCCGTCGACGCTTCCGCAACAAGAAGCCTCGAGTCGAG



GTTTATTCGTTCCGTACAGATTCATGGAAGACCTTGGAATGTGAGGTTCCTCTTCTCTGTGA



CAGTGCGGTCTTCTTGAATGGGAACCTGCACTGGTATTCTTTCAATGGAGAGGGGGATGGA



TACGGATCCATAGTCTTGTTCAATGTCGCAGATGAGGTGTTTGATGAAATAGCTCTGCCGGA



AGGGATCAGTCCCCATTTTGTGTTGTCCGTGGCGGTATTGAATGACTCGCTGGCTGTGTTCT



TTAGTGATGGGGAGGCTTGTTTCGTTTGGGTTATGAAAGACTACGGCGTGCCAGAGTCTTG



GAGTAAGCTGTATACTTTCGAGGTTACTGGACCGGTAACAGCATTTGATGGCTTTACATGGA



ATGGCGAGCTTCTTATGGAAATAAATTGCGAAGAACGAGTTTCTTGGAATCCGATCACAGCA



CAACTCTCAATTCTTCCATTATTGGCGAGATACGAATTGCTCCCCGTTGTAGAGAGCCTCGT



TCCACCTTAGATATGACTCGATTGCTGCTATATCGTCAGGTGCAAGGTGCTGGAGCTCTTCT



TTATTAACAGGAATTCTGGTGATTGGCAATGCAAGTACAGCTGGCTCTAACAAAAATGGGGG



AGTGGCAAAGGACAGCAGAAAGTGATGTTGAAGTTTCTTCGGAATATAGTTTACGTGGAAGG



CAAGAAACAATCTGCTTCATGGTTAAGCTACTTCTCCCTTCGAGCATGTTCTTAGATTGATCG



ATTTGAAGGCTATCTACTTTCAAAAGGATACATGTTGTGCTTATGATTATCTATATAATGTAAT



GATGGGGATAGTGAAAAGCTAAAATGTGTGAGATTTGCTTAAAAAAAAAA





88
AAGCAGGCTGCGAGAATTTCGAAGTGCTGTCTGCTCACATCTCTCTCTCTCTCTCTCTCTTC



TGCGAGGCAGTGCGATGCCGTCCCGCCGGAGAACGCTCCTCAAGGTCATCATCCTCGGGG



ACAGCGGGGTCGGGAAGACCTCTTTGATGAACCAATATGTAAATAAAAAGTTCAGTAACCAG



TATAAAGCAACTATTGGAGCTGATTTCTTGACCAAGGAAGTTCAGCTCGACGATAGGCTCTT



CACTTTACAGATTTGGGATACAGCTGGTCAAGAGAGATTCCAGAGTCTTGGAGTGGCTTTCT



ATCGGGGTGCTGACTGCTGTGTTCTTGTGTATGATGTTAATGTTATGAAGTCATTTGACAATC



TTAACAATTGGAGAGAGGAGTTCCTCATCCAGGCAAGTCCATCAGATCCGGAGAATTTCCCA



TTTGTGGTCATAGGAAACAAAATCGATGTGGATGGTGGAAACAGCAGAGTGGTATCAGAGA



AAAAAGCTCGAGCTTGGTGTGCTTCAAAGGGGAATATACCATATTTTGAGACCTCTGCGAAG



GAAGGTGTCAACGTGGAGGAAGCTTTTCAGTGCATAGCTAAGAATGCGTTGAAAAGTGGTG



AAGAAGAAGAGATATACTTGCCAGACACCATCGACGTTGCAAACAGCAGTCAGCCAAGGCC



ATCAGGATGCGAGTGTTAAGAACTGCCCGATGCTTCTTCCCAATAAATGAATCCATGAAGGA



TTACTCAGATATTAGCAGGTTCTGCTTGTTTTAGATGATGCTGGGTTGTACATTGCTTTTGCC



AGAGAAAATGGTTGCTGACAGATTCTTTTGTCTGGTTCCTTCCATTTATTGCCGAATCAAATG



CATTCTTGAGTGATGTCCTACTTAATTTGTCTTTCATGACGCGGCTTTTCTCATCAGTGTTGA



TTTTTGTTGGTGTAAAAAAAAAAAAAAAA





89
GTGAAGACGAAGGAGGAGAAAAGGTGAGAAGGAGACATAAGGAGAAGAAGAAAAGGTGAA



GGAGGAGGAGAAAAGGTGAAGAAGGAGAAGGAGAAGGAGAAGGAGAAAAGTTGGTCTCGA



GCTGTAAGGGGGTGAGGTTTTTGAATGGATCATCGAGATAGTGGACCTGATTGCTGGTGAA



GTCGCTGCTCCAGTTCAGGTGTGTTTCCAAACAGTGGTGTTGCTCGATAGACAGCCCTTGC



TTCGTGATGGCGCACCTGAATCAGTTCGTCGGGCGGACTGCAAACCTCTGCCTCTGCGTCC



AGCAAAATTCGAGACTACCGTATCTATCTGGGGTACCCAGCGTGGAGGATTTGAAGTACCG



TCTCATGGGTCCCAGCGATCAGATCCGCGTGCTGGGGTCTTGTGGCCGGCTTTGCATCATC



GACGTGGCCGACGAGATCAATGTATGGGATCCGTCCACTAGGCAAAGTATGCCATTGCCTC



ACTCAGCTGTCGAGATAAGGCGTCCATCGGCTTTGCCTATTTGCGTTTATGGATTTGGGTGT



GACGTTAGGAATGGTGCTTTCAAGTTGTTGAGGCTGATTCAGCTCGCTACTGGGCAGAGAA



GATCCGAAGTCAGTATCTATAATATGATAGATCAAAACTGGAGGCGGCTCCCGGAGATCGC



TTACAATCTGGTTTATCCGGACAAAATGGGGGTTTTCGCGTACGGCCGTCTGCATTTAACAG



TGACTCCGGAGCGGTTGGCATGTTCCCCAGCAAAATTGCTGTTGGCTTTTGATTGTCACACT



GAGGAATTTGAGGAGGTGGAGCTGCCTGATAATATAGATAAAAAGCGTGACATGGTTGTGG



CCGTCCTGGACGGGCGCCTTTGCCTCAGCATTGATAGAATTGACATGTTTGCCGATGTGTG



GATTCTGAGAGTATATGGATCCCAAGAATCATGGGCTTGGGTGTTCTCGATACCTAAATATG



ATGATGATAGGATTCCTCGATTTGTCTGGCCATTGGCTTGCTCCGAGGATCATCATCACGTT



TTGGTGAGAAAGGACAATAAGGATGTCGTTTGGTATGATTTACATGCTAGGTACATCAATAG



GGTAGATATAAGGGGCATGCCAAGTTCCTTTAAAGATGCATATGTGATGTGATTCACTTGAT



CGGAGGAATCGTCGAGAAGCAGCAAGAATTGAAAGAGGAAAATAGGGACCACAGGAAAGTA



CTCCGTGAATAGTAGGTTCTTTTCTTTTGGACTGTCTCAGATTCTTCATAGTTAGCTCTTTTCT



TTTGGACTGTCTCAGGTTCTCTTCTGGGAAGTGGTTCTGTAATATATATATTTGAGCAAAGAA



TAGATGAGATGATTGAGAACTAAAAAAAAAA





90
TCAATAGAATCAACAGATATGTAAGCCAGGTTACTTCACTCGTCCAGAATATATAAGAGTGA



GCAAGCTTTCAAGAAACAGAAAGCACATACGATTGAATACACCAATGGGAGCGTGGTTGGG



TTGTATTCTGGGGCTCATCCCACTTCTAGGCTGCTGCTTGTGGTGGTGGAATGAGATTCGGT



ACGTGTGGCCAGTAAAGCGAAGATGTTCGGGCACCAATGCGAAGTTGCCGCCGGGACACA



TGGGATTTCCCTTCTTTGGAGAACTTTTCACCTTCCTCTGGTACTACAAGATTCTCCGCCGC



CCGGACGAGTTCATAAACTCTAAAAGAAAGAAGTATGGTGATGGAGTAGGGATGTACAGGA



CTCACCTCTTCGGATCGCCTTCCATCATAGCATGCGTTCCATCAGTGAATAAATTTGTCTTCC



GAGCTGAGGACACATTTATCGCTCAATGGCCGAATGTCGATATTATGGGCACGAATTCTCTA



GGGGCGGTTCACGGAAAGGCACATGACAGGCTCAGGAGCTTTGTCTTGAATGCCGTTAACC



GACCTGATGCTCTTCGTCGTATAGCTGCTTTGGTACAGCCGCGTTTGGTTTCTGCCCTCGAG



TTGTGGGCCCAAAAAGGCAGAATTGTTGCTTTTCATGAAACTAAGAAGGTGACCTTTGAGAA



CATCGGGAAGCTGTTTGTGAGCTTTGAGCCGGGGCCACAATTGGAAAAGATCGATGGGTTA



TTTCATGACATGCTCAAAGGAATGAGAGCTCAGCGGCTCAATTTTCCTGGAACTGCATATCG



CTGCGCTCTGCAGGCCCGGAAGAAGGTTGAGGCTATATTCAGAGTAGAGCTAGAGGAAAG



GAAAAGCCGAAGTGAAGAAACTGTGACCGATCTTATGGATGAGTTACGACAAATCAAAGATG



AGGAAGGCAGAAAACTATCTGACCAAGAAGTGCTAGATAACATCGTCAGCTTTGTGTTCGCC



GGTTATGAGTCCACTTCACTTGCATCGATGTGGGCAATTTACTATCTTGCCAAGTCTCCCAA



TGTTCTAAAGAAACTCCGGGAAGAGAACACGTCTGTTAGCCAAAACAAGAAGGGGGAGTTC



ATCACGAGTGAAGACATCTCGAACATGAAATATACTAAAAAGGTGGTGGAGGAGACACTAAG



AATGGCCAATATTTCACATTTTCTTTTCAGATTAGTCACAAAGGACATCGAGTACAAAGGTTA



TAGAATACCAAAGGGATGGAAAGTGATTCTGTGGCTCCGGTACCTCCACACGAACCCGGAA



AACTTTGATGACCCAATGTGCTTTAATCCAGAGAGGTGGAACGATTCTGTGAAACCGGAGG



CATACCAAGTGTTTGGTGGGGGATCGAGAATCTGTCCAGGAAACATGCTTGCGAGAATTCA



GCTGGCTATTTTACTGCATCACTTATCAGTAGAATACAAGTGGGAATTGATCAACTCGGATG



CAGGCTTTGTCTATCTTCCCCACCCCGCACCAGTTGATGAAGTTGAAGTCAGTTTCAGCAAG



TTATGAGGAATGATTTGTTGGAATTTTGTTTGTTAAAACAAAATGAGTGCCTTTTAATTTGTCC



CACATAGAAAATGTGGGAGCAGGAGGGTTAGTTTATTAATGTAGGATTTCCCTTTTATAGTTA



AAAGAGTGATTAGGTGGGGTTAGACCTCACCATGCCAAAAAAAAAAA





91
ACAACGCTCAAGAAGAAAATTTCGAAACGATCTCTCGCCCTCCGTTCCGCTATAAATAGCAC



CCGAGCACCAATACTCTTTCCATCATCTTCAAAACAACTGTCTCTGTCTCTCTCTCTGTCCCT



CTCTCTCTCTCTCTCTCGATTCTCTCCCTAGTCCATTAGTTCTCGTTGCCGCTTCGTAAACAA



GGAAGCACGGCGCACGGCCGTCCGATGGTTGTCCCGTCCAAACTAGCAATTGAACAGTTCT



CCTACGTTATGAACAGCAACGCATTATCATCCCACCAAATCCCTGTCGTGGACCTCTCGAAG



CCCGACTCCAAGAGCCTCATCATCAAGGCCTGCGAAGAGTGCGGCTTCTTTAAGGTCGTGA



ACCACGGCGTCCCGTTGGATTTTATCTCCAGGCTGGAGGAGGAAGCCGTCAAGTTCTTCTC



TCTGCCTCTCCCCGAGAAGGAGAGGGCAGGCCCTCCTGACCCGTTCGGCTATGGCAACAA



GATGATTGGCCGGAACGGAGATGTGGGTTGGATCGAATACCTCCTCCTGACGACCGATCCC



AACTTCAACTACCGCAAGCTCCCATCGGCTTTTAACGAAAACCCAGAAAGATTTCGCTCTGC



TTTGAGTGATTACACATCGGCGGTGAGGTACATGGCGTGTGAGATTCTCGAGTTGATGGCC



GACGGATTAAGGATTCAACAGAGGAATATATTTAGCAAACTTTTGATGGATGAACAGAGCGA



CTCTGTTTTCAGGCTCAACCACTACCCTCCATGCCCGGAGCTTCAATCCTATGTCGATAGGA



ACATGATTGGATTCGGTGAACACACTGACCCACAAATCATATCTGTTCTCAGATCGAACAAC



ACGTCTGGGCTCCAAATATCCATGAAAGATGGGACTTGGGTTTCTGTTCCACCGGACCAGA



ACTCATTCTTCATCAATGTTGGTGACTCCTTAGAGGTGATGACTAACGGGCGATTCAGAAGC



GTGAGGCACAGAGTCCTGGCGAACACCTCGAAGTCCAGGGTCTCGATGATATACTTCGGAG



GACCACCTTTGAGTGAGAAGATAGCGCCATTGCCGTGCCTCATGAAGGGCAAAGAGAGCCT



GTACAAGGAGTTTACATGGTTCGAATACAAGAAGTCCGCCTACAACACGAGGTTGGCTGATA



ACAGGCTAGAGCATTTTCAGAGAGTAGCCGCTTCTTGATGTCGCTCAGAGCGCCAGATGTC



AGCAGCAAGAATGGGTTCTTAGGACAGCAACTTTCATCTTCATTTTGTTCCTTCCTTGTCTCT



CTGTATTTTCCATCGGTACTTTCTTGTTCAAACGATGTAAATTACTCTCTTCTTGTCAAATATC



ACAGAGCGTCCATGGTCTGCCACTATCTCTATTTGACAATTTGTAATATGTAATTTTCAATGA



AGTCACAGTCACAAGTCACCTTTCAGACAAAAAAAAAA





92
GACATTTACAGCTCTGAGAAGGAGGGTAGGGAGTGAGTGTGGTGGGCTTTTTTTTAGCTTCT



TGGGAGCAGCAACAATGGCTGTTTACATCTTCTTGGCTCTTGGGGTGGTGTTGGTGCTCTG



TGTATGCACTGCCTTGCTGAGATGGAACGAGGTAAGGTACATGAAGAAAGGTCTGCCTCCG



GGCACAATGGGTTGGCCAGTCTTTGGTGAGACCACCGAGTTCCTCAAGCAAGGCCCTAACT



TCATGAAAAACCAGAGTGCCAGGTATGGGAGCTTCTTCAAGTCCCACATCCTGGGGTGCCC



CACGATAGTGTCCATGGACCCAGAGGTGAACCGGTACATCCTGATGAACGAGGCCAAGGG



GCTCGTCCCGGGTTACCCGCAGTCCATGCTCGATATTCTGGGCAAGCGCAACATAGCGGC



GGTTCACGGCGCGTCCCACAAGCACATGAGGGGTGCTCTGCTCTCCCTGGTCAGCCCCAC



CATGATCAGGGACCAGCTCTTGCCTAAGATCGATCGGTTCATGCGATCCCACCTCGCCCGC



TGGGACGATGGCTCCATTATTGACCTCCAAGACAAGACCAAACAGATGGCACTCCTCTCGT



CGCTGATGCAAATCGGAATCGACTCCAGCTCCATTTCCCAAGAATTCATACCCGAGTTCTTC



AAGTTAGTCCTGGGCACTCTCTCCCTGCCTATAGACCTCCCGGGCACAAACTACCGTCGAG



GTTTCCAGGCTAGGAAAAATATACTAGGCATGTTGAGGAAACTGATAGAAGAGAGGAGGGC



CTCCCAGGAAGCCCACAATGACATGCTTGGTTGCCTCATGAGGAGTGATGATAACAAATACA



AGTTGAATGATGAAGAGATCATTGACCAGATAATCACCATCATGTATTCCGGGTACGAGACC



GTTTCGACCACGTCCATGATGGCTGTCAAGTATCTCCACGACAACCCGAGCGTTCTTCACG



AATTAAGGAAAGAACACTTGGGGATTAGAGCGAAGAAAAGGCCGGAGGATCCTATCGAGTG



GGACGACCTCAAAGCGATGCGGTTCACTCGTGCGGTCATATTTGAGACCTCCAGATTGGCC



ACAGTTGTCAATGGGGTCTTGAGAAAAACCACTAAAGACATGGAGCTCAACGGGTTCTTAAT



CCCAAAGGGATGGAGGATATACGTTTACACGAGAGAAATAAATTACAATCTGCGATTATATC



CCGATCCACTAGCTTTCAATCCATGGAGATGGCTGGACAAAAGCGTGGAGTGTCAAAACTA



CAACCTAATTTTCGGTGGGGGCACAAGGCAATGCCCTGGAAAGGAACTTGGGATTGCCGAA



ATCTCCACATTTCTTCACTACTTTGTGACCAGATACAGATGGGAAGAGATTGGGGGAGACAA



GCTAATGAAATTTCCAAGAGTAGAAGCACCAAATGGGCTGCACATAAGGGTTTCCCCTCAAT



GCTGACTTCACTCCAATATTCTTATGTACAGAAGAAACCAAAAGAGGAAAAAACAAGAAGCA



CGACAAGTACAGATGTATATTAATGATTTTTGATAGATTTAAGTAGGAAAGTGCACCAAAAAA



AAAA





93
GGGACACGATATCCTCCCATTTAGTCAGCATGATGTGTCAAGATTAAAACCCACAGTGACGG



GGCTCACAAGTATCTTGGCAAATTTGATGGATCCCATTTTTCGTTGGTGCTTCGTGTATGTTT



TCTTTGTGAGTGGTAGCTGCAGGAGCTGTGAGTTTCGATCTCAGTTCGATTAATTTAGCCAA



AGAAAATGAGTGCCGAGAAAGAGAGGGAGAGCCATGTTTTCATGGCCAAGTTAGCCGAGCA



GGCCGAGCGTTACGATGAGATGGTGCAGTCAATGAAGGATGTTGCCAAATTGGATCTAGAG



CTGTCTGTAGAGGAAAGAAACTTGCTTTCTGTTGGATATAAGAATGTTATTGGTGCCAGGAG



AGCATCATGGCGGATTATGTCCTCCATTGAGCAGAAAGAAGAAGCAAAGGGAAATGAGCAG



AACGCGAAAAGGATCAGGGATTACCGTCAAAAGGTGGAGGATGAACTCTGTAGAATCTGCA



ATGACATTCTGTCAATTATTGATGATCATCTCCTTCCTTCTTCTACCTCAGGAGAGTCCACAG



TCTTTTACTATAAGATGAAAGGCGATTACTACCGATATCTTGCTGAATTTAAATCTGGAAATG



AAAGGAAGGAGATTGCTGATCAATCTTTGAAGGCTTACGAGGCTGCTTCAAATACTGCAGCT



ACAGATCTGCCTCCCACACATCCAATCAGGCTTGGCTTAGCACTAAACTTTTCAGTTTTCTAT



TATGAAATTCAGAACTCTCCTGAAAGAGCATGTCACTTGGCAAAACAAGCATTTGATGAAGC



CATTGCAGAGCTGGATACTCTCAGTGAAGAATCATACAAGGACAGCACATTAATAATGCAAT



TGCTGAGAGACAATCTTACATTATGGAGTTCTGATTTGGAAGATCTTGGAGGGGATGATCAG



CCTAAAGGAGAAGAGGCGAAGGTGGAAGATGGGGAACCCTAATTTTGTTGCAATAGCGTTT



CTTCGGCAGTTGGATTGCTTGGAGGATTTTTGATATTCTTCCTGGCGTACTTCCTCAGTCTTT



TTTGTTTTGAGTGGATGTTTATATCACTTTGATGCAATACAGTTTCACTTGCATTGTGAGTTTT



TTTTTTCTAGATTGACATCCTTCGTTGGTTCTCAAAGTA





94
GAGAGCAGGTTGAGGAGGGCGTAAGTTAAATCAGCCTAGATCTCTTCGACTCCATCTTCATT



CAACATAAGCTCGAACTCATCATGTCGGCCCGCAGAAGAACTCTTTTAAAGGTTATCATCCT



TGGCGATAGCGGGGTTGGTAAAACCTCGCTGATGAATCAATATGTAAACAAGAAATTCAGCA



ACCAGTATAAAGCAACCATTGGAGCTGACTTCTTGACTAAAGAAGTTCAGTTCGAGGATAGA



TTGTTCACGTTACAGGAAAGATTTCAGAGCCTTGGTGTTGCCTTCTACCGTGGTGCCGATTG



CTGCGTTCTTGTTTACGATGTTAATGTGCTAAAATCATTTGATAACCTAAATAATTGGCGCGA



TGAATTTCTAATTCAGGCAAGCCCTTCTGATCCGGAGAATTTTCCATTTGTTGTGCTTGGAAA



TAAAATTGACGTGGATGGTGGGAACAGCAGAGTGGTCTCTGAGAAAAAGGCCAGGGCATG



GTGTGCTTCTAAAGGCAACATTCCCTACTTTGAAACTTCTGCAAAAGAAGGCTTTAATGTTGA



AGCAGCTTTCCAATGTATAGCCAAGAATGCATTGAAGAATGAGCCCGAAGAGGAAATATATC



TCCCGGACACAATTGATGTCAATGCTGGGAGACCACAAAGAACATCAGGATGTGATTGTTAG



TCACCAGGGGATTGTACAAGACTTTGATGCTACAAATAATAGTTTACTTGCATCGTAAGATAT



CGAACTTGAATCAGGCCATTGGGGTGTTAATCAAACGTTTACTTGTGTAACCAGTGTAGAGA



TAGAATTGTACTCTAGTAATGCTCATTAAAAGTTAGATTGTTGTTTTGCAATTTCGCAAAAAAA



AAA





95
CATTCCCCAATCCCCTTTTTACTTTTTGCGGAACAGGGACCGGGGGCAGCGATCTATTGACC



AGAGACCAGAGAGCAGGTTGAGGAGGGCGTAAGTTAAATCAGCCTAGATCTCTTCGACTCC



ATCTTCATTCAACATAAGCTCGAACTCATCATGTCGGCCCGCAGAAGAACTCTTTTAAAGGTT



ATCATCCTTGGCGATAGCGGGGTTGGTAAAACCTCGCTGATGAATCAATATGTAAACAAGAA



ATTCAGCAACCAGTATAAAGCAACCATTGGAGCTGACTTCTTGACTAAAGAAGTTCAGTTCG



AGGATAGATTGTTCACGTTACAGATATGGGATACCGCTGGCCAGGAAAGATTTCAGAGCCTT



GGTGTTGCCTTCTACCGTGGTGCCGATTGCTGCGTTCTTGTTTACGATGTTAATGTGCTAAA



ATCATTTGATAACCTAAATAATTGGCGCGATGAATTTCTAATTCAGGCAAGCCCTTCTGATCC



GGAGAATTTTCCATTTGTTGTGCTTGGAAATAAAATTGACGTGGATGGTGGGAACAGCAGAG



TGGTCTCTGAGAAAAAGGCCAGGGCATGGTGTGCTTCTAAAGGCAACATTCCCTACTTTGAA



ACTTCTGCAAAAGAAGGCTTTAATGTTGAAGCAGCTTTCCAATGTATAGCCAAGAATGCATT



GAAGAATGAGCCCGAAGAGGAAATATATCTCCCGGACACAATTGATGTCAATGCTGGGAGA



CCACAAAGAACATCAGGATGTGATTGTTAGTCACCAGGGGATTGTACAAGACTTTGATGCTA



CAAATAATAGTTTACTTGCATCGTAAGATATCGAACTTGAATCAGGCCATTGGGGTGTTAATC



AAACGTTTACTTGTGTAACCAGTGTAGAGATAGAATTGTACTCTAGTAATGCTCATTAAAAGT



TAGATTGTTGTTTTGCAATTTCGCAAAAAAAAAAAAAAA





96
AAGCGGTGGTATCAGCGCAGAGTACGCGGGGACTCCTTATATTGTCTCTCTGTGTTGAATG



CTGTGACCATGAAGCGGGCGAGCTATGGATGCATATCGGACGAAGCCCTGGAGTGCGTTAT



GGGCCACCTGGAGGATCCGAGAGACCGTGGCTCGGTCTCTCTGGTCTGCAAGAAATGGTA



CGACGTGGATGCCTTCACGAGGAAGCACGTGACCGTGGCCTTCTGCTACTCAATACACGCC



AGCGACCTTACCCGCAGGTTCACCAGGCTGGAGTCCCTTACGGTCAAGGGGAAACCCAGA



GCGGCCATGTATAATCTGCTCCCTCACGATTGGGGGGGTTATGCCAAGCCCTGGATAGACC



AGATCTCCTTCACCTGTCTCTGCCTCAAGGCGCTCCATCTGCGCAGAATGATTGTTACCGAT



GATGATCTCACCACTCTCGTCAGGGGCCGCGGTCACATGTTGCAGGAGCTCAAACTCGAGA



AGTGCTCTGGGTTCTCTACAAGGGGGCTTGAGGAAGTGGCTCACGGTTGCAGGTCTCTTAA



GATCTTAATGCTGGACGAGAGTCAAATTGAAGAGGAAAGCGGGGACTGGCTACATGAGCTT



GCTCTTAACAATTCTTCTTTGGAAGTGTTGGACTTCTACATGACAACATTAGAAATGATCAAT



ACCAGTGATCTTGAGCTAATAGTAACAAACTGCCCCTCATTAACATCATTAAAGGTTGGAGA



ATGTGATATAGTTGAGATGAGAGGCGTTCTGAGTAAGGCTACTGCATTGGAGGAGTTTGGT



GGTGGGACATTTAACAACAGTGAAGAGCATGCGACGGAGACCAGTATGATTACATTTCCTC



CAAAGTTGACATCATTGCTAGGACTAAACTTCATGATTGAGGCTGAGATGCCTGCTATATTC



CCAAGAGCTTCGGCCCTTAAGAGATTGGATCTGCAGTACACATTCTTGAGCACAGAAAATCA



CTGTCAGTTGGCAGGGCTCTGTCCTAATCTTGAAATTCTCGAGGTTAGAAATGTTATCGGAG



ACAAAGGGTTAGAAGTTGTTGCTAATACTTGCAAAAAGCTGAAAAGACTTAGAGTGGAACGA



GGAGCAGACGACCCAACTTTGGAGGACGAACAAGATAAAGAAGAGCACATCGCTGATTTAC



CGCTGGACAATGGAGTCAGGGCTTTGCTACGTGGATGTCAAAAGTTGAGTAGGTTTGCATTT



TATATCAGGCCTGGAGGGCTGACAGATACAGGTCTTGGTTATATTGGCGAGTACAGCACTA



ATGTAAGGTGGATGCTTCTGGGTTTTGTTGGTGAAACTGACCAAGGCATTCTCGAGTTTTCC



AAGGGCTGCCCAAAGCTGGAAAGGCTAGAAATTAGAGGTTGTTGTTTTAGTGAATCTGCATT



GGCAGCTGCAGTGCTTCAGCTGAAATCGCTGAAGTACATATGGGTTCAAGGATATAATGCAA



CTGTTACTGGTGCTAACCTTCTAGCGATGGCTCGACCTTATTGGAACATAGAATTTTCTCCT



GCTTTGCAATCGAGTGATGTGTTTGCTGAAGATATGGCAGAAGAAAAAAAACAGGATCAGGT



AGCACAACTTTTGGCCTACTATTCTCTTGCTGGAAGGAGGACAGATCACCCAGAGTCCGTAA



TTCCTTTAGCTCCACTTTTCTGGAATTGCCATCAAGTAACTGTCTTCTAATGTGAATATCTATA



TAAAATATGAGTCCCAAACTTGCATGGAGGTATATAAATATAGAACATGCAAAGATGCTTCTT



TCTCTCCCGTTTCCTTCAGATTTCTTTTGTGATAGTAGTGTGACTAGCACTTACTATGCCTAA



CAGTCTGATGGAAGAAAGGTACGTTGAGACTTATCTCTCTTCCTAATTCTCTATGGCAGTGG



ATGTAGTCATTCTACCTCATAACGTGTCTGTTTATTGATGGAAACTTCTTCCCAGTGTGATGA



ACTCTTCTGGAGAGTTCTAGGGGATGTCTTGGTAGGTTCAATGGGATGTCTTCTGAATATCA



TAATCTTCATATTTCTATCAATGAAGACATTGCTGAAAGAAGTGGTTACCACAAAAATCCATG



TAAGTACAAGGGGTATTGCACTGACAAAAAAAAGTTCGTCCTTGGAAAACTGAAATGTTTATT



TTTTCTTCTAAGCTGGTTACGGATATTTATGGAGTTGAGATGTACGTAATCGCGAAGGTGTA



CAGTCAAAACGGGTATGTTTCATACTTTGACTTGGTGGGCTACAAGTCAAAACTTACAGTGG



ACATACCGTGCTTCTTTTCCTAGTATGCTGGTAACATCAGTGCTGAAGTCAACAGGCCTCTG



GTTTTCAACGACATTAAGTTGTGGGTATGCTTAAGGACATCGAAATACCAAGGGCACTAGAG



TTCAAGTAGACGTTTATAATTTAACCGGCCATTCAACATCCTGAGTTTGTAGCATGAGAAGCC



ACTTGTCTTATTTTCAGTTCTTGGTAGGGAGTTCAGAATTAGGGGGTGATTTGAGAACATCAT



AAATAATGTCATATTTTATATCCAGAGACTTGAACTATTTGTATGTTGTAATTCATATTGGTTG



ACATGATTGATATGTACATATGTTACATGGTATTAGCATGAGGATGTTGATGTTTGACCTTAA



AAAAAAAA





97
GCCGTCGGATCCACTCCCCGGCGGCCACGATCGGTTTGCTTTCCCTTTTGTCGTCTGACAC



CTTTTCCCGACCTACAGGAAGCATAGATTTTTACTGTAAGATGCGATGAGTGAGCAATGAGC



GATGGGCATGTCGCAAAATTAGAGATAAGATCACCAAGGAACCAACAAAATCAGAGGCCGA



GGACCTCGACCAGGGGCTCTCTGTGTATATAGCTTTGAAGTCCATATGAATATATTCACTCC



TTATATTGTCTCTCTGTGTTGAATGCTGTGACCATGAAGCGGGCGAGCTATGGATGCATATC



GGATGGATGCATATCGGACGAAGCCCTGGAGTGCGTTATGGGCCACCTGGAGGATCCGAG



AGACCGTGGCTCGGTCTCTCTGGTCTGCAAGAAATGGTACGACGTGGATGCCTTCACGAGG



AAGCACGTGACCGTGGCCTTCTGCTACTCAATACACGCCAGCGACCTTACCCGCAGGTTCA



CCAGGCTGGAGTCCCTTACGGTCAAGGGGAAACCCAGAGCGGCCATGTATAATCTGCTCCC



TCACGATTGGGGGGGTTATGCCAAGCCCTGGATAGACCAGATCTCCTTCACCTGTCTCTGC



CTCAAGGCGCTCCATCTGCGCAGAATGATTGTTACCGATGATGATCTCACCACTCTCGTCAG



GGGCCGCGGTCACATGTTGCAGGAGCTCAAACTCGAGAAGTGCTCTGGGTTCTCTACAAGG



GGGCTTGAGGAAGTGGCTCACGGTTGCAGGTCTCTTAAGATCTTAATGCTGGACGAGAGTC



AAATTGAAGAGGAAAGCGGGGACTGGCTACATGAGCTTGCTCTTAACAATTCTTCTTTGGAA



GTGTTGGACTTCTACATGACAACATTAGAAATGATCAATACCAGTGATCTTGAGCTAATAGTA



ACAAACTGCCCCTCATTAACATCATTAAAGGTTGGAGAATGTGATATAGTTGAGATGAGAGG



CGTTCTGAGTAAGGCTACTGCATTGGAGGAGTTTGGTGGTGGGACATTTAACAACAGTGAA



GAGCATGCGACGGAGACCAGTATGATTACATTTCCTCCAAAGTTGACATCATTGCTAGGACT



AAACTTCATGATTGAGGCTGAGATGCCTGCTATATTCCCAAGAGCTTCGGCCCTTAAGAGAT



TGGATCTGCAGTACACATTCTTGAGCACAGAAAATCACTGTCAGTTGGCAGGGCTCTGTCCT



AATCTTGAAATTCTCGAGGTTAGAAATGTTATCGGAGACAAAGGGTTAGAAGTTGTTGCTAAT



ACTTGCAAAAAGCTGAAAAGACTTAGAGTGGAACGAGGAGCAGACGACCCAACTTTGGAGG



ACGAACAAGGTTGGATTTCCCACAAAGGGCTTTCCTTGGTAGCTCAAGGCTGCCCCCTTCTT



GAGTACATTGCCGTCTATGTTTCAGATATATGCAACTCAACCTTGGAGACCTTTGGTCAATGT



TGCAAAAATCTCAAGGATTTCCGGTTGGTCTTGTTAGATAAAGAAGAGCACATCGCTGATTT



ACCGCTGGACAATGGAGTCAGGGCTTTGCTACGTGGATGTCAAAAGTTGAGTAGGTTTGCA



TTTTATATCAGGCCTGGAGGGCTGACAGATACAGGTCTTGGTTATATTGGCGAGTACAGCAC



TAATGTAAGGTGGATGCTTCTGGGTTTTGTTGGTGAAACTGACCAAGGCATTCTCGAGTTTT



CCAAGGGCTGCCCAAAGCTGGAAAGGCTAGAAATTAGAGGTTGTTGTTTTAGTGAATCTGCA



TTGGCAGCTGCAGTGCTTCAGCTGAAATCGCTGAAGTACATATGGGTTCAAGGATATAATGC



AACTGTTACTGGTGCTAACCTTCTAGCGATGGCTCGACCTTATTGGAACATAGAATTTTCTCC



TGCTTTGCAATCGAGTGATGTGTTTGCTGAAGATATGGCAGAAGAAAAAAAACAGGATCAGG



TAGCACAACTTTTGGCCTACTATTCTCTTGCTGGAAGGAGGACAGATCACCCAGAGTCCGTA



ATTCCTTTAGCTCCACTTTTCTGGAATTGCCATCAAGTAACTGTCTTCTAATGTGAATATCTAT



ATAAAATATGAGTCCCAAACTTGCATGGAGGTATATAAATATAGAACATGCAAAGATGCTTCT



TTCTCTCCCGTTTCCTTCAGATTTCTTTTGTGATAGTAGTGTGACTAGCACTTACTATGCCTA



ACAGTCTGATGGAAGAAAGGTACGTTGAGACTTATCTCTCTTCCTAATTCTCTATGGCAGTG



GATGTAGTCATTCTACCTCATAACGTGTCTGTTTATTGATGGAAACTTCTTCCCAGTGTGATG



AACTCTTCTGGAGAGTTCTAGGGGATGTCTTGGTAGGTTCAATGGGATGTCTTCTGAATATC



ATAATCTTCATATTTCTATCAATGAAGACATTGCTGAAAGAAGTGGTTACCACAAAAATCCAT



GTAAGTACAAGGGGTATTGCACTGACAAAAAAAAGTTCGTCCTTGGAAAACTGAAATGTTTA



TTTTTTCTTCTAAGCTGGTTACGGATATTTATGGAGTTGAGATGTACGTAATCGCGAAGGTGT



ACAGTCAAAACGGGTATGTTTCATACTTTGACTTGGTGGGCTACAAGTCAAAACTTACAGTG



GACATACCGTGCTTCTTTTCCTAGTATGCTGGTAACATCAGTGCTGAAGTCAACAGGCCTCT



GGTTTTCAACGACATTAAGTTGTGGGTATGCTTAAGGACATTGAAATACCAAGGGCACTAGA



GTTCAAGTAGACGTTTATAATTTAACCGGCCATTCAACATCCTGAGTTTGTAGCATGAGAAG



CCACTTGTCTTATTTTCAGTTCTTGGTAGGGAGTTCAGAATTAGGGGGTGATTTGAGAACAT



CATAAATAATGTCATATTTTATATCCAGAGACTTGAACTATTTGTATGTTGTAATTCATATTGG



TTGACATGATTGATATGTACATATGTTACATGGTATTAGCATGAGGATGTTGATGTTTGACCT



TATTTAAGTGTTCGTAGGTTGTAATTAAAAAAAAAAAAAAAAAA





98
ATTATCTCATCACAAAAATCTTTAATTTGCTCTTTGAACCATTCTGCATCATGTTTACAATAAG



TACCTGTACAACTCACGCACAATCTCTGATATACAGTTTTGTTGCGAGGGGCACCGTGGTGC



TTGCGGAGTACACGGAATTCAAAGGCAATTTTACAGGTATTGCCGCTCAGTGTCTGCAAAAG



CTTCCCGCCAGCAACAACAAGTTCACATACAATTGCGATAATCATACCTTCAACTACCTTGTT



GAAGATGGCTTCGCATATTGTGTTGTTGCAGATGAATCCGTTGGAAGGCAAGTACCAATGG



CATTTCTGGAGCGTGTTAAGGAGGATTTTAAGAGGAGATATGGTGGTGGAAGAGCTGACAC



AGCTGTTGCTAACAGCTTGAACAGAGATTTTGGGTCAAAATTGAAAGAGCACATGCAGTATT



GCATTGACCACCCTGAAGAGATCAGCAAACTTGCAAAAGTCAAGGCCCAGGTTTCTGAAGT



GAAAGGTGTCATGATGGACAACATTGAAAAGGTTCTTGACCGTGGTGAGAAGATTGAACTTC



TGGTTGATAAAACAGAAAACCTTCGTTTTCAGGCTCAAGACTTCCAAAAGAAGGGAACCGAG



TTGCGCAGAAAGATGTGGTTTCAGAACATGAAAGTGAAATTGATTGTCCTTGGAATTGTGGT



GGCCTTGATTCTCATAATTGTCCTTTCAGTATGCCATGGATTCAATTGTTCGAAAAAATGATC



TGGAATAGATAGAGGTCCATTTGAATTGGAACAACTTTTGATTGGCTATGGATGGCATTCTT



GTTCTCCTTTGTATTTCTCTCTATATTATCAGTTTCGGGTGAGATAGTTCTATGATGTTTGCCA



GAGGGTATTTTGCTTGGACAATCACTGGTTGATAGTACATATTGACTAGTATGACAACGAAAT



GTTCTGAATATTCAGTGGGGCAGAGACTCTGATTGCGTACAGCAACTTTAGTGTATTATATC



AAGGTCATGCATTTGTTATAAAAAAAAAA





99
CCCAAATTAAAAGTCGAGCGCTTAATGAAATGATAGTCGTCAGATGACGTCCGAGGGGTTTC



AAATAATTCTTAGCCGTCCATTTCGTAGAACATCGGTACTCCATCAATTTTCCTGCTCATCTT



ACCCTCATTTTGTAATTCTCTTCCTGGCGGAGGGTTTGGAAGCTGGGGAAATCAGGCGAAAT



AAATAGGGAATTGGGACTGTTTGCTGCAAATATCGTTTTTATTCGCCGAAAATCAGCTTTGG



GTCTGTGATTTGGCCTTCTGCGTTCGATTCTGCGCGTTTTCAGCTTCATTTCCAAGGCCTTTT



CGTCAGGTTTGGCTAAAAAATGACCACCGAAAAGGAGAGGGAAAATCATGTATACATGGCC



AAGCTCGCCGAACAGGCCGAACGATACGACGAAATGGTGGATTCAATGAAGAAAGTGGCCA



AATTAGACGTTGAACTGACAGTCGAAGAAAGAAATCTGCTTTCTGTTGGCTATAAGAATGTTA



TTGGTGCTAGGAGGGCTTCCTGGCGGATTATGTCGTCCATTGAACAAAAAGAGGAGGGTAA



GGGTAATGACGTGAATGCAAAGCGAATCAAGGATTATCGTCACAAAGTTGAGACAGAGCTG



TCTAGAATCTGTGGAGACATTTTAACCATTATTGATGAACATCTTATTCCATCTTCTAGCTCTG



GAGAGTCTATGGTCTTCTATTACAAGATGAAAGGAGATTACTATCGTTATCTTGCTGAATTTA



AAAGTGGTAGTGATAGGAAAGAAACTGCTGATCAGGCCCTCAAAGCATACCTGGCTGCTTC



AACCACTGCAACAACAGATTTGCCTCCAACTCATCCCATCAGGCTTGGCCTTATTCTGAATTT



CTCAGTGTTCTATTATGAAATTCTTAACTCTCCTGAGAGAGCATGTCACTTGGCCAAACAAGC



GTTTGATGAAGCAATTGCAGAACTTGATTCTCTTAGTGAAGAGTCGTACAAGGATAGCACAT



TAATAATGCAGCTACTAAGAGACAATCTTACCCTTTGGACTTCAGATTTGCAAGAAGATGGA



GGAGAAGAGCAGCTCAAAGGTGAAGAGATTAAGCCAGAAGATGGAGAGCATTAACACTAAA



AGGGGAGCAGAACGAGTTTATGCATGAGAAGCTATGATCCCATGGTTATTAGGGTGTAGGT



CATTATTTAATTGGTAGTTCTTTCACATTTTCTGCTGCTTTGGAGATGTAGATATTACTTCAGC



CCATTTGGTTATATGGGATTGAATTTTAGCTGATTTGGCATTGGACTTGTTTAGCTATATAGG



TTCAGATGTATAAAACTTTCTATTCTGGGATCTAGGTTTTTTCGGCTGGAACTCGGGTGTATC



TCTTTGGGGATTAAATCTGCATCCGAAGGTGTTGTCCAATTTTAAAACAAAGACCACATCGTA



TAGTTTATATATTTGAATGTGATTACTGTTGAAGCATCAAAAAAAAAAAAAAAAAAAAAAAAAA



AAAAAAAAA





100
GGGTATATAGAGGAAAAGGCAAGCTTTCTGTTTCAAAGGGAAGATGAGTTCAAGGGAGAGA



AAAGCGAGGGTGGGTTTGAAGCTGCCAATCCCAGCTCGGGAAGACGCATTTGCTAAACCAA



TGCCATTGCCGCTTCCACTGCCGAAGCCTCCTAACATGAATGGTGCCTGCAAGTTGCCCTG



CGTTCCTCTTGAAGAAGTTACACTGGAAGATCTCCAGAAGATTTCAACTTTGGGGTGTGGGA



GCAGTGGTAAAGTGTACAAGGTTAAGCATGCCAAGACTGGGAAAATTTATGCCCTCAAAATC



ATTCAGGAAAAGCACGAGCTTGCTGTCCGAAAGCAAATAATGAGGGAAATGGAGATTCTCC



GAAGGGCGAATTCTCCACACATCGTGCAGTGTTATGGCATATTCGATCGAGGAGGAGAGAT



CTCGTTTGTGTTGGAGTACATGGACGGTGGAACCCTTGCGCAGGTTCTTCAAGCCCACAAG



AAAATCCCAGAACACTATTTGGCTGAGGTTGCCAGACAGGTGCTGAAGGGCTTGCATTACC



TGCACCAGAACAAAATTGTTCACCGTGATATAAAGCCCTCCAATTTGCTGATCAACAAGAGA



AGAGAAGTGAAGATTGCCGATTTCGGTGTCAGCACTGTGTTGGCTCACACTTTGGCCCAGT



GTAATTCCTTCGTGGGTACTTGTGCTTATATGAGTCCTGAAAGGTTCGATCCTGATGGGTAC



GGTGGAAAGTATGATGGATGCTCTGCAGATATATGGAGCTTGGGATTATCTTTGCTGGAATG



TGCGCTTGGAAGGTTCCCTTGTTTGTCTCCGGGGCAGAGGCCTGATTGGCCTACTTTAATG



GTGGCCATCTGTTTGGGCGACCCTCCATCCCCGCCACCTGATGCATCGCCAGAGTTTCAGA



GTTTTATCAGATGTTGCCTTCAAAAGGATGCGTTACTTCGCCATACTGCACATCGGCTGCTT



TCGCATCCTTTTTTGAAGAAGTATGAACAGCAATCTTGTGACCTGGCTCCCCTCCTGCAGTC



TTTACACTTGTAGAATTTTGAATTCCTTTTTGTATTTTGAATATTGTACCTGAGAGCATTCATT



GACTTGTAATGAATGTACACTCTCTTGGTCTCTGGAACTCTATTTTGTAAATCATTTTGCAAT



GCAACTGCAGTCTTCTTTACAAAAAAAAAA





101
AAAAGGTTTCCATCTAGACCGTCCATACCCTCACAGGGACGACGCACGGGGTGACGTGGAA



CACCTGGTTCGGCTGACACGTGTCAGCAATGTTCATAGCATGACCGGCTACAAAAGGGACT



CATTGATCTTTCAGAAGAATTGAGCTTTTCTTATTGGGGAGCGAGAGGTGAATTCGTTCACA



AATCATCGTCTGGTCTGCGATTGGACTTTTGCGATCATTAAATTGTCAGCTACGGATCTTCGT



TCTCACTCCTCTGTTGATCCAAAAGCTGCGGAGCCCGGCAATCTGCAGAAATTTTTTTGAAG



AATTTGAGTTTTTGAGACCGGCTATCTGCAGAGAAAAATTCGAAGAATTTGAGTGCCAGCAT



CGAATCCCCGGACTGAATGGCGACCACTGGCACCAATAACATGCAGGCTAAGCTGGTGCTT



CTTGGTGATATGGGTACTGGAAAATCGAGCCTTGTTTTGCGATTTGTCAAAGGCCAATTTTT



GGATTATCAGGAGTCGACAATTGGAGCAGCATTTTTCTCACAGACACTAGCAGTGAATGAGG



TGACTGTAAAATTTGAGATATGGGACACTGCAGGACAGGAAAGATATCATAGCTTGGCGCC



CATGTATTATAGGGGTGCGGCAGCAGCTATAATTGTTTATGACATAACAAATTTGGATTCTTT



TGTCCGAGCAAAGAATTGGGTGCTGGAGCTTCAAAAACAAGGGAACCCAAATTTGGTTATG



GCCCTTGCTGGAAATAAGGCTGATATGGCAGCAAAGAGGAAGGTCGAACCAGAGGAAGCT



GAAACATATGCAAAGGAAAATGGTCTATTTTTCATGGAAACCTCAGCAAAGACGGCGCAGAA



TGTCAATGAACTGTTCTATGAAATTGCGCGAAGATTACCTAAAGCCCGACCAGTGCAGCAGC



CTGCAGGCATGGTTCTCACAGATAGACCTGCAGAGAGTGCTAAAACTTACTCTTGCTGCTCA



TAAGCCCTCGATTTCGTGTCACTGAAAATTTGAAGATGCCACCTTCAGCTGTAAGCAGTTATT



CTATGCACATTATTTGCTACGGCTGTGATATCCGGAGGAGATGGTGGGGGGGGGTTCAAGC



TTTGTTTAGAACTTGCTTTAAGGAATTTTAGCGTTTATGGAGAAATGTAAAAATACATATTTTG



GTGCTTAAATTATATCTCTGTAGTGAGTTGCGATGGTCATTGAAAGCCTTCTGATACAACTCT



TTGGTGCCATTTATGATGAGCTTATATTTAAATTGAAAAGCTGTGCTCTGTTTAAATACTCCG



AGCTCGGAGAGGGTAGATCTCTTTTGATCCTGCAATGACCTCTTGTGTTTGATTGATTGTAC



TAGACTATACTATGGGACGCCTAACCTGTCATTTAAAAATGTGAGACTGTTCGTAACAAAGTC



TTGCTATTGCTACCTTGCATTGAAACTAATGTTTTCTTGAAGCATGATGAATAAATTGGCTAAT



AGTGTAGTCGTTCTGAAGAAAAAAAAAATTCTTCAATGGTAGAATTGGATATTTGTGATCTTT



GAACTTGGAATTGATATGATCAGTCATTGTGTATTATATTTCTTTCTCAGAGGATGATAATCG



GTTGAATTTGAATATAAATCTCTCC





102
GAAAGAAGAAGAGTACAACATCACAAAAGGCCAAAGAGCAGGTCGAGGCTGCTCCCACTGA



AATCTTTCGCCATTCGACTGTTAGAAAGCACAACAAAGCAGTCGTCAGCTTTTGAATACCAAT



TCCGTGGGCGATCGGAATCCTCCCTGCCCCTGCATCCTTTCGGCAGCTCGCGGAATAACAA



GCCTCTGCAGGTTTGGGGTTCTTGGATGCAGAATTAGAAGACAGCGCCATGGAAACGGGC



GCTGCGGCAGTAGACGGTCACATACAGGGAATTCTGACCCATGGCGGTCAGTATGTGCAGT



ATAATATATTTGGGAACCTCTTCGAGGTCTTCTCCAAGTACATACCCCCCATACGACCTATC



GGCCGCGGCGCATATGGCATTGTTTGCTCGGCAGTGAACTCGGAGACAAATGAGGAAGTT



GCAATTAAGAAAATTGGCAATGCTTTTGATAACAGAATTGATGCAAAGAGGACTCTTCGCGA



AATTAAGCTTCTATGCCATATGGAACATGAAAATATCATTGCAATTAAAGACATCATTCGGCC



ACCTCAGAGAGAAATTTTTAATGATGTTTATATTGTATATGAGCTCATGGATACAGATCTCTA



CCAGATTATACGCTCCACTCAACCATTAACAGAGGATCACTGTCAGTACTTCCTATATCAACT



ATTGAGAGGGCTGAAGTACATACACTCAGCAAACATTCTGCATAGAGATTTAAAACCCAGTA



ATTTGCTTCTAAATGCAAACTGTGACCTAAAAATATGTGATTTTGGGCTTGCACGGACTACTT



CAGAAACGGACTTTATGACAGAGTATGTTGTTACTCGCTGGTATCGTGCACCGGAACTACTA



TTGAATTGTTCCGAGTATACAGCAGCCATTGATATCTGGTCAGTGGGCTGCATTTTTATGGA



GATACTAAAGCGGGAGCCCTTGTTTCCTGGTAAAGATTATGTTCAGCAATTAAGGCTCATCA



CTGAGTTAATTGGTTCACCAGATGACTCTGATCTTGGCTTTTTACGGAGTGACAATGCTAGA



AGATACATCAGGCAACTTCCACAGTTTCCTAAGCAACCTTTTTCTCAGAAATTCCCCAACATG



GCTCCAGCAGCTGTAGATTTACTTGAAAAAATGCTTGTATTTGATCCAAGCAAACGCATTACA



GTTCAAGAGGCCTTGAGTCACCCTTACTTGGCAAGTCTGCATGACATCAATGATGAACCCAG



CTGCCCCACTCCTTTCAACTTTGATTTTGAGCAGCCCTCATTCACCGAGGAACATATAAAAG



AGCTCATTTGGAGGGAATCTCTTAACTTCAACCCAGACATGATGCAATAGCTGGAGCAGATG



GGCTTGATATTTATCTTGTAATTCCTCCTTACTGGTTATGTTATTATGCTTCTGCAAGGCAATC



CTTCTCTTGGTTTGTTATTGCCTTCTGAAGGTTTGCAGATCATTGTGCAGGTGTGGAAACTTG



TTTTATTAGAGTTAGGTTTGCTTTTATTCTTTGAAGGTCTGGTAAAAGAAAAGGAATTGATGG



ATATGCTTACAGATCATTGTGAAAATTGTGTATTCCTAATCTGAGCCAACTATTGGCCTCTAC



TTTATTATCATTGGACATTAAAATGTAACTGGGAAACTTAATAATCTAAAGTAAATGCTGAAG



GAATTTGTTAAAAAAAAAA





103
GGTTTTAAAATCGTGGCATATGCGGGTGACAGAACAACCAGAAGATTACCTCTTCAAAATTG



TTTTAATAGGCGACTCTGCTGTGGGAAAATCCAATCTACTTGCAAGATATGCCCGGAACGAG



TTCTATCCCAATTCCAAATCCACGATCGGAGTGGAGTTTCAGACACAGACCATGGAAATCGA



TGGTAAAGAGATCAAAGCACAGATCTGGGACACGGCCGGCCAGGAGCGCTTCAGGGCCGT



GACCTCGGCATATTACAGAGGAGCCGTGGGAGCTCTTGTCGTGTATGACATCAGTCGGCGC



CAGACATTCGACAATATTTCTCGGTGGCTCGATGAGCTGCACACGCATTCTGATATGAATGT



GGTTACAGTAATAGTTGGCAACAAAACCGACCTAATGGATGCCAGAGAAGTTTCTACAGAAG



AAGGAGCAGCATTGGCAGAGGCTCAGAACTTATATTTTGTAGAGACCTCAGCACTGGATTCT



ACAAATGTCCAAGTAGCTTTTCAAACAGTTGTCAAAGAAATTTACAACATTCTGAGTAGGAAA



GTATTGTCATGTCAGGAACAGAAACTTGAATCAAAATTAACTAATGGAAAAACAGTCATTTTG



CATGAAGCAGAAAGTGAATCTACCACGAAACAAACTGGAAAGTTCTGGTGTTGTTCTGGTTA



GCTTTGTTTATTTCAATACTTTCCAAGGGGTTCGCAAGGTCTTTTGCAATGTCTAGCCAGATT



ATTCCATGTGAAAGAATTCTTAAAAGTGTGATGCGG





104
CTGAATGGTGTTTTTCGGATCTTAAACATAAATTCATTATCAACTGCATTTCAAAAGCTCGGT



TTCTTCCGTAGTATTCTTGCCTCCGTCGAGGCCTGAATCGGTCGATTGTGGTTATTGAAGAT



ACATTTTAGGTTTTAAAATGATGTCATATGCGGGTGAAGAACAACCAGAAGATTACCTCTTCA



AAATTGTTTTAATAGGCGACTCTGCTGTGGGAAAATCCAATCTACTTGCAAGATATGCCCGG



AACGAGTTCTATCCCAATTCCAAATCCACGATCGGAGTGGAGTTTCAGACACAGACCATGGA



AATCGATGGTAAAGAGATCAAAGCACAGATCTGGGACACGGCCGGCCAGGAGCGCTTCAG



GGCCGTGACCTCGGCATATTACAGAGGAGCCGTGGGAGCTCTTGTCGTGTATGACATCAGT



CGGCGCCAGACATTCGACAATATTTCTCGGTGGCTCGATGAGCTGCACACGCATTCTGATA



TGAATGTGGTTACAGTAATAGTTGGCAACAAAACCGACCTAATGGATGCCAGAGAAGTTTCT



ACAGAAGAAGGAGCAGCATTGGCAGAGGCTCAGAACTTATATTTTGTAGAGACCTCAGCAC



TGGATTCTACAAATGTCCAAGTAGCTTTTCAAACAGTTGTCAAAGAAATTTACAACATTCTGA



GTAGGAAAGTATTGTCATGTCAGGAACAGAAACTTGAATCAAAATTAACTAATGGAAAAACA



GTCATTTTGCATGAAGCAGAAAGTGAATCTACCACGAAACAAACTGGAAAGTTCTGGTGTTG



TTCTGGTTAGCTTTGTTTATTTCAATACTTTCCAAGGGGTTCGCAAGGTCTTTTGCAATGTCT



AGCCAGATTATTCCATGTGAAAGAATTCTTAAAAGTGTGATGCGGTAGGAAGTTTTGCTCTA



CTACTGGTTATACAGCAGCTTGAAACAAAACTTGGGAATTCTCATTTTTGGCTGGTTTTGAAG



CAATTTCAGATTGAAGGGAAATGCTGATTCATAGCAAAAAAAAAA





105
ACACGAAAAACCAAAAGGTTGCTCTAACATTGAATGAAAATCCATTGCTCAACTGCTCATTTA



AATGAGGATGCATCACACTACTGTGCCTGATCTGTATCGGGAACCCATTTGAGTAGATTTGA



AATATACATAACTAACCCATTTGAGTAGATTTGAAATATACATAACTAGCGACAAGTCAAATC



TCGTTATCTTCTGACCATCTTCTCGATTTCCCTGAAGGAAGCTTGGATTATGGCGACTCGGA



AACGGACATTGCTGAAGGTCATCATTCTGGGCGATAGCGGGGTGGGGAAAACATCACTAAT



GAATCAATATGTGAATAAGAAATTCAGCAACCAATACAAGGCAACAATTGGAGCAGATTTCC



TGACCAAAGAAGTGCAAGTGGAAGACAGACTTGTGACAATGCAGATCTGGGATACAGCTGG



GCAGGAGCGTTTTCAGAGTTTAGGTGTTGCCTTTTATCGGGGTGCAGACTGTTGTGTCCTTG



TCTATGATGTGAATGTTATAAAATCATTTGATAATCTGGACAACTGGCACCAGGAATTCCTTA



TACAGGCAAATCCTAATGATCCAGATAATTTCCCATTTGTGGTATTGGGAAATAAAACTGATG



TTGATGGTGGTCATAGCAGAGTAGTGTCTGAGAAGAAGGCAAAGATGTGGTGTGCAGCCAA



AGGAAACATTCCATATTTTGAAACATCAGCTAAAGAGGACATGAATGTGGAGGAAGCTTTTC



AGTGCATTGCTAAGAATGCATTAAAAAATGAGCCAGATGAGGAAATTTATCTGCCAGAGACT



ATAGATGTGGGTCACATCGGTGTACAGAGGCCATCTGCATGCCAGTGTTGAAGATCCATGA



GTAAATGAGGTAAATATGGACAAGGTGCCAGATAATTTTTACATGTCTAGCTGGTTGGTAAC



AATGGTATTATTCTTGTACCAGAATGTGAAATTTTTGGTAATTCTTGATTCAAGAATCAGATTG



GAGAAACTTATATATGGTTTGGATTCTGGAATATTCATTATAATGGGACCTATGCACTAAGAT



TGAATATTCCCCTTCAAGAGAGTTAAGGGATGCCTACAGTAAGTTTCTTGTGGTGAGCTAAA



ACGAAGTTGTAACTGCAGTCTTCAGAAAAGGCTGTATCAATCCGGTCTTAACCAGACAGCTC



AAAAGTGTCTGAATTAGCTTGTGTTTATTCATGCTCTCTGTATTCGTATTTTCCAATGCATTAT



ATATGCTCTCTTGTAATAGCTACCCTGCTTTCACTTGGATACTGTTCGCTGTTAATGCTTGAA



ATTTAATATAAATTTCTCACCTCTGTTTGTCCATGACTCCAAAAAAAAAA





106
GGTTGCTCTAACATTGAATGAAAATCCATTGCTCAACTGCTCATTTAAATGAGGATGCATCAC



ACTACTGTGCCTGATCTGTATCGGGAACCCATTTGAGTAGATTTGAAATATACATAACTAGC



GACAAGTCAAATCTCGTTATCTTCTGACCATCTTCTCGATTTCCCTGAAGATACTGGTCTGAA



ATTGAAGGAAGCTTGGGATTATGGCGACTCGGAAACGGACATTGCTGAAGGTCATCATTCT



GGGCGATAGCGGGGTGGGGAAAACATCACTAATGAATCAATATGTGAATAAGAAATTCAGC



AACCAATACAAGGCAACAATTGGAGCAGATTTCCTGACCAAAGAAGTGCAAGTGGAAGACA



GACTTGTGACAATGCAGATCTGGGATACAGCTGGGCAGGAGCGTTTTCAGAGTTTAGGTGT



TGCCTTTTATCGGGGTGCAGACTGTTGTGTCCTTGTCTATGATGTGAATGTTATAAAATCATT



TGATAATCTGGACAACTGGCGCCAGGAATTCCTTATACAGGCAAATCCTAATGATCCAGATA



ATTTCCCATTTGTGGTATTGGGAAATAAAACTGATGTTGATGGTGGTCATAGCAGAGTAGTG



TCTGAGAAGAAGGCAAAGATGTGGTGTGCAGCCAAAGGAAACATTCCATATTTTGAAACATC



AGCTAAAGAGGACATGAATGTGGAGGAAGCTTTTCAGTGCATTGCTAAGAATGCATTAAAAA



ATGAGCCAGATGAGGAAATTTATCTGCCAGAGACTATAGATGTGGGTCACATCGGTGTACA



GAGGCCATCTGCATGCCAGTGTTGAAGATCCATGAGTAAATGAGGTGCCAGATAATTTTTAC



ATGTCTAGCTGGTTGGTAACAATGGTATTATTCTTGTACCAGAATGTGAAATTTTTGGTAATT



CTTGATTCAAGAATCAGATTGGAGAAACTTATATATGGTTTGGATTCGGGAATATTCATTATA



ATGGGCCCTATGCACTAAGATTGAATATTCCCCTTCAAGAGAGTTAAGGGATGCCTCCAGTA



AGTTTTTTGTGGTGAGCTAAAACGAAGTTGTAACTGCAGTCTTCAGAAAAGGCTGTATCAAT



CCGGTTTTACCCAGACAGCTCAAAAGTGTCTGAATTAGCTTGTGTTTATTCATGCTCTCGGTA



TTCGTATTTTCCAATGCATAATATATGCTCTCTTGTAATAGCTACCCTGCTTTCACTTGGATAC



TGTTCGCTGTTAATGCTTGAAATTTAATATAAATTTCTCCCCTCTGTTTGTCCAAAAAAAAAA





107
GCAATATTTTAAAAAAGATGAACAGTGAGATAAAATGAATAATTGCTTCTCATGAATCCGAGC



AGCTGAATTGTGCAAGGGACATGTGCTTGCTCAATATAATTTTATTATTGTTCTTCCATAAAG



GCTCTCACGAGCCAAAAGAAACACGAAAAACCAAAAGGTTGCTCTAACATTGAATGAAAATC



CATTGCTCAACTGCTCATTTAAATGAGGATGCATCACACTACTGTGCCTGATCTGTATCGGG



AACCCATTTGAGTAGATTTGAAATATACATAACTAACCCATTTGAGTAGATTTGAAATATACAT



AACTAGCGACAAGTCAAATCTCGTTATCTTCTGACCATCTTCTCGATTTCCCTGAAGGTTCTC



GCATTTTCTTCTTCTCTAGGATCATTTATTAACTCAGTTGTCATCCACATTTGATTGCTGATAC



TGTGCATGGTTCTGAGAATCTCAGAATTGACAATTGGGTATGTATATACTGGTCTGAAATTGA



AGGAAGCTTGGATTATGGCGACTCGGAAACGGACATTGCTGAAGGTCATCATTCTGGGCGA



TAGCGGGGTGGGGAAAACATCACTAATGAATCAATATGTGAATAAGAAATTCAGCAACCAAT



ACAAGGCAACAATTGGAGCAGATTTCCTGACCAAAGAAGTGCAAGTGGAAGACAGACTTGT



GACAATGCAGATCTGGGATACAGCTGGGCAGGAGCGTTTTCAGAGTTTAGGTGTTGCCTTT



TATCGGGGTGCAGACTGTTGTGTCCTTGTCTATGATGTGAATGTTATAAAATCATTTGATAAT



CTGGACAACTGGCGCCAGGAATTCCTTATACAGGCAAATCCTAATGATCCAGATAATTTCCC



ATTTGTGGTATTGGGAAATAAAACTGATGTTGATGGTGGTCATAGCAGAGTAGTGTCTGAGA



AGAAGGCAAAGATGTGGTGTGCAGCCAAAGGAAACATTCCATATTTTGAAACATCAGCTAAA



GAGGACATGAATGTGGAGGAAGCTTTTCAGTGCATTGCTAAGAATGCATTAAAAAATGAGCC



AGATGAGGAAATTTATCTGCCAGAGACTATAGATGTGGGTCACATCGGTGTACAGAGGCCA



TCTGCATGCCAGTGTTGAAGATCCATGAGTAAATGAGGTAAATATGGACAAGGTGCCAGATA



ATTTTTACATGTCTAGCTGGTTGGTAACAATGGTATTATTCTTGTACCAGAATGTGAAATTTTT



GGTAATTCTTGATTCAAGAATCAGATTGGAGAAACTTATATATGGTTTGGATTCTGGAATATT



CATTATAATGGGACCTATGCACTAAGATTGAATATTCCCCTTCAAGAGAGTTAAGGGATGCC



TACAGTAAGTTTCTTGTGGTGAGCTAAAACGAAGTTGTAACTGCAGTCTTCAGAAAAGGCTG



TATCAATCCGGTCTTAACCAGACAGCTCAAAAGTGTCTGAATTAGCTTGTGTTTATTCATGCT



CTCTGTATTCGTATTTTCCAATGCATTATATATGCTCTCTTGTAATAGCTACCCTGCTTTCACT



TGGATACTGTTCGCTGTTAATGCTTGAAATTTAATATAAATTTCTCACCTCGGTTTGTCCAAAA



GAAAAAAAAAAAAA





108
GGCGATACGAGGCAGCCAGCTTTTTACACCTGTTGATTGGAGAGCCCAAACAGAAAATAGC



CAAACACCCGATGCATTCGCAGGTCGTGGGGAATTCGTGAGTGGAGGAAATCGATCCACTC



TCTATATGTAAATCGCTATCACACACATCGCACTCTGCGAAAAAGGGAGAATTTTTTTCCTTC



AAAACGAGATGAAGATGGGTTAAAACGGTGGTATGTGGGCCGATCTATAGCAGAAACTCTG



TAAAAACCCTATTGAATTTCAATGGGGCAGGGCGCCTCGTCTTCTTCCGTGGTACATGCCTT



AAAACGCGAAGAAAACGATGTGAATTTGGGCAGAGATTACAGCCTGAGCCTTCCGGATGAA



TGCCTGGCCTGCATCTTCTGCACTCTGAGCTCCGGCGACCGACAGCGATGCTCTCTGGTGT



GCAAGAGATGGTTTCTTGTCGAGGGTTCGAGTCGCCAGCGGCTATCCTTGGATGCCCGGTT



GGATATCTCAGCGGCAATCCCAGGCCTCTTCAGCAGGTTCGATCATGTGACCAAGCTCGCT



CTCAGGTGCGATCGCAGAATGGTAAGTATAAAAGACGAGGGCTTGATTAAAATTGGAATTCA



TTGTAAGAGCCTTAAAAAGTTGAAATTGAAGGCCTGTAGGGAGTTATCTGATGTGGGTATCG



AGGATTTTGCTAAGCTGTGTACTGGTCTGAAAAAATTGTCGTGTGGGTCTTGTACTTTTGGG



GCAAAGGGGATGAATGCTGTTCTTAAGTATTGTGTAGGGTTAGAGGAGTTGTCTGTTAAGCG



GTTGAGGGGTTTAGCTGACGGGAGTGTCGATGTTATCGGCCCCGGGTGTGCGATGTTGAA



GAGTATTTGCCTGAAGGAACTTTTTAACGGGCAGTATTTTGGACCCCTGATTGCTGGATCGA



AGAACCTGCGTACCCTCAAGCTGTTTCGATGTTCAGGGGATTGGGATAAGCTGCTTGAGGT



GATCACTGATCATGTGAGTGGATTGGTTGAGGTGCATCTCGAGAGGTTGCAGGTAAGCGAT



CGGGGCCTGATGGCCGTTTCGAGGTGCGCAGGATTGGAGGTCTTGCATCTGGTGAAGACT



CCGGAGTGCACGAACGTCGGGCTTGCGGCGATCGCCAACAACTGCAAAAATCTACGGAAG



TTGCATATAGATGGTTGGAAAACGAATCGTATAGGCGATGAGGGGCTTATTGCCGTGGGGA



AAAAGTGTCAAAATTTGCAGGAGTTGGTGTTGATTGGCTTGAATCTGACTGCAACGAGCTTG



AGTCCTCTGGCTTCCAATTGCCAGGTCTTGGAGAGGTTGGCTCTCTGTGGCAGTGAGACGA



TCGGGGATACGGAGATCTCTTGTATCGCTGCGAAATGTCTTTCTTTGAAGAAGCTGTGCATC



AAGGGTTGTCCAGTTTCGGATGATGGGATCGAGTCCTTGGTCAGTGGGTGTCCAAAGTTGG



TGAAGGTGAAGGTGAAGAAATGCAGAGGGGTTACTTGGGAGGGCGCGGAACGGTTGAGGG



CGAATAGAGGATCTTTGGCTGTTAACTTGGATACGCCGTTGCCGAATCCAGTTGTTGGTCCA



CCTTCGGGAGCTGGTGCCGCTGAAGCTAGTGCCCCTTCAACCAGCAAATCATCAATAGCCA



AGGCAAAGTTTTCTCTCTTTGCTGGAAGAAACCTTGTGGCCTGTGCTTTTCTGAGATTGTCA



AATGGATCCGATGGAGATCATAAACGAGTGTCTGCAAATGCATGAGTTGTTTATCCTATTGG



AAAAACAAGGCCAAGTCATGTTATTAAGCTCTGCTGGAGTTGCTTTACTGCTCATGGATCTTT



TGGCATAGTGTTTCCTGATGCACGGTGCAGATATATGACTTGGCATCTAGATCAGGTAATAC



TAATAATGGAGCAGGAAAACATTGTTTGCAATGGGCTATTTGCGTTAAGGTTTTCTTGTGTGC



TAAGCAGTTAGTCAATCTGGCTGTTGAACATGTTCTTCCAAAGAACATAAACCGCTTGTATGC



GGTGGACATCCGATGTTTGGCTTTGTCTTATTGGATGCGTCGTGGAGTTAGTTCCTTTGTCC



ATTGAACAATCTTCCTTAAGGGACTGAGTTGACTTGTTTGCAATGGAATGTGCACAGCCAGG



CTTTCAGATGAAAGCTCTGTCGGCTGTACAGGTAGGTAGTTTCTGGACAAAGTAGATCTCTG



GGTTGTCAGCTTGAGATTCTAAGTGCAATGCAAGAGAATCTGTGAAGGGATGGAATTAATTT



GTGCAATGTTGGCAAAATAATCAATATGCATTTGTCATACATAATGTCTAAAAGAGCTCTCGT



TTCTGATAGAAACAGTATATTTGAAATGGGTATGTGTGCAGCGGCCAGCCACACTTTCAGAT



GAATCTTTCTTTGTTATACCAGTAAACAGGTATTAAGTCTAGTGAAAAAGGAGATCACCAGAT



TTTTGTCAAATGTTTAATTAAGTCGTTTGCTGTAAGTTCTTCAGTAGATCCAATATAATCTGCA



CAAGGTTGGAATTAAAAAAAAAA





109
GAGTTGTCCCAGTTGGGTACACAGCCAACTCCAGCTAACGCGCAGTCCCTGCTAGGTGCCT



ACCGGATGCTGCTGACTCTGCCGTCAATTTCCCTTTTATTATATACCACTTTATTGCTTCGCA



AGATTCAGCCAAGTGGATCTGGCTACAGATTTTCTCATCTCCAAGGCTGCCAGAACTCAAAT



CTGATCGCACACGACTCTCTCCTTTGGTCATTTTTGGGGCTTTTGGGTGTTTATTGCGGACA



CCCAATGCCCAAAGATCTGGATCCAATACCCATTTCCTAGATCAGCGTAAACAACGCGTCGG



TTTGATATTCAGCGTGTATCCGTCCATTCAACGGGAGATTGGGTTTCTGCGATACATTCGTT



GTGTATCCATCCAACAGTTATTGGGCGTCTGCAGTAGGTTGATATTCATTATCTATCCCTTGA



ACTAGCTATTGGGTTCCCGCAATAAGCCGATATTCATCGTGTATCCATTGAAAGGCTATTATT



TTTCTGCAATAGCTTGATATCCATTGTGTATTCATCCAGCCAGATATTGGATGTCTATATTAG



GCCGATATTCATTATCTACCCATTGAACCGGCTATTGGGTTTCTGCTATAAGGTGAAATTAAC



TGTGCAGCTATTCATTCAGGTTTTGGATTCTTGAGCACACCCAAGAGTTCGTTTGGTGTTGT



GTGGAGATGGCTTACAAAGTCGATGATGATTATGACTATTTGTTTAAGGTGGTCCTGATTGG



GGATTCTGGTGTCGGTAAGTCCAATTTGCTCTCCAGATTTACTAGAAATGAATTCAGCCTGG



AGTCCAAATCTACAATTGGTGTGGAGTTTGCAACACGGAGTATTAATGTTGATGGGAAAATG



ATCAAGGCCCAGATATGGGACACTGCTGGTCAGGAAAGGTACAGAGCCATCACAAGTGCAT



ATTATCGCGGTGCTGTTGGTGCGTTGTTGGTTTACGACATCACTCGACATGTCACCTTCGAA



AATGTTGAGAGGTGGCTCAAGGAGCTTCGTGATCATACCGAGCACAACATTGTGGTGATGC



TTGTTGGTAACAAGTCCGACTTGCGCCATTTGAGGGCTGTTTCCACAGAAGATGCCCAGAC



CTTTGCAGAAAGAGAAGGGCTCTATTTCATAGAGACATCTGCACTAGAGTCCACCAATGTGG



AAAATGCTTTCAAGCAGGTGCTGACTCAAATATACAGGATCGTTAGTAAGAAGGCCCTGGAT



GTTTCGGAAGATAATGCAGCAGCTCCCGCACAAGGTCAAACAATAAACGTGAAAGATGATGT



CACGGCAACTAAGAAAGTTGGTTGCTGTAGCACATCATAAGCAGCAGGTGAAATCCCTCAG



GATTCGGATTTCAGTTCAGATGCAGGACTATTATGTTCATTGGAAAAACTTTGACCGATTTCT



GGAATCACTTATAGTTGAATTCGAGCAGGTTCTCATTTGGTATGATTTTAAGAGGCTTCAAAG



TTGGACTCACTTAGTAACTAGTTTTAGACGGAGAGAAGAGTGTTGTAGCCAATGGTGGGTAA



TCTGAATTGTATATCTTATTCTTGCTGTATTCTCTGCAACTTCTAGTGTCCCAGTACTATCTTT



GTTCTAGTCAGTGGCTTCAGTTTTACATGCCATCATTTGTATCCATTATTTGATTTTATTCTCA



CAGTGGAACAGATTTTTTTTGATCTTAGTTAATATTAAAAAAAAAAAAAAA





110
ATAATACCCGATGCCAATTGTTTATAGCACAGAGTGCTCTTCTTCCACTGCTCTCTAGCTCTC



GTGGCACACAAGGAGGAGTTTCAGAGAGGCCAGGCCAGTCTGCGGATCTGTGTTCAGACA



AGATGAGTAGCGACAAGGAGAGGGAGAATCATGTTTACATGGCCAAACTCGCTGAGCAGGC



CGAGCGATACGATGAAATGGTTGAAGCCATGAAGAGGGTCGCGAAGCTGGACGTGGAGTT



AACTGTAGAAGAAAGGAATCTTCTCTCTGTTGGGTACAAAAATGTGATTGGGGCTCGGCGA



GCTTCCTGGAGAATAATGTCCTCTATTGAGCAGAAGGAGGACGCGAAGGGCAATGATCATA



ACGTGAAACGTATCAAAGAGTATAGACAGAAAGTTGAAGCAGAGCTTTCTAAGATTTGCCAT



GATATTATGACCATAATTGATGAACACCTTATTCCTTCCTCCAATATTGGCGAATCTACTGTTT



TCTACTATAAAATGAAAGGAGACTACTACCGTTATCTGGCTGAATTCAAAACAGGAAATGAG



AGAAAAGAAGCCGCTGATCAGTCCTTGAAAGCTTACCAGACAGCTTCAAGTACTGCAGAGT



CGGATTTAGCGCCAACTCATCCAATCAGACTTGGATTGGCCTTGAACTTTTCTGTTTTCTATT



ATGAAATAATGAATTCACCTGAAAGGGCTTGTCATCTGGCCAAGCAAGCTTTTGATGAAGCT



ATTGCAGAACTTGACACCTTGAGTGAAGAGTCATACAAAGATAGCACTTTAATCATGCAGCT



CTTGAGGGATAATCTTACTTTGTGGACCTCTGATCTCCAGGAAGATGGAGTTGAGGATCAGA



CCAAGGGGGATGAGCCTGTAGTTGGGATGGATGAAGAGCTTTGAGCAGGTACATGTAGAAA



CAAATGAAGTTGTTAGATATGGGCTTTTATGTCGGCCTCAATGTACTCTAGAGTACTCCTTTC



TGCTCTGCAGCTGCAATTTACAAATTCGCTCTATTTATCTTGTTATTGACACCTGGTTTTGTTT



ATAAGTTTTAGATTGGAACAAAAGACCAGTAGGACATTATGGGGTCTTAACTTGGTGTGTATA



CCATGGCTATTAAATGCTTCAATATGTAATAGGGGCCCAGCACTGCAGTACTGTGTAGAATT



TAGAGTCTTTCGTTGTGCATTATTATCGTTTTGAAGATTAATATAGGCTTTTGATGGATGAAG



TGGCTTTGTTGCCACAAAGGAGCTGAATTCTTTGAGCTTTCCTCGTTTTCTTTTTTCAAAATTT



CTGGAAGTTATATCGAATCTAACTTAATAAAAA





111
AGAGTGCTCTTCTTCCACTGCTCTCTAGCTCTCGTGGCACACAAGGAGGAGTTTCAGAGAG



GCCAGGCCAGTCTGCGGATCTGTGTTCAGACAAGATGAGTAGCGACAAGGAGAGGGAGAA



TCATGTTTACATGGCCAAACTCGCTGAGCAGGCCGAGCGATACGATGAAATGGTTGAAGCC



ATGAAGAGGGTCGCGAAGCTGGACGTGGAGTTAACTGTAGAAGAAAGGAATCTTCTCTCTG



TTGGGTACAAAAATGTGATTGGGGCTCGGCGAGCTTCCTGGAGAATAATGTCCTCTATTGAG



CAGAAGGAGGACGCGAAGGGCAATGATCATAACGTGAAACGTATCAAAGAGTATAGACAGA



AAGTTGAAGCAGAGCTTTCTAAGATTTGCCATGATATTATGACCATAATTGATGAACACCTTA



TTCCTTCCTCCAATATTGGCGAATCTACTGTTTTCTACTATAAAATGAAAGGAGACTACTACC



GTTATCTGGCTGAATTCAAAACAGGAAATGAGAGAAAAGAAGCCGCTGATCAGTCCTTGAAA



GCTTACCAGACAGCTTCAAGTACTGCAGAGTCGGATTTAGCGCCAACTCATCCAATCAGACT



TGGATTGGCCTTGAACTTTTCTGTTTTCTATTATGAAATAATGAATTCACCTGAAAGGGCTTG



TCATCTGGCCAAGCAAGCTTTTGATGAAGCTATTGCAGAACTTGACACCTTGAGTGAAGAGT



CATACAAAGATAGCACTTTAATCATGCAGCTCTTGAGGGATAATCTTACTTTGTGGACCTCTG



ATCTCCAGGAAGATGGAGTTGAGGATCAGACCAAGGGGGATGAGCCTGTAGTTGGGATGG



ATGAAGAGCTTTGAGCAGGTACATGTAGAAACAAATGAAGTTGTTAGATATGGGCTTTTATG



TCGGCCTCAATGTACTCTAGAGTACTCCTTTCTGCTCTGCAGCTGCAATTTACAAATTCGCTC



TATTTATCTTGTTATTGACACCTGGTTTTGTTTATAAGTTTTAGATTGGAACAAAAGACCAGTA



GGACATTATGGGGTCTTAACTTGGTGTGTATACCATGGCTATTAAATGCTTCAATATGTAATA



GGGGCCCAGCACTGCAGTACTGTGTAGAATTTAGAGTCTTTCGTTGTGCATTATTATCGTTT



TGAAGATTAATATAGGCTTTTGATGGATGAAGTGGCTTTGTTGCCACAAAAAAAAAA





112
CAGAGCTCCTATAACCCCCAATTGTGTCTCCATTTTTGCGTGCGAACCATGGCTCAAGCTCC



CAAAAATCTGTGTATCATTCTGTTCTTCATCACAAGTTCCTTGTACTGCCCTTCATTGTCTTG



CGCTGCTGCTTTCACAGAAAATCCATTAACAGTTCTTGGTTCTGCCAGTTTAGTGTGTTTGTG



CATTGCAGCGGCCGTTTCTTTGAAGATCCAGAGGTGAAGTTGGGTTTTTATTATTTGTGTAC



AAATGGCGGCAGCGGCGATGGTGGAGTCATCGCGGGAGGAGAATGTCTACATGGCGAAGC



TGGCCGAGCAGGCGGAGCGCTACGAAGAGATGGTGGAGTTCATGGAGAAAGTGACAAAAG



GCGTGGAGGTGGAGGAGCTCACAGTGGAGGAGCGGAACCTGCTATCTGTAGCCTACAAAA



ACGTGATCGGTGCCCGCAGGGCCTCCTGGAGGATTATCTCCTCCATCGAGCAGAAGGAGG



AGAGCAGGGGCAATGATGAGCACGTGGTCACCATCAGGGAGTACAGAGCCAAGGTGGAAG



CAGAGCTTTCCAAGATCTGTGAGGGCATTCTCCGCCTCCTCGACTCCCACCTCATCCCTTCT



TCCACCGCTGCGGAGTCCAAGGTTTTCTATCTCAAGATGAAGGGCGATTACCATCGATACCT



TGCCGAGTTTAAGACAGGCGCCGAGAGGAAGGAGGCCGCTGAGAACACTCTGCTTGCTTA



CAAGTCTGCGCAGGATATTGCTGCGGCAGAGCTGGCTCCAACGCATCCTATTAGGCTAGGG



CTGGCTCTTAACTTCTCTGTATTTTACTATGAGATTTTGAATTCGCCAGACAGAGCCTGTAAT



CTCGCAAAACAGGCATTTGATGAGGCAATTGCGGAGTTAGATACCTTAGGTGAAGATTCTTA



CAAGGACAGCACTCTCATCATGCAGCTCCTTCGTGACAATTTGACATTGTGGACCTCAGACA



TGCAGGAGGATGCTGGGGAAGAGATCAAAGAGACTTCTAAGCGTGAGGACGGGGAGGAGC



AATAGTGAAATGTGATAATCTTATAGTGTATTAGGATTAGGATTAGATTACCAGGCTTTCCTG



CATTGTTTGGTAAAGGAGGCCTATGTGCACGATTGTGTTTATTAGATCTCATGCTCTGCAGC



ATTTAGTTGCTGTGGGTAGCATATTCTTAGTCATATTTTGTTGGCTGCGTTTATGTTGGCATT



TTATATCATCTATTTGCGAATGGTTGGAGACAGTGGCTTGGTACTGTAATATCAGATTGGTG



GAGTCTATCAACAAATCTGTAGGCCCATTCTGCTTTTGTGTTCAATAATATTTTTTATTGTCTT



GATTTAAAAAAAAAAAAAAAAAAAAAAA





113
GAGAACTAAAACCAATAAAACTTGAAGCTTTAAAAGGGAACAGGTCGAGGACGAAGCCGAG



TCTTGTCCGTGAACAATGAATAAGAAACCAGATGCTTGTAGGTTATACGCCAGTCCTTAGAA



TTATTATCCCTACGATCGTGGGAAAGCTTTTCGTTCTAGCCTGGAGGAGGAGAAGTCAAGTT



ATCGTTGCTATGTCCCACGAGATTGAACACATCGCCTTGTCGCTAGAGATTTTGGCGGTGTA



GAGCCCTTTTTCCAGTCCACTCTGGTCTTATCAATTTCCATTTCTCTCTTTATCGATATTAAAC



GGAAGGCCACGGTATCCTCTCTTATTGAATTTCTCCGAAAATCCGGATAAGCAAAATCCGGA



TAAAGAGCGATTCAATCATCATCCAATTGCGGCTGATAACCCAGCAGGACTAGGCTGGATTC



AAACCTCAACAGAACCAGACTCTAAAACCTGGAGGCGAACTCCACTTTGAAACAGAGTTTGA



ACCCATGGAGCGCTAGTGGACTGTTTATCTATATGTAAATGTAATTATCAGGATTGGAACCT



CAGTTGGACCAGAATCTGAAACCTTGTGATGAACTTTGCCTCGAAACAGTCGATTTGAATCC



GTTGATCTAACCTTAATAGGCTATTTGTCTATATACAATTATCAGAAGTCCTGATTAAAGAGA



AATGGATGGAATGTCTACTCGAGGTGGCAGCAATTTTGATATGTATTTGCCTAATTATAAGCT



CGGAAAGACGCTAGGGATTGGCTCGTTTGGCAAAGTGAAGATTGCAGAACATGCATTAACA



GGACACAAAGTGGCAATAAAGATACTTAATCGCAGGAAGATTAGAAACATGGATATGGAGGA



AAAAGTGAGGCGGGAAATCAAAATATTAAGATTATTTATGCACCCTCATATCATACGTCTCTA



TGAGGTTATAGAAACTCCATCAGATATATATGTTGTGATGGAATATGTAAAGTCTGGGGACC



TCTTTGATTATATTGTTGAGAAAGGTCGATTGCAAGAGGACGAGGCCCGATGCTTTTTCCAG



CAGATTATATCAGGCGTGGAGTATTGCCACAGAAATATGATTGTTCATCGTGATCTTAAGCC



CGAAAACTTATTGCTAGATTCCAAATGCAATGTTAAGATTGCAGACTTTGGGCTTAGTAATGT



TATGCGCGATGGACATTTTCTTAAAACAAGCTGCGGCAGTCCAAATTATGCTGCCCCCGAG



GTAATATCAGGTAAATTATATGCAGGGCCAGAGGTAGATGTTTGGAGTTGCGGAGTTATATT



ATATGCACTTCTTTGTGGAAGTTTGCCATTTGATGATGAAAACATTCCAAATCTCTTCAAGAA



AATAAAGGGTGGAATATACACACTTCCGAGTCATTTGTCATCTGGAGCAAGGGATTTGATCC



CAAGGATGCTTGTTGTCGATCCCATGAAAAGGATGACCATTCCAGAGATTCGTCAGCATCCC



TGGTTTCTAGAGAAACTTCCACGCTATTTGGCAGTTCCCCCACCTGATACAATTCAACAAGC



AAAAAAGATTGATGAAGAAATTCTTCAGGAGGTGATTAAAAGGAATTTTGACAGGAACCAGT



TGGTAGAATCCCTTCGAAGCAGAATACAGAATGAGGCTACAGTTGCATATTATTTGATGCTG



GATAATCGGAGCCGTATCTCCAATGGTTATCTTGGCTCTGAGTTTCAAGAAGCAAAGGATTG



CATACATCACTTTGTACCAACTGATCGTGCAACACCAACTGGTGATCACAGATTAACTGGTTT



TATTAATCAGGGAAATGCCTCAAGATCCCAATTTCCTATTGAGAGGAAATGGGCTCTAGGAC



TTCAGTCTCAGGCTCATCCTCGTGAGATTATGTCAGAGGTTCTAAAGGCACTTCAAGAGCTG



GATGTCGCATGGAAAAAGATAGGACACTACAATATGAAATGTAGATGGTTTCCTGCTGTATT



AAGGAAAGTTGATTCTTCAATGAATAAATCTTTGCATGGAAACCATATTATTCAAGACGACTC



TACAGCTGGCATCAACTGTAGATCTCCGCCAAATGTGGTCAAGTTCGAAGTGCAGCTTTACA



AAGCCAGAGAGGAGAAATATCTTCTTGATCTTCAAAGGGTACAAGGGCCACATTTCCTCTTT



CTTGACCTCTGTGCAGATTTTCTTGCACAACTTAGAGTTCTATGACATGAAAGACTTTTAGGA



ATATTTAAGGCTCAAGAGATTCTAAGGAATATAATGGTAGTTTACCAGATTATATGGTTACTA



TCAACTGTTCGATTGTTCTAGTGTGCAGTAATGAAATATTTTGTATAGTAGTATGCTCATCATA



TTCTGTTCTGAGGAGCTGAAAATGAGAGAAGATAAATGAATCACCAGTAATCCCCTTCTTGC



TGTTGTTGCAACAAGGTTTGGATTTTCATTATCCCCCAGACAGCTAAAAGTTATTTTTTTCTTC



GCAATTTATGCGATTTAAAGAAAGCTTTGTTTTTTACTCCAAAAAAAAAAAAAAAAAAAAAAAA





114
GGTTGACAAGTCGGTGCACCTTACCCTTAACGTGCTTTGCCGAATACCATCGTAGTAGTAGA



ACTAGCCGGAGGAAGGGTCGGAAACTTATGGAAGTTTAAGTTGTATTTAGAGAAAATTTGGC



AAGGATTTTTGGATTTATAATGGTTAAATTTTAAACTTTTTAATTTTTGATGATGTTGAATCCAT



TTTCCACATGATACAAAAACTTTCTCTACCAAAATTTTGGAACTTTTACCGGATTCCCGCCAC



TTTTGACGGTCTAGGCAATTCGTCTGCCTTGTTAAACGACTTATTTACCATCTCCCAGGACG



AGTGAGAAGGTTGTATATCTCCCATGAGAAGAAGGTTGTTGGAGTTCCAGTGCATGCACCTA



ACGTTAACCTGCGATTCCCTATTGTTTCCTATTTCCCAGGAGGAGTCAGAAGGTTGTATATCT



CCCAGAACTTAGAAGGAGAAGGTTGTTCGAGCTCCAGTGCAACAACGATGACAATAGCCAG



GAGATGTTCTTCACTTATAGTGCGAGGAGTGCGGTCTGCTGGTTCCCGTTCATCTGCTGTTG



GATCGCCAGCTCTATCAAAACAAGCATCAACAAAGAATTCCAGAATTCAAAGATTTGGAACA



GCTGCAAGTGCTTTAGAGGAACCTATAGCACCACCTGTCCAAGTGAAGTACACGCATCTTCT



TATTGATGGACAATTCGTTAATGCAGCTTCTGGGAAAACATTTCCAACCTTTGATCCCAGAAC



AGGGGATTTGATTGCTGATGTGGCTGAAGGCGATGCAGAAGATGTGGACAGAGCTGTAAAG



GCTGCACGAAAAGCCTTTGATGAAGGCCCATGGCCAAAAATGACTGCTTATGAAAGATCGT



GTATTATGTACCGGTTTGCTGACTTGCTTGAAAAGCATAATGATGAGATTGCAGCTCTGGAA



ACATGGGACAATGGGAAGCCTTATGAGCAATCATCCTTGGTCGAAGTGCCAATGGCAATAC



GGGTATTTCGTTACTATGCAGGTTGGGCAGATAAAATACATGGCCTTACAATTCCAGCTGAT



GGACCTTATCATGTTCAAACTTTACATGAACCTATTGGAGTTGCAGGTCAAATCATTCCTTGG



AATTTTCCATTGCTTTTGTTTTCTTGGAAAGTGGCTCCAGCACTAGCTTGTGGGAACACTATT



GTATTAAAGAGTGCTGAGCAGACATCATTAACAGCTATTTATGCAGCAAAGCTTTTCCATGA



GGCTGGACTGCCTTCAGGAGTCCTGAATATCATTCCAGGATATGGTCGAACTGCAGGAGTT



GCAATTGCAAAACACATGGATATTGATAAGCTTGCCTTCACAGGATCAACTGAAACTGGTAA



AGCAGTACTAGAGTTAGCTTCTAAGAGCAACCTTAAGCGAGTGACATTGGAACTTGGAGGG



AAGTCTCCATTTATCGTATGTGAAGATGCTGATGTTGACCAGGCTGTTGAGCTTGCACACTC



TGCTCTATTTTTCAACCAGGGTCAATGCTGCTGTGCTGCATCACGAACCTATGTACATGAGA



GCATCTATGATGAATTTGTAGAAAAGACAAAAGCACGGTGTTTAAGTCGTGTTGTTGGTGAT



CCCTTTAAAAAAGGCGTTGAACAAGGTCCTCAGATTGACCAGATGCAGTTTAACAAAATTAT



GAGTTATATTAAGGCTGGGAAAGAGAGTGGTGCAAAACTTGTAACAGGGGGAGAGCAAATT



GGTACCAAGGGCTTCTACATTATGCCCACAGTTTTCTCAGAAGTTCAGGATGACATGCCCAT



TGCCACTGATGAAATATTTGGCCCTATACAATCAATTTTGAAATTCAAAGATATAAACGAAGT



AATAAAGCGGGCTAATGGTACTGATTATGGCTTGGCAGCGGGAGTCTTTACAAAGAGTATG



GATACCGCAAACACTCTCACTCGTGCGTTACGTGCAGGATCAATCTGGATTAATTGCTTTCA



CATTTTTGATGCCGGTGTACCTTTTGGTGGCTATAAAATGAGTGGCACCGGAAGACAAAAGG



GAATATATGGTCTCCAAAGTTACTTACAGGTTAAAGCCGTTGTGACTCCTTTGAAGAATCCA



GCATGGTTGTAGGCTGTTACGTTCCTTCTAATATATTTGATGAATGCAGAACATATTTAATCC



CTTGTGCTATTGTCAAGTCAGTCTACTTTGAAATAAACTCTCTATTACTAGAAATGTGTTACCT



TCAGAGGGGTGGGATGGTTCGTTTAGCTGGGCATCCTATAGTAACGTCTCTGTAAAACTGT



GTAGATTCAGACGTTAGAACTCTGGTTAGCTGTGCATCCTATAGTAACGTCTCTGTAATACG



GTGTAGATTCAGACGTTGGAAATCAATTAT





115
GTTGGAGTTGCACACAAGGTTGGAGGAAGAAAGTTGTTGGAGCTCTCAGGTTGAACGAAAA



TGGCAGCAATGCGAGCAGGCAGGGGATTTTCTTCACTTCTAACTCGAGCAGTCCGGTCGGC



TGGTACACGGTCACCCGCCGTTGGATTGGCAGCTTTATCACAAGAAGCATCCATAAAGAATA



CTGGGATTCGAAGTTTAGGAACAGCGGCAAGTGCTTTGGAAGAACCTATAGCACCACCTGT



CCAAGTACAGTATACACAGCTTCTTATCGATGGACAATTTGTTAATGCGGCTTCTGGAAGAA



CATTTCCAACATTGGATCCCAGAACAGGGGATTTGATTGTCGATGTGGCTGAAGGTGATGCA



GAAGACGTGGACAGGGCTGTAAAGGCTGCACGAAAAGCCTTTGACGAGGGCCCATGGCCG



AAAATGACTGCTTATGAGAGATCATGTATTATGCTCCGGTTCGCTGACTTGCTTGAAAAGCA



TAATGACGAGATTGCAGCCTTGGAAACATGGGACAATGGGAAGCCCTATGAGCAAGCAGCC



TTGGTTGAAGTGCCAATGGTAGTGCGGCTATTTCGTTACTATGCAGGGTGGGCAGATAAAAT



ACATGGCCTTACAGTTCCAGCTGATGGACCTTATCATTGTCAAACATTACATGAGCCTATTG



GAGTTGCAGGTCAAATCATCCCTTGGAATTTTCCACTACTTATGTTTGCTTGGAAAGTTGGTC



CTGCACTAGCTTGTGGGAACAGTATTGTATTAAAGAGTGCTGAGCAGACACCATTAACAGCT



CTTTATGCAGCAAAACTTTTCCATGAGGCTGGACTGCCTCCAGGAGTTCTGAATGTCATTTC



AGGATATGGTCCAACTGCGGGAGCTGCAATTGCAAGACACATGGATATTGATAAGGTTGCTT



TTACAGGTTCAACTTCTACTGGTCAAGCAGTGCTAGAGTTAGCTTCCAAGAGCAACCTTAAG



CCAGTGACATTGGAACTTGGAGGAAAGTCCCCTTTTATTGTATGCAAAGATGCTGATGTCGA



TCAAGCCGTGGAACTCGCTCACTTTGCATTATTTTTCAATCAGGGTCAATGCTGCTGTGCTG



GATCACGAACCTTTGTACATGAGAGTATCCATGATGAGTTTGTAGAAAAAGCAAAAGCGCGG



TGTTTAAGTCGGGTTGTCGGTGATCCTTTTAGAAAAGGTGTTGAGCAGGGTCCTCAGATTGA



TCGGGAACAGTTTAACAAGGTTATGGGTTATATCAAGTCTGGGAGGGAGAGTGGTGCAAAA



CTTGTAACAGGGGGAGACCAAATTGGTACCAAGGGCTTCTATATTATGCCTACCATCTTCTC



AGAAGTTAAGGATGACATGGGCATAGCTACTGACGAAATATTTGGTCCAGTACAGTCAATTA



TAAAATTCAAAACTTTAGACGAAGTAATAAAGCGGGCGAATGCTACTCGTTATGGCTTGGCA



GCAGGAGTGTTTACAAAGAATATAGAGACCGCGAACTCTCTTACTCGGGCATTACGTGTCG



GAACAGTTTGGGTTAATTGCTTTGACATTTTTGATGCTGGTATACCTTTTGGTGGCTATAAAA



TGAGTGGCACTGGAAGAGAGAAGGGTATCTACAGTCTCAATAACTACTTACAGGTTAAAGCT



GTTGTCTCTCCTTTGAAGAATCCAGCCTGGTTGTAGGCTGTTAGTTCCTACAAATGGTTCTAT



TGTGTGGGGGAACATATTCAGTTCCTGATGGTCTTGTCAAGTCAGTCTAATTTGAATTTAGCT



TTCTCTGTCAATAATTAATGTATATGACCTTCAGAGAGGTGTGATGCTCTTGTTTTCCTGTGA



ACCTTCACAGTTGTGTCTCTGTAAGATTCTGTGGTTTCAGAATTTGGAACTCAATTATCATGG



CCATATCAAATGCGAAATGAAGGGTGTCATTGTTTCTGCCAAAAAAAAAA





116
GCTCTTTTTAGAGCCTTGGGCAGCTTTTGGGGTGTTTTTTTTTTTCTGTGAGTGGAATTGAAG



TAGAAGTTGAAGCTGAAGCTCCCCTGGATGCTCCAGAGGCTTCACAAATATCTCAGTTTCTG



AGGCTTCACAAATATCTCAGTTTCTGGAATAGGTGGAAGAGATTGAGGTTGGTTGTTTGTAT



GTATGTACAGTAGGCTTTTGGGTTTTTTTTTGGGTTTCTGGAGTGGCTATATGGATCATGAAG



GCAGGGGAGGAAGTGGTTTATTGGCATGTTTTGGGATCAGCCGCCATGAAGCTGGAGTGCA



TTAATGGCGGACTCGACAAATTACTGCACCTTGGGATGGAGAAAAAGGGATTTGGGATATTT



TGGACATAAGGGATTTTTTCAATAGAAATCCCGTGAAATCCCTTGAAATCCCTTAAAACTCCT



TGCTGATTATTTTTAGCAAATTCTCCGAGATCTCGGATCTCGACTTTACAATTATGAAGCGAC



AACACTTTCAATTGCAGCAGCAGCAGCAGCCGCAGCCGAACGGTCATGGCCGCTGCTGCA



GCACTGTTCCGGTCCATCCCAACCCGGTGTCCATGCCAGGGTCCGGGCCACCACCACAAG



CACCAAGAACAACAGCAACAGCGCCTGCAGCGGGAGCGGCAGCAGCAGGGGGAGGTGGA



AGTTCAGGGTCTTGCAAGGGCAAGGAAGTGGTATTGAAGGATACTTGTAAGCAGGGTGTAG



GTGTGGATATGGAACTGGCTTCCATGGGTTACAGTGTGAAATCCTCTGAACTGGAACAAGT



GGCACACAGGCTTGAGCAGCTGGAGATGATGATGTGCAACGGGCAAGAGGATGGCATCAT



TTCCCACTTGTCGTCAGAGGCTGTGCACTATAATCCCTCGGACCTCGGTGGATGGATTGAA



AGTATGCTCAGCGAGCTTCATGTCCCTATTCTTCCTCCAACAGATCAGCCGTTTCAGTTCCC



TCAGGCAGCAGCGGATCAATCCTCTACGGTTCGGGAAGCGAGCAATTCGGTGCCGGAATC



ATCCACTTCGACTTCGAAGGGCACCAGATCTGTGCAGAATGTTGAACAGGACCAACAGTAC



AGATTAAATGGGTCCGGGGCCGGGTTGTTTGAGCCGCCTGAGGTCCTGGATCGATCAGAAT



TCCAGCTTCATGGCTATCCGGGCCAAGGGGGAGTACGAGATAATGGGATTGATCGCATGTT



CGGTAACTATGGCGGCCTTTTTTCTCAAGTATTAGACGTCTCGGACCTGCTAGTCGATGACC



CTGATGTTCTACAGGAACCACCACCACAGGAGGCTTCGCCCTCAACTCTGCTGCTGCAGAG



CTCCAGCAACTCTTCGCTTGAAGTCCAATCCGGGCAAGACCGTCTGGAAGAGGATGTTACG



GGAAGAGAGCAAAAGCGTTACCGTGTCTGCGACCCGGAGCTTTCGGAGCGAACCGTGGTA



GTAATGGGGGCAGACCCGCACGAATCCGGAGTCCGTCTCGTGCACACGCTGATGGCCTGC



GCAGAAGCGGTGCAGCGCGGTAATTTGGCCATCGCGCGGGAAATGGTGAAAGAAGTGAGA



ATTCTGGCTTCAGCACAGGGCGGGGCAATGAGCAAGGTCGCCACATATTTTGCCGAGGCTC



TTGCCCGGCGAATCTATGGGTTTCTCCCTCAGGACACCTTGCGGTTCAACCAGAACGACCC



CTTGTCCGATTTTCTGCAATTTCATTTCTACCAAACCTGCCCCTATCTCAAATTCGCGCACTT



CATAGCCAACCAGGCCATTCTGGATGCCTTCTCCGGGCACCAACAGGTTCATGTCATAGATT



TCAATCTGAAACAGGGGATCCAGTGGCCGGCCTTGATACAGGCACTGGCTCTTCGCCCCG



GCGGGCCACCGGCTTTCAGGCTAACCGGAATCGGCCCACCCCAACCCGACGGAACCGATG



CATTGCAGGAGGTCGGCACGAGGCTCCACCAATTTGCAGAGTCCGTCAATGTAAAATTCTC



CTTCCGTGGCTATGTTGCCACAAGCCTCGCCGACATCAAGCCATGGATGCTCGACGCCCGG



CCCGAGCTCGAGGCTGTTGCAGTGAATTCTATCCTTGAGCTCCATCGTCTCCTGGAGGACC



CCATCCCCGGACGACCCAGTGCCATCGATCGAGTACTCGCTTCCATCTGGAGCCTGAAGCC



CAAGATCTTGACAGTGGTTGAACAGGAGGCCGACCACAACCGCCCTGTTTTCTTGGATCGA



TTCACAGAGGCACTGCATTATTATTCCACAGTTTTTGATTCCCTGGAGGCGCGCGGGTTGCA



GGCCCAGAGCGAAGAGCAGGTGATGTCGGAAGTCTATCTGGGTCGAGAAATTTGCAACATT



GTAGCCTGTGAGCGATCGGAACGGGTGGAAAGGCACGAACCTCTCTTGAATTGGAGCGTTC



GCTTGAGAAACGCTGGCTTCTGGCCTATTCCTTTGGGATCCAATGCTTTCAAGCAGGCCAG



CATGTTGCTCAGTCTCTTCTCAGGTGGAGAAGGATATAGGGTTGAGGAGAATAATGGGTGT



CTAACACTTGGTTGGCACAGTAGACCTCTAATTGCTGCTTCTGCCTGGCAACGCTGTTAATC



ATCTATCTCACACCATCAAGAAGGTGATAGGTGGATCAAATACCCAGCAATTATTATTGCAG



CAGCATCATCGTTTCAGGGAACCCACAACAGCCCAATTCAATTCCGGATCAGGTCAGCTAAA



GCAAAATTAACGAGTCCGTAGATTACCTACCAGCGCCGAGAATCTATTCATGTGTATCATAC



TGAAGTTCTTGAGTTATTATAAGCAAAATTAGATTACACTTATTATTAGCTCGACTCAGTGCC



CTGTACGACTTCATAAATCACTGAGCGATATAATTTGTAATCTCTCAAACACTTTGAACTTCA



AATGTCAGAAGCATTGAATCTCACACGGCCTATATCATAAGTAAGTTATTATTGCTCACAGAG



ATCTCTGCCAATGTTGCATCGTCCTGATGTAATCAAGAGAATTGAATGCCAAGCAACTTCCC



ATCATCAATTCTTTTAATTCTCAGTGATTCAGTGCATGATATTAGATTTTTCATTTACTTCTCTT



GAATATGAAATTCCTAATTAATGTGGGAATTACCTTCACCGATTTTGCTGAAAAAAAAAAAAA



AA





117
CCCACCTCGTACACACATAAAAATAAAGGGCAGTGAGTTGAACCTGCCACAGCGTATAAGC



AATAGCACTGAAAATGAATAAAAATTAAGGCACAGCCTTCTGTTAGCGCCCTACCCAAGTGA



CCATCCTTGCCCGAGTCTAGCCGCGTGGAAATTTTTTTGAAGCCTCTATCCACCAATTTGTG



CACCCTGTTACAACTCGCCAGTATAGGTCTAAATCTGCATTTACACAACCCACTGGGCTTCT



TGCATCAATTCAGACAGGTTTTTGGGTGGCAAAATATTGGGAAATGGCTTATTCAGGCAGGG



CTCGGCGTCCCATCTCCTTCCTTCTGAAGCAGTTGAAGACATCCCACTCATATTCTTCGTGG



ACTCGCTGTAATGGATTTAATGGGCAGTCCATGTTTCAGTCAAATGCCATCAGCAGGTGCAA



GGCACCATCATTCAGGCCTACTGCTGAGTTGGGATGGGTTTTGGGTTTTAGCCATTCGTGC



AGAGGGTACAGCGCTGAAGTGGGTTCCACAGAGCAAGTGGGTCTAATTAAACAACTGAGAG



AAAGGACAAGTGCACCTATGAAGGATGTCAAAGCTGCTCTTGTCGATTGCAACTGGGATCTC



GAGGCTGCATATACAGAATTGAGGAAGAAGGGTATTGCAGGTGCATCAAAAAAAGGGGCCC



GTATTGCTGCTGAAGGGATACTGGCATTGGCTCAAGATGAGAAAGTGGCTGCTGTTATTGAA



CTAAACTGCGAGACAGATTTTGTCGCCAGGAATGAAATATTCCAATATCTGGCACATTCTGT



GGCAAAGTCAGCATTGACCATGGAGGCCTTACCTGAACTTCTATCAGAATCTGCGACATTAG



ATCTAAAGCTCCTAGGGGAAATGAACATTATCTTAGATCATCCTAAACTAACTAGGGAGATAA



CTGTTCAAGATGCAATTATGGAAGTGGCTGCTATCATGGGAGAGAATGTGAAGCTTCGAAGA



GGTTTTGCTTTGTCCTCTGCAAATGGCGTTGTTTCCTCGTATCTTCATACTTCTCCGCAACCA



GGGCTTGGTCGCATAGCTGGCCTGTTGACATTAGAATCTGAAAATGGGGGTGCACCAACAG



AAGTGCTTCAAAGGGTGGGCTCAAATCTTGCAATGCATGTTGTTGCAGCTAGGCCTTTGTTT



CTCTCAAAGGATCATGTTGCAACTAAAACATTAGAGGCTGAGCGTGATATCCTCAAAACTCA



GGCTGCTGCGTCTGGAAAACCTCAAGCTGCTATAGAGAAAATGGTAGAAGGACAGTTAAGG



AAGTTTGTGGAGGAAATTGCACTTTTGGAACAGAAGTTTGTTATGAACGATAAAGTAAATGTC



AAGTCTGTACTTGAGGACCTATCAAAGGAGGTTGGACAACAGATCAGGGTGGGAAGTTTCC



TTCGAGTGGAGGTTGGTGAAGGCATCCACAGGCAAGAAACTTCCTTTGCTAGTGAGGTAGC



AGCTCAAGTCGGATAACTGATTACCTTTCAGATATATAATATAGTCTGACATCAATGGTAAAA



CTGAAACCTTCAAGAGTTCAGGAATGCCAATTGGCATTTGCTTATTGATGCTCGCCAGTGGC



ATTTCATAGTCCATTTACAATGAAAATGGCCGATTTTTGGACTTTAGATCTTAGTGGTTGTTC



AGTGACTTTGAAAGAGTGATAGCATTTACATTGTTTTGAATGTAGTAGTATATACTATATTCAA



ATTGTTTCTCATGGAGCACAGAAGAGTAGATTGCCTCAGGTTAAGTTAAGACATGAACCTTT



CGAGTAAATAAACCAAGCAGAGAAGCTGGCTGCAGAATGTAAGAATAAAATATATTGCTTTT



GTTCAAGTTTTGTTCCGATGCTTTATGCTGATATTGCTCAGATTTGTATGGTGGAAGTGAGC



GCTTCATTTTGGGCGGTTTTAGTCAAAACTTTATTCTACATTAAGTAGATTCAAGACTAAGAA



TAAGAACTAGGCGAGCGCCATACCTTGCTGTGAAGGATAATATGTTATATAAGGGAGAGTCT



AA





118
GGGAAGATCTACCCCACCTGGGATGAAGGCGCCGAACCTTTCAAGGCCACCAAGGACATTC



GTCGAAGCCATTCAAATTCCCTTTTGCGATCAGAACTGTGCTGGATTCCTCCCCGTTCCTGC



TGGGTGCTGCGAAGTAGCAGAAGAAGAAGCAGCTTCTGGAGGAAAGAGAAGCAGAGGGTT



TGCGGTTTGTGGATGCAGAAGAAGAAGGCACCGCCATGGAAGCGAGCGCTGCGGCAGCTG



ATGGTCACATACAGGGAATTCTGACTCATGGTGGTCGGTATGTACAGTATAATATCTTCGGG



AACCTCTTCGAGGTTTCCTCCAAGTACGTTCCTCCGATACGACTTATCGGCCAAGGCGCATA



TGGCATTGTTTGTGCAGCAGTGAACTCAGAGACAAATGAGCAAGTTGCTATCAAGAAAATTG



GCAATTCTTTTGCGAATAGGATTGATGCAAAGAGGACTCTTCGAGAGATTAAGCTTCTATGC



CACATGGACCATGAAAATATCATTGCAATTAAAGATGTCATTCGTCCTCCTCAGAGAGAGAA



TTTTAAAGATGTTTATATTGTATATGAGCTCATGGATACGGATCTCTGCCAGATAATACACTC



CAAGCAACCATTATCTGTGGATCATTGTCAGTATTTTATATATCAATTATTGAGAGGGCTCAA



GTATATACACTCTGCAAATATTCTGCATAGAGATCTGAAGCCCGGTAATTTGTTTCTAAACGA



GGATTGTGACCTAAAAATAGGTGATTTTGGGCTTGCACGGACTACTTCAGACACAGACTCTA



TGACAGAGTATGTTGTCACTCGCTGGTATCGAGCACCAGAACTACTATTGAATTGTTCAGAG



TACACAGCAGCCATTGATATCTGGTCGGTGGGTTGCATTTTCATGGAGATACTAAAGCGGGA



GCCCTTGTTTCCTGGTAGTAATTATGTCGAGCAATTAAAGCTCATCACTGAGTTTATTGGTTC



ACCAGATGATTCTGATCTTGGCTTTTTGCGGAGTGATAATACTAGAAGATACATCAGGCAAC



TCCCACAGGTCCCTAAGCAACCTTTTGCTCAGAAATTTCCTAACATGGACGAAGATGCCCTA



GATTTACTTGAAAAAATGCTTGTATTTGATCCAAGCAAGCGTATCACAGTTGAAGAGGCTTTG



AGTCACCGTTACTTAGCAAGTCTGCATGGCATCAATGAAGAACCCAGATGCCCTGCCCCATT



CAATTTTGATTTTGAACAGGGCACGTTCACCGAGGAACACATAAAAGAGCTGATTTGGAGGG



AATCTCTTAACTTCAACCCAGACATGATGGAATAGCTGGAGTAGATGGGCTTGGTATTTATC



TATTTGTAATCCTTCTTTGGTGGTTATGTTACTATGCTTATACTGTGCAATCCATCTGTTGGTT



TATTATCGGCCTTATGAAAGTTCGCAGATCATAGTGCAGACATGGGTGGGCTTGTTTTATTC



TTATTCTTGTTTTGCTCTTATTCTCTGAAGGTTTGGTAAAGGTAAATAATCGGATGGATATGT



GTACTTTGCATATCCAGACAGAGATTGGAGTTGTGTATTCTAAATCGAGGCCAGCTATTGGG



CCTTATGCGATTATTATTATTAAACATTAAAATGTAATAAGTAAATTTAATAATCTAAAGTACAT



GTCGAGGGAATTTGTAAAAAAAAAA





119
CTACAACGAAAACTCCTATATATATAGGGTGCCTCGGTCTTCGACTCCTCATCGAGTCCGCT



GTCTGTTGGAAGTATACACAGCTTGCCAGTACGCTGTTTTTCTGCTTTTCTGTTTGTGATTTA



TCAAAGATGGCAGTCCCCGTGATTGACATGAAGAAGATGTTGAATGGAGAAGAGAGGGAAG



TGACGATGGCCAAGATACAAAATGCCTGCCAAGAATGGGGCTTCTTTCAGCTTCTGAACCAC



GGAATACCTCACGCTCTTCTCGACCGAGTGAAGGAGCTGTTCAAGGAACATTACAAAAATTC



CATGGACGCAGAATTTCAGAAGTCTGAGATTGTAGGGATGCTTGAAAGTGCTGTCTCCCAA



GGCAAGAATTTCGGTACTACGAAGATAGATGACGACTGGGAAACGGGCTTCTTCCTCCAGG



ATGAAACTTATGACACAGTGTCACCTCCTTTGCCTACCAATCTCAAAGAGACGATGAAAGAA



TTTAGTGAGGAAGTAAAGATACTCGCGGAAAGGATATTAGATATAATCTGCGAAAATCTGGG



ACTGGAGAAAGGGTATCTGAAAGAAGCCATAGCAGGGGGCAATGGCGACGGCAAAGCCCC



TTTCTTTGGCATAAAAATGGCTCACTACCCGCCATGCCCAAGGCCAGAACTCGTCGATGGC



CTGCGCCCCCACTTGGACGCTGGCGGAGTCATTCTGCTACTGCAAGATGATGAAGTGGGTG



GCCTTCAAGTTCTGAAGGACGGCACTTGGTTCGACGTCGAACCCATTCGACACGCAATCGT



TATCGACATTGGCGATCAGCTGGAGGTGATGACCAATGGGAAATGCAAGAGCATGTGGCAT



CGCGTGCTTTCTAAAAAGGACGCGAATCGAATGTCGGTCGCAGCGTTTTATAACCCATCGA



CCAATGCGGAGGTGTTTCCAGCTCCACAGCTGATCATGAAGGCGACAGAGCAGAATGGCAA



TGAAAATGACAATAATAATATGAATGCCCAAAGTGGCTATAGTTATCCGAAGTTCGTCTCAAA



AGATTATATGAAAGTCTATGGTGAGCAGAAGTTTCTCGAGAGAGAGCCGCGATTCGAGGCT



ATGAGAGCACTCTGTTCCCTGAAGTAATCTTCTTGAGGAGATACTAGCTCCCAGCAATGCTT



CACTTTCAACTGGTTCTGGTTATAAACTTAAAGAATTAGAATTAGATTAATCTATATAGGAAAT



AGAGCTCTTCCCTGTGTATTTTCTTATCGAGTTCCATCGCAATATTTAGGATCTTTGTATGGA



ATAGAATTAGAATAGGATACAGCAGGTTGGATATTATCCAAGTGGTTATTACTCTTTTGTAAT



CTCCACTCCCAGTAAGCGCGTTAAACTTTATTCGTACAGACTATATTCATATCGGAGGACTTT



GATGACATATCCTCTTTTAAATTGTGTAAACAGTTATGCAGACTTAATTTGAATACTTTATTGA



GATGCAACTGTGCATCCATTTCTAAGCATTAAAAAAAAAAAAAAAAAA





120
CTCGTGCCGTGACGATGGCCAAGATACAAAATGCCTGCCAAGAATGGGGCTTCCCTCTCTT



CTCCATTCAACATCTTCTTCATGTCAATCACGGGGACTGCCATGAAGAAGATGTTGAATGGA



GAAGAGAGGGAAGTGACGATGGCCAAGATACAAAATGCCTGCCAAGAATGGGGCTTCTTTC



AGCTTCTGAACCACGGCATACCTCACGCTCTTCTCGACCGAGTGAAGGAGCTGTTCAAGGA



ACATTACAAAAATTCCATGGACGCAGAATTTCAGAAGTCTGAGATTGTAGGGATGCTTGAAA



GTGCTACGAAAATAGATGACGACTGGGAAACGGGCTTCTTCCTCCAGGATGAAACTTATGA



CACAGTGTCACCTCCTTTGCCTACCAATCTCAAAGAGACGATGAAAGAATTTAGTGAGGAAG



TAAAGATACTCGCGGAAAGAATATTAGATATAATCTGCGAAAATCTGGGACTGGAGAAAGGG



TATCTGAAAGAAGCCATAGCAGGGGGCAATGGCGACGGCAAAGCCCCTTTCTTTGGCATAA



AAATGGCTCACTACCCGCCATGCCCAAGGCCAGAACTCGTCGATGGGCTGCGCCCCCACTT



GGACGCTGGCGGAGTCATTCTGCTACTGCAAGATGATGAAGTGGGTGGCCTTCAAGTTCTC



AAGGACGGCACTTGGTTCGACGTCGAACCCATTCGACACGCAATCGTTATCGACATTGGCG



ATCAGCTGGAGGTGATGACCAATGGGAAATGCAAGAGCATGTGGCATCGCGTGCTTTCTAA



AACGGACGCGAATCGAATGTCGGTCGCAGCGTTTTATAACCCGTCGACCAATGCGGAGGTG



TTTCCAGCTCCACAGCTGATCCTGAAGGCGACAGAGCAGAATGGCAATGGAAATGACAATA



ATAACATGAATGCTCAAAGTGGCTATAGTTATCCGAAGTTCGTCTCAAAAGATTATATGAAAG



TCTATGGTGAGCAGAAGTTTCTCGAGAGAGAGCCGCGATTCGAGGCTATGAGAGCACTCTG



TTCCCTGAAGTAATCTTCTCGAGGACATACTAGCTCCCAGCAATGCTTCACTTTCAACTGGTT



CTGGTTATAAACTTATGTTCAATAAAGAATTAGAATTAGATTAATCTATATAGGAAATAGAGCT



CTTCCCTGTGTATTTTCTTACCGAGTTCCATCGCAATATTTAGGATCTTTGTATGGAATAGAA



TTAGAATAGGATACAGCCCGTTGGATATTATCCAAGTGGTTATTACTCTTTTGTAATCTCCAC



TTCCCAGTAAGCGCGTTAAACTTTATTCGTACAGACTATATTCATATCGGAGGACTTTGATGA



CATATCCTCTTTTAAATTGTGTAAACAGTTATGCAGACTTAATTTGAATACTTTATTGAGATGC



AACTGTGCATCCATTTTTAAGCATTAAAAAAAAAA





121
GTAATTCTCTTTCGTTTTTCCCGTGACATACGGCAGGATTTACTCTGATTTTTCACAGGAATT



CCCAATCTCGCGGAATTTTATTAAGCAGCCGCAGATGGTTTCTGTCGCTGTACCGTCATGGC



CATTTCAGAGTAGCACCGACTGTTCAGCTATCGACAAGTACACGCTAAGCTCCCCAGCATAA



TTTGGAGGATTTTGTGAAGAAAAGGCGAAGATTTGGCGGAAATCACTCCAAATCTGGCCGG



ACTGAGTTCACAACGTGGAGTTGCGGGCCATTGTCAGAATGATCGGGTTTATATTTGCAGAA



CTGTTCTTACTTGGCAATTTCGGAGGTCGTCTGCTTATTTCCGTCAGAGATATAGAGAGTTTT



GACGAGACTTGGCATTCGGTTGTCGATTTCAGAGGTTTTGATTTGCTTCTTGGTTAGAGGTT



TTGATATTTGAGCTGAGTTGGGTTTTTGAGAGTAGGATGGCGAGTCCGTACGGAGATTACGA



TCAGAGAATTGATTACATGTTTAAGGTGGTAGTGATAGGAGACTCCGCGGTTGGAAAATCAC



AAATACTGTCTCGGTTTGCAAAGAATGAGTTCAGCTTGGACTCGAAATCAACCATTGGAGTC



GAATTCCAGACGAGGACAGTCGCTATTGATAACAAGACTATCAAGACACAAATATGGGACAC



GGCTGGTCAAGAGAGATACAGGGCAGTTACAAGTGCTTACTACAGGGGTGCTCTTGGGGCA



ATGTTGGTGTACGACATAACCAAGCGCCAAAGCTTCGACCATGTGGCCAGGTGGCTTGAGG



AGTTGAGAGGCCATGCCGACAACAATATTGTTATCATGCTGATTGGCAACAAATGTGACCTT



CGTGATATGCGTGCTGTGCCTGAAGAAGATGCAAAAGAATTTGCACAGAGGGAAGGTCTTT



ACTTCTTTGAAACATCGGCGCTGGAGGCAATTAATGTGGAGATGGCCTTCATAACAGCTCTG



ACTGAAATTTACCGGATAGTAAGCAGAAAGGCCCTCACAGCAAATGAGGATGAAAGGAATG



GGAATGCGGCTGCATTAACTGGCACTAAAATCTCTCTATCAAGCCCAGAGCAGTCTGTGATG



GCTGTGAAGAAAAAGAGCTGTTGTTGATCATCTTTATTGTTTATCGTTTCACTCTGTTTGGCA



ATGACATGATCCCTTTTGTAAAATCGATTTGCATTTTTCAGTCATCCTAAACTGCAGGTCTAC



TTCCGAGAGTTGTTGAAACCCGTTTAGATTCTAAAATTTCGTTGCCGAAGCACATCTTTGCAT



CCATGTATTTACAGTATAAGAGATTTTCTCTGCATTCTGATTTGATATCTTGAATATTTTACAG



CGTTTCACTGGTATCAAAATGGAAGCCCATATCTGTAATTAGTTTAGCATTTTCTCAGTCGCT



GGCTGAAGGGGTCACATACATTGCTCATTTCCACTGGCTACCAATGGAATTGCAAGATTTCC



CCTTGAACAAAATGTCACACGTTCTCCGTTGTGAGATCCATGTGAGGAAGTTTTGCCATCAC



AAATATTTTTATATGTATTTCATTATTTTGTTATTAAAAAAAAAAAAAA





122
TCCAGCTTCAGTTTGGGAGTACTACCAGGGATTCACAGGCGAGCAAAATGGATCGACTGAT



CAGCGGCCAAACCACGTGCAATTCAGTCGAGAAGCAGAGCAATGGAGATTCGAACCTCGAC



TATTCAGTTTCCGATGCGGTCAGAGACAAGCTGCGGCTTATGAGAGACAGAATTGAGAAGG



AAGATCCCGCCTCCAAGGTTACAGATGATGGTACTCTTCTACGTTTCTTGTATGCTCGGGAA



TCAAATGTGGAAAAGGCTTGTGAGATGTTTGCAAAGTATAGAAAATGGAGACAGACTTATGT



ACCCCTTGGATACATCCCAGAAACAATGGTCGGCAATGAGCTCAAGCACAAATTTGTCTACA



TGCAAGGATATGACAAAGTGGGAAGGCCGATAATGGTTCTTCGTCTGGCAAGGCACATTGC



TTCCCAGTCGAATATGGAGGATTTTAAACGTTTTGTTGTCTATGCCTTTGATAAAATGTCTGC



TAGTGCTACAAAAGGACAGACAAAGTTTTCCATTATAGCAGATTTTGCTGATTGGGCATACAA



GAATGTGAACCTTCGTGGCACTATTGCAGCTGTTCAAACCTTGCAGGACTTCTATCCAGAGC



GCTTAGGGAAGGTGTACCTTATTAATCGACCATACATATTTTGGGCAGCATGGAAGATAGTT



TCTCCTTTTATTGACAAAGTAACAAGGCAAAAGATTGTTTTCACCGACGATAAATATGTCAAA



GAAACATTACTGAAGGATATTGATGAAAATCAACTACCTGAAATCTATGGAGGGAAATTACCT



TTAGTTGCAATTGATGATTGTGTTGTACCAAATTGGCCCCCAATAACCTCATTTTAGGAATCT



AGAAGAACTTTAATAGCGATGATCATATTGAAGTATATTAGTTGTTCTTTAATAGCGATGAGC



ATATTGAGGTATATTGGTTGTTCTTTAGTGTTTATACCGAAATCATAAATTGTTCCTCAAATTT



ATTTCAACTTCTTACAAGAACAAAATTTTTAAAACAATTAAATTGTTCAATGTTAACTATTTAGA



ATAACTTTTTAAAAAATGTTCAATGTTAACATTTTAGAATAAAAAAAAAA





123
CGCCTCGGAGGGTTTCTTTGCGCGAAGATCACAGGTCAGAATAGCCATTTGGTGAAGGGAA



TCTGTGGTTTCTTATTTCAGAGCACTGGTATCAGTGTTAGTCGTTCGGTTCACGTCATTTTGA



GCCCAAATTTGAGGTCTTTCTGTGCGGATTCGGTAAAAAATGACGGAGAAGGAGAGAGAAA



ATCATGTTTACATGGCCAAGCTTGCCGAGCAAGCCGAGCGATACGATGAGATGGTGGATTC



AATGAAGAAAGTTGCTAAGTTGGATGTGGAGCTTACTGTGGAAGAGAGAAACTTGCTCTCAG



TTGGCTACAAGAATGTCATTGGTGCAAGAAGAGCTTCATGGCGGATAATGTCTTCCATTGAG



CAGAAAGAAGAGGCAAAGGGTAACGAGCTCAATGTCAAACGGATCAAGGAGTACCGTCACA



AAGTTGAAGATGAACTCAGTAGGATTTGCAACGACATTCTTACAATAATTGATGAACATCTCA



TTCCCTCTTCTAGCACTGGCGAGTCTACAGTTTTCTACTACAAGATGAAGGGGGATTATTAT



CGGTATCTTGCAGAATTTAAGACAGGAAATGAAAGGAAAGAAGCTGCAGACCAATCTCTCAA



AGCTTATCAGGCTGCTTCAAACACAGCGACTACAGATTTGGCACCTACCCACCCAATCAGG



CTTGGGCTGGCATTGAACTTCTCAGTTTTCTACTATGAAATTTTGAACTCGCCTGAGAGGGC



CTGCCACTTGGCCAAACAAGCTTTTGATGAAGCAATTGCGGAGCTTGACACTCTCAGTGAAG



AGTCATACAAGGACAGCACATTAATCATGCAACTACTGAGAGACAATCTTACTCTCTGGACT



TCAGATTTACAAGAAGAAGGAGGGGAAGATCAACCCAAAGGTGAAGAGGATAAGATAGAAG



AAATTGAGCACTAGTTTCAGAAGGGCAGTGTAATGACTACTTTCAGCATAACAACTGCCATG



GCAGTTGTATGCTGGAAGGTAGTTTATATTTGCTATGTTTCTTCATTCCTCCGTGCTGGTCGA



GGCGCTCTGCATAGACTAAATTGTATTCATGATTCCTGTTGCCAGTTTTTATTTTTTATTTTGG



TGAAGTGGGTTTAAGTTAGGTTGGAACTTTGAAGTACATTAGTGTTCTGCACTTTATATCCTA



AGTTGGAGGTCTTTTGAATTTTTAGTTCCACATGCATGGAATGTTGATGCACGATTTTCTGTT



TCGTCACTATTAAGTTGATAGGAAGTTTTAATTTGTAAGCCATGAGTTGGCTGATTGGGCTCA



AATTTTGGACTTGCCTGCTTTATTTGAGCAGAAGTTGTGGACGTGTCTCTAAATGTAAGAGG



TGAATGTATTTGACACTGGACCGTGTGGATGATGCAGATTACTAAAAACCTTGCGTTATGAA



AGATGCTACCTATAAAATGTGGTTTGGCTGTTGGTTTTAAAAAAAAAA





124
CAAGCGAATTTTTTGTTTATTTTAAGTGAAGTCAGATAGTGGTTTGAGCTTCGGTGCGGGATA



CACAGATCCACGTCTGCATTGAATGCAAACAAAAATCAAGGGTGGTAACCTCGTGTGATCCG



CGGGGAGAACCGTCAAACCACCCTCCCAAATTTTGGTCCCAGTTGTCGCTTTGATTTGATTC



GATCCAGCCGTTTTCGCTCTTCAATTCAACCTTCTTCGCGGTCGGAAAGGTTCAATTTGGAG



CAACATCGGACCAAATTGAGAAGCGTTCCAAGTTCCAGTATAAATGCGCAAGGGGACAGCC



AACTGAATTCAAGCTCACGAGACCGTGTAGATTTGCCCTGTTGAAGTCTTGGGGGTTCTTTT



ACAAGCTTCTTCAGCAAAAATTATAATTGACTGCAGAGATGGTCAAACTGACGATGATTGCT



CGTGTTACTGATGGTCTTCCTTTAGCGGAAGGCTTGGATGATGGGCGGGAACAAAGAGACC



TGGAATTTTATAAACAGCAGGCCAAGGCATTGTTCAAAAAATTGTCACACGGTCAACATGAA



CCTTCAAGGATGTCCATTGAAACTGGCCCATTTATATTTCACTATATCATTGAAGCTCGTGTT



TGTTACTTAACTATGTGTGATCGCTCTTATCCAAAGAAGCTTGCATTTCAGTACCTTGAGGAG



CTAAAAAATGAGTTTGAAAAGTTGTATCAGTCTCAAGTAGAAACTGTTGCAAGACCATATGCT



TTTATTAAATTTGATACATTTATTCAGAAGACAAGGAAACTGTACTTGGACACACGAACACAG



CGGAACCTTGCTAAACTAAATGATGATCTATATGAAGTTCAGCAGATAATGACACGCAATGTT



CAAGAAGTGTTGGGAGTTGGGGAGAAGCTTGATCAAGTCAGTCAGATGTCTAGTCGTCTGT



CATCAGAATCTCGGAAATATGCTGATAAAGCAAAAGATTTAAGCAGACAGGCATTTATCAAG



AAGTGGGCACCTGTGGCCATTGTTCTGGGAGTTGTTTTTGTGCTCCTGTGGATGCGATGGT



ATATTTGGCAGTGATTTTCTTTCAGTCATTATTACATTACCTGGGTAAGAGTGGAGTTTAGCT



GCTCAGAGGCAGATAGTAACAAGCAGGTAATATTTTTGAGGGAGGGCATTTGGGGTAGCAT



TTTGTTTTGGCTTGGTTGCTTTTTATTGAATGCAAATTCGAAATGAGGAAAGAGAGATCTTAC



TGAGGGCAGTGACCAGTTGTATGCCGAGCTTGATTGGTACAGGTGAACGTGAAACAAGTTT



CACTATTTGATGGATGAGATGAGTAAGATTTTATTTTAGTTGTTAGAATTACAATCTTAGAGG



AAGATAATAATATTGTTCTGGTCAGATAGCTTATTCATCAGGGAGATGAAATTTTAAATATTTA



CCTTAGGGTTTCTCTGTGATCAGTTGTCATTGGGGCCATTTTTTCTTTTTACAGTTATTGTAAT



TATTTGTTGGTACTTGTCTAGTTATAAAACCAGTATTTGAATATTTCA





125
AAGAATTCGGCACGGCTTTTTCAAAGGGTACTACTCATTTACCCCTTCAAAATTGGCAGTTG



CAATGAACGGAGGAGTTCAGATCTCTTCATAGAAGACGCCGCAGCAGCAACCAGCACGCAA



ACACTCCATTTAGACACCAACACTCCTTTCATTTGCCCCACGAACGAGAGTCTGTGTGCTCT



GTGGTCGAGAGAGAAGTTTTATTATTAAATGGCGAGGAGAACGGACGATGAGTATGATTATC



TATTCAAGGTGGTCCTGATTGGAGATTCAGGAGTAGGGAAGTCCAATCTGCTCTCCAGATTC



ACGCGCAATGAATTCTGCCTCGAGTCCAAATCTACAATAGGCGTGGAGTTCGCAACTCGCA



CAGTGCAGGTTGAAGGGAAGACAATAAAAGCACAAATCTGGGATACTGCTGGCCAGGAGCG



ATACAGAGCAATTACAAGTGCCTATTACCGTGGTGCTGTTGGGGCTTTGCTCGTTTATGATA



TTACTAAGCCTACAACTTTTGAGAATGTTGGAAGATGGTTGAAGGAGCTTAGAGACCATGCA



GACTCCAACATAGTGATTATGCTAGTAGGTAACAAATCTGATCTAAAGCATCTACGAGGCGT



ATCAACAGAAGACGCTCAGAGTTTTGCTGAGAAAGAGGGTCTGTCATTTTTAGAGACATCAG



CGCTTGAAGCTACTAATGTTGAGAGGGCTTTTCAAACAATTCTGGCAGAGATACACAGGATA



ATCAGCAAGAAGGCCCTTGCCTCAGAGGAGGCTGCAGGAGCTGGCATCAGAGAAGGGAAA



ACTATTCTTGTCTCAGAGCCTGATTCTAATACAAAGAAGGCTTGTTGCTCATAGCAAGATTAT



ATAATGCCTGAAAATATGATATTAGAGCCCAATCTCATTTTTGGTGAGTTTTGGTTAGGTTTT



GTCGAATGATTACTTATAACGATATTTTGCTCATTCTTGATGGTAACTTACAGTTGCCTCTTTT



GTTTAGTATTTTGTTGCTGCAAGCTATTATTTGTTTGAGGAGCAATGGACATGACACCTACAT



ATTTATTTAAGGTAGGGAATATTTTCAGAAGAAAAAAAAAAAAAAAAAAAAAAAAA





126
GTTGTTTGTTGTTTGATTCTTCTGAGAGTAGGCCCTGCGTGTTCTGAGACTTTTTTGTCGTTT



TAATTTCTATTGAACTTGGCTCGTCATTTGTTCATTTTCAAGTATTGATTTGATGTATAGGAGG



TGACAACTTCTGTAAGTTTTTAGATGGATCAGGACCAATCCATCTGCAGATTTGCAGCTCAG



AAGGGAAAAGGAGAGATTCAGTCTTCTTCATTCCCAGACGAAGTTTTGGAACATGTTTTGGT



TTTCCTGTCCTCCCAGAAGGACAGAAATTCTGTTTCCTTGGTATGCAAGGCCTGGCACAGG



GTTGAGGCGTGGACGCGCCAGCAGGTGTTCATTGGCAACTGTTATGCTGTCTCCCCACAGA



TTATGATAAAAAGGTTTCCCAAGATCAAGTCTGTCTCACTCAAGGGGAAGCCCAGATTTGCA



GATTTTAATTTGGTGCCACCAAATTGGGGGGCCCATCTCACTCCATGGGTGTCGGCCATGG



CAACTGCTTATCCATTACTTGAGAGGCTGTACTTGAAGAGGATGACTATCACAGATTATGAT



CTCACATTGCTTGCAAATTCCTTCCTATATTTCAAGGAGCTTGTTATGGTTTGTTGTGATGGA



TTCAGCACAGGTGGCCTCGCTTCGATCGCAAGCAAATGCAGGCAATTGACCACACTTGATTT



GAATGAGGACGAGATACATGATAATGGAGAAGATTGGCTGGCTTGCTTTCCTGAGACTTTGA



CGTCTCTAAGATCTCTTTGTTTTGATTGTTTGGAGGGCCCAGTAAATTTTGATGCACTAGAAA



GATTAGTTGCAAGATGCCCCTCTCTGAAGAAGCTCAGGCTAAATAGAAATGTTTCTATAGTG



CAATTACAAAGGTTGATAATAAAAGCACCACAGCTTACTCATCTAGGAACAGGCTCATTTTTC



TATGAGTTCCAACTGGAGCAAGTAGCAGATCTTCTCGCAGCCTTCAGCAATTGTAAACAACT



TCAATGTTTGTCAGGATTTCGTGAAGTTGTGCCAGAGTATCTACCTGCGGTATATCCAGTTT



GCTCTAATTTAACATCTCTAAACTTCAGCTATGCTGTTATTGGCAGCAGAGAGTTGGAAGGA



ATAGTCTGTCACTGTCGTAAATTGCAGCTACTCTGGGTTTTGGATTCGGTAGGAGACAAAGG



TTTGGAGGCAGCAGCTACAACGTGCAAGGATCTGAGGGATCTCCGTGTATTTCCTGTGGAT



GCACGTGAAGACGGTGAAGGTTGTGTATCTGAACGGGGCCTTGTTGCAATCTCCGAGGGGT



GTCCAAATCTTGAGTCCATTCTATACTTTTGTCAGCGTATGACCAATAAAGCAGTTGTGACCA



TGTCGCATAACTGTTCCAAACTTGCCAGCTTTCGTCTCTGTATCATGGGTCGACACCAACCT



GATCATTTAACTGGTGAACCTATGGATGAGGGATTTGGGGCAATCGTAAGAAACTGCAAAAG



CCTAACAAGGTTGGCAGTATCCGGTCTACTCACTGACAAAGCATTTCAGTATTTTGGAGCCT



ATGGTGAAAGATTAGAGACCTTATCAGTAGCATTTGCCGGGGAAAGTGACCTCAGCATGAA



GTATGTGCTCGATGGATGCAAGAACCTTCGGAAGCTGGAGATTAGAGACAGTCCATTTGGA



GATGTTGCCCTCTTGTCTGGTTTACATCACTATGAAAATATGCGGTTTTTGTGGATGTCTGAT



TGCAGACTCACTCTACAGGGATGCACAGAGCTGGCCAAGAAGATGCCTGGACTTAATGTTG



AAATAATCAGAGAAAATGAATGCAATGATTCTCTTGTTGAGAAACTTTATGCTTATCGCACTG



TAGCAGGTCCACGGAAAGACATGCCGTCATTTGTAACCATCTTATAGCCACTTCACATGAAT



TTCGTGGTTATGGCTCTGCTACATATGGGCAACCTGTTAGGGCTATCCTACTAAATTAATCAT



GCATCAATGTTACTGATGAAAAAGCCCATGTCCATAATGCCTTTACTTCACCAAAGGAGGAG



CAATAGAGCAGGCCAGGTTATTGCCATTTTACTTTGGAAACTTTCTTCAGGTTGTAGCTGCC



ACCTGAAGGGTTGGAAGAATGTACGATTCACTGATGCAGACTGCTAATTCTTGTTGCTCCCT



AAAGTTGAATCTAGTTAAATGCCAAACAATAAACTGGTGATAGAAATGCTGAAGGTGATGAA



AGGTGGAGAATTACAGATGAATCCCTTCTGCGTGCATTGGATAGTGTTTTAAGGGACTGAAT



GCCTCAATTGGTCTGTTTGTTTTAATTTCAAACAATTGACCTGTCTTTGATGCAATCTGTGCTT



TGACTTGAATTCAATCTGTGATTTGACTTGAATTTTATTTGCTATATGACTGATCCGGAGCTT



GTTGAGGAGGTTTGGAATTGTTCCGAGGGAAAATTTCTGAGTTTATCATGTTATACTGATTAA



TTGCTTGAATTATCAAAAAAAAAA





127
GGAAAGAGCCCACCTGGGGCTGGCTATTTCATTCATTTTGACGTCAATTGCCGCATTACAAC



GGCAGCCGAGCAGAACGGAACGAAATCGGCAATGCAGATATCTAGCGAGCGCAGTCGATG



GCCTGCTGCTTCCCTCCATTAGCCGGTAGACGACGACAAACCATTTCCCCTCCAAGGAATT



CCCGTCAAGAAGAAGGGCAATATTGCCGTCAAGAAGACGAGCAATTTCCCCTTCAAGGAAT



TTCCATCAGAATTCAGCCCTGGGGGACAATTGGAGGCTCAGGACGGACAGCGGTTTCGTAA



TCCGCAGCAGAGGTAGATGGGGTAAATGCGGTTAACCGGATTCCGGTGGCCTCAGCTCAA



CTCATGAAAAATTTCAGTCGGATCTGATCTTTCTTTTTTTCTTTTTTCTCCCTAGATTTTTGTCA



CTCGAGGCCGATTCAAAGGGCGTCGTAGCTTTGGAGATCTCGAGCGTTCGAGATATCGAAC



CCGAGCGGCAGCGATGCAGCAGGACCAGAGGCGAAAGAACTCTTCTGAGATAGAATTTTTC



ACAGAGTATGGAGGGGCTAGTCGCTACAAGATTCAGGAGGTGATTGGCAAAGGAAGCTATG



GTGTTGTATGCTCAGCAATTGATACACATACAGGGGAGAAAGTTGCAATTAAGAAGATAACC



AATATTTTTGAGCATTTGTCTGATGCAACCCGGATTCTACGGGAAATCAAACTTCTCAGGTTG



CTGCGCCATCCTGACATTGTAGAAATCAAGCATATCATGCTACCTCCCTCACAGAGAGAATT



CAAAGACATTTATGTGGTATTTGAACTTATGGAGTCTGACCTACACCAGGTTATAAAGGCTAA



TGATGACTTGACACCAGAACATTATCAGTTCTTCCTGTACCAACTTCTTCGAGCATTAAAATA



CATACACACAGCAAATGTGTTTCATCGGGATCTCAAGCCAAAGAATGTCCTTGCCAATGCGG



ACTGCAAGCTCAAAATTTGTGACTTTGGCTTAGCAAGAGTTGCCTTCAATGACACTCCTACA



GCAATCTTCTGGACTGATTATGTTGCTACACGATGGTATCGGGCTCCTGAGTTATGTGGTTC



ATTTTTCTCAAAGTATACTCCTGCCATTGATATTTGGAGTATTGGTTGCATATTTGCTGAAGT



CTTGACTGGAAAGCCGCTTTTCCCAGGCAAAAATGTTGTTCATCAGCTAGATTTGATGACGG



ATCTTCTTGGCACTCCTTCCCCAGAAACAATTGCAAGGGTTCGTAATGAAAAAGCTAGAAGA



TACTTGAATAGCATGCGCAAGAAACAACCTGTACCTTTTACACAAAAATTTGTGGGTGCAGA



TCATTTAGCACTTAAACTTTTGGAAAGATTGCTTGCGTTTGATCCGAAGGATCGTCCTACTGC



AGAAGAGGCTTTGGCCGATCCTTATTTTAGGGGGTTAGCAAAAGTAGCCCGAGAGCCTGTA



GCTCAGCCAATAACTAAAATGGAGTTCGAGTTTGAGAGACGGAGGGTTACAAAAGATGATGT



GAGAGAACTTATTTATCGTGAAATACTTGAATATCATCCGCAGATAATGAAAGAATACCTGAA



TGGAACAGATCGCACAAACTTTATGTATCCTAGTGCTGTTGATCAATTTAAGAGACAGTTTGC



TCACCTGGAGGAGCACTATGGGAAAGGTGGATCAGTTCCTCCATTAGAAAGGCAGCATGCA



TCTTTGCCAAGACCCTGTGTTGTCTATTCAAACTCTGGTGGGCCCTCATCAGAGCAGGCATC



TTCAGGTCCTTCCAGGGATCGTGCTTTAGAAGTTCGTGAAGAAGCTCCAAGGTATAGTAGAG



AAGGAGAGAAGCAGCACCAAGACAGGAGCTCCGGAAATGTGAAAGTGCCCTTGCATGCAA



GTCATAAAGTTTTGCAAGGAAGTACTGCAAAACCGGGAAAAGTAATTGGTCCTGTATTACCC



TGTGAAAATGGAAGCATTAAAGAAGCATATAATCCAAGAAGGTTGATCAGAAATGCTGGTGT



TGCACCATCTCAGTGTCCTGCTCCAATTTATTCCTATCCAAGACGAAATTCCACAGCGAAAA



CTGAGGTTGATGATAAGAGGGAAGATGGAATTAATCAGTTTAATGTATCACAACATAAGACT



CAGTATGTTGGAATTGGTGCAGCAAGGAAAGTGGCTGCTCTTGAAAGCAGGTCATCTCATTT



GTATTAAATAAGGTGGATTATTAAATCGCGTATTTTTAACTTATCTAATATCTATTTACTGACT



CGATTCTTTAAAAAAAAAA





128
CTTTCTTCGACATCTCCGCTCTTTAGTTAATGGGTCTCTCATTTCCTGAACGTCTAGGCAGG



CCTATCCAGAATAAACTAGAGCGGAATATCATCTTTTGCTTTGCTGGACCGGGATGTAGAAC



TCCTGAACGGTAGCCCTCGCTGCGAATTTGATGTGCTAGGATTCCTTTATTAGTTGTTGTTA



CTTAGTGCTTGAAAGTGGCTTTCCTAGGAGTATTTTCTTGTTCCAACAATCCCAGTTAGAAGG



ATCATTCTACAATGAAAATTTCATCTCAGCGATATGAGAGATTGTGAAGGTATTTAAAAAACC



TCGGAGCAGCGAGACCAATCCCTCGCAAAATCCCGACCAGCAATCGAATTACGGCAATGGC



AGACGATTTGGGAGAGTTTTACGTTAGGTACTACGTGGGTCACAAGGGCAAATTCGGCCAC



GAGTTTCTCGAGTTCGAATTCCGTCCCGACGGCAAGCTCCGCTATGCAAACAATTCGAACTA



CAAGAACGACACCATGATTCGCAAAGAGGTGTTCCTTACACAGGCTGTTCTCAGGGAATGC



CGACGAATCATTGCCGAAAGCGAGATAATGAAGGAAGACGATAACAACTGGCCTGAGCCTG



ATAGGGTTGGACGTCAGGAGCTGGAAATAGTTATGGGGAACGAGCATATTTCCTTTACTACT



TCCAAAATAGGATCTCTTGTTGATGTCCAAAGTAGCAAGGATCCCGAAGGCCTTCGGATTTT



CTATTATCTTGTTCAGGACCTCAAGTGCTTTGTGTTCTCTCTCATTGGTCTTCACTTCAAAATT



AAGCCTATCTAGCCATAAATGGTGGTTGCATATACGTGCAAATGCATATTATATGATTGAAGA



TTTACATTAAAGAGCACAATGGATCTTTTTGTACGCTAGTAGCTCCGGAAGGATTGATTAACA



TGGATGCGAAGTTTTTTTTTTTTTTTTCCAAATATTTATTAATACTAAAGAGCATAACATACCTT



TCTAACCGAGGAGATCCCGATGGACTGATCACGATGTGTATGTGAAGCGTGTTTTAAAACAT



TAGATTTATCGTAGTCCAGTCATTTCTATAATTTCGAGTTTTAGCTCGTCGGTTGATTCGTTT



GTGTTCACGTGAATTTTGTGTGGCTTCTTAACTGTTGTAATTATCCGGCATTCCAAGTTGCAT



TTTTTGGTGGCGCGTTATGCTCTTGGGTCATAACACGTGGGTGA





129
CCTTGGTGTTGGGAGCACTGTCCACGGTAATCAAAATTTCATCTCAGCGATATGAGATTGTA



AAGATATTTCAAAACCCTTGGAGCAGCGATACCAATCCCTCGCAAAATAGCTGAAATTGGTA



TTTACAAACCCTTGGAGCAGCGATACCAATCCCTCGCAAAATAGCTGAGATTGGTATTTACA



AACCCTTGGAGCAGCGATACCAATCCCTCGCAAAATGCCCCCGACCAGCGATCGAATTCCG



GCAATGGCAGATGATCTGGGAGAGTTTTACGTTAGGTACTACGTGGGTCACAAGGGCAAAT



TCGGCCACGAGTTTCTCGAGTTTGAATTTCGTCCCGACGGCAAGCTCCGCTATGCAAACAAT



TCGAACTACAAGAACGACACCATGATCCGCAAAGAGGTTTTCCTTACTCAGGCTGTTCTCAG



GGAATGCCGACGGATAATTGCCGAAAGCGAGATAATGAAGGAGGACGATAACAACTGGCCT



GAGCCGGATAGGGTTGGGCGTCAGGAGCTGGAAATAGTTATGGGGAACGAGCATATTTCCT



TTACTACTTCCAAAATAGGATCTCTTGTCGATGTGCAAAGTAGCAAGGATCCCGAAGGCCTT



CGGATTTTCTATTATCTTGTTCAGGACCTCAAGTGTTTTGTGTTCTCTCTCATTGGTCTGCAC



TTCAAAATTAAGCCAATCTAGACATAAATGGTTGCATATACGTGCAGATGCATATTATATGAT



TTGAAGATTTATATTAAAGAGCACAATGGATCTTTTTGTACGCTAGTATCTCCGGAAGGACTG



ATTAACATGGATGTGAAGTCTTTTTTCCAAATATCTATTTTGTACTAAAGAGCATAACATGCCT



TTCTAATCGAGCAGATATTGATGGACTGAACACGATGTGTATATGGAGCGTGCTTTAAAACA



TTAGATTTATTTTACTCCAGTCATTTCTATATTTTTGAGTTTTAGCTCGTCGGTTGATTCGTTT



GTGTTCACATGATTCTTTTGTCGCTTCTTAACTGTTGTAATTATCTGGCATTTCAAGTTACATT



TTTTGGTGGGGCGTTATGCTCGTGGGTGGATGTATACTGGTTTTTAACCTTTCTCTAAAAAAA



AAA





130
GCGCCAGTCCGGGCACGAACGACAAGAGGACCATCACCGTTTCCGTTCCGGACACGGCGG



GAGCTCCCTCTCTCCTTCCTCCATTTAAAGGGCTGAAGAGAAGTCGATCGGTGTACGTTGTT



GTCGTCAGGTTGCAGGTTCGAACCCCATACCCGCTAGCCATTGCCAGATTGCACGGCCCAC



CTGTTCGACGTGCGTGACAGTCTTCAAGTCAGGTGGCTGGTAGATTCACGATTTTCATTTTA



AGTGCGGTGAACAGGTAAAAACGCAAAAACGCATCGCAATCATAATTCCATCGTGTTGGCAA



CCCAGCTCTCGCCGACCAGTGGGAATGACCGAAAGACTGAAGGTCTAGTTTTTGGGGTTTT



GGATAAATTTTTGCGTTTAACAGGGCGGCATTTGATTTTTCTGCTTTAAAACGGACATTATAG



ATTGGTTCGGTTCAGTTTTCTGGATCTCCGTGCTTCGGCCCGCAGAGATCCATGATTAGAAA



TTCCGTCTCCTATATCTCCTGCTTGACGGAAACACTGGAAGTGTGAATTGACGGGAATAAAC



GAGTCTCTAGAGTCTGCTGGTTCATGATGGGGCACAACACTTCTGAAGCCATCAAACAGAT



GACCGCTTTCATCGATGGAGTCGACGAGCCATTGAAGAAGTCTTTCCAGACTATGCATCGA



GGATATGCACAGCAAACTCTAGAGAGGTTTCTAAAGGCACGGGAAGGGAATGTTCAGAAAG



CAAACAAAATGTTGCTAGATTGCTTAAGTTGGAGAGTTCAAAATCACATTGATAACATCTTAG



CGAAACCTATAGAACCAAGAGAAGTTTATAATGCTGTTCGGGAATCACAGCTCATGGGGATG



ACAGGGTACTGCAAAAAGGGACGTCCTGTTTTTGCTATTGGAGTGGGGCTTAGTGGATATG



ACAAAGCATCTGCTGACAAATATGTGCAGTCACATATACAGATAAATGAGTACCGAGACCAA



GTTCTCATTGCCAAATGCATCAAAGAAATATGGGAGCTACATTGGACCATGCTTGAAAATCTT



GGACATGACGGGGCTGAAACTTTCTGCTTTAAACCGCATTAAGATATTGACTACGATAGCTA



CAGTTGATGCACCTTAATTATCCAGCAGAAGACGGAGCACATATTATATTGTTAATGCTCCAT



ATGTTTTTTCTGCCTGTTGGAAGGTTGTGAAACCCTTGTTGCAAGAAAGGACTAGACGAAAA



GCTACAGGTGTTGCAAGGTTGTGGTAGGGAAGAGTTACTGAAGGTAATGGACTATGATGTT



CTTCCTCATTTCAGCAGGCAGGAGGGCTCAGGGTCATCCAAACATCATAATGGCAAGACGA



TAGATTGCTTTTCTCCAGATCATCCATTTCATGTAGAACTTTATAATTATATTAAACAGCAAGC



AGCGATTATAAAGCCTGTTGCCCCGGAAAAAATGCGATCTTTTCATGTGGATGTTCCAGAGC



AGGATGATGAAGGAACCATTATTGTACAGACACTCAGAATCTGCATTACATAATTTAGGTGAT



GAAGAGGCAGTTGAGAATGGTGTTGCTAATTTGAATGTCAATGGGGATCAATCTCTGAGACA



CCGAAAAGCAGCTAGAAATGAGGTTCAAGGTTGAGTATGCTGAAAGTCGATTGGATATTTAA



ATAACTGGCCCACATATCTGGAAATCTGAGTTGACAATGTGTGACATTGTGTTGTTATCCTTC



AGTATCAGGGTTAATATTGTATACAATTCTCCAGTTTGACAATCTGATCTCAAACTGGTGTTT



TGCCTCATAATGTAATTGCATTAGATTATCTTATTTTGTGGGAGCGGTTGCCACTCCCATATT



CTGCAAAATGTCAAAAATGAAATCCTTATTTTAAAAAAAAAA





131
GGGATAGTTGTGCTCCGAGGAAAGCATTGAATTGGGGATAATGGCGGAAACTGTCACATAT



TCATGGCCGGTGGGTTTCGTCTGTTTCGTTCTGACGATGTTACTACTTCAACTCTACAGAAT



AGTGTGGAGGGAGGACAGTCGAGGCTACAATTTGCCTCCCGGTTCCAGTGGGTGGCCATT



GATTGGAGAGACCTTGAGCTTCATGCGAGGGATTAATTCCATTTCTAAACCACGCCAATTCA



TTCAAGATCGAGAGCAAAGGTATGGGAAGATATTCAGAACAAATTTGTTTGGAAGATCTCGA



ATGATTGTGTCTGTGGACCCAGAATTCAACAAGTATATTCTGCAACACGAAGGCAGGCTGGT



TCAATCCAGCTATCTGAGACCTTTTCGAAAACTCATCGGCAAATACGGTTTGCTTTCGGTGT



ACGGAGATCTCCAGAAGAAGCTCCACGGAACGGCCGTAAATTTCCTGAGGTTCGAGAGGCT



GAGTGTGCACTTCATGGAGGACATACAGAACCTTATGCACACCACCTTCGCCCAGTGGCAA



GCCAAGGGGCATATCCATCTTTATCATGAGTGCCATCAGTTTGTTCTGAACTTGATGGCAAA



ACAATTGCTGGACTTATCGCCGTCCAAGGAGACGGAAGAGATCGGTAAAGCATTCGGCGAT



TTTTCTAAATCTTTCGTTGTCCTTCCCATTAGAATCCCGGGTACAGCGTACTGGAAAGGATTG



AAGGCCAGAGATTTTCTGATGAAAAAGATTTATGCGAGTATAAAGTACAGAAGGGAGCATCC



AGAAGTTGTCCATAATGATTTCTTAGGAGAACTCTTGAAAGAAGACTTGCATTCCGAAGAAAT



TATAGCAGATTTTGTACTATTCCTGCTCTTCGCTGGTCACGAGACGTCAGCCTCAACGATGG



CATTTGCTATCAAATTTCTCACGGACTGTCCCCAGGCACTTCGGGAGCTGAAGGCGGAACA



CAACGCTCTGTTAAAGAGAAAGGGGAGTCCAAGAAACCAAAACCTCACTTGGGATGACTAC



CAGTCACTGAAATTCACCCAATGTGTCATAAATGAAACACATCGTCTCGCCAACGTTGCTCC



AGCGGTTTTCAGAGAAGCAATAGCAGACATTAAAATTAAAGGCTTTGTCATCCCAAAAGGGT



GGTCAGTCTTGGTGCTTATGAATGGCATCCATTTGGACGACAAGTACCATTCTTCTCCGCTC



AAGTTTGACCCATGGCGTTGGCAACAGATTCTGGAAAATAATGAGCTCTACAAGAACCCCTC



TTTTATGCCATTTGGAGGGGGGCTCAGGCTCTGTCCAGGAATGCATCTGGCAAAACTTGAG



CTGGGCCTCTTTCTCCATCACTTCATCACCAAATTCAGATGGGAGCCACTAGATGATGATAA



GATCTCCTACTTTCCTGTTTCCCACTTGACTAAAGGCTTTCCGATCCGTCTACATCCTCAAGA



ACAAATGGATGATTAATCGCAGTATAATAGGATTTGATTGATGCAGTATGGAGTATTAGTAAC



AGTAAATAAGTTTGAAAAAATGGATAATTAATCGCATTATAATAGGATTTGATTCATGCAGTGT



GGAGTATTAAAAACAGTAAATAAGTATGAAGCTTAAAACAATAATTGCCCCGCTGTGGACATA



TAAATATCATGTCCGTTGGTGTGAGTAGATATCATGTCAGTTGGTGTGAGTAGATTTCAAGG



ATATTTATGTATTTCCTGTATTGAAGCGTGAGGATAATGTATTAACCATAAAAAAAAAA





132
ACACGGAGAGGGATCATAAGCTCAAATGTCTTCGGCCTGGGAGTGCCGCCACGAACAAAAT



GGATCGACTGAGCAACGGCCAAACCACCTGCAATTCAGTGGAGAAAGGGAACGATGGAGG



TCTGAATTTCGATAATTCAATTTCCGACGCGGTCAGAACCAAGCTGAGGCAAATGCGAGATG



TCATTGAGAAGGAAGATCCCAGCTCCAAGGTTACAGATGATGATACTCTTCGACGTTTCCTG



TATGCTCGGGAATTGAATGTGGAGAAGGCTTCTGTGATGTTTTCAAAGTATCGAAAATGGAG



ACAAACTTTTGTACCCCTTGGGTACATCCCAGAGACAATGATCCGTGATGAGCTCATGAAAA



ATTCTGTCCACATGCAAGGATTTGACAAAAGAGGGAGGCCAATTGCAGTCATCTTTCTAGCA



AGGCACATCCCTTGCCGTAAGACAATAGAAAATTTAAAATGTCATTTTGTCTACATTTTCGAT



AAAATGTCTGCTAGTTCAAGAGGACAGACAAAGTTTACCATTATAGCAGATTTTGATGGTTG



GACGTACAAGAATGTAGACATTCGTGGTGCTATTGCAGTCCTTGAAATCTTGCAGGATTACT



ATCCAGAACGCTTAGGAAAGGTGTACCTTATTCATCGACCATATATATTTTGGGCAGCATGG



AAGATTGTGTCTCCTTTCATCGATCAAGTAACAAGGGAAAAGATTGTTTTTGTTGAAGACAAA



CATTTGAATGAAACACTACTAAATGATATCGATGAAAGTCAACTTCCTGAAATCTATGGAGGG



AAATTGCCTTTAGTAAAAATTCAAGATTGTGTTGTACCAAATTGGCCCCCAATTACCTCCACA



TAAGAATATAGAGGAATTTCAATATGATCTTATTGAAGTATATTAACCCCTATTTGGCTATTAT



ATTGTAATCTTGAATCCTTCCTTAAAATTATGTGGTCCTCTTATATGAATTGTAATGTTCTTAA



AACATAAAATGAGAAAGGAATGTTAAATGAGGAAACTTTCATTTATATTTTAATAAAAAAAAAA





133
CTTTGCTTTGACGGGAAGACAGGTATGTTTTCTGCAAGACCCGATTTGCTTTTATGAGGGCT



TTTTTAGGCGTAATCGCTTTGTTTGGATCGCACTGGACTATAATTGTTCGGTCCTTTTCCATT



TTTTTGGCTGTTTAAGAACCCTGTTGTTCATAATATTTGTTTTCTCTTTGCCTCAAACCCTTTC



AGCGCTTGTTTGTTTATTGGTATCAGACCTTTTTCGTGTTTGGTTTTCTAAATTAACGTATAAA



TTCATATCGGATTGCCTCTTTTTAAATCTAATTATTGGTTTCCAATTTCTGGATTTATAATCTTG



TTTTGGGCTGCTTTTTTATTCTGGTGGCTTGGCCTTTTCAGCATCTCTGGAGAGAAAATGTTA



TTGGTATCTTCAGTAACCCCCATGGTAGCAAAGTCTTCCGTCTTTGCTATCTGTTCGTCATCT



GAATTCAGGGAACATCTCCTTTCTTCTATCTTCATTTAACCCTACAAGGGTTTCTGTTAATGC



AATTCAAACAAACTGTTTGAATTCCGGGGCTGGGGTTTGTTTCTTTTCCCTGTCCTTTATAGG



AAGAAAAGGAAAAATGACTGGTGTAGAATATGACGCCAGTGATAAGGACAGGGAACCCTTT



GTGGAAGTGGATCCCACTGGCAGGTATGGTCGCTATGAAGATGTGTTGGGTCGTGGTGCCA



TGAAGACGGTATACAGAGCTTTTGACCAGGAAGATGGTATTGAGGTTGCTTGGAACAAGGT



GTCTCTGCAAAATCTTGATGATGTTTCCCTTGAGAGGATCTATTCAGAAGTCCGTCTGTTGAA



GTCTCTCAGGAATGGAAACATCATTATGTTCTACAATGCCTGGTTGGATAGAAAAACAGGGC



ATGTGAATTTCATTACCGAAGTTTGCACCTCGGGTACCCTGAGGCAGTACCGTCAGAAGCA



CCGCCATGTCTCCATGAAGGCCGTGAAGAACTGGGCACGCCAGATACTGGATGGATTGCAT



TATCTGCATAGTCATATCCCTTGCATAATTCACAGAGATTTGAATTGCAGCAACATTTTCGTG



AATGGAAATACTGGCATTCTTAAGATTGGGGATCTGGGTCTTGCTGCTGCCCTGGAAAATGA



TCATGCTGCACACACTATTATTGGTACACCAGAATTCATGGCCCCGGAATTATATGAAGAGG



ATTACAATGAGCTTGTCGATGTTTATTCCTTTGGCATGTGCTTGCTGGAGATGGTTACTCTG



GAGATTCCTTACAGTGAGTGCCGTAGCGTTGCTCAAATTTATAAGAAGGTGAGTTCTGGTAT



AAGGCCCGCAGCACTGGAAAAAGTTACCAATCAAGAAGTGAGGCAATTTATTGAAAAATGTC



TGGCAGTTACATCGGCAAGGCCTTCTGCTGCCGAACTTCTGAAGGACCCATTCCTCAGCGA



AGTACAATCGAGTAGCTAGTACATATGCATGTTTGAGTGCTCAATTATTTTAAGATTGAGTTG



GGGGTTTCTGCCAGCGTCTGTAGGAACTGTTGGTGGAAATATGTGATGCCAAATGCTAGGA



AAAATTATTTAGATATTATTGCATGTATCTGTGGGATTTTGATTATTTAAAATTAAGCAATTATC



GGGATTAAAAAAAAAA





134
GACAACTTCTGCAACTCATACATTAGGAATACCGTCTTAGCAACAGCATCGGCTACCATCAT



GCCGTATTACGTGCTTCAACGAGAGGTTGAATCAGAATTTCTGGAGGTTGATCCCACTGGTC



GCTATGGCCGGTACAATGATGTGCTTGGCAAGGGAGCATCGAAGACTGTATACAGAGCCTT



TGATGAAATAGAGGGGATTGAAGTGGCGTGGAACCAAGTGAAAGTGAATGATATTCTGCAG



TCACCTGAGGATCTGGAGAGACTTTATTCAGAGGTCCATCTTCTGAAGACTCTGAAGCACAA



GAATATCATCAAATTCTTTTCATCATGGATCGATACCACGACAAGGAACATCAACTTTATTAC



AGAGATGTTCACATCTGGTACTCTTAGGCAATATAGACAAAAACACAAACGTGTAGACTTAA



GAGCTGTGAAGAATTGGGCTCGTCAGATCTTGAGAGGGCTTCTATACCTGCACAGCCATGA



TCCTCCCATAATACACAGAGATTTGAAGTGTGACAACATATTTGTCAATGGGAATCAGGGGG



AAGTTAAGATTGGAGACCTTGGGCTTGCTGCAATTCTGCGTAAATCTCATTCAGCTCACACC



GTTATCGGAACCCCGGAATTCATGGCCCCTGAGCTGTACGACGAGGAATATAATGAATTAGT



TGACATCTATGCATTTGGGATGTGCCTATTGGAAATGCTCACCTTTGAGTATCCTTACAGCG



AATGCTCCAACCCAGCTCAGATCTACAAGAAAGTAACATCTGGGAAAAAACCAGCAGCTCTG



TACAAACTGAAGGATCCTGAAGTGAGACAGTTTGTTGAGAAATGCTTGGTCACTGTTTCCAG



AAGGCTTCCTGCAAGAGAGCTCTTAATGGACCCATTTCTTCAGACTGATGAGCACGGCTTAG



AATATTCCTTTTCCAGATTAGATTTCTGCAAAGATGATGTGGGGGAACTTGGCCCGTTATTAA



GAGAACCTAACATTGAAGCTTTTCAAAATGGTGCTCATAAATTACTCCAAAGCATTCATCTTG



TGCATCCTTGTAGCAAGAATGAGATTTCTGTCCACCATGAGAACAAAAAACAACAAAAGGTT



GTACCTTTGCCCTCATACATTAGAGAGGACAGTATGTCTCACAACATGGATTTCACTGTCAA



AGGCAAGAAGAGGGAGGATGACACAATATTTTTAAGACTTCGAATTGCAGACACTGAAGGG



CGCATTCGTAATATCTATTTCCCATTTGATGTGGAAGAAGATACAGCCATGAGTGTGGCCAG



TGAAATGGTTGCGGAGCTTGACCTTGCTGATCAGGATGTTACAAAGATTGCAGAAATGATTG



ATGAAGAAATAATGGCATTGGTACCTGATTGGAAGGCAGGGGTAGCAATAGATGATCACCAT



TCCTTCTATGACCATTACCATTCCTCCAACAAAACAAGTGAAACTTGCTGGTGGAATCATAAC



GATCATGCCTCCAGTATCTCTTCTCAGAGTTCCCTGTTGGAATACCTGAGGTCTCATTACCA



CGTTGACAACAAATCAGAAATAGTGCCTTGTACTCAAGTTGAATGTGCAGCCATGCATGGCC



GGTTTGAAGAAGTCACATTCCAGTTTAATGCAACAGATTTTTATTCATATGTAGAAGAGGAGG



CTCCTACAATTTCAAGCGGATCATCAGATGTTCTTCATCACGATTGGGTGAATGGAGAGGAT



CCAGTTTCACCTATATCTTTAATATCACATGGTTCAGGGATTAGCAATTTTGAAGATCCCCAA



ACTTGTCTAATATCCTCAGGTACTGGTAACAAAGAGGATGTAGTTCCAAGCAAACCTGCAAA



ACCTCCAGAAACTACAGGATATGTTGGTAACTTTGAAGAAAGTTGGAGCAATGGATTGTCTG



AAGGGTTCAGTCCTGTCACTGACTCTAATTGTCTTAGCTCAGTCCCCAAACCTATGTTCCAT



CCTCAATCACCATCATCAGTCAATATTTTATCTGATGAAGATGAAGATTCCACCAGCAGAGA



GTTGCGACTTTTAGCAGTCAAACATCAGAAGGAATTAATGGAACTTCAAAGAAAACATGAGC



ATTCCCTCTTAGGAATTGAAAATGAATTGAAAAACAGAACACCTTTGGGAACATCTTTAGATA



TGAAAAATTCCAGTCCTGGAATAAATTTTCAGGATCAGAAATTGAACGTGAATGGGCAGCGA



GAGCAGCGGGAAGATGACTCGGTTAGACATGGTACAACTGGTAGGGATAAGGAGTTTGTAG



CCATGAAACAACTTGGATCCGATGCTCGGGGAACAAGGCTTTCCAGCAGTCCCAGTCATAG



ATTATCACCGATGGAACCAGCAGTCAGTTCTGATCTTCCAGGTCCAAGTAAACTTGCAATGC



ATTCTTCTACTCTCCCTTCTGTTAGGCCAATTAATAGAAATATAGCACCAAATCAAAGGCTAA



TGAAAATGCATTCTTTTAGTGGTGTTGACAGTCAGCGTTCTATTAATTCTCTGGCCAAAGAAG



TTAGTAGGCAGAAAAATTACCAGACAATTGGAGCATTTCGAACAGGAAATGTCGATGAAAAG



AAACATAGTCTTGAGGGGATGAGACGATTTCCATCTATATCTCAGAAATCTTCTTCAAGGAAC



TGCAAGGAAGGTAAAACTAAAATAGTCTGAGAGAACTGAAGCACACTTGTAACATAAATTTAT



TGCCCTTAGTTTAGAATATAGATTGGATACTGCACTGAAAATTTATCAATTGTATATATGAGCT



TTACCTTCTGGAAGAGGTAATGGTTGGTGGTAATGCTATGCAAGGTTCTTCGGAAATTATTC



CTTCGCCTTGGCACCTTTATGGTCTCCCAAGAATTTTGGTAGTAAGGGCAGCATTTTGAAAT



TATACAGAAACAAAGGAAAAATGTATGCATCGTCTTTCATTAGGAGAGGCTGCAACTGCCAC



GGGCTACTACATTGTTGACATGTACTATGGATTCACCAGTTCAGCTGATGGTACAATTCAGA



TGAATTTGTGGGTTATAATCCAAATAAGTGCTTCTTGGCTGGATAGAACCCAATTCCTCACCA



GCTTTTCCAGTTAACAGAGAATTCATGTTTTTATGGCCTTTTAATTTTATGTCAAGCTTCTGGG



AAAATTTGTATCTTTGTAGTATTCAAGATTTTACGGAGAGCATAAGCTATAAAAGCAAATCGG



TCTGCAGTGTATTATCGACATCCCATTGTTTTCAGAAATCGATCAATAAGATAAGGCGGATG



CAGACTAGAAGACATGCAAGTATTGCATGTCTAAATGGCTTGATTTTCTCATCAAAAAAAAAA





135
ATGGGATCGGGCATCATGACGGAGACTCTTACAGATTCATGGCTAGTGGGCTTGCTCTGTT



TAGTGCTGGGCTTCTTACTGCTTCAGCTCTACAAATTAGTGTGGGGGGCGAGCAGTCGAGC



CTATAAGTTGCCGCCGGGTTCTACAGGGTGGCCACTGATTGGAGAAACCATCGGCTTCTTT



CGAGGTATTAATTCCACTGCTCAACCACGCCAGTTCATCCAAGAGCGAGAGCGAAGGTATG



GGGAGATATTCAGATCAAATTTGTTTGGAAGATCTCGAATTGTTGTGTCCGTGGATCCAGAA



TTCAACAAACATGTCCTGCAACACGAAGGCAGGCAATTTCAGGCCAACTATCCCAAACCTCT



TCGAAATCTCATTGGCAAATATGGGTTGCTTTCGGTACACGGAGATCTCCAGAGGAAGTTAC



ATGGGGCGGCTGTAAATTTGCTGAGGTTCGAGAGGTTGAGCGTGGACTTCATGGAGGACAT



ACAGAACCTTCTGCACATCACCTTGGCCAAATGGGAAGCCAAGAGGGATATACATCTTCAAG



AAGAGTGCCATCAGCTTGTTCTGAATTTGATGGCCAAACAATTGCTGGACTTATCGCCATCC



AAGGACACTGAAGAGATTTGTGAAGCGTTTGGCCATTTCTCTGAAGCTCTCCTCGCTGTTCC



CATCAAAATCCCGGGTACCAAGTATGCAAGAGGATTTAAGGCGAGGGAATTTTTGATAAAAA



AGATTTACGAGAGTATAGAGGATAGAAGGCAGCATCCAGAAGCTGTACATAATGATTTGTTA



ACAAAACTCTTGAAAGAAGACACGTTTTCAGAAGAAATTATAGCAGATTTTATACTGTTCCTG



CTCTTTGCTGGTCACGAGACATCGTCCAGATCCATGTCATTCGCTATCAAATTTCTCACAGA



CTGTCCCCGAGCACTCGAGGAACTTAAGGCTGAGCACGACGCTCTGTTAATGAGGAAGGG



GAATCTAAAAAATCAAAAGCTCAATTGGGATGATTACCAGTCGTTGAAATTCACCCAATGTGT



CATACATGAAACACTTCGTGTGGGCAACTTTGGTCCAGGAGTTTTCAGAGAAACAAAAGAGG



ACATTAAAACCAAAGGAGGCTTTGTCATTCCAAGAGGATGGACAGTGTATGTGTTTCTGACA



GGCACCCATCTGGACGAGAAGTACCATTCTTCTGCACTCAAGTTTGACCCATGGCGCTGGC



AACCGCATCTGCAAGATCAAGAGCTCTTAAAGAACCCCTCGTTTATGCCTTTTGGAGGAGGT



GCCAGGCTCTGTCCAGGAATGCATCTGGCAAAGATGGAGCTGGCCCTCTTTCTTCATAACTT



CGTCACCAAATTCAGATGGGAGGCACTGCAGGATGATAAGATCTCCTACTTTCCTTTTCCTC



GCTTGATCAAGGGCCTCCCAATCCGACTACGTCTTCGAGAGTGACTAGACGATTAATGTAG



GATTTAATTCATGCAGGCTGGAGTTAAAAGAAAACTATATAGAATAAAATAATTGCCATGATG



TGGACGCTAGTTCCGATCTAAATAGCCTGGGTTTGTGTGAGTAGATTTCAGAGATATTTATAT



TAGCTTTCCTTGTGTATCAAATCGTCGAGATTATCTTCCTCTTTGACTTTTATCGAGGAAGAC



AAATCTATTATTTTATTATTAATAATTTTGAGGTTTATCAAAAAAAAAA





136
GGGGAATGATCGTTACGGCCAACATAAAGGAGGGAGTGGCATTAGCATTCAAACGGGTAGC



AGTTGTTCTGTGAAGAAAAACATTGCAATGGCAATAATGGGGGAAACCCTTCATTCGTTGCT



AGTGGGCCTGGTCTGTTTTGCGCTGGGGATGTTACTGCTTGAGCTCTACAAATTAGTGTGG



AGGGTGGACAGTCGCAGCTATAAGTTGCCGCCCGGTTCTACAGGGTTGCCATTGATTGGAG



AAACCATCAGTTTCTTCCGAGGCATTAATTCCACTGATCAACCACGACGGTACATTCAAGAA



CGAGAGAAAAGGTATGGGGAAATATTCAGATCAAATTTGTTTGGAAGATCTCGGATTGTTGT



GTCCGTGAATCCAGAGTTCAACAAACATGTCCTGCAGCACGAAGGCAGGCAGTTTCAAGCC



AACTATCCCAAACCTCTTCGAAATCTTATCGGCAAATTTGGTTTACTTGCGGTGCACGGAGA



TCTCCAGAAGAAGCTCCACGGGACGGCTGTAAATTTGCTGAGGTTCGAGAGGCTGAGTGTG



GATTTCATGACGGACATACAGAACCTTCTGCACACAACCTTGCCCAAATGGCAAGCAAAGAG



GGATATCCATCTTCAAGAGGAGTGCCATCAGCTTGTTCTGAATTTGATGGCAAAACAATTGA



TGGACTTATCGCCTTCCAAGGAGACCGAGGAGATTTGTGAGGCGTTTGGCCATTTCTCCGA



AGCTCTCCTCGCCATTCCCCTCAGAATCCCGGGAACCGCGTATGCCAGAGGATTTAAGGCC



AGGGAATTTCTGATAAAAAGGATTTATGAGGGTATAGAAGACAGAAGGAAGCATCCACAAGT



TGTCCGTAATGACTTGTTAACAAAACTTTTGAAAGAAGACTCGTTTTCAGAAGAACTTATAGC



AGATTTTATACTATTCCTGCTCTTTGCTGGTCACGAGACCTCGTCCAGATCCATGTCATTCGC



TATCAAATTTCTCACAGATTGTCCCAAAGCATATCAGGAATTGAAGGCTGAGCACGACGCTC



TGTTACAGAGAAAAGGGAATCGAAGAAACGGAAATCTCACTTGGGATGACTACCAGTCGAT



GAAATTCACCCAATGTATCATAAATGAAACACTTCGTCTCGGCAACTTTGCTCCAGGGGCTT



TCAGAGAAGCGAAAGAAGACGTTAAAACCAAAGGAGGCTTTGTGATTCCAAAAGGATGGAC



GGTGTATGTGTTTCTGACGGGAACCCATCTTGACGAGAAGTACCATTCTTCTGCTCTCACGT



TTAACCCATGGCGTTGGCAGCAACTTCTTCAAGATCAAGAGCTCTCAAAGAACCCCTCGTTT



ATGCCTTTTGGGGGAGGTGCCAGGCTCTGTCCCGGAATGCATCTGGCAAAGCTTGAGCTG



GCTCTCTTCCTTCATAACTTCGTCACCAAATTCAGGTGGGAGGCACTGCAGGATGAAAAGAT



CTCCTACTTTCCTTTTCCTCGCTTGATTAAAGGCCTTCCAATCCGTCTACATCCTCAAGAGCG



ACTCGGCGATTAATCTCATTGAGATAGGATTTAATTCATGCAGCATAGATAGGATTTAATTCA



TGCAGCATGGAGTGTTAAAAAGACTAGATTTACTTGAAGGATAGAGCACTTGGCACCCTGCG



GACACAAGTCCTAGGTTTAATCGCATATGTTGGCGTGACTAGATTTGAACGCTATTAATATG



GCTTTTCTTCTGTCTGGATGTGTAGGGATTAGTCTTCACTTCCCCTCTGATTTTCATGGAGGA



AAACTACTGAAAGTGCTCAGTGACATTAATTACTTGTTTTTAATTTTTTTAAAGTTTTGTTTGG



TTTTGTGATCTAATAAGTTATTAAGATTACTTTTAAAATTTTGTATGGTTTTTAAGAGCTACAAT



GTTA





137
GCTACTTCCGAGGACGCGGACGAGGAGAAAGAAAAGAGTTTGGAGGTCCCGGGATTAATTT



CTCTCCGCGCATCGAAAACGAATTTCGCCTGCTTCTGCACAGATCCAGGTTCGAATCCTCG



GGGCTTCAAAGAGGATTCGGACGGACTGAAATGCGAGCAGGAGAACAGGAGCATCATCAC



ACATATGGGAGGGACGGTAGTAGATAGCGTCCGTAGGTGGTATCAGCGTCGCTGGAGTCAT



TCTTCAAGCGCTCACGAATCAGGAAAAGAGAAACAAACAGTTGATTCCCTCTCTTCTTCTTC



GGTCTCTCCATTACCTGTGGAAACCAAGGCGGTGGAGGGCCGTGGCTTGAAGCCTGTGCG



CGTGCAGTTGAGAAGCAAAATGACCGGGCCCGATCGCTCCAGGAAAAGCTCGCTGGAGAC



GGAGTTCTTCACCGAATATGGTGAAGCAAACCGATACCAGATACAGGAGGTTGTTGGCAAG



GGAAGCTATGGTGTAGTAAGTTCTGCGATTGATACTCATACTGACATTGTTGAGATTAAGCA



CATTATGCTTCCTCCATCTCGACGGGAATTCAAAGATATATATGTTGTATTTGAGTTGATGGA



GTCTGATCTTCACCAAGTTATTAAAGCAAATGACGATCTCACACCTGAACACTATCAGTTCTT



TCTGTATCAGCTTCTTAGAGCTCTAAAGTACATTCATACAGCAAATGTATTTCATCGTGACTT



GAAGCCAAAAAACATTTTGGCAAATGCTGACTGCAAATTGAAAATATGTGACTTTGGGCTTG



CTCGTGTCTCCTTCAATGATGCTCCATCTGCCATTTTCTGGACGGATTATGTGGCAACCAGG



TGGTATCGAGCCCCTGAGCTTTGCGGTTCTTTCTTTACTAAGTACACTCCTGCCATTGATATC



TGGAGCATAGGATGCATATTTGCTGAAATGCTTACAGGAAAGGCATTGTTTCCTGGGAAGAA



TGTTGTACATCAACTGGATATCATGACTGATTTGCTTGGCACTCCGTCAACAGAAACACTTTC



TAGGATCCGCAATGAGAAGGCCAGAAGATACTTAAGTAACATGCGGAAAAAACAGCCAACA



CCCTTCTCACAGAAGTTCCCAAATGTAGATCCACTTGCTCTTCGTCTGCTTGAGCGTATGCT



TGCATTTGATCCAAAAGACCGACCTACAGCAGAGGAAGCATTAGCTGATCCATATTTCAATG



GTTTGGCAAAAGTTGAGCGTGAACCTTCAACGCAGCCTATTTCAAAGCTGGAGTTTGAGTTT



GAAAGGAGAAGATTAACAAAGGATGATGTGAGAGAGCTTATATATCGAGAGATTTTAGAGTA



TCATCCTCAAATGCTACAGGAGTATCTATGTGGTGGCAACAATGCCACCTTTATGTATCCAA



GTGCTGTAGATATGTTCAAGAGACAATTTGCTCATCTAGAGGAACACTATAGTAAAGGTGAA



AACAGCACACCCCTTGGGAGGCAGCATGCCTCTTTACCAAGAGAGCGTGTCATTGAATTCA



GAGAGAATCCTACAAAGCACAGCAAGGATTCTGAAAAACAACAAGAAAGAATCACTGCGTCT



GTAACTAAGGCTACCCTTCAAAGTCCACCAAGAAATCAGGGAATTGTGATTGATTCTGCAGT



TTCACTATCTAATGGTCCAAGTAGAGCAGTTCCAGATCCACGAAACCTAGTGAAGAGTGCTA



GCATCAATGCTTCCAAGTGCACAGTTGTTGTCAATTCCTGTCAAAGAAGAAACTCCACAATG



AAACCTGGGGATGAGAAAAAGGAGGACTTGAGCAGTGAATCGAGTGCTGTCACATACAATA



CAGATTCAATGGTTGCTGGTTTGACAAGTAAGATTGCTGCAATGTCCAGTGGAGTGGCACAT



TCATGAATACTTCATTGTGTTCAAATCATTCAGGGCAGTGGTTACTAACCTCTAACTGATTTG



GTTACAACATATTCTGAAGTGTCCTAAGCCAAGCATAGACTGAATGGCTGCTGGCCTGGTAA



AGAAGGTTACAGCGATACCTAGTGGTTTGCCTTATTTTCATGAATATGTTAATGGTCATCTAA



TTTTTATATTGTATCGATTGTGACCTGTTTAAAAAATATATTTTACTTTAACTGGCTTCTTTTGT



GTAATCAATAATTAATCTGTCTCAGTCAAAAAAAAAA





138
GTGGCCTGCCTTCCCAAATTGTACAATCATTTTAAACCCAACATCCTACAAATAGGATCATTT



GGAGCGTCATTTCACTCGGTTTTTCTCTTTCAGTTTGAAGCGGTGGAGAAATGGTCTGTAGG



CAAACTAACCATTTCTGAAGAGCAGGCCTTAGAATTGTAGGGTAATTTGCAGTGGACAAGAT



GGCTTACAGAGCAGATGATGACTATGATTATCTCTTCAAGGTGGTACTGATTGGGGACTCTG



GTGTGGGCAAGTCCAATCTGCTGTCGAGATTTACTAGGAATGAGTTCAGTTTGGAGTCCAAA



TCCACCATCGGAGTGGAGTTCGCGACTCGGAGTATAACAGTCGATGATAAGGTCATAAAAG



CTCAGATTTGGGACACAGCTGGTCAAGAAAGATACCGGGCCATAACAAGTGCATATTATCGA



GGAGCAGTTGGTGCACTGTTAGTTTATGATGTAACTAGACATGTAACCTTTGAGAACGTGGA



GAGATGGCTTAAGGAGCTTAGAGACCACACTGATGCCAATATTGTCATAATGCTTGTTGGTA



ACAAGGCTGATTTGCGCCATCTTAGAGCTGTTTCTATAGAGGATGGAAAAGCATTTGCAGAA



CGAGAAAATACATATTTTATGGAAACATCAGCTTTGGAATCAACAAATGTTGAGAATGCATTC



ACAGAAGTACTTAGCCAGATTTACCGGATTGTGAGTAAGAAAGCTCTTGATGTTGGGGAAGA



CCCAGCAGCGGTGCCCAGTAAAGGGCAGACGATACATGTTGGCAATAAGGATGATGTGACA



GCAATGAAGAAAGTTGGGTGTTGTTCTTTATAAGCCCAAAGTGCAGTGCTCTAAAGTGTTGT



CGTCTGAAGCTTTTGCTTCTAAAGCGATTCTTTTTGAGGAATTGATTTAAATGTCAAAAGAAG



GATTGATGGTTGCATGTCAGTTTTAAGAGACAAGCACCCTGCTATTGCTCTGTATGATTTATT



AGTGAACCTTTGCTGCTCTTGGATGCCTCCAAAGCGCATTGTTGTCATATAGCTTTTGTTGCT



ACTATACGTTTTAGCAAATATTTCAATGATTTGTATTGTGGTTATTTTGGACAGATCATGTCAA



AAAAAAAAAAAAAAAAAAA





139
AAGTCTTAGTTGACTCCACCCACCCCTGGGCCAGCTTCGAATCTTTCATATGTGATAAATCA



GGCGAGACTTACCATAAGTAAGCCTAAACGCATTTATATCAAAGTTTCACCTGAGAGTTCCC



CAGTGGACACTTACTCAAAATATGAGTTTATCAAAGTTCTACCTGTGGATTCTCCAATTCACC



CTTAATCAACCCATCCCAAAATAATTGGGAGTTTCTGAGTATCTAGGGTGAGTGGGTGACTC



CATTCATCTCTCTGACAGATGACAGATGAGGTTAAGATGCTGTTGTTGGTGCTGCCGCTGCC



ATTAGCATTGGGTTTCGTTGTGCTAGGCTGGAATCTGGATGTGGCCTTATTTTAATGAAGCC



CCCGTATCCCGATGGTCTTCACTCTCTCGGCCCCGCTGGGCATCCTTCATAAATATCTATGT



TCGCTGTAACAAATTGCTCAGGCCTGTGACCAAGGGGAAATGGAGCCCACGCCCAGCGCT



CGTAATTAGCTCGAACTAAGAACCAAAGTGTGGACCATCTGACCATCCATCCATTCATTGCC



TCTCCGGCTCTGGAAGTTTGAGGGGGGCGAGATTTGTCCACTAGACCAACGTGGATTCGGG



ATAGGCTGTTGTTTTCGAGAGATCTGAAACAGCGGGGGCTGCAGGAATGGAACTGGAGACC



TCCTACTGAAGGCCAACAGTGCGAAGGGGTTCGGAATGATGAAGAAGAGAGGGGATTCTTC



GTCTTCATTCCCAGACGAGGTGCTGGAGCACGTGTTGTTGTTCGTGGTTTCGATCAAGGAC



AGGAGCGCGGTTTCGCTGGTATGCAAGGCCTGGTACAGAGCCGAGGCCTGGAGCCGCCG



GAAGGTCTTCATTGGAAACTGTTATTCCGTCTCGCCGGAGATCTTGGTGAGGCGCTTCCCA



AAGATAACAGGCATAACTCTCAAAGGAAAGCCGCGCTTCTCAGATTTCAACCTCGTTCCTCC



CCACTGGGGGGCGGATATTCACCCCTGGCTCCTGGTCATACGCGGGGCCTATCCATGGCT



CCGGGAGCTGAGGCTTAAGCGCATGATCGTCACGGATGAAAGCCTTGAGCTCATAGCGCG



TTCCTTCTCCGATTTCCGCGCTCTCTCGCTCACCACTTGCGAAGGTTTCAGCACCGACGGC



CTCGCAGTCATCGCAACTCATTGCAGGAACCTGCAAGAGTTGGACCTGCAGGAGAGTGAGG



TAGATGATCGAGGCGGTTACTGGCTGAGCTGTTTTCCAGAGAGCTGTGTTTCACTAGTGTCA



CTGAATTTTGCTTGCTTGCAAAGTGAAGTGAATTTTGATGCCCTTCAGAGGCTTGTGGCTAG



ATGTATTTCTTTGAGGAGTTTGAAACTAAATAAAACTCTTTCTTTAGAACAATTGAAGCGGCTT



CTTGTAATAGCTCCTCAGCTGATGGAGCTGGGTACAGGTTCATTTTTTCAAGAGCTCAGTGG



TCCGCAATTTACTACAGATCTGGAAAATGCTTTTAAGAACTGTAACAAACTTAGAACTTTGTC



AGGGATGTGGGAAGTAGCACCTCTGTATCTTCCTGCCTTGTATTCTGTGTGCTCAAACTTGA



CATTTTTGAATTTAAGCTATGCGGCCAATATCCGAAGTATGGAGCTGGGCCGTCTTGTTTCT



CATTGTCCTCAACTCCGGCGGCTTTGGGTTCTTGATACTGTTGGAGACAAGGGTCTGGAAA



CCGTATCATCAAACTGTAAGAACTTGAGAGAATTGCGGGTTTTTCCATTGGATCCATTTGGC



CAGGATCGAGTTGGTGTCACAGAAAAAGGCATCCTTAAAATATCTCAAGGATGCCCTAATCT



TAGTTATGTTTTGTATTTCTGTAGGCAAATGACAAATGCAGCAATTATTGAAGTGGCTCAAAA



TTGCCCCAGGTTAACACATTTTCGCCTTTGTATAATGAATCCCTGCCAGCCAGATCATTTGAC



AGATGAACCTATGGACGAGGCTTTTGGAGCAATTGTAAAGATATGTAAGGGATTACAACGAT



TGGCAATATCAGGTTTGCTTACTGATAAGGCTTTTGAGTACATTGGTCTTTATGCAAAGAATC



TAGAAACCTTGTCTGTGGCCTTTGCTGGAAGTAGTGATTTGGGCATGGAATGTGTATTGCGG



GGATGTCCAAAGCTTCGGAAGCTTGAGATAAGGGATAGTCCATTTGGCAATGCTGCCCTCC



TATCAGGTCTTGAACAATATGAATCCATGCGTTCATTATGGATGTCTTCTTGCAAGGTTACGA



TGAGTGGTTGTAGATACCTTGCTCAGAACAAGCCCAGGCTTAATGTGGAAATAATAAAGGAA



AACGATGAAGATGACAATGATGCAGACAAATTATATGTCTATCGGACAATTGCTGGGCCAAG



AAGGGATGCTCCAAATTTTGTGCTCACCTTATGATCAGATTCTTCTTTTCATCGTTATGGACA



GTCTGGTTAGCTGCCTGGATTATCATGAAATGATTACAGGGAAGAATCATCTTGTATATATCT



GTGACTTGCTCAACATGTAGGATGGGATACCTGCTGAATTGAGACACACCATTGTAAGGCAA



GGCATCTGTCATTAGATGTGGATGACTGTTGGTTTTTTCTCATTGGTGTGTACTATCCATTAA



AGGTGGCACCACCAATTCGTCAGATTTGAGTCCTTCGTTTATCGGACTCACAAGTTTCATTT



CATAATAGGTCTAATCTTGGTTAACTTGTGAGTCCCTCGTGCCGAATTCGGCACGAGGACG



GACTGTGCTGCTGGAAAAACTCGTGTTTTCGTAAATGGTAGGGAGCTCCATCAAAAAGACTT



GGATTTGCTTGCTGGCAGAGGTCTACCAACCACAAAAGACAAGTATTACCACGTTGAGATCA



GCGGAAGAGTTGTGGATAAGGATACTAATAAAGAGCTGAAGAGTCTTGGCAAGCTTGCACC



AACGTAGGTCACCAGTTAATATGCATTCTTCTTTCAGAAATTCAAGGAAGTAGAGCAAATTTT



ATTTTCCAGTATGTCAAATTTGGCTTTGGGCTACCAGGTTTTTGTAATTGATGTTTGAAAAGT



TATACATGTTTTTCAATGCATTTCCGGGCAATAACACTTCTCGTGCCGAATCGGCA





140
CATAACTACAAACCGTAACGCATGCCTGGAGCAGTGTCCATAACGTCAGTACGGTCGTGAG



CAGCAGGAAACTTTTTCCGTGCTCCTTCTCACATCTTCTTGTTTGCTTCGGGATTCGATATCC



TGACCACTTTACTCATCAGCCCGCTGAATTCTTCTCTAGACTTGCTCTTTTCCTGTCATTGAG



GGCCAACACAGCCAACGGCTTCGTTCAAAATCGGGCCACAAGAATGGTCGATCACTCGCTC



ATTTACAGTTTTGTTTCGAGAGGGACGGTCATATTGGCCGAGTACACGGAATTTACTGGGAA



TTTTCCCACCATAGCTTTCCAGTGCCTCCAGAAGCTCCCGGCCACCAGCAATAAGTTCACAT



TTGACTGTCAACACCACACCTTTAATTATCTCGTTGAAGATGGATTTACATATTGTGTCGTGG



CAGATGAATCAGCTGGAAGACAAGTACCGATGGCCTTCCTGGAGCGCATTAAAGATGAGTT



TAAGAAGACGTATAGTGATGGAAGAGCTGAAGTAGCTATTGCCAACGGTCTTCACCAGGAAT



TTGGGCCAAAATTGAAAGAACACATGGACTATTGTGCACAGCATCCAGAACAGATCAATAAG



TTAGCCAAAACCAAGGCTCAGGTTGCAGAGGTCAAAGGCGTTATGATGGACAATATTGAAAA



GATCCTTGATCGTGGTGAGAAGATAGAACTGATGGTTGATAAAACAGAGCAACTTCAATTCC



AGGCTCAGGATTTTCAGAATCAGGGTGCTAAGATACGCAGGAAAATGTGGTTCCGGAATAC



AAAAGTCAAGCTAATTTGTCTTAGTTTCTTGCTTTTTGTAGTTCTCATGATATGGATCTCTCTA



TGCCGTGGATTCAAATGCCATGTCTGAACTAATAAGTTTGTAGCTATCAACATGACTAAGCTT



TAGTGAAGGGCTATACAATGCATCTTTATTCTTCTATTGTTGTTCTCTCTACATGTAAATGGT



GTTTGCTGGAAAGGTAATTCTTTTTCCTGTTTCTTCAGAGTAAAAAAAAAA





141
CTGCAATGTCCGGTCTCATCCTTTTTCAATCAATTCCATTGCCATTTCCCTCCCAAACCCAAA



GCATAGGGTTTCCTTCATCTCGGCGGATCTCGAGTTCAATCCCTTCTGCCCATGAATTTTTG



CCTTTTTCGATCCCATAGTTGAAGCTCGACGCAGGACGAACAGATCGGGGCAATTAACATAC



TTATTCATTCGGACTTTCATTCGCTTCAAACATCGGTGGTTCGAACGCCGGGGCGTCTGGAT



ATAGCAGCAAAAAGATTACGCAAAGGCAGCGGCTCTCATGGCGATACTGTATGCCCTGGTA



GCCCGTGGTTCCACAGTTTTAGCGGAATTTGACGCGGCTCACGGCAATGCGAAAACCATAG



CGCGTCAAATTCTGGAGAAAATTCCAGGTACCGGGGACAGCCACGTCTCTTATTCGCAGGA



TCGCTATATTTTTCATGTCAAGAGGACTGATGGATTGACAGTTCTATGTATGGCTGACGATAC



AGCCGGAAGGAGGATTCCTTTTGCATTTCTAGAGGATATTCATGGAAAATTTGTGAAGACTT



ATGGTCGAGCTGTTCATACGGCACTTGCTTTTACTATGAATGATGAATTCTCAAGAGTCCTG



AGTCAGCAGATGGAATATTATTCAAGTGATCCAAATGCAGACAAGATTAATCGTATACGAGG



AGAAATGAGCCAGGTTCGCAATGTAATGGTGGAGAATATTGACAAAGTACTCGAGAGAGGT



GACAGATTAGAGTTGCTGGTAGATAAGACTGAAACGATACAAGGGAATACTTTCAAATTTAA



GAAGCAAGCTCGTCGTTTCAAAAATACAATGTGGTGGAGAAACATCAAACTCACGGTCGCA



GTGATAGTCGTGCTTTTGATCGTCATCTATGTCATCCTCGCTATAGTTTGCAAAGGTGTTACA



CTACCGTCCTGCAGAAAGTGAATCGAACCGTTTGAATTTGTGGTCAGTGTCGTGTGTATTTT



TAGAAGGCACAAAGGTTTTTATTTTGGGAGGCTATTGGTTAATACATATAAAGGGTGGTAAA



GCGCTGTTCATATTTTTCCTAGAAGTATTGGTCATTTTCTGTGTAAATTAGATTCATTGCCGT



CAAAGAAATGAAGATTATTTGGAACATGAGGAAACATATTTTTTTCCAGGCTTTGAGCACAAG



CATTACTCTTATGGTAATGACATGGCATGGAAGATTAACAAACATGATTTTTATTATCTATATT



TATTCTGTTATCAGTTCAAGCACTCGGAATATTTGTTCATGAGCCTTTTTCATTTAGTTTGGAA



GTGATCATTTGTAACAGTTTTTTGACACTTTTGAATTGTTTTGTAAGATGTGCCCATCTACTTT



ATCGGAAGAAGGGAGACACTCTTACTCATCTTTGGATATTTTCAGTAATTTTTAATAATAGAT



CAGAGAGTTCAAGATGGATTAAAAAAAAAA





142
GGAAGAACTTTGCGTTTCCCTGCATTTCTACTTGTACCCTTATTCATTCATTCAAGAAAAGAA



AAGGGCAATGGCTGTAGTTGCTTCCAATTCTCTACAACTGCAGCGTGAAGAGGAGGCAGAG



ACGATGATATCAGATCAACAGCAAGAAGCTGGGGCGGAGATAATGGCATCAGAAGAAGAGT



CGATTATGGAACCAGAAAACCCGTCATTGTCTCATCCCAATATTGTGTCCAGCTGCGGGATG



AGGTTCCAAAAGTACCAGAGTGTTTGGATTGACGCCAACTTAGTCCCCGCAGTGAATTTCAT



CCAAAACGAATTTCAACCACGCCCCGACGACATTTTTTTCGCTTCCCTTCCAAAGACTGGAA



CCACATGGGGTAAGGCGTTGCTGTATACCATCTTGGAATTTACTTCCACAGGCAATAACCCT



CCAGCAAGCCCGAATGGTAATTCTGCTGCGGATGAGAAAAGATTTGGTGTGGATGAGAAAA



ATCCGCATGCTTTGGTCCCAACCATGGAAACTTATCTCTTCAATTCAAGTGACAGCGAACAG



TATGATATTTCCTGCTTCTCTGATTTTCCGTCTCCGCGTGTGCTCCACACACATTTGCCAATC



CATACGCTGCCTCTTCTTGTGAGATCTTCTCCGACTTGCAAGATAGTTTACATTGCCCGCAA



CCCCAGAGATTCCTTCGTTTCCCTTTGGCAATTCTACGCCAGACTTCGCGGAGCGGGGTCT



CATTATTTGGACGGAGATCTCGGCAAGGAAACGGTGTTTGATGCATTTTGCTCTGGCTTCTA



CTATGGCGGCCCCTTTGCCGAGAACGTTCTGAGTTACTGGCATGAAAGCAGGCGCAATCCG



AATCAGGTGATGTTTGTGACGTACGAGGACCTGCAGGCCGATTGCGTGGGATGGGTTAAAA



GAATGGCTCTTTTCTTGGGTTGCTCTTCTCCTCTTCTGGAAGACAACGCCCAGATAATTGCA



GAAAAGTGCAGTTTCGATACCCTCTGCAATCTGCAGGTGAACAGAAAAGGAAAAGTGGGGA



CGCTTAAATACGGAATGAAAAACGCCTTCTTCTTCCGCGAGGGCAAAGTGGGCGAGTGGAA



GAAGCATTTTACGCCACAGATGGAGGAGCGTATTTATTTAGAGATCGAGCAGAAATTGAGCG



ATCAAGGCCTTCGTTTCACTAATAGCTTGTAGAAAGCCATTTCGTTTGTGTTGAATTTATATTA



GCTAGATAGCTATCAGGTCCTCGGATTCTGAAATCTTCCTGAACTCTACAGTTAAGATAAAG



AAGTCACATCCATTTCCATCTACTTATTACTTTTATTGACCATCAGTTGCAGTGAAGTTCCTTA



GTGCAATAAAAAAAAAA





143
TTGGGTTCGGGGTCCTGTCCTGGACTGGGAATTTTTGTTTCACTCGTTCTGCCCCGTCTGGA



TTGGGCTGCACTGAAATACATTGAACATTGGAGTTGTCGAGCGCGAGATATGGGTCAGCAG



TCCCTCATTTACAGCTTTGTTGCAAGGGGCACGGTGGTCTTGGCCGAGTACACCCAATTCA



CGGGCAATTTCACAACAATTGCCAATCAATGCCTTCAGAAGATTCCTGCCAGCAATAATAAG



TTCACCTACAATTGCGATCGTCACACATTCAATTATCTCGTCGAAGATGGTTACACATACTGT



GTTGTTGCAGATGAATCAGTTGGAAGACAACTACCAATTGCCTTTCTGGAGCGCATTAAGGA



TGACTTCAAGAAACGATATGGTGGTGGAAAAGCTGACACAGCTGTTGCTCACAGCCTCAAC



AAAGACTTTGGACCAAAATTGAAAGATCATATGCAGTATTGTGTTGATCACCCAGAAGAGATT



AACAAACTTGCAAAAGTGAAGGCTCAGGTTTCTGAAGTTAAAGGCGTAATGATGGAGAATAT



TGAGAAGGTCCTTGATCGGGGTGAAAAGATAGAACTTTTGGTTGACAAAACAGAGAACCTTC



GATTTCAGGCTCAAGACTTCCAGAAGCAGGGAACACAACTTCGCCGAAAAATGTGGTTTCA



GAACATGAAAGTCAAACTGGTTGTTCTTGGAATTGTCTTTGTGTTGATTCTTATAATCTGGCT



CTCAATTTGCCATGGATTTAAGTGCCATTAATCTTGATTACTTGGCAGTCCTTTCTAGATACA



ATCCTTTCGAGGCATTTATATTCATTTTTTGGCAGCTTGGCTTATAATAGATGCAGGCTCTCT



TTGAAAAGAGTATCTTTTGTGTTGTGTCTGAGTAATGTATTTCATTCACTTGGATACTCTCATC



ATTAGATACTGATTATCTATGTTTTTCTCTGACGAGGGACAATGCCTCGACTCTTCATAGTTT



AGGTTATTGGCACTACCCATCAGCTGTGATGTCAATCTCTTTTATAAATATGAATCCCTGCTT



TTGGTTTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





144
GCATATGCGAATAGCACATCAAATCGGGTTGCGACTGCCTGCCACGTTCGATATCTCAGGC



TCTTCGATGAAGCTGAGTGCCAGAATCAAATTTAATAATCAATGAATAATAACAAGGGAAATT



ACTGTAGATTGCGAGACGTTACAGTTTACTTAGGATGACCCCAATGATTTCTCATCTTTGCTT



CAATTCAGTGTCGCAGAGGGTGCTCTTCCATGTCTGAAGAAAAATGTGAATGATGCTCTGCA



ATACAAAATTTTCTCGCATTGTGGACGCGTGGTAAGTGCAAGAAACGAGTGAAGGGGAGAA



GGGGGGGTTTTGCCTGTAAGAAAGGATCAGAGAGAGCAAGCATCCAGTAGCCATGGAAAAC



ATGAGGAAGAAGTTGGGGCCACTGTTCAACTCCGGGCAGAGTTTCCGTCCTGACATCTCTG



TTGATTCCTGTACTTCATATAAGGTAACAGCGGGTGGAACTTTACACTTGCTGAGTAATTCGT



GTGGAGAATATAATATTAATGAACTTGGCTTACAAAAGCGCACTTCAGCAGGTATTGATGAAT



ATGATACGAATGAGAAAACATATCAGTGTGCTTCGCATGAGATGTGCATATTTGGTGTCATT



GGACGTGGTGCAAGCAGTGTTGTCCAAAAGGCTATTCATATACCAACTCATCGGATTTTAGC



ACTGAAGAAAATAAATACTTTTGAGAAGGAAAAACGGCACCAGCTATTAAATGAGATTCGAA



CACTATGTGAGGCACCACATGTGAAAGGCTTAGTGGAGTTTCATGGGGCTTTTTACACTCCT



GCATCTGGACAAATCAGCATTGCTTTAGAATACATGGATGGAGGCTCACTTAGAGATCTTGT



GCAGTCAAAGAAGCGTATTCCTGAGCCAATTCTTTCTGTTATTACACATGAAATTTTACATGG



ATTAATTTTTTTACATCACGTGAGGCATCTGGTGCATAGGGACATAAAACCTGCTAATCTGCT



TATAAACCTTAATGGAGAGCCAAAAATTACAGATTTTGGCATTAGTGTTGGTTTGGAGAACAC



CGTTGCAATGTGTGGCACATTTGTTGGGACCGTCACATACATGTCACCAGAGAGAATTGGTA



ATGAATATTATTCATTCCCAGCAGATATCTGGAGCCTAGGACTTTCCATTTTTGAATGTGGTA



CAGGAGAGTTCCCATACAATGCAAGCAAGGGCCCTGTGAATCTCATGCTACAGGTCATAGA



TGATCCATCTCCCTCACCTTCACGAGATTGCTTTTCAGAGGAGTTTTGCTCATTTGTTGATGT



CTGTCTACAGAAGGATCCAACTGCAAGGCCTACAGCAGAACAGCTCTTATCACATCCCTTTA



TTAAAAAATATGAAAATGCAGGAGTTGATCTGTCAGCATATGTACAAAGTATTTTTGATCCTA



TAGACCGTCTAAAGGATTTAGCTGATATGCTTACTGTACATTATTACATGCTTTTTGATGGCA



CCGATGATCAGTGGCATCACATGAAAACTATGTACCGTGAGAATTCTGCTTTCAGCTATGCA



AACCAGGTTGCAGCTGGAGCAAATGATATCTTTAATACTCTATCACGAATACATAGCATGTTG



GTTGGTGATAGCCCTGATGAAAGGCTTGTTCATGTAGTTGAAAATCTTCAATGCTGTGTATAT



GGGCAACATGGTGTTGTGATCCGTGTATCTGGATCATTTGTTCTTGGAGGCCAGTTTATACC



AACTGGGGGTGGGGTGCAAGTTGAGGGGGTTTCACAAGGACCTTTGTTGGACATAGCATCA



CAAAGAATGGGGACCTTTAATGAGCAATTCATCATGGAACCAGGAGAGCAGATTGGATGTTA



TTATATATATAAGCAGGAGCTGTGCATCCAACAGTGAAAAAAATGCATACAACCAAATTGTCT



TTTTGCTTCCGTACAGTCTATATTCTCTGGTACAGGAGTGCTGTAAAAAAGCAGCCCAAGAA



CAGGAAGCTTGTGAAGGGAGTTTCCATCATAGCAGTTGTAGCAGGGGTTGGAAGATTCCTT



GATGTTATAACTTGTATGCACCATGTATCACCATCAAAGAAAACCCACATCTGCCTTCAGATT



GATTGACTGGGAAGTAAAACAGGCATGGGAGACAACTTACTGGAAGCAGATGAACAGCTAA



TATTTCAGTGAAGATTTGCTCAAGAGATTATTAGAGACTGATGAACTAATAACTCTAAACAGA



TCAATACATCACTGAAGTTTGTGTTGCAACCCTCATGAAGATGGAGAATAGCCTATGCATATT



TTGATGCATCTATAGTTTACTAAATTTGGAATCTGTAGCTGTTGTGATGGTGTTCTGATTAGA



GTAGCTTTATGCAGCCTTGAGATAATTTTAAATGGCTGAGAGTTTTGTTGATAAAGAGGAAGA



GTAATACTGTTGCCTCAATGACTGAATAAGGTAAAGAATTGTGATAGTTGGACAAAAAGGTTT



GGTAGTTTAAAGGCAAACACTTGCAGTTGTCATGGTATGGGCCTTCTTAAAAAGGTTGTTAT



CATGTCAGATGCCATTACTCGATGCTTTCTAATGTTTGGTTAGTATAAAGATCTAAAAAAAAAA





145
AAACGCGGCCGATTTTACCGGACGGGCGAAATCACCATGATCGATAGACACAGTTCGAGGT



GAATGGAAGCTTCGCCGTTGATCCAAGCCACCTCCGTGGAGTGACGTGTATTGTCTTGACT



TATAGCTGTACAAAAGAAAGAAGTATCGAGGAAAATCCGATAAATATAAAATTCAGGTTCAAA



TTCTCAGGAAATAGCTTAAATTTCGCTTTCGATCGCTATCAGAGCCTTGAAAGTTCAGAAAAG



ATTGAAAACGCGGTCTTTTGGCAAATTGAAGAAACGGAAATACTTCGGAAGGATTCGGTAAT



CCCGCACGTTTGACATTCTTAGGTCAAGGCTTAAAGTTTTGTGGCTATGCATGGGGATAACT



TGCTTTCAGGTGATTGAAAATTGAAAATTTACTAAACTTTGATGGCTTTGTTTTGAGGCTCGG



CGAATTGATCTTTACGGTGCTTTATGTGAGAAATTCTGTGGAAAAATCTGGTCTTCAGAGATC



TTTAATGGTTTTTCCTGAAGAAATGATCATGCTCCAAAAGGATTCCACAGTTCTGCATTTCTT



AGCTGAAGCCTAACAGCTTTCCGGGTATGCATCGGAAATATCTTGGTTTCATTTGCTGAAAA



TTTTCAAAATTTACTGAAATTCGAAGGATTTGTTTTGAGGCTCAGTGAGTTGATCTTAACGGT



GTTCTTTGTGAGAAATTCTGTGGGACAAATTGGACTCGAGAGACATTTAATGGTTTTTGCTAC



AGAATTGTGGAATTATCTCGTGTGACCTTAAAGGCTCTTGCGGTCTTCGTTCTTGCACGAAT



TTTGGCTAAAACTGCTGAAAGAAGTCCAGTTTCAACGCATTTAAGAAAACTACTCAAACATCG



GTGAATTCAGTGGAGTCTTCCAATCGAGGAGGCTGCAACAAGAAATTGTTCCTGCTGGGAC



TATTTATATCGGCAAATTAACCGAAGTTGTGAGGATATGGAATTGGTTCGGAAATAGTTCATT



AGCGGGACAATTTGACAGGAATCATCAAGCTAAGCTTTTGCTTGGAACGCTTATAAAATTTTC



TGTTAAAGATCGGTCAATTTTGAACTCCGGCAGATAAAGGTCTGGTTTGTGGTGTGGAGCG



GAGGCGGCTGCTGTTGCAGTTAAATCTAACGATCCGGTAATGGCCCAGACAGCCCAACCAG



CTTTAGATCCCAATATTCCCGGCGTTCTTACTCATGGAGGCCGGTTTGTGCAGTATAATATTT



ATGGCAACATGTTTGAAGTTACCGCAAAATATGTCCCTCCCCTATTTCCTATTGGACGAGGA



GCATACGGTGTGGTCTGCTCAGCACTGAATTCAGAAACCAATGAGCAAGTTGCATTAAAAAA



AATATCCAATGCCTTTGACAATTTAATAGATGCAAGGCGGACCCTACGAGAAATAAAACTGC



TTCGACACATGCAGCATGAAAATGTTATTTCCATCAAGGACATAATGCTTCCCCCTCAACGA



GAAGCTTTTGATGACGTGTACATTGCATTGGAGTTAATGGATACTGATCTCCATCAAATTATC



CGTTCAAATCAGGCTTTAAGCGAGCAACATTGCCAGTACTTTTTGTATCAGATATTGCGAGG



ATTAAAATATATACATTCTGCAAATGTCCTGCATAGGGACTTGAAGCCCAGCAATCTTCTTCT



GAGTGCAAATTGTGATCTCAAAATAGCTGATTTTGGACTAGCCCGAACTACATCTGAAACTG



ACTTCATGACAGAGTATGTGGTTACACGATGGTATAGAGCCCCAGAATTGTTATTGAATTCA



CCAGATTATACTGCAGCTATTGATGTGTGGTCAGTAGGTTGCATTTTCATGGAATTGATGAAT



AGGAAACCCTTATTTCCCGGCAAAGATCATGTGCATCAGCTCCGTTTAATAACAGAGTTAAC



TGGTACCCCAACTGATGCTGATCTAGGTTTTATTCGGAGCGAAAATGCAAAACGACTTGTTC



AGCTGTTGCCTCAACTTCCAAGACAATCATTAGCTGAAAAGTTTCCACATGTACATCCTTCAG



CTATAGACATTTGTGAAAGAATGTTAACATTTGATCCAAACCAGAGAATTACAGTGGAGGAA



GCATTAAATCATCCTTACCTGGGTAGTCTGCATGATGAAACTGATGAGCCTACCTGTCCAGT



TCCATTCAACTTTGACTTTGAGCAGTATGCATTGACAGAAGAACAGATGAGAGAGCTGATAT



ACATGGAGGCTCTTGCATTCAATCCAACTTAGAAGACTGAGTGGTGGTCTTTTTTCTTGTTTC



AGATTGCACAACTGGTTGTTTTGTTTGATATTAAGATAAATGTTTGATTTAAATTTTGAGCTGT



TATTCTCCAGTTGAGAAGCATGTTACCTTGCACAAAGGAAAATCAATATATAAAACATAAATT



TGATATTTGAACAGCAATATGCCAGAACCTACTAAACTGGATGCTAAATGAGCCAGACGTTC



CAAATAATAGACAGTTAACTAACACCATTATTTAGTAAAAAAAAAA





146
GAAAGATGAGTGATCATCGGCCTGTGTCAAGGTGCCTAGAGAGGTAATGGGAATTGGAAAT



ATTTATAATAGTAATGGTAATTGGAAATTGACAGAGAGGACGCGTTAGGCTTTTAGGCAGCC



ATGAAGAGATGTGAGGGATGCTTCGAGGTCGGCAGGTTGGAGGCCCTAGGCGACGACATT



CTGCTGCAGGTTCTTGACAATATTAACGAAACTCGAGACAGGAATTCATGGTCTCTTGTCTG



CAAACAGTTCTATCGACTCGAATCGGCCTACAAGAGGAAAATCCGGTTGCTCAGAGGCGAA



ATGCTGCCAAGAATTCTCAAGAGATACCGAGCTGTAGAGCACCTGGACTTGTCCCTCTGCC



CTCAGATCAGCGATCAGTGCCTGGGGTTCGTGGCCGCAGCGGCTGGGTCTAGTCTGCGCT



CCATAGATCTTTCGAGGCTCGTCCGGTTTAGTCATCTGGGGCTCTCCGTTCTGGCTAAGGG



CTGCGAGAATCTGGTGGAGATTGATGTTTCTTACTGCGCGAGATTTGGGGATATGGAGGCT



GCTGCCGTTTCCAGTGCCAAGAATCTGCAGACCCTGAAATTAGTGAGGTGCCAGATGGTTT



CTGACTTGGGTTTGAGCTTAATAGCCGTGGGGTGCAGGAAGCTCCAGAATTTGAATCTCAAA



TGGTGTGTGGGAGTTAGTGATTTGGGTGTTGAGCTCGTGGCTATAAAGTGCAAAGAATTGA



GGTCCCTGGATGTTTCTTACTTACAGATAACAAACAAATGTATTGCATCCATCACACAACTTT



TTTACCTAGAAACTTTTGTATCAGTTGGTTGTGTCTGTATAGATGACGAAGGCCTTGCTTTGC



TCAAGAATGGTTGCAAATCATTGCAGAGGCTTGATGTTTCGAAATGTCAGAGTATGAGTTCG



ACTGGTATAATTTCCCTTGCAAACGGATGTATAGCCTTGCAGCAACTAAACTTAGCCTATTGC



ATCCCTGTCACAAATGCTCTTCTTGCGAGCTTCGACAAATATGACAGCCTGCAATCCATACG



ATTTGATGGCTGTGAAATTTCTAGCTCAGGTTTGAAGTCTATTGGGAAAAGCTGCAAGTCTC



TGATGGAATTGAGCTTAAGCAAGTGTACTGGGGTGACAGATGAAGGAATCTCTGCACTAGT



GGGAGGCTGTACAGGGTTGAAAATTCTAGATATCACCTGTTGCCGTGATCTCACTGATGTTG



CTATCACAGCTGTTGCAACATCCTGTGGAAATCTTTCATGTCTTAAGATGGAATCCTGTGCC



CTGGTCACTGAGAGAAGCTTATATATGCTGGGAGATAGCTGCCCCTTTCTAGAAGTACTAGA



TCTCACCGATTGTAGTGTAAGCAATACAGGACTGAAATCCATTTCCAGGTGCACTGGATTGA



CTACCTTGAAACTAGGCCTATGCGAAAATATATCCAATGAGGGTTTAACCCATATTGCTGCT



CACTGTTCAAACCTCCAAGAGATTGATTTATACAGGTCTGTGGGAATTGGTGATACTGGATT



AGCAGCACTTGCCAGTGGTTGTCCAAAGCTCAGAATGGTCAATCTCTCATATTGTATAGGTA



TCACAGATCATGGGCTGAAATCTCTGGCCCAACTAGAAAAACTTTACAACCTTGAGATTCGG



GGTTGCTTCCTTGTAACATCTGCAGGGATTTCTGCCATTGCCTCGGGATGTAAGCGTCTGGT



AGAGTTGGATATCAAGAGGTGCTACCGTGTTGATGATATGGGAATGATGACTGTAGTTCAAT



GTTGCATAAACTTGAGACAGATAAATGTTTCATACTGTCCAATTTCAGATGCTGCCTTTTTGG



CATTGGTGAATCTTAGTTGCTTGCAAAACGTGAATCTAGTGCATCTCAGAAATGTTTCTTTGG



ATGCCTTTGCATATCTTTTGCTAGCTTGTGAGAGCCTAAAGAAAATCAAGCTTTTGAAACAAT



TAAAATCCTTACTTTCATCCAATTTAATTAGACATGTAGAAAATAAAGGCTGCAGAATCCGAT



GGGTGGAGAAGCCTCTTTTTATTTAATTGTAGAAAATAGCTAAACTTTGATCCATGAAGACCT



CTTAATCCATGGTGAGAGCATGAGGTCTAATAAGTTCGGAACCGTGTATTCATCATCTCAAA



ATTGCAAAAGAATTTTCAAGTCCTGGTTTTTTGACCAGAAATTTTGTAAGGTAAGTTCTTGTCT



ATATGAAACTTTTTATTAGGATATTTAAGTTTCAATGGGTAATATTAAGTTTCAATGCTAAAAC



TTTTTATCAAAAAAAAAA





147
GTCAAGGGTTCGATCTACGCTCGGACATCTTTGGCTCTGTTTCCCTCAGATTTCAGTGATGG



AGGCCGCAGCAGCTCCAGTTCAATCGACGGACACGCTCATGTCCGACGCGCCGCAGGCCG



CCGGGTCGAATCCCATGGACAGCATCCCTGCAGTACTCAGTCACGGTGGCCGCTTCGTGC



AGTATAATATCTTTGGGAATATTTTTGAAGTCACAGCCAAGTACAAACCACCTCTGCTGCCTA



TCGGGAAAGGGGCTTACGGGATCGTCTGTTCTGCAATGAACTCTGAGACAAAAGAGCAAGT



TGCCATAAAAAAGATAGCCAATGCCTTTGACAATCGCATAGATGCAAAGCGAACTCTTCGGG



AAATCAAGTTGCTCCGACATATGGATCATGAAAATGTAGTTGCCATAAGAGACATAATACCTC



CTCCACAAAGAGAAGCCTTTGATGATGTATACATTGCATATGAGTTAATGGATACTGATCTCC



ATCAAATTATTCGCTCCAATCAAGGCTTATCTGAGGAGCACTGTCAGTACTTTTTGTATCAGA



TTTTGCGAGGATTGAAATATATACACTCTGCAAATGTCCTTCATAGGGACTTGAAGCCCAGC



AATCTTCTACTGAATGCAAATTGTGATCTGAAGATATGTGATTTTGGGCTGGCTCGGATTACT



TCTGAAACCGATTTCATGACCGAATATGTGGTTACCAGATGGTATAGAGCTCCAGAATTGCT



GCTGAATTCTGCAGATTATACTGCAGCCATTGATGTCTGGTCAGTAGGCTGTATTTTCATGG



AATTGATGAACAGACAACCCTTATTCCCTGGAAGGGATCATGTGCATCAGCTGCGTTTATTG



ACAGAGTTGATTGGCACACCAACTGAGGCTGACCTTGGATTTGTTCGGAGTGATAATGCTAG



AAGATTTATTCGGCAACTGCCACAGTATCCGAGGCAGTCATTTACTCAAAAATTTCCTCACGT



GCATGCATTAGCAATTGATCTTTGTGAAAAAATGCTGACATTTGATCCAAATCAGAGGATCAC



AGTGGAAGAGGCACTTGCCCATCCGTACCTGGCAAATCTACATGATATCAGTGATGAACCC



ATTTGTGCCATGCCATTCAGCTTTGATTTTGAGCAGCATACCTTAACAGAGGATCAGATGAA



AGAGCTGATCTATAGAGAGGCTCTGGTTTTTAATCCAGAGTATGCACAGTAAAGTAACATTTT



GTGCAGACAGTGGTTACAACTTTGAAAATTGGAAGCTGGGCTATTTTCTTGTTTGTAGCAGT



CATAGTGTTATAAATATTTATTGAGTTTTGGGAGCAATGTAAATATGTGTATTAAAACCACATT



TGAGTCCAGGGCAAGTTGTAAGGGGGATAATGATTGAAGGGGTGTAAAGCATTTATATTGG



AGTATGTCAACCTGATATGCTACAACTTGGTGAGATGCATTGTGCATGTATGAGTCACAGAC



CTGAACACTGCGGTAAAACTGTATTATGCTTTATTCTTCTTTATCTTCAAACTTCAAGGGGTT



GTATGAAGATAATTTTTGTTAGAATATAAGTGAAGAAAAGTTGAGTCTGGCAGTTTGCCACTT



TTGTCTAATTCTCCTTTCAGATAAGTGATGAACTTGGACCTTTGGCTATTGTGTA





148
GTTGAAGAAGATAAAAAATGGCAAAGAAGCAGGCAGGGAAGAGCAACGATAGCACTGTGAA



TGACAGTGGAAGTGAAAATGAGACGAAGAAACCCGCCGGTTCGAAGGAGGATGGGAGTATT



CATTCTCCTCTGGTTGCATACGCCTCCATTCTCAGCCTTCTCTCATGTACCCCTCCATTCGTC



ATATTCCTGTGGTATACAATGGTTCACTTGGATGGATCTGCATCTCAATTTTGGGATTTATGC



AAGGAGCAAGGTCTTCAGGGTTTCCTAAGAATCTGGCCAAAACCAACTCTCATAGCATGGAA



ACTAATTGCATCATTTGCAGCTTTTGAAGCAGCACTCCAACTACTTTTACCTGGTGAAAGAGT



AACTGGACCTGTTTCTCCTGCAGGAAACATTCCAGTCTATAAGGCAAACGGAGTGCTGGCTT



ACTTTGTCACATTGACAACTTATATTGCTATCTGGTGGTTTGGCCTATTTAATCCTGCAATTG



TCTATGACCACTTGGGAGAGATCTTCTCAGCACTTATCATAGGCAGCTTTATCTTTTGCATCT



TTTTATATATTAAGGGACATGTTGCACCGTCTTCGACTGATTCAGGCTCCTCTGGAAATGTAG



TTATTGATTTCTATTGGGGTATGGAGCTTTATCCTCGAATAGGTAAAAACTTTGACATCAAGG



TCTTCACAAATTGTCGGTTTGGAATGATGTCTTGGGCAGTTCTTGCAGTAACATACAGCATAA



AACAGTATGAAGAGTATGGAAGAGTAGCGGATTCCATGTTAGTAAGCAGTATATTGATGGTG



GTGTATGTAACAAAGTTCTTCTTGTGGGAATCTGGCTACTGGAACACCATGGATATAGCTCA



TGATCGAGCTGGATTTTACATTTGTTGGGGATGTCTAGTTTGGGTTCCATCTGTATATACATC



TCCAGCAATGTATCTTGTGCGTCATCCCATTAGTTTGGGTCTTAAGCTGTCACTGGGCATAC



TTATTGCTGGCATTGCATGCATATTCATCAACTATGATTGTGATAGGCAACGGCAATTATTCC



GTAAAACAAATGGGAACTGCTTGATCTGGGGCCGACCACCATCAAAGATAGAGGCTTGGTA



TGAAACCATGAGTGGGGAGAAGAAGTCGAGCCTTCTTTTGACGTCTGGCTGGTGGAGTGTG



TCACGACATTTTCACTATGTGCCCGAAATTCTTGCGGCATTTTTCTGGACTTTGCCAGGACTT



TTCAATCATTTCCTTCCTTATTTCTATGTCATCTTTTTGACAATCCTCCTATTTGATCGAGCTC



AAAGAGATGACCAAAGATGCCGAGCAAAGTATGGCAAATACTGGGATATATACTGCAAGCAA



GTTAAATACAATATTATTCCAGGAATTTATTGAGCAATTGGATAGTTTAGTTATGCTATGACTG



GATTTCTCGGTCATTACTTAATGCAGCCTGTAGCTTAGTGGTAAGGCTGGTGACCACCGGC



GTTCGTATGGCTTAATTGAGCATGTGAAAATATCGGAATCGGAAAAGCAGAATACATGTAGC



AACATATATTTTCGAAAGCTCATCGAGCAGCTATAGAAACATTAATGCATGAAAGAGATCTAA



ATATTTAAAAAAAAAA





149
AAGATCAGTTCTGGTAGTAGCTCCAACAATGAAGTTCCCAGCTCCGGCTAGGAATTTGTTGA



TAGTGTTGATAGTGTTTCTGGAGAGAATCCTTACCAGGTGTATGGTGAGTGATAGCTCAAAT



CATGAACCTCCAAGCTCATGTACTGCAACAAGGATCTCACCAGCTAGCTCTGGTATTATCAG



TAACACAAAGCCAGCTGATTGCAGCTCGTTAGCTTCTTTGGATTTGCATGGGTCTATCTCCT



TGCCTGGAACAGCAATTACAACCGAGGATTTTGGAGGAATCTACCACCACAAGCCACTTGC



CATTGTGCATCCTGCGTCTGTGGAGGACATTGTGAAAGTAGTTACAATGGTGAATGCTTCTC



CTAATCTCACACTTGCAGCCATGGGAAATGGGCATTCCATAAATGGTCAGGCCCAGGCCTT



GAATGGGTTGGTTTTAGACATGAGGTCTCTCAAAGGAATTGAGATTTTCCAAGGAAGCCCAA



CGGAGGGTCCCTATGTCGATGCCTGCGGAGACGAGCTGTGGATTGATGTCCTCAAGGCTA



CTCTTCGCGTGGGCCTTGCTCCTCGTTCGTGGACTGATTATCTGCCTCTTTCTGTGGGTGG



GACACTCTCTAATGGCGGGGTTAGTGGCCAGACTTTTAAGTTTGGCCCACAAATCTCCAATG



TGTTGAATCTGCATGTTGTTTCAGGTAAGGGAGAATCCATGACTTGTTATCCCGAGACGAAT



CAAGATCTCTTCTATGGAGCTCTAGGAGGATTGGGGCAATTTGGTATTATCACCAAAGCCAG



AATAATGCTGCAGAGAGCTCCTCACATGGTGAGGTGGATAAGAGCTGTATACGCAGATTTC



GAGGAATTCAGAGCCGACCAAGAGCTGCTGATATCTTTACCAGAGGAGGGAACTTTTGACT



ATGTAGAAGGATTCGTTTTGACAAACAACGATGACCCAATCAATGGCTGGCCCTCAGTACTA



CTCTCGCCCTCAAATTCTTCCTTTGACTTCAAGCTCATACCCCAGACTGCAGGCCCAATGCT



GTATTGCCTCGAGGTTGCCTTGCATTATGACCACGACGAAGATTTCGTCACTCTCAATAAGA



GAATCGAGAGCATGCTAGCCCCACTCAGATTCATCAAGGGATTGCATTTCAGCTTTGACTTG



CCCTACTTTGATTTCCTGAACCGGGTCCACGCTGCGGAAGTGGCAGCCAGATCGAGTGGAA



TATGGGATGCCCCCCACCCGTGGCTGAATCTCTTCGTCCCCAAGTCCAAAATCTCAGCGTTT



GATGCTAAAGTGTTTAGAGAGATTCTGAAAGATGGTGTGGGAGGACCCATCCTGGTATATCC



AGTCACTAGAAACAAATGGGACTCTCGCATGTCTGCAATTATTCCAGAGGAGGACACTTTCT



ACTTAGTGGCTCTACTCCGTTTTAGTCCACCGTATCCAAGTGGACCGCCAATTCAGAGCATT



CTAGCACAGAATGAACAGATTCTCCATTACTGTACAACTGCAGGCATTGACATGAAATTATAT



CTTCCCCATTATAAAACAGAATCTGATTGGAAAAGACACTTTGGCAGGAAATGGCAACAGTT



CCTGCAAAGAAAAAGCAAGTATGATCCAAAGGCTATCCTCGCTCCAGGACAGAGGATTTTTT



CCAGGTCCACTGATTCAACAGCATTCACACGCTTATACTCATCATCGTGAAGACCACTTTTG



CCCACCAATATATTCCCAAAGATTCAATCAAGATTTCATTACCCTTTGTACAGTCCTGAACCC



CATCTTTTTAGCTTTACACAAACCATCCATTATTCGGTCCTTGACTTTCTTTTTCTTGGGTCTG



CGATTCAGACCTTTTCTCGTATGGATGGATGCTACATTCAAACGGGCATATTCCACATGACA



TTCTCTTGCATGGAGTTATCTTGTTGACTATGCTGCAACTGTTTTAAGGTGGGATGATGCTGT



AACATCCATCACAGATTTCCAAGGAAGGTTATTTTGCAGGCAAACTGAATTTTGGCAGCTGC



TGGAAGATGCAGTCGTGAATGATGGGAGGGATCAATGCAAATTAGTACCATTCGACAGCTG



CCACCTGCCCATTGTTTGATTCCACGTGGCACAGAAGCAACCACATACTAGAAAATTGGACA



TCTTTTTTGGTTTATTGTAATTACAACCAGGTTCATGGTTGTTGGCTGCAAAAAAAAAA





150
GGAAGTAAAGAGCCTCGGGTAAAAGCCTCACACCATGTCACCTTAAAACGCTGACAATTGG



AAAGCGTCACTATTAACTATTCAGCGCTATAATCAGCTCAATGACGTGGCAATGACACGTAA



ATTTCAATGACGTGGTTAGTCACCATTCGGGTAACATCGAAGCAACAGTACTCCGTGGGTTC



TCTCAATCAAAGACATCATTCTCAAGCAATCTCGAAATCCCTGCATCCATACCTAAAACCGTC



GCATAACATATATTGTCCCCGTAATTTGTCACAGTGGATATCCGGATAATTTGTCTCCGAGTG



TCGATTGATTTACAGCAATATGATGATTTTAAGTCTGGAATTCGGCGTCAGTGGTTATGATCA



GGAACGGGTGAGAAAACAGCCCGGAATTCTCAGGCGTTAGGGCAAAAAAATGGCGGGGGA



ATTGACCCAAGCGGAGAAAGAAACCCTTGCTGCCGTTAATGTCGGGGCATCGGCATTATCG



TTTGCAGGATCGGCTTTCATCGTGCTCTGTTATGTGCTTTTCAGAGAGCTTCGCAAGTTTTC



GTTCAAGCTGATATTCTACTTAGCATTATCTGACATGTTTTGCAGCCTTTTCAATATACTTGG



GGATCCAGGAAAGGGATTCTTCTGCTATGCACAAGGCTATACAACACATTTCGTTTGTGTTG



CATCTTTTCTTTGGACAACTACTATAGCTTTCACTCTCCATCGTACTGTTGTGAGACATAAAA



CTGATGTTGAAGAGCTCGGAGCCATATTTCATTTGTATGTATGGGGAACTTCACTTGTCATG



ACAATTATACCTTCGATTGGTGATGGCTATGGGCAAGCGGGTGCTTGGTGCTTGGTTAAAAC



AACATCAAGGGCTACAAAGGTCCTCCAATTTATTACTTTCTATGCTCCTCTATGGGGAGCAAT



TCTATTCAACGGTTTCACATACTTTCAAGTTAGTCGCATGCTTAACAATGCCACTCAGATGGC



AGCAGGCATGTCAGATCGGCAACAACAAACCGATTCAAGGGTTGATATGAAGGCAATGAAC



CGATGGGGCTATTACCCATTGATATTGATAGGTTCTTGGACATTTGCCACTGTCAATCGTATA



CATGATTTTATTGAACCACAAGAAAAGGTTTTTTGGCTTTCTTTTCTTGATGTTGGAACAGCA



GCCTTGATGGGCTTGTTTAATTCAATTGCATATGGGCTAAATGCTTCAGTACGACGCACTCT



TCAACAGAAAATTGATTTGTGGTGGCCAGAATGGTTTAGAAAGTGGCTACCTGGATTTATAA



TGCTGAGGGATCAGGCACATGAAAGTGAAATGATCTCACTTAAAATTCCAGTTGAACAGTGA



TATCGTGTATTGTGTCTAGCTTTTACAGTATTAGGTCTCAACTTATTTTCAAGAAATTACAAAT



CAATCCTTTTGGGAATTCGCTAAGGTTCAGCAGGTGCATCAAGATCAGATGATTCTAATTCAT



CCTTCACTTGTTGAATTTCATCCATTTGTTTCCAGTCCCCTACGCTGACCTGAATGTAAATGG



AAGCCTCTCTATATATTTTAGAGTGTAGACTTTCATCTCTGCAGTGTCCAAGTGTTACAGCTT



ATTATTTTGAAGTGAGTAACACCTAGACATGACATTGTACAACTTAAAGAACAATAGAAATTT



GCTCTATAATTGAAGGCAAAAAAAAAA





151
CGCACGAGGATTTTGTGTGACTTTATTTCTGAACTCTGTGAGGAGTCACTATTTTCAATGTAA



AGAGGTGGAGTCCAAAATCCATTTTTAAATTTTTCCCATAATAATAGTTTAGCCAGATATCAT



CTGTCGGATGTATTTTTCCAAAAGCAAGAAACTGAACCACTAAATGATTTTTTTTTTTCATGAA



ACGCTGCTATGAAAATGGTTTCAGTGATCCTTTTTAATTTATACTTGGCTTGGTAATGTATTCA



GGGTTTCCCCATTATATTTTGTGTTTGTTGGAGGTTTTTCCGGTTAAAACAACATTTAAAAAAA



AAAACTGCACACTAATTTAATGAAACCCGATACTTTTTGGTTCTGGAGACGTTCATAATGCAC



TGTATGCTTTACAATACACAGCCATTCATACCCAGGGATCTCTTTATATTGATTCACACTCTT



ATACCTCCATGCCCTCTTACCCATATGGTAGGTTGTTGGGAATAAAAACTTAACGGTCCCAT



TCTGGCCTCTCACTATCATACCCAGTGAAAAATATATATCAGAGAGGGCACCCAATAGATAG



ATTGAGAGGATCATGGCATACAAAGCAGATGATGACTATGACTACCTGTTCAAAGTGGTGTT



GATAGGAGATTCAGGTGTTGGCAAGTCAAATCTGCTGTCCCGATTTACCAGGAACGAGTTCA



GCTTGGAGTCCAAGTCGACTATTGGTGTGGAATTTGCAACTCGCAGCATCATTGTGGATGG



GAAAACGATCAAAGCCCAGATATGGGACACTGCAGGCCAAGAGAGGTACAGAGCCATCACA



AGTGCATACTATCGGGGGGCTGTGGGTGCTTTATTGGTGTATGATATAACTCGGCACACTAC



TTTTGAAAGTGTGGAGAGATGGCTGAAGGAGCTTCAGGACCATACAGATAACAACATTGTTG



TAATGCTCGTGGGTAATAAAGCTGACCTACGCCATTTGAGGGCTGTTTCCACTGAAGATAGC



CAAGCCTTAGCTGAGAGAGAATCTCTCTATTTCATGGAGACATCGGCTTTGGAATCGACAAA



TGTTGAGAATGCTTTCACGCAGGTTCTCACTCAAATCTATAGAATTGTTGTCAAGAAGGCTCT



TGATGTTAGTGAGGAGCCTTCTGCCCTTCCGCCACAAGGACAAGCAATAAATATCAAGGATG



ATGTTACAGCTACCAAGAAGCCAATGTGCTGTAATTTCTAGCAGGCAGAGGCAAGTTGTTAG



ATGATGCGGATATTTGAGCAGATTCTTTACAGTTGTAGTTGTTTGCACGAATTGTTGAGTAAC



TTCTTTACTCATTTGAGGGTTTCTCAGTTCTGATGACATATTTGGAGTCACATGAATGCTCTA



TTGGCTGAGTTGACAAAATTAATTTCATCGGGTGTCTAGAATAGAATCAAGGAACATAAATTT



GTAACTTATGATGAGTGATTTCAGCGATAAAAAAAAAAAAAAAAAAA





152
CAAATTTCAAGAAAAGGTTACTGTTTTCGCTTCCCAGGACGGACGGGCGGTCGGTCTGCAA



CACGCTTTAGAGTTTCAACTGAGATGCTTTCACACCCTTAATCCATGAATTGCTTCACTCTTC



TTCCCTTCATTCCGCCATTCGTAGAGGTGCCTCGTTATATCTTGACGTTTTTCATTTCAGGTT



TTATGAGCTCAAGAAAGGGAAGAAACCCATTCATTTTCTCTTGTAAGCAGCGGGCGAAGGC



GGGATTGGGGTTTTTGTGTTAAAGGCATGCCGGGCAAGGGTTTTGTTAGGGACACGGTACT



TGACTGCTGCCTTGCAACACCTCGCATGCGATGACTCAGGGAATTAGAGCTTCTTGGTATTG



CACTTGGGCAGAGCAAGGAGCATTCGACTACCTTTGCTGAAACAACTTCGTTGTGAGACAA



GCTTTGCAGTGATTGTATTCTATCTGATTTTGGACATGCTATGGCCTCTTGATGCACTGCATT



GAATGTTGTTTCATGGGACATTGGGTTTTTACACATTCTCGTGTAGGAATGCGGAAGCAAGA



GTAACTGATTACTAAAATCTCATCAAGATGGAGTCATGTAACTGCATAGATCCGCCATGGTC



AGCAGATGATCTGCTAACAAAATATCAATACATATCGGACTTCTTTATTGCACTTGCATATTTT



TCTATTCCACTTGAACTCATCTATTTTGTGAAAAAGTCAGCAGTTTTTCCTTACAGATGGGTG



TTAGTTCAATTTGGTGCATTTATTGTGCTTTGTGGAGCAACACACATGATAAACCTCTGGACT



TTTCATGTGCACACAAAAGCAGTTGCAATGGTTATGACTATATCTAAAATATTGACTGCCGTT



GTATCCTGTGCAACGGCTCTCATGCTTGTACATATCATACCAGATTTGTTGAGTGTAAAGAC



CCGAGAACTGTTTTTGAAAAATAAGGCAGCAGAGCTTGATAGGGAAATGGGTATAATACGGA



CACAGGAAGAAACTGGAAGGCATGTGAGGATGCTGACTCATGAAATCAGAAGTACCTTGGA



CAGGCATACAATTTTGAACACCACCCTTGTTGAACTGGGGAGAACTTTAGCTTTGGAGGAAT



GTGCTTTGTGGATGCCGACTCGAACTGGTTTGGAGCTTCAGCTATCCCACACTCTTCGACA



GCAAAATCCTATGACTTTTACCGTACCCATTCAACATCCTAGCATCAACCAAGTATTCAGTAC



AAATCGAGCAGTGATGATTTCTCCAAATAGTCCAGTAGCAATGATTCGACCACGGACAGGCA



AGTACATGATTGGAGATGTGGTTGCAGTTCGTGTGCCCCTTCTGCATCTCTCAAACTTCCAG



ATTAATGATTGGCCAGAACCCTCAAAGAGATGGTATGCACTTATGGTCCTTATGCTGCCCTC



TGATAGTGCTCGCAGATGGCATGTTCATGAGTTGGAGCTTGTGGAGGTTGTTGCAGATCAG



GTAGCGGTGGCTCTCTCACATGCGGCAATTTTGGAAGAATCAATGAGAGCACGAGACCTGC



TCATGGAGCAAAATGTTGCACTTGAGATAGCTCGACAGGAGGCAGAAACAGCTATTCGCGC



TCGCAATGATTTCTTAGCAGTTATGAACCATGAGATGCGTACTCCGATGCATGCAATTATTG



CTTTGTCATCGCTTCTTCAGGAGACAGAGTTGACTCCTGAACAACGATCCATGGTTGAGACC



ATCTTAAGGAGTAGTAATCTCCTTGCAACACTCATCAATGATGTTTTAGATCTTTCAAAGCTC



GAGGACGGGAGCTTGGAGCTAAACATTCGGATATTTAATCTCCGCAGTATGTTTCGTGAGGT



TCACAATTTGGTAAAGCCAATTGCATCTGTGAAGAAGTTGTGTGTATCAATGAATCTCGCTTC



AGACCTGCCAGAATACGCTGCCGGTGATGATAAACGTCTTATGCAAACTGTTTTAAATGTGT



TAGGGAATGCTGTGAAGTTTTCTAAAGAAGGTAGTGTTTCAGTGACGGTTTTATTAGAGAGG



CCAGAATGCTTGCGAGATCCACGTGCCGAATTTTACCCAGTGCAGGGTGATCGCCATTTCT



ATTTGAGAGTGCAGGTAAAGGACACTGGTGCTGGAATCAATCCTCCGGATATTCCAAAGCTT



TTTAGCAAATTTGTGCACTCTGACACAATGACAACCAGGAATTATGGTGGCACTGGTCTTGG



ACTAGCTATTTGTAAGAGGTTTGTGAACCTTATGGAGGGTCATATTTGGCTTGAGAGCGAGG



GATTAGGAAAGGGCTCAACTTGCATATTTATTGTTAAGCTTGGGATTCCAGATCCTATACATG



AAATGGAGCATCAGTATGTGTTTCCCATTCCATCAAATTCTACCCGTAAAGATTTTCCTGGGC



TGAAAGTTCTGGTGACAGATGATAATGGGGTGAACCGGATGGTTACAAGGAGCCTTCTTGC



TCGTTTAGGGTGTGATGTGACAGTGGTGGATTCTGGTCATGAGTGCTTGCAAGCAATGTCA



CAGGCTGGGCAGAATTTCAAGGTATTATTTCTTGACGTATGCATGCCGGGTATGGATGGTTA



TGAAGTGGCCATTCACATTCAGGAGATGTTTCCTAATCGGCATGAAAGACCATTACTTGTGG



CTCTTACCGGAAGTGCTGACAAAGCAACCAAGGAAAAGTGCATAAAGATTGGAATGGATGG



CGTGTTATTGAAACCAGTGTCTCTTGAAAAAATGCGTAGTGTACTAGTTGATCTCTTGGAACA



CGGGTCAGTATGTGACAGTATACAGAGGTTATGACCGTGTCTAAAAAGTGGAAGTTGGTACA



CGTAATGCTGTGCCATTGATCTTATGGATCTGACAAACAATGCACTGATTTATTCGTATGAGA



CCAAAAAATCTCTGCAATCAATTTAACACAACAAAGTTTTGAGATTTACTAGATGCCAAATTTA



GTGATTTGCTAGCTCAGTAGTGAGCATATTTGGTCTTCTTCGAGTTGATGTACACTTCCCAG



CATCCTTTACATTGGCTAGTTGCTGATAACTGTGGGCTATTCTGCTTTGTCAGCAGTTACAAG



AACTGTTCAACCTTCTAGCAAATCTGTTGCCCTAAAATATTGCACTGTCTTTGAAGTGCCACG



CATGACATATGGAACTGTACAGTATAGTGGCTATATGCGACCTGAATGA





153
CGAAATCTTCTCCCCGCCTGTCAAGTAACGGACGTGGGCGTCCATGTAAAGAGCAGAAGAA



ATGATGGCGATTCGGCTTTGATCAGAGAGGTCCCTATTGCTCAAATTTATCCCGCTGCGCCG



ACCCAATTCTTTGAAAATAAAAAATGTCGTTTCGAAAGCGCGCCCTGTTCAAGGTTATTGTTC



TCGGTGACAGCGGGGTTGGAAAAACATCTTTGGTGACTCAGTATGTACATAAGAGATTTAGT



AGCCAGTACAAAGCGACTATTGGTGCGGACTTTATGTCAAAGGAACTTCAGGTTGATGACAG



ACTTGTAACATTGCAGATATGGGACACTGCTGGGCAGGAGAGATTCCAGAGCCTGGGTGTT



GCTTTCTACAGAGGTGCGGACTGCTGTGTACTTGTGTATGATGTAAATGTGCTCAAGTCATT



TGACAACCTGGAAAATTGGCACAAGGAGTTTCTGAATCAGGCCAGCCCAACAGAACCGGAC



ACTTTTCCATTTATGTTGCTGGGCAACAAAATTGATGTGGATGGGGGAAACAGTAGAGTGGT



TTCTGAGCTCAAAGCAATGACATGGTGTAAATCGAAAGGTATCCCCTATTTTGAAACATCAG



CTAAAGATGATTACCGCATTGATGCAGCATTCTTATCCATAGCCAGATCTGCACTTAAGAATC



AACCTGAACAGGAAATCTATTTTTTAGGCCTTCCTGAGGCTCTTCCTGAATCAGAGCCGCCA



TCACGCAGCTTTTGTGGATGCTAATGTCAGTGCAGGAGTATTGTCTTTTACATTGATAAACAA



TTTTATAGGCATCTTCTTCTTATTCCCAATGGGAAATTTTTGGGCATTAACGGGTTGGTAGAT



TGTGTCTCAGTGAATAAGACCACCAAAATCATGACAGATGATCCAAGGTATCTCGTCATGTC



CTTAAGAGCTTGGTTTCTCTTTCTATCCCAGTTTTTGTTCTTGGCCATTCGGTTT





154
GCGGTACATATATACACAGATACAACTAGATACCCTCTGAAGATTTTTGGGGTAATCTGCGA



TCATTTTCGTCCGGGAATTTTTTTGTTTGTTTTTAATTTTTGTGGGCTTTGATGCATTTGAAGG



TACGTAGGACGTTTTAGTTTTTCCCTGTAGCTCCAAAATCGGCCATGGGGTCTGAAATCTAA



GCGCTGTATGCATGAGGCATATTTGTTATTATTAGGATTGCAATTATTATTATGGTGGTGAGA



AGGATGAGCTCGTTCCCTGATGAACTGCTGGAGCACGTATTGGCATTCCTGTCGTCGCACA



GGGACAGGAACGCGGTTTCCCTGGTCTGCAAGTCGTGGTTTCGAATCGAGGCGGGCAGCA



GGCAGCGGGTTTTCATCGGAAATTGCTACGCGGTGAGCCCCGCTATACTCATCAGGAGGTT



CCCAAGGATAAAGTCCGTTGCGCTCAAGGGGAAGCCCCATTTTGCGGACTTTAACATGGTG



CCCCCTGGCTGGGGCGCTGATATCCATCCCTGGCTGGCCGCCATGGCGGAGGCGTACCCT



TGGCTGGAAGAACTCAGGCTTAAGCGCATGGTGATCACTGACGAGAGCCTTCAGCTCCTCG



CGCGTTCTTTTCCCAATTTCAAGGTTCTCGTGCTTACCAGTTGCGACGGCTTCAGCACGGAT



GGGCTCGCTGCCATTGCTGCGCACTGCAGGCATATTACAGAGCTAGATTTGCAGGAGAGTG



ACATTGATGATCGTGGTGGCAATTGGCTAAGTTGTTTTCCGGACTCATGCACATCGCTTGTT



TCCTTAAACTTTGCATGTCTGACTAAGGAGGTGAACTTTGAAGCACTTGAGAGATTAGTAGC



AAGATGTACTTCTCTGAGGAGTTTGAAATTGAATCGTTTGGTGCCATTAGAGCTACTACATC



GCCTTTTGGTTCGTGCCCCACATCTGGAGGATTTGGGTACAGGTGCATTCCTTCACGAGCC



ACGCACTGAACAATATTCCAAGCTTAAGGTTGCCTTACAGAATTGCAAGCGACTTCAAAGCT



TATCTGGTTTTTGGGAGGTTGCACCTGGTTATCTTCCCTTGGTTGAGTCCCTCTGTTCAAATT



TGACTAGTCTGAACTTGAGTTATGCAACAATTCAAAGTGCAGAACTTACCAACCTCCTTGGT



CACTGCCACAAACTACAGCGCTTATGGGTGTTGGATTATATTGAAGATAAAGGGCTTGAAGT



GGTTGCCTCAACCTGCAAAGATTTGCAGGAACTGCGTGTTTTCCCGTTAGACCCTTATGGTC



AAGGAGCCGTGACAGAGGAAGGCCTTGTGACTATTTCAAGGGGCTGTCCTAAGTTGACCTC



TGTACTATATTTTTGTTGTCAAATGACAAATGCAGCTTTGATTACTGTTGCAAGAAATAGCCC



TCTTCTCACCTGTTTCCGCTTATGTATATTTGATCCCACAAGCCCAGATCATTTGACAAAGCA



ACCCCTGGATGAAGGGTTTGGAACAGTTGTTCAGTCTTGCAAAAGTTTACGGCGTTTATCTA



TGTCTGGCTTGCTTACAGACAAGGTCTTTCAGGTGATTGGTACTTATGGCAAGTGTTTGGAG



ATGCTTTCTGTTGCTTTTGCTGGTGATAGTGATTTTGGGATGCAATGTGTACTATCAGGCTGT



ATAAATCTCCGTAAGCTTGAGGTAAGGGACAGCCCATTTGGTGATTTAGCTCTTTTAGCAGG



TTCAGAAAAGTATGAATCAATGCGATCCCTTTGGATGTCATCCTGCTCTGTTACCGTGCATG



GTTGCAAGGAATTGGCTGCAAAAATGCGTAACTTGAATGTTGAAGTTATCCATGACAGGGAT



CAGTTTGAAGATATAAGTACCATGACTCAACCCGTAGATGGACTCTATGTGTACCGGTCAGT



TGCTGGACATCGGAAGGATACACCACATTTCATATACACTATGTAAGTGGTCATGTCATTTCT



CATGTACCATGAATGAAGCTGGCATGTTCTTGCTAAAGCAGCAGAGTACCAAGCATGGATG



GGATTTTCCTCTCATACACCATGGATTATGCCAGAAAATTCTTGTGATACTGACACTTTCACC



TTCCATCGCAAAATTTGTATGCCTTGTACAGACAAATTTCAGCATTCAAATACTGTTTGGCAT



AGAGTTATTACTGTCATTTCAGCACTATGCGGCAGTATCCTCTAATCTAGGACTGTTCGATTG



ATCGTTGGACTCCCTTAATTATGCTACAGATTATTTAAATGCAGCAAATGAACAGCCTGGCA



GATTCCTAGTCTGGAATTAGGCAGTAAATAGTTATTTAATTATATAGGCATACAGTGTGATTT



CGTTTCATTTTTTAGAGAACCCTTCCGGTTACCGCTATTTAAGACTGCCATGTTCAGAAAATC



TTATTTGATTGAAGAGAAGACAACATTCTCTGCACTATTTCTTTCTAAAAAAAAAA





155
AAATCACATAAAAACAGGGAGATTCGAAAGACGGTTTTCCTGTTGTCGGCACCATTGGAAAA



TTGAGCCAGGGTTCGAACAAGGGTTTGCAGGTTTCTCATCTCTTTAAGAGCCGTTTGATACA



AGACTTCGCCAATTTAAACAGCAGATCTCTGGAGCTTTCAGGCCCGGAATTGTCCCAGCAAC



TCGTGCTCTGCGTAATGAAAAATGAGGAACCTTCTCCTAGATCAATGAGGAGAGACGACGC



CAGGCCATAATTTGGCAATACATTCGACATAGTTTACAGTATATTACCAGTTCCATCGATTCC



AGAATTTATATTTTGACAAAATCAAGAACTAACTCCCAAAGGCAATTGCATGGTTTGATTCTG



GGATAGTAGTTCTCCAACTCCATCTGGACTGAACACTAAATATAACCACAAAAGTCAAAAGT



CATGGCACAGCAATCCTTAATATACAGTTTTGTGGCCAGGGGAAACATTGTACTTGCAGAGC



ATACATCATTTTCGGGGAATTTTAGTATTATTGCTGTCCAGTGCCTGCAAAAGCTGCCCTCAA



ACAGCAACAAGTTCACATACACATGTGATAACCACACATTCAATTACCTCGTGGATGATGGA



TTTGTGTTTCTTGTTGTTGCAGATGAAGCTGCAGGAAGGCAGGTGCCTTTTATTTTCTTGGA



GAGAGTAAAGGAAGATTTTAAGCGGCGTTATGGAGGAAGGGCTGAGACAAGCATGGCGCA



CAGCCTTGATAAGGACTACGGGCCAATACTGAGAGACCACATGCAATATTGCATGGACCAT



CCAGAGGAACTAAGCAAGTTTTTTAAAATAAAGGCTCAGGTTTCAGAAGTGAAAGGAATTAT



GATGGACAATATTGAGAAGGTTCTGGACCGAGGTGAAAAGATCGAACTTCTTGTAGATAAGA



CAGAAGGCTTGCAATTTCAGGCTGATAATTTCCAGCGCCAAGGAAGACAGCTTCGACGGAA



GATGTGGCTCCAAAATTTAAAATTCAAATTGATTGTGTTGGGTATCGTACTAGTTATTATGCT



TATAATATGGTTGTCCATTTGTAAGGGATTTAGTTGCCATTGACATCTAAGTGGTTTTATGTA



CATATAAGAAACTGGCATGTTTATGAGTGGAACAACTTTTTGTATATCATGAAGGTGAATAAG



AATTAAGAACACAACGAGCTAAATGAATTGATAGGGGAGGAAATGCTCATATTGAGTCACAT



TTGATGTAAAAAAAAAA





156
GAGATTCTGAGTCAGGTTCAATACTAAATCATTTCTGTACGAGCGAGTTATGTGTGGTTTGC



GGAAAATGACAGAAGATTAGAAAACGAAAGAGCAGATTTCAATGACTGGACGACGAGGAAA



AGGAGATAAACAACGTCACACAAAATGAAAATGTGGAGGGGATGGCATTTTACTGGGTGAG



GTCTCCCACAAGGAGAATTGTAGCAGCTCTTCTTCTGGGGGGCGGAATTGGGTGTTTTGTG



TGGGGTGCTCACCTCTCCTACCAAAACGTGGCTCCCCAACAGGCTCGCATACAGAAGCGCA



ACGAGTTCATCCGAAAACGCCTGCAGGCGCGACGATCGGGCAACTAGCCTAACGACCGAC



TAATGTTTGATTCCAACTAGCCTACGGTGAATAGAATCGTCGTAATTATCGTCATCATCAGCA



GCAATGTCTATTATAAGCATCCCCGAAGTGGAAGTTGAAATGGGCTCGGCATCGCCTAACG



CCAGGACTCTTCGAGCCACTGTTGTTCAGGCCTCCACTGTCTTCTACGACACCCCTGCTACT



CTCGATAAAGCAGAAAGATTGATAGCAGAAGGTGCTGCTTATGGGTCACAGTTGCTTGTGTT



TCCTGAAGCTTTTATTGGTGGCTATCCTCGAGGTTCTAATTTTGGTGCTGTAATTGGAAATCG



CACTTTTAAGGGTCGGGAGGAGTTTCGTAAATACCATGCTTCTGCTATTGATGTGCCAGGTC



CAGAAGTAGAGAGGATATCAGCTGCAGCTGCAAAATATAAAGTGCATGTAATAATGGGTGTG



ATAGAGCGAGCAGGCTTCACACTGTATTGCACTGTTCTTTTCTTTGATTCTCAAGGAAGATTC



CTAGGGAAGCACCGTAAACTGATGCCAACATCTTTGGAGCGTGTGATTTGGGGTTTTGGTG



ATGGATCTACCTTACCTGTGTATGACACATCAATTGGGCGTGTGGGTGCACTCATATGCTGG



GAAAACCGAATGCCTCTTTTGAGAACAGCTTTGTATGGAAAAGGAGTGGAACTCTATTGTGC



ACCAACTGCTGATGCAAGAGAGTCATGGCAGGCATCAATGCTTCATATAGCTCTGGAGGGT



GGATGCTTTGTGCTCTCAGCTAATCAGTTCTGCAGAAGAAAGGACTACCCTCCTCCACCAGA



CTATGTCTTTGGAGGTTCAGAGGAGAATATGTCTCCAGAGAGTGTTGTATGTGCGGGTGGA



AGTGTTATTATTTCTCCTACTGGTACTGTATTGGCAGGGCCCAATTTTGAAGGGGAGGCTCT



AATTACTGCAGATCTTGATTTTGGTGAAATAGTGCGAGCAAAATTTGATTTTGATGTGGTTGG



GCACTATGCAAGACCTGAAGTGTTGAAATTGACGGTAAATGACTATCCATTGAATCCTGTCA



CATTTTCTTCAGGGATAGCAGCATCAGAAAAAAAGGACAGTGAGAATGTGTAAATTTAATCT



GCAAGCATGGCCAAGGCCCAGTACATTCAGATGCTCCCTGAATGGATTTCAGAATTGTCTTA



ATGGCCAACTATGCTACCATATGGCATGATGAATAGGCTCGAGCATGAGTAGAAGGAACTAT



TTGTTATTGAAAAACAGTTGTTTAAGTATCCAAAATGTATAACTACAGAGACCATCTTTTCTGT



AAAACTTATCTTTGTATATAACAAGATTGAGCATGCCTAGAATAGAAAGAACAATTTGTTATTG



AGTAATCAGGGAAACATTTGTATAAGTATTCAAAATGTAGAACTACAGACACCATAGCTTTGT



AATGATTTATATTTGCATATAGCAAAATATAGACATTATTTTACGGAAAAAAAAAAA





157
GCGCTCCCGTGGGAAACAAATGCTCAGAGATCCCCACACTGCCCTACATTGAGCCGTTCAG



CAGCTAAAAGTCCCTTACATTTCACTTTAAGCTCTACCCATTTCATTTCTGCGCTTTAACAAG



CCCCCTGTGTGCGTTTCTAGTAGCAATGGAGGACGATCCTGGTGAAGATTACTTGTTCAAG



GTGGTGTTGATAGGGGATTCTGCAGTGGGGAAGTCGAATCTGCTGTCGAGGTATGCCAGGA



ATGAGTTTCACATGAATTCCAAGGCCACAATAGGTGTGGAATTCCAGACTCAGAGTATGGAG



TTTGATGGGAAGGAGATCAAGGCACAAATATGGGACACTGCAGGCCAGGAAAGGTTCCGG



GCTGTCACTTCTGCTTACTATAGGGGAGCTGTTGGTGCCCTCGTTGTTTATGATATCAGCAG



GAGGCACACATTTGAGAGTGTGGGTCGTTGGCTTGATGAGCTCAAAATGCATTCCGACATG



AATGTTGTTACAATGTTGGTTGGCAACAAATGTGATTTGGAGTCTCTGAGAGAGGTACCAGT



TGAAGAAAGCAAAGCCCTTGCTGAAGCAGAGAAGCTGTTTTTCATAGAAACTTCAGCATTAA



ATGCGACAAATGTGAATGATGCCTTTCAGATTGTAATCAAGGAGGTTTACAATAACATGAGT



CGTAAAGCCTTAAACTCAGGTTCTTACAAATCTAAATTGCTATCAAACGGAAGCACTAGTGTC



AACCTTGTGCAGAATGGGGATGCTGCAACAAAGACAGGGTTAAAAAAGTATGGTTGCTGCT



GAAATCAAATCTCTTTTTTCCTCATGGGTTCCAAATTTACTTTATTTAATCAAATCTGCAGTGT



TAACCACCTGTTATCTACATGGGATTCTTACAAGCTATTCTTCATTTTCAGTTGTAATAAAAAT



GGAAGCATCTTGGATGTATTGTGTTGACAGTCAAGCTTGTAGGGTCCTCTGTTTTTGATCTG



CATGTGGAGAGGAATCGGAAGTTTTGTTTGTCTATTTGTGGAGGATCTATGACATTTGCTGG



ATCCTAATGCTCCATGTATTCATCAGTGTTTTTATAGAAGTAATGT





158
GATCTGCACTCCTCTGTGATTGCTTCTTTTAAGTGTTTTTTGGGTTTGAATTTGCCTTTATACA



AAGATGGCAGTGCCCGTTATTGACATAAAGAAGCTGCTGGATGGAGAAGAAAGGGAGATGA



CCATGGACCAGATACACAAAGCCTGCCAAGAATGGGGTTTCTTTCAGCTTGTTAACCACGG



CATACCGTACAGTCTTCTTGATAGAGTGAAGGTATTGTTCAAAGAGCATTACAAGAATTCTAT



GGACGCGCAGTTTCAGGATTCTGCAGTTGTGCAAATGCTTGAAAGTTCTAACTCCCAAGGCA



TGAATCTCAGTGCCACTAAAATAGACGCCGACTGGGAAACGGGCTTCTTCCTCCCACTCTC



GTCGCATAAAACAGAAACAGTGACACCGCCTCTGCCTGCCAACTTCAGGGAGACGATGGAG



GAGTTTGCAGAGGAGGTGAAGGGATTGGCGGAAAGATTATTAGAAATAATGTGCGAAAATC



TGGGACTGGAGAAAGTATATCTGAAGGAAGCCCTGGCAGGTGGCAATGGTGATAACAATAG



CCCTTTCTTTGGCATAAAAATGTCTCACTATCCACCATGCCCAAGGCCAGACCTTATTGACG



GCCTCCGAAACCACACGGACGCCGGTGGACTTATTCTGTTGCTACAAGATGATGAAATCGA



CGGCCTTCAAGTTCTGATGGACGGCACTTGGTTCGACGTACAACCCATTCAACATGCAATTG



TTATCGACATAGGCGATCAGCTGGAGGTGATGACGAATGGGAAATATAAGAGCATGTGGCA



TCGTGTGCTTGCTAAAGAGGACGCAACAAGAATGTCAGTAGCAGCGTTTTATAACCCTTCGA



GTGATGCAGAGGTGTATCCTGCTTCGCAGCTGATGTCAGCAGAGCAGAATGGAAGTAACAA



TGTTAATGCAGAAAGTGGTTATGATTATCCAAAGTTCGTATCCGCAGATTACATGACAGTGTA



TGCTGCGCAGAAGTTCCTGCCCAAAGAACCGCGATTTGAGGCGATGAGATCAGTAGGTCAT



GCCGTGAATTGAGCAGCAATCCACATGGAATTTATAAGGATAATAAAATCAAACTAAAGTAAT



TAAAAAAAAAA





159
GTTCTACTTAGCCCTGTGGCTTCTGCCTACAGGATCAAGTATCCATCTTTGTTCTCTTCTGCT



TTGGGTATATTTGTTGAGTATCCATCTTGTCAGTTTGTAATTTGGTTTTTAATATTTTTTGACT



GGAGGGATTAGGGATGGCCACCAAGGTGGATCCTCCGAATGGGGTTGCTGCAGAGGGGAA



GCACTACTATTCCATGTGGCGCAACACGTTTGAGATAGACACCAAGTATATTCCCATCAAGC



CCATTGGGAAGGGTGCATACGGGATTGTGTGCTCGGCTAAAAACACAGAGACCAACGAGAA



AGTGGCTATTAAGAAGATCGGCAACGTATTCGAGAACCGGATCGATGCCATGAGGACACTT



CGGGAAATCAAGCTTCTCAGGCAGCTCGCTCATGATAACATAATTACCTTGAAGGACATCAT



GACCCCTGTTGGCAGGTCTAATTTCAGGGATGTTTATCTGGTTTATGATCTCATGGATACTG



ACCTTCACCAGATCATCAAGTCTTCTCAGGCCCTCACTGATGATCACTACCAGTACTTCATCT



ACCAGTTGCTGCGAGGCCTAAAATATTTGCATTCTGCCAACGTGTTGCATAGAGATTTGAAG



CCAAGTAATCTATTATTGACTGCCAATTGTGACCTTAAGATATGTGATTTTGGTTTAGCTCGA



ACAAACTGTGAGACAGGGCAGTTCATGACTGAATATGTTGTCACTCGATGGTATAGGGCTCC



TGAATTGCTTCTGTCCTGTGATGAGTATGGTCCATCTATTGATGTGTGGTCTGTAGGCTGTA



TTTTGGCAGAGTTGTTGGGCCGACAGCCAATATTCCCTGGTAAGGATTATATCAATCAACTT



AAACTGATCATCAATGTTATTGGCAGCCCAGCGGAAGATGATCTTTACTTTGTCCAGAGCCA



GAAGGCCTGCAGCTACATCAAATCACTTCCTCATGTTCCCTCTGCTTCTCTGCAACGTTTATA



TCCTCAGGCAAATCCTACTGCCATCGACCTACTAGATAAGATGCTAGTTTTTGATCCTTACAA



GAGGATCACTGTTACAGAGGCTCTTGAGCATCCATACTTCTCTGCGTTACATGATCCAAGGC



TCGAGCCTTCTGCAACAGCACCTTTTGAATTGGACATGCCTGATGAGGAATTGAGAGTACAG



GAATTGAGGGAGATGGTCTGGAAAGAAATGCTATATTATCATCCAGAAGCTGCAAATATATT



ATAGATACACAAAATTATCCATTTGTTTTTTGTTGGATAACTTCATGGATGAGAAGATGAGAT



GTAGAGATGGATAAAGTTTGAATATATCTCAAAGCACGGCCTTGAGTTTTGTTCAAAAAAAAAA





160
GAAAAGACATTCCCGTGTATTGAATTGGGAAGCAATGGGAATCGAACTAGAGATGGACAGA



CCCCAGGAAGAGGGCTGGGTGAGGGGTGCCATTCTTGGGGCCGGAGCTTACGGAACAGTC



AGCCTTGGCGTGAGCAGGTCCAATGGCCAACTCTTTGCAATCAAATCTGCAGCCGGCTTTA



GTGTCGCTTTGGAAAATGAGTACCAGATTTTGCGGTGCCTCGATTGTCCATACATCGTTCGC



TGCCTGGGGCACAATTACAGCTTCGAAAACGGTGCAGAGGTGCACAATTTATTCTTAGAGTA



CATGCCAGGTGGCAGCTTGGTGGATCTACTGGGAAGGTTTGGAGGGACGCTGAACGAAAC



AGTGATCAGAGCATACACACGCGGCATCCTGCGTGGACTCGATTACCTACACAGTCAGGGG



ATTGTGCACTGTGATATCAAGGGGAAGAACATTCTTGTGGATTCCAATGGTGTGAAGCTTGC



TGACTTTGGTTCTGCTAAGAGGGTTGATGATGAGGAGAAGTGCGAGGAGGCCATGCAATTG



AGGGGAACCCCTCAGTGGATGGCTCCAGAGGTGGTGAATCAGGTGGAGCAGGGGCCTGCT



TCTGATATTTGGTCTCTCGCCTGCACTGTGCTTGAAATGGCCACTGGCAGGCCTCCATGGA



GCCACGTTTCCAGTCCCCTTGCCGCAATGTATCGAATTGGATGCACAGAGGAGCTGCCTGG



GTTGCCTGGATGTCTTTCACCTCAGATTCGGGATTTCCTAGAGAAATGCTTTCGGAGAGATC



CTAAGAAGAGGTGGAGCAGTGCAGAGCTGTTGAACCATCCTTTCTTAAAAAAGGACTGCTCT



GTTATTGAGGCAGAGGAGGCCATTAGGGGTCCGGGATCTCCCACTAGTCATTTGGATTTTA



GGAATCACATATGGGATTCCTACTGTTCTCAGACGACTCTCATTCCGTCACTCAGTCTCCCA



AGCCCAACTAGGGAACGCAATGCAGAGGTGAATAGATCAGTTGAGCAATGCCCAAGGCGTT



CTCCCAGAGACAGATTGATGGCACTGGCCGCAGCTTGTAAATTTGAAAAAGTTGCGAACAG



GCCTAATTGGATCACAAGCCTCCATGGTCCATGGACTGTTGTGAAATCTTCCAGAAGTAAAT



CTCCAACTTCAGATAAGCCTCTGTTAAAATCAGACATTAGTAATGGCTCCTCCATCCAGGAG



CTTCCATTTACGGAAGAAAGGTGCAGTACCAGCTTCAAAGCTGTCAATTGGAAAGGGTTGCA



GCCAAGAGGTGAACTAGATCAATGCTCACAGGCTATGCTCTCTTCAGCCCAATCTCAACATC



AACCATCTTCCAGCACTTCTTCCAAGACTCCGCATCATAACTTGTTTTCGCTGGCTGAGACA



TCCAATTTGACTGGTGAAGCTTGGGAATCGGATGGAAATTCATCTCAGAGGATTGTTGGTGG



TGATTAGTAGTTGAAGAAACGCTTTATATGTTTGATGATAAGCGTAAGTCTACGACTTGTGCA



GGAGCAACTTACTGCCCCTGTCGCTGTATGCGAACTCCACAATTTTGTCATACAAGTATCAG



AAATCTGTAGTTGTATAGTAGCCGCAGAGCAGATACATGCTCTTGTAATTTTGATTCAAAATT



AATACCGGTTGAGTTTGTTCGGTTACACTAGCCGCAGAGCAGATACATGCTCTTGTAATTTT



GATTCAAAATTAATACCGGTTGAGTTTGTTCGGTTACACAATATATGACTTCATGATTAGCCA



TTTAACTTAAAAAAAAAA





161
GTCGCTGCTCCTCCCGCTACGGAAATTTCTTCCCTATTTGAACCCCTTTCGAGCCACTGGTT



TTCCAAGGACCATACTGCGCCTTCTGCTGCTTCGCTTCTTGTGATTTTGCATTTCAGACTCTA



ATCAAGTTTGTATCCATTGAACAACAACAAAAAATGTCGGGTCGCAGAAATCCGCTGTTGAA



TATCCCAATTCCTGCTCGGCAACAGACTCAGCTGTATCGACTTCCTCTGCCTCCGCAGAGCA



CATCTGTGTCCAGAGACGTTTCGGATCTTGCAGACTTGGAGCGAATTCAGATTCTCGGCCAT



GGAAGCGAGGGCAATGTGTACAAGGTCCGACACAGGAGGACTTCGGAACTTTATGCCCTGA



AGGTCATCCATGGCAATCACGACGAGACTGTGAGGCAGCAGATAATCCGACAAATGGAGAT



TCTGAAGAAAACAGAGTCCCCGTATGTGGTGAAATGTCACGGGATTTTCGAAAGGGGGGAA



GAGATCCACTTCGTGCTGGAGTACATGGACGGAGGGTCGCTGGAACAGAGGAGATCCGAC



ACCATGTCGGAAAGATTTCTGGCAGAGGTAGCAAGGCAGGTCTTGGAGGGTTTGAAATATC



TGCACCGTCACAAGATCGTGCACAGAGACATAAAGCCCTCAAATCTGCTCATAAACAGGAG



ACAAGAAGTGAAAATTGCAGACTTTGGGGTTAGCAGAATTCTGTCTCAGACATTGGATCCCT



GTAATACTTATGTGGGTACCTGTGCCTACATGAGCCCCGAGAGATTCGACCCCGAGACCTA



CGGCGGACGGTACGATGGATACGCGGGCGATATATGGAGCTTGGGGTTGAGTCTGCTGGA



GTGCTATACTGGGCATTTCCCGTTTCTGGCAGCAGGGCAGAAGGCGGACTGGCCGGCCCT



GATGTGCGCAATCTGTTACGGGGATCCCCCGGCTCCTCCTCCCACGGCATCTGCCCATTTC



CGGAGCTTCATCACATGCTGCCTGCACAAAGATGCCCGCAACAGATGGACCGCTGCTCAGC



TCTTGGGGCACCCTTTTGTGCTGTCAAATCCCCCCCAGACACCCTCCATTCCTATGCAGAG



GCTCTCCATCTGATCCAATGTTCCCCATGCGCAAATTACTCTGAACACATGAGATGAAATAA



AACTGCATGTGTATGAATCTATGATCTGTCTAATAACTTGGGTAAATTTTGTTCAAATACCTG



GTTTTGGTTTTCGTTTTGTTTAAAAAAAAAA





162
CATTCATCCATCATGCATTCTGCCTATCCATCTTCCCCGAAACCGTTGCATCCCTGCCTCTTC



ATTTCATAGTCTCCTTCCATGCACATCTTAACTAACACATACACATTGTATATACATCTTTTCC



GTAGTACCCACTTCTCTGCCCTGCTGCTGCTGCTACTGCAACATCCTCCCGTGCACAGCCC



TTATACGACACACACACATCGAGTAACCAGACCCTCGGCTCCCGTTTTAGGCATATGCACGT



CGAGTATCGATCCATCTGCTCAGTCTGCAGTTTGAAATTTTCGATTATTTGTTTCTGATTCGG



AAGGATGGCCACCAGGGTGAATCCGCCTAACGGAGTGTTTGTGGAGGGGAAACACTACTAT



TCGATGTGGCGCAACATATTCGAGTTAGACGCCAAGTATATTCCCATCAAACCTATTGGGAA



GGGCGCCTATGGAATTGTTTGCTCGGCCAGAAACGCAGAGACCAACGAGAAAATTGCCATT



AAGAAGATCATCAATGCATTCGAGAACCAGACCGATGCGAGGAGGACGCTCAGGGAAATCA



AGCTTCTCAGGCTGTTCGCCCATGATAATATAATTGCCTTGAAGGATATCATGACCCCTGTT



ACTAGAACTAATTTCAATGATGTTTATCTGGTCTATGATCTTATGGACACTGACCTACACCAG



ATCATCAAGTCTTCTCAGGTCCTCACTGATGATCATTGCCAGTACTTCATCTATCAGTTGCTG



CGAGGACTAAAGTATCTGCATTCTGCCAATGTGTTGCATAGAGATTTGAAGCCAAGTAATCT



ATTATTGAATGCCAATTGTGACCTTAAGATATGTGATTTTGGCTTAGCTCGAACAAACTGTGA



GAAAGGACAGTTCATGACTGAATATGTTGTCACACGATGGTACAGGGCTCCTGAATTGCTTC



TGTCCTGTGAGGAATATGGTACATCTATTGATATTTGGTCTGTAGGCTGTATATTTGCAGAGT



TATTGGGACGAAAGCCCATATTCCCTGGTAAGGATTATATCAACCAACTTAAACTGATTGTCA



ATGTACTTGGCAGCCCAGATGAAGATGATCTAGAATTTATCGAGAGCCAGAAGGCCCGCTC



CTACATAAAATCACTTCCTGTTACTTCCCATGCTTCTGTACAACGTTTATACCCTCGAGCAAA



TCCTTCTGCCATCAGCCTACTAGACAAGATGCTAGCTTTTGATCCTCGCAAAAGAATCACTG



TTACAGAAGCTCTTGAGCACCCTTACTTTTCTGCACTTCATGATCCAAGCCTAGAGCGTTCT



GCAACAGCTCCCTTTGATTTGGACATGCCGGAGGAAGAACTGAAAGAGGAAGAATTGAAGG



AGATGTTCTGGAACGAAATGCTACATTATCATCCGGAAGCTGCAAATACATCATAGATAGGT



GTAAAAATGTCTATTGTCTTGTGTTGGATGACTTCATGGAGGAGAAGATGAGACAGAAAGAT



GGCCTGGCTGATGGGACAGAAAGATGGCCTGGCTTTGAATTATATCTTGAAGTGTGGCGAG



AAGTTTTGTTCAATATTGTACATGTATACAATTTCAATTTGTGCTTTCTCTCTGGAATTTTTCT



GAGAATTGCGGACTTTTATTTTCAATGCTCTGAAAGTATGAAGAGAGAGCGAGTCTTTTATAA



CAGGTTATTTTATTGTAAGAAAGCACACTTGTTTATGTGTAATTTATTCATCATATTCCCATTG



TAAATAAGATGGACTGCTAGTTGTCTAAATCAATAATATACTCTTTGATAAAAAAAAAAAAAAA



AAAAAAAAA





163
GCTCCAGAATCCACTAGTCTTTTCCACATGCACGGTCCAGTCCTCAGTGTTCACCCATAAGG



ACACCCCATGTTTGTTAATGTATCCAGCAGACTATCTGCCTTATCTTGCCTTGCCGAGCCTG



CTGTAAAGCCACTATCCCAGACCATGACCATGTTTTCTTTATTGTTTTCTTGTCTGCTAGCTC



GCCCATAAGACCTGCCTGTCCCCTTCCGAGCACTGCATGTTTTTTGTCTCATCCCCTGTATC



ATGAACCACAATCTTTTAGAATATACAACTCTCGCTCTGCTCTTTCTCAGCGCCTGCAACACC



CACCTTGATTTCTGCAATCTCCTCTGCTGCATTTCTTCTTATCTTCTGAACTTCATTGAAGGC



CTACTACACTTCTACATATGAATGGCTTCATGTCTTTGCTCCCCTCTCTCAACTGCATGAACT



GTTGTTATTCTTGGGAGGATTGAGGAGATCTAGGTTCTTCTTGACCATACTACTCAGCTTTGT



TGAAATGTACTCGAGAACTTCATAATGGACTCCACCATGCCCGGTCTTGTCCCCACCCGTCG



AGTAGGTACTGCTTATTGAGTATGCTATCAGATTCGGCCCCAGAATCTCATCTCCACGCTTT



CCAAGGCTTCAGAAAGCTATAACTGATGTGGGTGTGGTGAAATCTCATCCCCATACTTTTAA



AGGCCGTTCACAGAGCTCGGGACTGATGTGGGTGTGGCGAAATCTCATTTCCATACTTTTAA



AAGGCCTGTCACAGAGCTTGGGACTGATGTGGGTCTGGTGAAATCTCGTTTTCATACCATCA



CTGAGCTGGAAACTGACACGGTTATGGTGATAGAAGCCATCCATGGTGCTAAAAGTCAATAC



TAAGGAGACCCACCAGCGAAAACAATGCTGGTAGTTCTTGCAAATGGTTGTTGGCTTTAGCT



TTTCAGTCATTCGATGACTACAGACGATGAGAAGGGTGCCCAGATGGCCCAAATGAGACAG



GAACATTCAGAAAACCCTGAGGAGGAGGAGGAGCGTGTGAGCTTTGATCTGAACTCCATGT



GCAAGTTTTCATCCCAGAGTGACACAGAACCCATTGAAACCTCCTTCCCCGATGAAGTTCTC



GAGCATGTGCTTGTGTTTCTGACAGCCCACAAGGACAGAAATGCAGTTTCTCTGGTCTGCAA



ATCGTGGTACAGAGTAGAGGCTTGGACTCGACACCAGGTCTTTATAGGGAACTGTTATGCT



CTTTCGCCTGGGACTATGATTAACAGGTTCCCCAAGATAAAGTCCGTGACATTGAAGGGTAA



ACCTAGATTTGCGGATTTCAATCTGGTGCCTCCGAACTGGGGAGCCCATCTGCATCCATGG



GTTTTGGCCATGGCTCCGGCCTATCCATGGCTGGAGAAGCTGTTATTGAAGAGGATGACTG



TTACAGACGAAGATCTGGCTCTGCTTGCCGACTCTTTCCCAAACTTTAAGGACTTAGTACTG



CTTTACTGTGATGGATTCAGCACCAAGGGCCTTGGTATAATTGCAAGCAAGTGCAGACAATT



AAGACGACTTGATCTGAATGAAGATGATATTGTCGATAGTGGAGTTGATTGGTTGAGCTGCT



TTCCAGAAACAACTACCACTTTAGAATGCCTTAGTTTTGAATGTTTGGAGGGCCCGATAAATA



TTGATGCACTTGAAAGATTGGTGGCACGTTGCTTGTCTCTAAAAGAACTAAGGCTGAATAGG



ACTATCTCTATAGTGCAGCTGCATCGACTTATGTTGAGAGCCCCACAACTTACACATTTAGG



AACAGGCTGTTTCTCCTATGATTTTATACCGGAGCAAGCAACAGTTCTTCAGGTTGCCTTCA



ACAATTGCAAGTCACTTCAGTGTTTGTCAGGATTTCGGGAAGTTGTTCCTGAGTATCTACCA



ACAATCTATTCTGTTTGCAATAACTTACTGGAGCTGAACTTGAGTTATGCTGTTATGGGTAGC



AGGGAGTTGGAGCAGATTGTCTGCAATTGTCCAAAATTGCAGCGTCTTTGGGTTTTAGACTC



AGTGGAAGATGCAGGTCTACGGGCTGCTGCTGCAACCTGTAAGGACTTGAGGGATCTCCGA



GTTTTCCCCATGGATGCAAGAGAGGATGGGAATGGTTGTGTATCTGATGAGGGTCTGGTTG



CCATTTCAGAAGGATGTCCAAATCTCCAGTCGATACTTTACTTTTGTCAGCGTATGACAAATG



CAGCAGTTGTGACCATGTCAAAAAACTGTCAGAACCTTACCAGCTTTCGACTCTGTATCATG



GGTCGGCACAAACCTGATCATATTACTCATAAACCAATGGATGAAGGATTTGGTGCCATTGT



AATGAACTGCAAAAAACTGACGAGGTTGGCAGTGTCTGGCCTTCTGACCAATAAAGCATTTG



AATACATTGGGACATATGGAGAATCATTAGAGACCTTATCAGTGGCATTTGCTGGGGAGAAT



GATTTAGGCATGAAGTATGTTCTTGATGGATGCAGACGTCTACGGAAGCTTGAAATAAGGGA



CAGCCCTTTTGGAGATACTGCCCTTTTGTCTGGTTTACATCATTATGAGCAAATGCGATTTTT



ATGGATGTCTGATTGCAAGGTCAGTATACAGGGTTGCATGGAGCTAGCAAGAAAAATGCCC



TGGCTGAATGTGGAAATAATCAGAGAAAATAGCTACGATGACCGCCTTGTGGAAAAACTTTA



TGTATATCGTTCTGTAGCAGGGCCTCGTAAAGACATGCCACCAATCGTAATTACTCTGTAGC



CATTTCCTGTCCAATTTTGTGGCAATGGCCATTGTACTATTTGGGTGAATCTGTAAGCGACC



GTGCTTTCAGTTCTTCATGTCCAGTGGTTGTAGGGGTCAAGTCCTTGTACATATTTCTTTTAC



AAGTGCAGTGGAGTAGGAGGTCAAATTGGCAATATTCTTTGGCATTTCCTTCAGGGTGATGC



TGAAAGGTGGAGGACGACCAATGAATGCTCTATGCACACGCATTGGGCACTATTTTAGGGT



CCCCAACTGACATGATTTTAAATTGAAGTTATTGTTAAGTAATGACTCTTTTAATGAGTCTTTT



TGCCATGTCACTTCAATAAGCTTTTGAAGTGAATTCTACATGGATAATTTTAGTTGTTTTTATT



AAGAAGGTTTGACTTACACTTACTAAAAAAAAAA





164
CCAAATAGCACCATCTGAAAATGCTCGGACACAGTAAATTAAATTCACTCGAGAATAAGTTC



CTCGCCATTCACAATAAATGCGCAGAGCATTGCCATCCATGCTCTTCATCTACTTCCGTCCT



GGCTATCCTATCATGCCAAATTTGCAGATAGGTTTTAGGGTACCTCCAAATGGGTTCAAGCA



GTCATCGGGAAAATGGAGCAGTGAAGGCGGTCAGCTGTTCCAAAGAGGATAAATTAGAGCA



AAGCAGAGTGAATTTGATGAGAAGTATTGTTGAAGCTAAGGACTCATCTGCAAAGGCTACAG



ATGATGCTACTCTCAGACGTTTTCTGCGTGCACGAGATTTGAATGTGGGAAAAGCTTCTGAG



CTTTTCTTGAAATATCTAAAGTGGAAGCGAGCATTTGTGCCCCTTGGCTATATTCCAGAGTCA



GAGGTCTCCAATGAACTCAGGAAGAATAAGATTTTTATTCAAGGACTGGACAAACAAAGGCG



CCCCATTGGAGTGATTCTCGCTGCAAGGCATAATGCCTTTGACAGGGATCTAGAGGAGTTC



AAACGGCTAGTTGTCTATGGTTTTGACAAAATATGTGCCTGTATGCCAAGAGGACAGGAAAA



GTTCGTCATGTTAGCAGATCTCGAGGGTTGGGGGTATAAGAATGTAGATATCCGTGCCTAC



CTTATGGTACTTGAAATTATGCAGGATTGTTATCCGGAGCGGCTGGGAAAGTTATTTATGATT



CACGTCCCATACCTATTCTGGGCAGCATGGAAGACGGTTTATCCGTTCATTGACAAAGTGAC



CAAGAAAAAGATTGTTTTTGTTGAAGATAAACACCTTAAAGAAACATTATTGAATGATATTGAT



GAAAGTCAACTTCCAGAAATTTTTGGAGGGAAATTGCCTTTAGTACCTACTCAAGATTGTGTC



ATACCCAACTAACACTAGATACCTTGAGTTAGGAATGTGGAAGGTTTTAATAGCAATGGTTAC



CAAAAAGTAGATTAGCTTTTCTTTAGACATATATTGCAAATCCTATTATCTTTCCATTTTTTTTT



ACCTTTTTCATATGTATAAATATTGGTTTTGAAAACATTGAGAATGGTCAATGTTTTGACATTT



ATAACAAATTTATTAATAATTTAAAAAAAAAA





165
CAGGGGTTGAAAATTATCTCGGTAAAAATTAGGGTTTTGTTTGATGAGAGGGCGCGAGAGG



CCAGTTGATTAGATTGCCCCATCAGATTCCCACGTCCGACTCTCTGGCCGATGACAGAGCTT



CCATTTAAATAATTCTGCTCATTACCGTGTCGCTATTGAAGTAAGAGAACCCAAAGGCTCTGA



CGATGCTCTTGATTCCCTCTGTGGACGCGCTTTAGATTTGTTCATTTCTTCTAAAATGGAGAA



CGTTGGCGGTGAGGAGTACCTGTTCAAGATCGTGGTTATCGGGGACTCTGCGGTGGGTAAA



TCGAATTTGCTGTCAAGGTATGCTCGCAACGAATTCAACGCCAATTCCAAGGCAACGATAGG



CGTAGAATTCCAGACCCAGGTGATGGATATCGATGGGAAGGAGGTCAAGGCTCAAATCTGG



GACACAGCAGGCCAGGAGAGGTTCCGGGCGGTCACATCGGCATACTACAGGGGAGCTGTG



GGAGCCCTCATTGTGTATGATATCAGTCGCAGGCTTACTTTTGATAATGTCGCCCGCTGGCT



CGAAGAGCTCAAGATGCATGCTGATGGCAATGTCGTGAAAATGCTTGTGGGGAATAAGTCT



GATTTAGCTCATATCAGGGAAGTTCCTGTGGAAGATGGGAAGAAGCTTGCCGAATCAGAGG



GGCTGTTCTTCATTGAGACCTCGGCTCTGGATAATACAAATGTATTGCCTGCATTCCAAATT



GTGGTCAAGGAGATTTACACTAATGTGAGCAAGAAAATGCTGAATTCGGATTCCTATAAGTC



TCAATTGTCTCTCAACAGAGTTAATATTACGGATGCATATGGAGATGGAGATGGAGTGGATC



CACCCAAGACAAAGAATTCTTGCTGCTGAGGATTCAGAGAGAATGCTCCTTTGTTTCTGGGC



TCCTTGAATATTATTTGCTTCATATGACCTCTTGTTGATTGAGATCCTTAAGGCTGCCTTATG



CTAATTTAATTTTTTTTTGTTTATTAGGAAAGTTTCAATATGTTGGATAATTTTTTTTCAATTTTA



TGAAGAAACCAGTAAGGGTCCCCAACTGGGCTTCTTAGGCTTGAGCCCTAGATGCT





166
GATTGGAATTCATGAGACGAAAATTACGGTACAGATGAATGGCTGGAAATAATGAATCCCAA



TAAAATGAGACCTTGAGATTCACCCAAGAGAGTATGGCCTTTCCTGGTCTGGTTTTGGTAAA



GGGCAGAGTCGTATAAAGAAGGCGGAAGGGAGGAGGGCAGAGTCGTATAAAGAAGGCGGA



AGGAAGGAGGGCAAGTGAGAATTCCCTAGCAAAATCGCGTGGACAAATGGTCAATTCGTAT



ATGTGGAATGCACCCAGCCAGGAATTTCGTTGCGGGCAGAGGGCAAAGACAAGGGTTATG



GCTTTTTTCGAAATTCATTCGGTTCAAATTTGACCTGAATACGGTTTCTAACAGGTTAGAATA



TACGATTCTAGACGCTTTTACTTGGTCGCTGCACGCAGTCCTAATTGTTGTTTTCCTGTTCTT



GTGGTTTTCCAACATTTTTAGGATCATATACCGGAGTACCCTTACATGAATTTTAGCTCCAGA



GGTTCGGATTTGGGTTGATGCCGCGAGGCTTGTGATCTGTGATACATTGTCGTCGTTTGAC



CCAAGAATCGACCCAAATCCATTCTTTATATGTAATATGCAGGAAAGGTCCGAGGAGTAAGG



ATTCCCAGCCTAGAACCCAAAAAATAAGGTCCAAGGTCGAAGTCAGAGGCTTGTGCTACATC



CCAGTGTTTTTTGGGATTCTGTCGAGTCCTCAAGAGGGCTTTTTGCTTTACGGAGTACCCAT



CTGGAATTAGTGAGTTCAGTTGCCTGCCTAAGAGTTCCCGCATAGGGCAAGGATTTGTTTGA



GATTGAAAAAGGAGGGCTTTTGCAATGGGGCATGCGGCATCTGTGGTCATTCCCCCACAAG



AAACAAAACAAGAGGATGAGGATTCCCAAGAAGGCGTAGACTACACCCTGAACATTCCTGAT



GAATGTCTGGCACACGTTTTCCATTACCTGAAGCCTGGTGATAGGAAGCCCTGCTCTTTGGT



GTGTAAGAGGTGGCATCACGCGGAAGGGCAGAGTCGGCGTCGGCTGTCTCTTGATGCACG



GGCGGAGATTGTGCCGGCCATTCCTAGTTTGTTTTGGCGCTTTAATTATGTTTCCAGGCTCG



CACTCCGAGGCAATCGGAGGACGATTGGTATCAACGATGACGGACTGCTTCTGATCGGCAT



TCATTGCAAGAACTTGAAAAATCTCAAATTGAGATCCTGCAGAGAGATAACGGACATTGGAA



TGAGTAGGTTCGCACAGTTGTGTGGTTCCTTGAGGAAGTTTTCTTGTGGGTCATGTACATTT



GGTACTCCGGGGATCAATGCTATCACGACCCATTGCAAATCTTTGGAAGAGCTCACTGTAAA



ACGGTTGCGAAGCGCAGGGGAGGTCCCTTCTGAACCAGTTGGACCTGGAGCGGGGAATCT



GAAGAGGATTTGTTTGAAGGAATTATACTACGGACAGTTCTTTGTCCCACTGATTGCAGGGT



CAAAAAAATTACAAACTCTTAAGCTTTCTAAATGTTCTGGGGACTGGGATACTCTTTTGGATA



TCATCACTCAGGATGTCACAAGCCTTGTTGAGGTTCTTTTGGAAAGATTGCATGTGAGCGAC



ACGGGTTTGCTAGCAGTTTCAAAATTGGCAAGCCTGGAAATTTTGCATTTGGCTAAGACGCC



AGAATGCTCTAATACTGGGCTTGCAGCTATTGCAAATGGTTGTAGAAAACTGCGAAAATTGC



ATGTAGACGGATGGAGAACAAATAGGATTGGTGATGAGGGTCTTATTGAGATAGCTAGAAA



GTGTCATTATCTGAAGGAGTTAGTATTGATTGGAGTCAATCCCACTATAACAAGCTTAAGTAT



GTTGGCTTCCAATTGCCATGTATTGGAGAGATTGGCTCTCTGTGGCAGTGCGACTATTGGTG



ATGCGGAGCTTTCTTGTATAGCAGCCAAGTGTTATTCACTAAAGAAGCTGTGCATTAAGGGC



TGCCCAGTCTCTGATCAAGGCATGGAATCTTTAATAAGTGGATGCCCCATGCTCGTGAAGGT



GAAAGTAAAGAGATGCAGAGGTGTAACCAGTGAGGGTGCGGACTTGTTGAGAGCTAATAAA



GGTTCCCTGGATGTAAGTTTGGATACTATAACCTCACCTAGTCTGAATGGGTTATCAACTCA



AGCCAGCTCGAGTGTGCCAAGAGCATCTGCCATTTCTTCAGCTGGTAAATCAACTCTATCTA



AGGCAAGATTGACCCTTATAGCAGGTGGAAGCTTTCTTGCCTGTGCCTTTTTAAAGTTGTCA



AATGGCTCATAAGTGAACCTCTAAGGCTCATTATGCGGAGGTCTAATTGACCAGTATTGTTG



AATAAAGAATACTGCATTTGCTGTTTATCTTATCAAACCATTTACTGATGGATATCTGAGGTAT



TGATGTTGTACGATCCTCAGATCTACCTTTGATGCGTTATGCTGATTATTCATTTGGTACATT



CTGAGATTGCGCATGGGTTTCTGAATTGGCAGAAGCAAACTGGGTTGAATCAATACAGCTAA



TTTTCTTTTTTTGAAATTAATGTTTTTTGGGATTGGATTTGACCAAAAAAAAAA





167
TGGCTATGCAGCGCTCCAGCGGAGCCTGCTTTGATGCAGCCATTCCTTCAACAGCTCTGTT



CTTTGGTTGTTCAGAAATTCCTTGATGAAGTCTGCTCCGTTCCAACCTCATGGTTTGGCAGT



GGTCCAAATTATTTACAGGTTGTTGGGTTCGGTTTTAGCCCGACTTACTTGGTGGGGGCGAC



GCATCTACAGCGACGGACTTCACCGGTTACGGTCTTGAAGGATTCAAGAAATTCGAGTTGC



ATGAAAGAATGGCCGGCTTAGATAATGGGGTAGTTAATGGTATCGTGTCTGTGAAATTCACC



AAACTCTTTATTGATGGAAAATTTGTGGACGCAATTTCAGGGAAGACTTTTGAAACTTTGGAT



CCTCGAACAGGAGATTTGATAACGCGCGTCGCAGAAGGTGATAAGGAGGATGTGGATTTGG



CTGTGAAGACGGCCCGGGAGGCTTTCGATAAGGGACCTTGGCCTCGAATGTCTGGCTATGA



AAGGGGTCGCTTACTGAATAGGTACGCTGATTTGGTAGAGCAGTATATAGATGAACTAGCAG



CTCTTGAAACACTAGATAATGGACAACCACTCACCCTTGTCCGTGTCATTGTGACGGGGTGT



ATCCAGATTCTCAGATACTATGCAGGAGCGGCTGATAAAATACATGGGGAAACATTAAAAAT



GGGAGGGCAATATCAGGCATATACTTTGCATGAGCCTATTGGAGTGGTCGGTCAGATTATA



CCATGGAACTTCCCACTTTTCATGTTTTTCATGAAAATCTCTCCAGCTTTGGCTTGTGGATGC



ACTATAGTTATCAAACCTGCAGAACAAACTCCTCTAACTGCACTTTATTGTGCACATCTGGCC



AAGGAGGCAGGGCTTCCACCTGGTGTTCTTAATGTGATAACTGGTTTTGGAGAAACGGCTG



GTGCTGCAATAAGCAACCATATGGATATTGACAAGGTAGCCTTTACAGGGTCTACTGATATA



GGTCGGGTTATCATGGTGGCCGCTGCCCACAGCAACTTGAAACCTGTAACCCTTGAACTCG



GGGGAAAATCTCCGTTGATTATCATGGATGACGCTGATATTGAGGAGGCCGTGAATCTTGC



CCACAAGGCCATATTTTTTGGCAGTGGACAAGTATGCTGCGCAGGATCCCGGATATATGTTC



AAGAGGGCATCCATGATAAATTTGTGAAGAGAGTAGTGGAAAGAGCGAAGAAACAGGTGGT



CGGCGATCCTTTCAACCCAGAAGTTGACCATGGTCCTCAGATTGACAAGACACAATTTGAAA



AAATATTAGAATACATTGAGCATGGGAAGCGAGAAGGAGCAAAACTATTGACAGGCGGTAG



TCGCGTGGGTGAAAAAGGATTTTACATTGAACCAACCATTTTCTCCCATGTGCAGGAGGACA



TGAAGATTGGGAAAGAAGAAATATTTGGACCAGTCGTGTCCATTTTCAAGTTCAGGACCATT



GAAGAAGCCATAGAACTGGGCAATAAAACAATATATGGTTTAGCTGCTGGAATTGTGTCGAA



GAATATAGATACAGTCAATAGGCTTTCGAGATCTATTCGAGCAGGAGTGATTTGGGTTAACT



GCTACCACGTAGTATTTCCTGATGCTCCGTTTGGAGGGTACAAGATGAGTGGGATCGGTAG



AGAGCAGGGTCTCGATGTTCTTAAAAATTATTTGGCAGTCAAGTGTGTCATAACTCCTCTCC



ATGATTCACCTTGGTTGTAGAACTATGCTTTAACCTCTTTCAAATGTGTTTGTCAAATGCTTTC



ATAGCTTTATATATTTAGGTTGAAGCTTCAATAAATCTTTGTATGTAAAAAAAAAA





168
CAATTTCGTCGCAAGTCGATGGAGACCGACAGTCCTCTGGTCGCAATTTCGTTTCAGCCGC



CGCCGGTTGCATTTATTGGGCAAGAATTTGATAATTTTTTATTTTTGAAATTGGACGAATTTC



CGTGCATTTCATTTCATTTCAGGTCTGAACAGTCAGACCAGCGAGCTCTACAAAAGCTTCAG



GTACTGTGAGGGAAAGGGCAGCTCGGCGCACCAAAGAGCGGCGAAATAATGGTGAGGAAT



TTGCATTGGTGCAGAGCAATTGTTACTATCAGCTCGGCCGTTCTTTTATGTACATTTTGAGCC



GTTTTACGATCAATTTCGCCAGCTCTTACGATCAATCCGCTGAGCAGTCTAGTTTAGAATCG



GGGCGCCATGAGAAAGAAGGATCTTAAGAAGTTGAAGCTCGCGGTTCCCGCACCGGAAAC



CCCTATGTCTGACTTCTTGACTGCAAGTGGTACATTTCAGGATGGTGATCTCCTTCTAAATAG



GCAAGGTTTACGGCTTATTTCCCAAGAAGATGATGAGAGTCCATCTCCAATAGAGCCACTTG



ATAACCAGTTTACTCTGGCTGACCTAGAGACTGTGAGTGTCATTGGAAAAGGAAGTGGTGGT



GTTGTTCAACTGGTTCGTCATAAATGGACAGGGCAATTTTTTGCTTTAAAGGCCATTCAAATG



AGCATTCAAGAGAGTGTTCGTAAACAAATTGTGCAAGAGTTGAAAATAAATCAAGCTTCACA



GTGCCCAAATGTTGTAGTTTGTTACCATGCTTTCTATAACAATGGTGTTATCTCTATAGTTTTG



GAGTACATGGATTGTGGCTCTCTTGCAGATGTGATAAAAAGAGTCAAAACATTTACAGAGCC



TTATCTTGCAGTTATTTGCAAGCAGGTTCTCAAGGGATTGATATACTTGCATCGGGATAGAC



ATATCATCCATAGAGATATCAAACCATCAAACTTGCTAGTCAATCACAAAGGTGAAGTGAAGA



TCACAGACTTTGGTGTTAGTGCAACGCTAGCAAATTCAATGGGCCAACGCGATACCTTCGTT



GGTACCTACAACTATATGTCGCCAGAGCGGATAAGTGGAAGCACATATGGATTTAGCAGTG



ATATTTGGAGCTTGGGCCTGGTTGTGTTGGAGTGTGCTACTGGTCGTTTCACATACTTACCT



CCTGGACAAGAAGAAGGGTGGCTCAATTTTTATGAGCTTCTGGAGACAATTGTTGAGCAACC



AGCACCTTGTGCATCGCCAGATGAGTTTTCACCAGAATTTTGCTCCTTCATCTCTGCATGTG



TTCAAAAGGATCCGAAAGACAGAATGTCGGCCACAGATCTTTTGAATCATGCCTTTATCAGG



AAATATGAAGACCAAAATGTTGATCTCGCAGCTTTGCTCAGCAGCTTGTCATCACCTGTGTA



ATCATAATAGACATTCAAGTGATGACACCCTATGGTAAAACAATGGTTTCCAGATTCCATGAT



TGGAATTTAGTTCTGTATAAGTCATAGCTTATCTCAAACTACGTAAATGAGTAAAACCAAATG



GGCATTAATATATGCTAGAATTAAGCTGTTGATGTAGTATTGCTTAACTGGCAATGGGGAGT



GAATCTCCACTCAATTATGTGATGTCCTTTATTTAAGAAACCCTAATCATAAAACATCTGTCGT



GCTCTATTTAGTCTAAAAAAAAAA





169
TAGGAGCCGGCTCTGGTTAGTGCTACTGGAGAAGAGGCAGGGAAAGGGGCAAGGGCAGG



GGTAGGAGCAGGAGAATTGCTTAGATTGAATATGGCGCTGATGATGGAGTTTGGGGATGAT



GCTGGTATTGGTGAGGAGTGGGAGGATAATGAGAGCCAGAGAATGGAAATTGACACGGGG



AAGGGAATAGAAACCCATTTCAATGACATCCCAGAGGTGATAATGAGCAACATATTCAGCGC



CATCAAGGACACTCGATCGCGGAACCGGATGGCTCTTGTCTGCAGGAAGTGGCATGAAATG



GAGAGGGCGACTCGCGTGTATCTGTGCATAAGAGGTAACATAAGCAACAACTTGTACCGGC



TGCCCATGTGCTTTCAGTCTGTTACTAAATTGGATCTCTCGCTTTGCTCCCCCTGGGGTTAT



CCCCCTCTGGATTTCACCACTCCGCACGGTAACTTCATAGGGCATCGGCTCAAACAGGCAT



TCCCCAGAGTGAACAACATAGTGATCTATGTAAGAAGTGCGAGGAATATAGAGAAGTTGTCC



TCTCTGTGGCCTTGTCTTGAGCATGTGAAATTGGTGAGATGGCACAGGCGTGCCATGGATC



CTGAGTCTGCAGTCGGTTTGGGAATGGAGCTTAAGCTCCTGATGCAAAATTGCACAGCGTT



GAAGAGCCTAGATCTCTCTCAGTTCTATTGTTGGACCGAGGACATACCGCTTGCCTTGCAG



GCCGAGCCACATGTGTCGGCCAATTTGTCAAGCCTCAACTTGCTAAAGCTTTCCGCGGAGG



GTTTCAGGGCCCAGGAGCTTGCAGCCATATCAGGGGCATGTAGGAACCTTGAGGAGTTGCT



TGCCGTTTGTGTTTTTGATCCAAGATACATGGATTGTGTTGGGGATGAGGCTCTTGTTGTAC



TTGCCAGAAACTGTTCTAGGGTCAGAATTCTTCATTTGGTCGATGCCACTGCATTTGAAGCT



CTCAGAGGCGATCCGGAAGATATTTTCTCCAGCGAGAATGCCAAGATTACCCGCCAAGGTC



TGGAAAGCATGTTCTGGAATCTACCTCTTTTAGAGGATCTTGTGCTGGATATCTCTCACAATG



TCGCAGACTCGGGCCCCGCTTTGGAATTCCTAAGCTCCCATTGCAAGAACATCAAGTCTCT



GAAGTTGGGTCAGTTTCAAGGCATATGCAAGGGCCCTGAACCCGATGGTGTTGCCTTGTGT



ACAAATTTGGAAGCTCTCTTTATAAAAAACTGTTCTGATTTAACTGACACGGGCCTCGCAGC



CATTGCAGCTGGGTGCAGTCGTTTGGGTAAATTAGAGTTACAGGGATGTAGGCAGATCACC



GAGGCTGGTCTCAAGTTTTGTACTAGTCGACTTAGTAAAACTCTTGTAGAGGTCAGGGTTTC



ATGTTGTAAATATCTTGATACTGCTGCCACTTTAAGAGCCCTTGAACCAATATGCGAGAGCG



TGAGAAAGCTGCATATTGATTGCATTTGGGATAAGTCCATTCTTGATCAAGAAATTGCTTCTC



CTAGTCGGAGGTTGAATCCAGTTGGATCTTCTGCCATTTCCACAAGGGAAATAGCTAGCTAT



GGAATGGGAAAAAACCATCTAGTTTCTGCTGGAGATTGCAATGTCAACAGATGGGACCAGA



ATCCGGAGAGTGCTTGGGGGCCATCCTTGCAGTTGGCTCCTCCTCAGTTTTGCCCTGACCT



CAACTGCGCAAATTTCGATTTTGGTTCAAGCCCTTCGGATGTACCGATGACAAATTGGGGCC



TGGATCTTAACCTGACTGCAAGCTCATGCTCAGGGCCTTTAGAAAGTTCCGAGGAAAGAGG



CTGTTTGCCTATAGAAAATTTCTTCGAAGAACATGAAAAACCGAATTCCCTTGGTTCTGACAG



GTACGTGCCTTCCGATGGTGTCATGTTTAGAGGCATGGATGTGAACGGAAAAGCTCCACAG



ATGGAGCGACTGTGTCATTCCAATACCGGCACAGTTTCGGATTCGTCATCCACAGAATTTGT



GGACTTTTTGGGGATAAATGACAAGCATCAAGAATGGCAGAAACTTGGAGCAGATATTAATT



ATGGTATGGAAGTGATGGTCAATTCATCTCAAATATGGGGTGTAACAGGGGAGGCTAGTAAA



AGAACCTCCTCAGCAAACTTAGAAGGTGAGCAGTCATGGACAGAGATCCCCAATCAATACA



GTTATAGTGATTCGAGCAGTCATATCAGATCTATAACTTGGAAAAATCTGCAATTCTTGTCAT



TGTGGATTCCCGTAGGAGAGCTGTTGTCACCTCTTGCAGCAATGGGTTTAAAAGTATGCCC



GCTGCTTGAAGAGATTAGTATCCAAGTAGAAGGGGATTGTAGGCTCTGCCCCAAACCAAGA



GAGCGTGCATGTGGTTTAAGTTCACTGGCATGCTATCCTTCTTTGTCAAAGCTCGAGCTCAA



TTGTGGTGAGGTGATAGGTTTTGCATTGAGCGCACCTGCTGGCAAGATGGATTTGAGCCTG



TGGGAACGATGGTACCTCAATGGTCTTCGAGAACTACATCTGTCAGAACTGAATTACTGGCC



TCCACAGGACAAGGATATGAATCGGAGAGGGCTTTCACTTCCAGCTGCAGGTCTTCTTTCA



GAGTGTGCAGCTCTTCGGAAACTCTTTGTTCATGGAACTTGTCATGAACATTTCATGATGAT



GTTTATTCGCATTCCAGACTTAAGAGATATACAGTTGCGGGAGGATTATTATCCAGCCCATG



AAGATGATACAAGCACTGAGATGCGTACTGATTCATGCAGGCGTTTCGAGGAAGCTCTAGC



TAGTCGCGGATTTACTGACTGAATTAGGTTTTGTGAAACAGGGTTTATTGTTGATTGATCTTT



CCAAGGTCAACTGTGGAGTTTCAGAGGAAGTAGTATTGTATGATCCTCGTGAAATAACATCC



TGAAGGTAGAGCCTGCTTGTGGTGTGCACGACTTGCAAGACAATAACCAGAAATTTGTATGT



CAAAGCATCAGAAGACATACAAAAGGATCACTGCCTTTCGGTGTCAGGGGTCTCAGCCATG



GATTTTAATATTAATTGTGTCAGTGAAAACTTCTGCCTTGATATTTGGTTCGAGTAATTGGAG



ATAAAGACTGATTCTTCTTTTAAAACCATTTGGCTGAAGACTCTGAAATAAAGTATAGAATATT



ACAGTATGTCCACTCACTCTTCCAGGGTTTCCCCGATGGATTTATGTTCAGGTGCAGCATTC



CTCGTCTAATGTGTCAGTGGTTATACTTCCTTTGGAATGTATCTTTCATGAGACTCACTGTTC



TTTTGGTGAAGGGGAATCATATGTCAATCACAATAGGCTGCTGAGGACACAGTAGAACCTAG



ATTATTTAGTGTAGATGTACCCATTGTATCAATGTCAAATGTCTAATACTCATTTGATTTTATT



GACTGGCCCATACTTGTAACCGGTTCCTTGTTTCAACTGTTGCTCTTTTGTCCACGGTTGAA



AATGTAATTGATGGGAGAAATAACAACATAATAGAAATACTTGCCTCCAAAAAAAAAA





170
AGGAGATCGGAATACCACTCAGGTTAACCACATTAGGTAAATTATTTTATGTTTTTAATTGTG



AAGGCAGTTAACTTGTCATCTTGTTGTTTGTCCCAGTTAATCATCGTGGGGCTGAACGATTT



CAGGGCCATGGTTTTCATTTCCATTCTTTCCACCCCATATTTTTCCTGGTTTCTGAACTCAGA



ATGACTTGATTTCCCCATTAGCGTGGAGTCCTAGGTTGCACACATCCTCAAACTCTCATTCT



CAACTACGCATTTGTTTAAGACCCTCACTTCCCAAACCCCAATTTGGGTTTCTTTTCAATATTT



CCCCTGCGATCGAGTACATTGGAGATCAGTGAGTGACGGGCAGCACAGGGGCCGAAAGGA



CAATTTTCCTGCTTTTTCTTGTTTTTCTGGCAATGCAGATATCAGGCACTCGCAGGCCTTGCA



GGCCATGGGCTTGTGTTGGTTCTCTATGACTGAGCGCAGGAGAATAGATCTAGAATTGTTTA



TTAATGGGAGGATCAAGATAAACAGTGGGTTTTTTATCAGAAGCAGAGGCAGATGGGGCAA



ATGTGGTTGACGTACAGACCAAGCTGAGAAAAGGCTGATTTTTTCCTCTCATTTGAAGCGCT



CCCCATGTGAAAAGATTTGGTATTTGTGGTTCCAGGCAGATTCGCAGATAGTTGAGGCATTG



GCCTTGTATCAGGACATAAGAATACAGCGTGGATCTAAAAGTGAACGGAGACAAAGAACTAT



GCAGCAAGATCAGAGAAGAAAAGCCCCTACAGAGGTTGAGTTTTTCACTGAATATGGTGAA



GCAAGTCGCTACAAGATTCAGGAGGTTATAGGAAAAGGGAGCTACGGTGTTGTATGCTCTG



CAATTGATACTCACACTGGGGAGAAAGTTGCAATAAAAAAAATAAATGATATCTTTGAACATA



TTTCTGATGCAACCCGGATTTTACGTGAAATTAAGCTTCTGAGGCTGCTGCGGCATCCTGAT



ATTGTCGAAATCAAGCACATTATGTTACCGCCCTCTAGGCGGGAATTCAAAGACATTTATGT



GGTATTTGAACTTATGGAATCAGATCTACACCAGGTTATTAAGGCAAATGATGACTTGACAC



CAGAACATTATCAATTTTTCTTGTACCAGCTTCTACGAGCTTTGAAGTACATACATACTGCAA



ATGTGTATCATCGGGATTTGAAACCGAAGAATGTTTTGGCAAATGCTGATTGCAAGCTAAAA



ATATGTGACTTTGGCTTAGCAAGAGTTGCCTTCAATGACATGCCGACAACAATCTTCTGGAC



GGATTATGTTGCCACAAGATGGTATAGGGCTCCAGAGCTGTGTGGATCCTTTTTCTCCAAGT



ATACACCTGCCATTGATATCTGGAGCATTGGTTGCATCTTTGCCGAAATTTTGACTGGGAAG



CCCCTTTTCCCTGGTAAAAATGTAGTTCATCAGTTGGATTTGATTACCGATCTTTTTGGAACT



CCTCCCATCGAAGCCATTTCTCGGGTTCGCAATGAAAAAGCTAGAAGATACTTGAGCAGTAT



GCGCAAAAAACAACCTGTACCCTTGTCCCAGAAGTTTTCAACTGCAGACCCATTAGCGCTTA



AACTTTTGGAAAGATTGTTATCTTTTGACCCAAAGGATCGTCCAACAGCAGAAGAGGCTTTG



GCTGATCCTTATTTCAAAGGGTTAGCAAAAGTGGAGCGAGAACCTTCAGCTCAACAAATAAG



TAAGATGGAGTTTGAGTTTGAGAGGCGAAGGGTAACAAAAGAAGATGTGCGGGAACTCATT



TTTCGGGAAATACTCGAATATCATCCGCAGATGCTAAAAGAGTACCTAAATGGATCAGATAG



ATCCAATTTTATGTACCCTAGTGCTGTTGATCAATTTAAGAAACAGTTTTCTCACCTTGAGGA



ACATTATGGTAAAGGTGCACCTGTGGTTCCTTTAGAAAGGCAGCATGCATCTTTGCCAAGAT



CATCTGTTGTTCATTCGAACACTATGCCCCCCTTGCCAGAGAAAACAATATCAGGTCCTTCA



AGGGACCGTACTTCAGAATCCCGTGATGAATCTTCTAGGTATATTAGGGAAACAGAGAAGCT



GCAGCATGATAGGAGTGCAGGAAATGCACTGAAGGCTCCCTTGCAACCACCTCAGAAAATC



TTGCAGGGGGGTGCTGCAAAACCAGGGAAAGTTGTTGGACCTTTGCCTTATGAAAATGGTA



GTACGAAAGAAGTCTATGATCCAAGAAGGTTGATCAGAAATGCTGTTCTAACAACGTCTCAG



TATGCCGCTCCTATTTACTCATATCCAAGAAGAACTTCAAACACAAAAATTGAACCGAATGAA



AAGGAAGACGCTGAGTCAACTTTAATGCCACCCAAGGCCCAATATGTTGGAATTGGTGCAG



CAAGGAAAGTAGCTGCAGTTCAGAGTGCTTCCTCTCGCTTATATTAAGCAAAATCAATTTCCT



GGTAATTGCAATTTGTAGCCCATTTAGACATTGTTGACTGACATCATTCTTTATTACTTGGCA



TCTTCCAACACTGAAGCAAATTGAGCAACATATCATATCTAGCATGTGAAGAAGATGCTCAT



GTACAAAAGGTTTTCCCTTTTCATGATGACTGAATATGGTTCAGTATCAAGCCCAAAAGGGA



CAACAACCATGCAGTCCCTCTGTACTGTAAGAAGAGATGAACTCGATGAAATTAGTATTTTAT



GGAAAATGTAAATGATTTGACTGTAAAAAAAAAA





171
ATCTCTGCTGCTCTGTGTTGGGGATTTTGTCTCGATGGCGCAGCAGGAACAACAGTAGTAG



CAGCAGCAGCAGCGGCTGCTTTCAGAGATAAGGAGATCCGCATAGATTTTTTAGTGTCGAG



TTAAAATATCTGAATTTCAGTACACACATGCGCGCGTATGCACATGGGGAATTCGGAAGCAT



CCGCCAATTATGACCACTTACGCGTCCCTCAGTTGGTCCTCTAAGCTATTGCTACAGGGGGT



TCAGACGTCTGGAGCACAGTACACTAGAGGATCCCGTTTAGCAGACTAAATCTCAACAGAAT



TTTGCCTGCTTTTCTCCCTATATAACCTCCTCTCTCTCACCGGCTTCGGTTCTGATTTTTCCC



GCAATGGGGCCTTGCAATGGCCGTTTCTCAGCTCTGATTTTGATTTCCATGACTCCGCCTCC



TTCTCGTGTCGGCGTCCTGATCTCGCTCTTTATAATGTCTCTGTTACTGTGTATTTCGGCGC



CCTGCATGCACAGCCCTGCGGCTGCCCTGATCGGCTTGAGTCGCTCTGAGAAATACAACAC



AGACGGGCAAGATCCGTGCCGTCTATCGTTCCTGGACACGGCGGCGGCTGCCATCGACTT



CGGCAGGATTTACCATCACAATCCCGCGGCTATCCTCCGGCCGGTGTCCGCTGAAGAAATA



GCCCGTTTTCTTCGGGCTATTTATGCGTCGAGGGCGCTCGCGACCGGCTATCGCCAGGAAT



ACCTCACCGTTGCTGCCAAAGGCGCCGGTCACTCCATCCATGGCCAGGCGCAGGCCCCCG



ATGGGCTCGTTATTGAGATGTCTTCTCTCAGAGGCGTGCGCATTCATGTGGCGGACCGCGC



CGGCGGCTACTCGTACGCCGACGTTGCTGCCGGAGAGCTCTGGGTGGACTTGCTCGCAGA



GGCGATGAAGCTCGGCCTCGCGCCTCGATCGTGGACGGATTACTTGTATCTCAGCGTCGG



CGGGACTCTGTCGAATGCAGGTATCAGCGGGCAGACATTTCGCCACGGGCCTCAGATCAG



CAACGTCCTGCAACTTGACATAATCACAGGGACCGGAGAATTAGTCACTTGCTCTCCTGCTG



AGAATGCGGATTTGTTCTACGCTTCAATGGGAGGCCTTGGCCAGTTCGGCATCATAACCCG



AGCTCGGATTATCCTCGAACCAGCTCCTCAGAAAGTGAAATGGGTTAGAGCCTTATACAGTG



ATTTCGAGCAGTTCACAAGGGACCAAGAGCTCCTGGTGTCCATGGACGATGGCGCCGCATC



TGTAGATTACTTAGAAGGCTTCGTGGTCGTTAACAACGAGGCAATGCGCAGCTGGTCGATC



TCGTTCCGCACTGACACACCGCTCGATGACAGCGTCTTCAACGACGCTGGAACCGAGATTC



TGTTTTGTATTGAGATAGCAAAGTACTTTACACAATCCGACGACGAGACAGCCGATGTCGAC



AAGGTCACGGGGCGGATTATCTCGAGATTGAGTTTCATTCCTGGGTTGATTTACAGTGTGGA



GGTACCCTACGCCGATTTCCTGAACCGAGTACGAGTGGAGGAGCTGAACCTGCGATCTCGA



GGCCTCTGGGACGTTCCGCATCCATGGTTGAACATGTTCGTCCCACGGCGCCAAATTCAAC



GTTTCACCACTTCTCTGCTCAGGATCATGTCTCCGGACACTGTCAAGGGCCCGATACTCGTC



TACCCTGTGAAAAGAAGCAAGTGGAATACCAACATGTCTGCAGTAATACCTGAGGACAAAGA



CGAGATCTTTTACGCAGTGGGCGTTCTTCGATCCGCAGACCCACTGTGCTTGGCCGGGTCT



TCCTGCTTAAACGATTTGCTATCACAGAACCAGCAAATAATCGATGTATCGACAAACGCAAA



CGAGATTGGCAACGATAAGACCGAACCAGGCATGGGCGCGAAGCAATACTTAGCCCACCAT



TCCCAGCAATGGCAGTGGAAGAATCATTTTGGGAGCAAATGGGGAATATTTCTGCAGAGAA



AGGCGAGATACGATCCTCTGAACATTCTCGCTCCAGGACAAAGGATTCTCAATAGAAACCAC



CGAGAATGACCTGACCATGATGATCTGTCCAAGGAAACCAGAGATCTCGCTAACAGCAAGG



CCAGTAGTATAATGAATACAGTAGAATATTATATTTTTATTTCTGTCCTCCCTGTAAGATCCCT



GGCACATAATTACAATAAAATTTATACTGAACTAAACTTTTTGGCATTACCCCAAGGTTTTCTC



CATACTTTGGTCCATTTATTAGGCCAGCTCACAGTGTGGGTACAAGCCAGTCTGCAATTGCA



GTTCAGCAGATGCATCATCACCTGTAAAAACAGTTTCACCGATTTTTTTTTACAGTGTAGAGC



ATCTTCAGGCACAAGGACTACAGTATTACGGCGGATGATCAGTATAGCTGCTGAGCTGAAAT



TCGCGGATGATTTGTACAGGAGAATTAATGTAATACAAAAGGATATTTTTACTAAAAAAAAAA





172
GTTGTTTGTTGTTTGATTCTTCTGAGAGTAGGCCCTGCGTGTTCTGAGACTTTTTTGTCGTTT



TAATTTCTATTGAACTTGGCTCGTCATTTGTTCATTTTCAAGTATTGATTTGATGTATAGGAGG



TGACAACTTCTGTAAGTTTTTAGATGGATCAGGACCAATCCATCTGCAGATTTGCAGCTCAG



AAGGGAAAAGGAGAGATTCAGTCTTCTTCATTCCCAGACGAAGTTTTGGAACATGTTTTGGT



TTTCCTGTCCTCCCAGAAGGACAGAAATTCTGTTTCCTTGGTATGCAAGGCCTGGCACAGG



GTTGAGGCGTGGACGCGCCAGCAGGTGTTCATTGGCAACTGTTATGCTGTCTCCCCACAGA



TTATGATAAAAAGGTTTCCCAAGATCAAGTCTGTCTCACTCAAGGGGAAGCCCAGATTTGCA



GATTTTAATTTGGTGCCACCAAATTGGGGGGCCCATCTCACTCCATGGGTGTCGGCCATGG



CAACTGCTTATCCATTACTTGAGAGGCTGTACTTGAAGAGGATGACTATCACAGATTATGAT



CTCACATTGCTTGCAAATTCCTTCCTATATTTCAAGGAGCTTGTTATGGTTTGTTGTGATGGA



TTCAGCACAGGTGGCCTCGCTTCGATCGCAAGCAAATGCAGGCAATTGACCACACTTGATTT



GAATGAGGACGAGATACATGATAATGGAGAAGATTGGCTGGCTTGCTTTCCTGAGACTTTGA



CGTCTCTAAGATCTCTTTGTTTTGATTGTTTGGAGGGCCCAGTAAATTTTGATGCACTAGAAA



GATTAGTTGCAAGATGCCCCTCTCTGAAGAAGCTCAGGCTAAATAGAAATGTTTCTATAGTG



CAATTACAAAGGTTGATAATAAAAGCACCACAGCTTACTCATCTAGGAACAGGCTCATTTTTC



TATGAGTTCCAACTGGAGCAAGTAGCAGATCTTCTCGCAGCCTTCAGCAATTGTAAACAACT



TCAATGTTTGTCAGGATTTCGTGAAGTTGTGCCAGAGTATCTACCTGCGGTATATCCAGTTT



GCTCTAATTTAACATCTCTAAACTTCAGCTATGCTGTTATTGGCAGCAGAGAGTTGGAAGGA



ATAGTCTGTCACTGTCGTAAATTGCAGCTACTCTGGGTTTTGGATTCGGTAGGAGACAAAGG



TTTGGAGGCAGCAGCTACAACGTGCAAGGATCTGAGGGATCTCCGTGTATTTCCTGTGGAT



GCACGTGAAGACGGTGAAGGTTGTGTATCTGAACGGGGCCTTGTTGCAATCTCCGAGGGGT



GTCCAAATCTTGAGTCCATTCTATACTTTTGTCAGCGTATGACCAATAAAGCAGTTGTGACCA



TGTCGCATAACTGTTCCAAACTTGCCAGCTTTCGTCTCTGTATCATGGGTCGACACCAACCT



GATCATTTAACTGGTGAACCTATGGATGAGGGATTTGGGGCAATCGTAAGAAACTGCAAAAG



CCTAACAAGGTTGGCAGTATCCGGTCTACTCACTGACAAAGCATTTCAGTATTTTGGAGCCT



ATGGTGAAAGATTAGAGACCTTATCAGTAGCATTTGCCGGGGAAAGTGACCTCAGCATGAA



GTATGTGCTCGATGGATGCAAGAACCTTCGGAAGCTGGAGATTAGAGACAGTCCATTTGGA



GATGTTGCCCTCTTGTCTGGTTTACATCACTATGAAAATATGCGGTTTTTGTGGATGTCTGAT



TGCAGACTCACTCTACAGGGATGCACAGAGCTGGCCAAGAAGATGCCTGGACTTAATGTTG



AAATAATCAGAGAAAATGAATGCAATGATTCTCTTGTTGAGAAACTTTATGCTTATCGCACTG



TAGCAGGTCCACGGAAAGACATGCCGTCATTTGTAACCATCTTATAGCCACTTCACATGAAT



TTCGTGGTTATGGCTCTGCTACATATGGGCAACCTGTTAGGGCTATCCTACTAAATTAATCAT



GCATCAATGTTACTGATGAAAAAGCCCATGTCCATAATGCCTTTACTTCACCAAAGGAGGAG



CAATAGAGCAGGCCAGGTTATTGCCATTTTACTTTGGAAACTTTCTTCAGGTTGTAGCTGCC



ACCTGAAGGGTTGGAAGAATGTACGATTCACTGATGCAGACTGCTAATTCTTGTTGCTCCCT



AAAGTTGAATCTAGTTAAATGCCAAACAATAAACTGGTGATAGAAATGCTGAAGGTGATGAA



AGGTGGAGAATTACAGATGAATCCCTTCTGCGTGCATTGGATAGTGTTTTAAGGGACTGAAT



GCCTCAATTGGTCTGTTTGTTTTAATTTCAAACAATTGACCTGTCTTTGATGCAATCTGTGCTT



TGACTTGAATTCAATCTGTGATTTGACTTGAATTTTATTTGCTATATGACTGATCCGGAGCTT



GTTGAGGAGGTTTGGAATTGTTCCGAGGGAAAATTTCTGAGTTTATCATGTTATACTGATTAA



TTGCTTGAATTATCAAAAAAAAAA





173
CTGCAATGGCTTCAACACCTGTGTCTTCCTCTGCTTCTCAGCCCAATTTACTTCGCCATTACA



CTCCCACTGTCACAGATTGCTCCTCCTCAGGCTCCTCTATCCCCGTTGTGGATTTGTCTGCA



CAAAAAACCAGTGTCGTCCAGGCCCTGGTTAAAGCCTGCGAAGACTATGGGTTCTTCAAGG



TTGTGAACCATGGAATCTCGCAGGTTTTAATTGATGCCATGGAGGCAGAAGCGGAGAAGTT



ATTCGCTCTGCCATTGTCTGAAAAGGAGAGAGCAGGACCTGCCGACCCGTACGGGTATGGC



AACAGAAGTATTGGTCGCAATGGGGATGTGGGTTGGATTGAATATCTGCTGTTCAGATCTGA



TTTTCAATATGTTCAGCAGCGTTATAAGGCAATTTCGCCAGATAATTATATCAATTTTTGTAAT



ACTGCCAGCAAATACATAAGTGCAACCAAAAAGCTTGCATGTGATATACTGGAACTGCTAGC



AGAAGGGCTTGGGCTTCCTGAAAATATATTCTCAAGTTTTCTAACAGCCGAGGGGAGCGACT



CTGCATTCAGACTCAACCATTATCCGCCATGCCCGGATCCTTCTAACATAATAGGATTCGGA



GAACACACCGATCCCCAGATTTTAACCGTTCTGCACTCCAACGATGTCGGAGGATTGCAGG



TTTTATCCAGAGATGGAAAGTGGGTTACCGTGTCCCCGGACCCGTCCTCGTTTTCTATAAAC



ATAGGAGACTGCATGCAGGTACTGACAAACGGGCGGTTCAAGAGCGTGAGGCACCGCGCG



GTGACAAACACGCTGCGTTCGCGGATTTCAATGATGTTTTTCGGTGCTCCGGCGTTGGATG



CGACCATCGTCACTCCTTCCCAGCTAGTGGACGAAGATCGTCCCGCCCAGTACATGCCATT



CCTCTGGTCTCAATACAAGAAATCCATCTACTGCTTGAAGTTGGGACAAACTCGTGGCCTGC



TCCAGAAATTTCAGGCTTCAATGGTAGGAGTAGGTGTGGCTTAATCCACTCACCAAATTTTAT



TCCGGTGGTTACAATCCGATGATATAATGGAGGGGGAGTTGCTTGATCAAATAGCAAACACA



GTCAGATGATACAGCGGAGAAATTGTTGTACATTTAAGATTTTTAATACAAAAAGTTTTGGAG



TAATTGAGTAAATTATCCAATATGGTATTTGACCTCCTAAACAAAATATTTACAAATCAAAAAA



AAAA





174
TTCCGCCCTGCCTATCCTACTATCCTCCCGTTTCAGATCCGTTTCAGTTCAAATGGGTTCAA



GCGGTCGCCATGAGAATGAAGCAGAGAAGGTGGTTAGCTGTTATGAAGGGGATACAATAGA



GCAAAACAGGGTGGATTTGATGAGAAGTATTATTGAAGTTAAGTACCCATCTGCAAAGGTGA



CAGATGATGCTACACTCAGACGTTTCCTACGTGCACGAGATTTAAATGTGGAAAAAGCTTCT



CAGCTTTTCCTGAAATATCTAAAATGGAGGCAGGCGCTTGTACCCCTTGGTTATATTCCAGA



GTCAGAGGTCTCCAACGAACTCAGGAAGAAAAAGGTTTATATTCAAGGGTTCGACAAACAAA



GGCGCCCTATTGAAGTGATTCTTACTGCAAGGCATTATGCCTCTGACAGGGATCTAGAGGA



GTTCAAACGACTCATTGTCTATGGTTTTGACAAATTATGTGCCAGCATGCCAACAGGATTGG



AGACATTTGTCGTCATAGCAGATTTCGAGGGTTGGGGCTATAGTAACATGGATACCCGTGC



CTACCTTGCGGCACTTGAAATTTTGCAGGATTGTTATCCAGAGCGCCTTGCAAAGGCATTTA



TGATTCATGTACCATACCTATTCCAGACAGCATGGAAGATGATTTCTCCGTTTATTGACAAAG



TAACCAAGAAAAAGATTATTTTTGTTGAAGATAAACATCTCAGATCAACCTTACTCAATGATAT



TGATGAAAGTCAATTGCCAGAAATTTATGGAGGGGCATTGCCTTTAGTACCAGCTCAAGATT



TTGTCATACCCAATTGGTCTTAGATAGATCTAGTTAGGATAATTGTTATCTTTTCTTTGGTTGC



ATAATTTTATAAATTTAATTTTTTTTTATCCTTTTACATTTAAAAACTGGAAAAGCTCGAACCTT



TTTAATCTCACTAACAATTTCACTTAAACATGTTGGAACCTGCCATGCTTCTGTGTTATCTAAA



CTTGTTATTATAACAACCATGGAAATCTAATATCCATGCATTGCCTTCCCTATCATAGGCTAA



TATTAGGAAGTCTTTTTGGTATACAGTGATATTCAATGTTAAATGGAGTGTATGATAAGTAATA



AAATATATAATATTTCCTCATATCACATGATTATATGATATTGTATCATAAAAAAAAAAAAAAAA



AAAAAAA





175
CTTGAGGAGAGATTTGAGAGTGTTTGTGAAGGGAAGTGTTGTTGTTTGTGTGTGGGTTTGTT



ATATTTTTCAAGAAAGATGGCAATTCCAGTCATTGAGATGGGTAGTCTGATTGGAAATGACAA



AGAGAGATTCATGGCAGAGATGGGAAAGGCATGTGAGGAAGTGGGCTTTTTCCAGCTTAAA



GGCCATGGCATACCAGTTGAGCTCATGGAGCGCGTTAAGAAAGTGTGTTCCGAGCATTATA



ACCATGTCAGAGAGCCAAAATTTAAGACCGAGTCGGTGCCAGTAAAGTTGCTTAACAAGTCC



CTCATGGAAGCAGAGCTTTCTTCTAGCGAGCCAAAGAAGGTAGAAAATGTGGACTGGGAAG



ATTGCATTGTCCTCCAATACGCCCAAGAAGACTATCCATGGCCCTCTGACCCAAGCGAGTTC



AAGGAAACAATGATGGAATTTGGCAAAGAGATCACCAAATTGGCTGAGAGCCTGCTAGAATT



ACTAAGTGAGATTTTGGGTTTGGAGAAAGGGTATCTCAAGAGAACCCTGTCAGGAGGTGAT



GGCCCTGATGACAAGGCTTTTTTTGGCACCAAAATCAGCCACTATCCACCATGTCCAAGACC



AGACCTCGTGGAAGGTCTGCGCGCACACACTGATGCAGGTGGCCTCATTCTGCTGTTCCAA



GATGACGAGGTGGGAGGTCTCCAGGTTCTTGACAACACTGGTCGTTGGATCGATGCACCAC



CAATGAAAGACACGTTGGTTATTGATATTGGTGATCAATTGGAAGCCATCAGCAACGGGAGA



TACAGGAGCGCATGGCATCGTGTGTTGGCTACTGACAGTGGCAACAGAATGTCAGTGGCAT



CGTTTTACAATCCATCGCTTGATGCAGTCATTTCCCCAGCTCCAGAGCTCCTTTCGCAGCCC



AAGAAAGGCTCGGAGCTATCACTGTACCCAAAGTTTATGTTCGGGGATTACATGAATGTTTA



TGCTCAGCAGAAATTTCTTCCCAAAGAGCCACGATTCCAAGCTGTGGCAGCCTTGCAGTACT



GAGATCAAATAATATTCACAAAGCTTATGTTTATAAATACAGTGTTTCTCGGATTTTCGTATGT



TTTCTCAAAGTCGTAATAAATTTGTTTAGAAATTGTTGTACTGTTAATGCCCAACCGGTCTAG



GCCATGGCCATGAATGAACCAGGTGTGAGGCTCCAGTAAGCTATGTCGTCCAATCTAGGTC



AGGTTGCTGCATTTCTATGTCTGTATTGAGTCAAGTTGCTGCTGTCATACTAAATGTTATGTT



GGTTTTCTTGGTAGGCTTGGGAAACGTTCTGTACAAAAGACCATTTTGTATTCCTAGGCTGG



TTCTGTTTACATGGATTTGGATTTTCTGGTTAAAAAAAAAAAAAA





176
CAGGAATGGCGTCCTATATTCACATCAAGTCTTGAGGCTCCATTCAAACGAGCATTCTGGTA



CTGAGTAATTTCAGGAGATTTGGCTACATGTACGCAATCTGCCACTGGAATTAGGCTTGAGG



ATGATGGAGGCTTTACCAGATCAGGTGGTGTGGGAAGTACTAGATCGAATTAAAGAAACAC



GAGACAGAAACACTGCAGCCCTTCTGTGCAAACGTTTCTATCAAATCGAGAAAAACCAGAGG



GAATATTTAAGGGTGGGGTGCGGTTTAAGCCCAGCAATTGAAGCCTTATCCGCGCTCTGTAT



GCGGTTCCCTAACTTAGTGAGAGTGGAGATAGGGTATTCTGGATGGATGTCGAAGCTAGGC



AAGCAGTTGGATAATGAAGGGCTTAAAATTCTGTCACAGCATTGCCCTAACCTCACTGATCT



CACTCTTAGCTTTTGCACATTTATTACAGATGGAGGTCTGGGGTACCTAGGTTCCTGCACTG



GGCTTAAGGCCTTAAGGCTGAATTTCACTCCAGGAATAACAGGTTGTGGAATACTGTCCGTG



GTTGTAGGTTGCAAAAAATTGTCAACTCTTCACCTGACTAGGTGCCTCAATGTAAGCAGTGT



AGAATGGCTGGAGTATCTAGGTCGGCTTGAGAGTTTGGAAGATTTGGCTATCAACAATTGCC



GGGCTATTGGAGAAGGTGATCTAGCAAAGTTGGGGTACGGTTGGAGGAACCTGAAAAGGCT



TCAATTCGAGGTGGATGCAAATTATAGGTACATGAAAGTATATGGACGTTTAGCTGTCGAAA



GATGGCAGAAACAATGGGTAGCATGTGAGGCTCTGGAAGATTTGAGTCTTGTTAATTGCCTC



ATCAGCCCAGGTAGAGGACTTGCTTGTGTGCTTAGGAAATGTCAAGCTTTGCAAAATCTTCA



TCTTGATATGTGTGTTGGGGTAAGAGATGATGATTTGATAAGCCTTGCCCAGCAATGCCCCA



AGCTGAAAACCTTGTCATTACGAGTTCCTTCAGATTTCTCCGTTCCTATCCTAATGAGCAATC



CACTGCGGTTGACAGATGAGAGCTTGAAGGCCATAGCTCAGAATTGCTCTGAATTGGAATC



AGTTTCAATATCATTCTCTGATGGAGACTTCCCTTCCTCATCTTCCTTCAGTCTTGCTGGCAT



AGTTTCATTAATTGAAGCATGCCCTATCCGGGTTTTAGTTCTTGACCATGTTTATTCATTCAAT



GACAGTGGCATGGAGGCTCTTTGTGCAGCTCACTTTCTAGAGATCCTTGAACTTATACAATG



CCAGGAGGTCACTGATGAAGGGCTGCAACTGGTCAAGCACTTTCCATGTTTGAGTGTCATG



CGACTTTGTAGGTGCTTGGGTTTGACAGATATTGGACTCAAGCCTCTAGTAGCTTCTCATAA



ATTGCAAAAGTTAAAGGTGGAAGATTGCCCTCAAATCTCAGAGAAAGGCACTCAAGGTGCTG



CAAAGGTTGTCTCCTACAAGCAAGATCTCTCATGGATTTACTGATGGATGGTTGACCTTCATT



TTCTGAATCGTAGAATGGTCCATCCATGGATATCATTTGAAGAAATCAGTGCTTATTGACAGG



CATTTTATCAATTAGAAGGACAACTTTTATGAAAGCAGGATAATTCTAGGTGTAGTGCTATAT



GTATTATGAACAAATTTTTTGTCTCAAATTTGCTTCCTGACAGAATATGCTTGGAGTGGCCTT



TCGCATATATGTACATGCAAGGCTGTCTAGTGGTTAGCTCTTATCCATATGCTGGACTGTTT



GAGCGTTTCAAGAGATCAGCTTTCCTTGACTTGTATATTTTCTATGTTTGATTTCAGGTTCATA



ATGTAAATACCTTTCCCGTTGAAAAAAAAAA





177
ATAGCTATGGCTCTTCAGCTTATGGAAATGGATCTCAAAAGCAGCACCGACATGGAAATGGT



GGAGGAGGTATAAGTTATTGGAATAAGCTTCCCAAGGTCGGGTGAAGAAGGTATAATGGAC



CCCATGGAAAGGGCTGCCAAGGTCCTGGGATCGAGTCCAGGGCACAAAAATATGATGGGC



TGTTCTTCGTCAGGTGTGAAGGTAGAACCTGAGATTGATGGGCTTCTGGCAAACGCTGGGT



ATACTGTAAAGGCCTCTGATTTAGCCCATGTTGCACAGAGGCTGGAACAACTGGAGAGCATT



ATGGGGACGGTTCAAGACCCGGGAATATCTCACTTGGCTTCCGAGGCTGTGCATTATAACC



CATCGGATTTAGCTGGCTGGATCGAATCAATGTTCGGGGAGCTTAATCCAGGCGCAGACAT



GCCAGTTCCGTTTGGGGACAGGGGATCTCTGATCGATTCTTCACAGGTTCATAAGCCGATT



CAGGATGATCCCAGTCTTTCTGCTATGGACTTGGCGCTCATTCATGAATATGGCTTGCAGTT



TAATGGAAGCCAAGCATCTAACCCTCAGGGTTTTTCCCCGGATTCTGATCCCTCTGTTAGAT



GCAATATTTTCTCTGGACCGCCTCTGCGTTCTGGGGATTCTACCACACACACGAACTTTCAG



GCGCGGAGCTTTAGTGCCCAGTCCAGCGACGAGGGTTCGAGTCTCTCTACTACCCGCTTG



GGAACCGCACAACAGAGCATAGATAATGGAGCGCAAGAATCAGGGATTCGCGTGGTGCACT



TGCTTATGGGATGCGCGGAGGCTATACAGAGAAACAATTTGAAGGTAGCCAGCAATTTAGT



CAGAGAGATTCGAATGACGGTGAATTCTGCCCCCTGTGGAGCAATGGGCAAAGTAGCTTCC



CACTTTGTTGAAGCTCTGGCGCGGCGGATTTGTGGATTGAATGGCGCAGAATCGAATATGT



CACAGGCAGATGCGCAATCGGAGATTCTCTACCACCATTTCTACGAGGTTTGCCCTTATCTC



AAGTTCGCTCATTTTACCGCAAACCAGGCCATTCTTGAAGCTTTTGAAGGGCACGGCAGCGT



CCATGTGATAGACCTAAATTTGATGCACGGCTTGCAATGGCCGGCTCTGATTCAGGCCCTC



GCTCTCAGGCCCGGCGGGCCGCCTCTTCTGAGATTAACAGCCATTGGACCCCGGCAGCCC



GATGGCAGAGACGTGCTGCAAGAAATAGGCATGAAGCTGGCTCAGTTCGCCGAATCTGTTA



ACGTAGAGTTCGATTTCAGAGGTGTCATGGCCGATAAGCTGGAGGATATAAAGCCCTGGAT



GTTCCAGGTGAAGCCTGGAGAAGTAGTTGCTGTCAATTCTGTTCTGCAGCTCCATCGTTTGC



TTTACATTGATGCCCCTACAGGGTCTTCCCCCATTGATGTAGTCCTCAAGTCCATCGGCAGC



CTGAGGCCCAAGATTGTGACAGTTGTTGAGCACGAGGCCAATCACAATGGACCTGTTTTTCT



GGACAGATTCGTGGAGGCATTGCATTATTATTCAACCATGTTCGATTCTCTAGAAGCATGCA



ATGTGCTTCCAAATAGTATGGAGAAATTTTTGGCAGAGTTGTATATTCAGAAAGAGATTTGCA



ATATTGTTGCGTGTGAAGGTCGTTATAGAATAGAGAGACACGAAACCCTTTCTCATTGGAGG



ATACGCTTGGGCAGAGCAGGTTTCAGGCCATCACATTTGGGCTCCAACGCATTTAAACAGG



CAAGGATGCTCTTGACCTTATTTTCTGGAGAAGGTTACACTGTTGAGGAGAATAACGGTTCC



CTAACACTGGGCTGGCACAGCCGGCCCCTCATAGCTGCATCTGCATGGCAAGGCTCCTAG



GGCTTAGGGTTCAGTTAGTTGTATCATTTCTTAGCATCTTGCAGGCTCAGTAACTGTATAAGA



GGAGAATAAATCTCAAAGTTTTCAAGTTTTTAAGACAGTTAAATACTCCTATCCTGTGGTGTC



TGGATAAACATACCAGAATCAATGAATGCTTCACAACAATGTGATACGTCTTTCTCTCTGGAT



AAGCACATTAGCGTTCAGGATGAAATGCTGGCTCGTAAGATAAATGCTACCAGAATGATTCA



AAATGGCCATGGCTAGGCTAGGCTCATCTAAGCACTGATGTAAAGATAATGAGTCAATCATT



TGATGTAAAAACAATGAGTCAATTATTTACTTATTGTATGGTGCTTAACATGGGCAGAAACTC



ATGCTTACACCTCTTTCTTTTTCTGAATGTATTTTCTTCTCCTTCAAAAAAAAAA





178
ATAAGCTTAAGCTTATAGGACAGGGGAGAGGAAGAGGAAGAGGGGCGAAGGGGGAAAATG



GCGTCAAATAGCAGGTATACGCAGAGCCAATCAACAGGAAGCAACAATAGGAGAAGCAGCA



CTAATACTAACACTACCACCAACAAAGCAACGGCGATGGCTCAGTACAATGCGGACGCGAG



ATTACTCCAAGTCTTCGAACAGTCCGGGGAATCGGGTAAGTCTTTCGATTACACGAGATCCG



TCAAGTCCACAACAGAGTCTGTTCCAGAACAGCAAATTACCGCATATTTATCTCGAATTCAAA



GAGGGGGAAGAATACAGCCGTTTGGCTGTGTACTAGCAGTGGAGGAGACCACTTTTAGGAT



CATTGCTTACAGTGAGAACGCAGTGGAAATGCTGGATCTGGCGCCCCAATCTGTCCCGAGC



ATGGAACAACCTCAACAAGACGTTCTGACAATCGGGACCGATGTTCGAACCCTGTTCACTG



CTGCTAGTGCTCACTCATTGGAGAAGGCAGCAGTAGCCCAGGAAATAAGCCTCATGAACCC



TATCTGGGTTCATTGTAAAAACTCCAGAAAACCCTTTTATGCAATTGTGCATAGGATTGATGT



AGGCATGGTGATAGATTTGGAGCCCTTGAGGACTGGGGATGCGTTCATGTCAGCGGCTGGT



GCAGTCCAATCTCAGAAGCTCGCTGTGAGGGCGATTTCTCGGCTGCAGTCACTTCCTTGCG



GTGATGTTGGCTTGCTGTGTGATAGTGTTGTGGAGAATGTGAGGGAACTGATTGGTTATGAC



AGGGTCATGGTTTACAAGTTTCATGAAGATGAACACGGGGAAGTTGTTGCTGAAATCAGGC



GTTCAGACTTGGAGCCCTATCTTGGGTTGCATTACCCTGCCACAGATATACCTCAGGCTTCT



CGCTTTCTTTTTATGCAGAACAGGGTGCGGATGATCTGCGATTGCATGGCTACTCCCGTGAA



GGTTATCCAGTCTGAGGAATTGATGCAACCTCTATGTTTGGTGGGTTCGACGCTTCGGGCA



CCCCATGGGTGCCACGCCCAATACATGGCCAACATGGGTTCCATTGCTTCGCTTGTTATGG



CTGTGATTATTAATGGGAATGATGAGGAAGGGGGAGGGAGTGGACGAAATTCCATGAAGCT



CTGGGGTTTGGTTGTGTGCCACCATACCTCCCCGAGGGCGGTTCCGTTTCCTCTCCGCTAT



GCTTGCGAATTTCTGATGCAAGCATTAGGTCTTCAGCTGAACATGGAATTGCAATTGGCAGC



TCAGTTAACAGAGAAACACATTCTTAAGACTCAAACGCTTCTCTGTGACATGCTTCTCCGAG



ATGCCCCAATGGGAATTGTAACTCAGTCTCCCAGTATCATGGATCTTGTCAAGTGTGATGGT



GCTGCTCTTTATTATGGAGGTATGTGCTGGATGTTGGGAGTGACCCCAACTGAAGCTCAAAT



CAAAGATATTGCAGACTGGTTGCTTGAACACCACGGGGATTCTACAGGCCTGAGCACGGAT



AGCTTGGCAGATGCTGGTTATCCAGGTGCCGCCTCTCTTGGGGATGCAGTCTGCGGCATG



GCTTCAGCTAGAATTACTTCAAAAGATTTTCTTTTTTGGTTCAGATCCCACACTGCAAAGGAG



ATGAAGTGGGGAGGAGTAAAACATCATCCGGACGACAAGGACGATGCTCGACGGATGCAC



CCTCGTTCCTCTTTCAAGGCATTCCTTGAAGTGGTCAAAAGAAGAAGCTTACCATGGGACAA



TGTGGAAATTGATGCAATTCACTCGCTACAGCTTATTCTACGAGGCTCGTTTCAGGATATTG



ATGACAGTGGTACTAAAACTATGGTTCATTCTCGGCTAAATGATTTGAGATTGCAGGGCATA



GACGAACTTAGCTCCGTGGCTAGTGAGATGGTGCGTTTGATTGAAACAACTACAGCACCTAT



TTTGGCTGTAGATTATAATGGACTTGTAAATGGATGGAATGCAAAAGTGGCAGAATTGACGG



GCCTCCCGGTTGGAGAAGCCATGGGCATGTCCCTTGTTCAGGATCTTGTTTTTGAGGAGTC



TGTGGAGAGGGTTGAAAAAATGCTACACAATGCCTTAAGAGGGGAGGAAGAGAAAAATGTT



GAGATGATGCTAAAGACCTTTGGCCCACAGAAGGAGAAGGAGGCTGTTATTTTGGTCGTTA



ATGCTTGTTCAAGCAGGGATTTTACAGACAATATTGTTGGAGTATGCTTTGTGGGCCAAGAT



GTTACCAGTCAAAAAGTGGTCATGGATAAATTCATCCGAATCCAAGGTGACTATAGGTCCAT



TGTGCAAAGCCCCAATCCTTTGATTCCTCCCATATTTGCTTCGGATGAATATGCCTGCTGCT



CTGAATGGAATGCAGCTATGGAAAAAGTAACAGGCTGGACTCATGATGAAGTTATTGGGAAA



ATGCTTGTTGGAGAAATTTTTGGTGGTTGCTGTCGTCTGAAAGGTCAAGATGCAGTGACCAA



GTTTACAATTGTGCTGCACAGTGCAATCGATGGACAGGAAATAGAGAAGTTCCCATTTGCAT



TTTTTGACAAACAAGGGAAATATGTGGAAGCACTTCTAACAGCAAACAAAAGAACAGATGCA



GATGGGCGAATTACTGGGTCGTTTTGTTTCTTGCAGATTGCCAGCTCTGAACTGCAGCAGG



CATTAGAGGTTCAGAGGCAACAAGAGAAAAAATGTTTTGCAAGATTAAAAGAGTTGGCGTAC



ATACGGCAGGAAATAAAGAATCCTTTATATGGAATGATGTTTACCCGGAAACTGTTAGAGGA



GACTGATCTGTCTGATGATCAGAAGCAATTCGTTGAAACAAGTGCTGTTTGTGAGAGGCAAA



TGCAGAAGGTTATGGATGATATGGATTTAGAGAGTCTAGAGGATGGTTACATGGAGTTAGAC



ACCGCTGAATTTATTCTGGGAACTGTCATCGATGCTGTTGTAAGTCAAGGTATGATTGTACTA



AGAGAGAAAGGATTGCAGCTGATTCGTGAGATTCCTGGCGAGGTAAAGACAATGCGTCTTT



ATGGAGATCAAGTAAGATTGCAGCAGATCCTGGCAGATTTCTTGCTGAATGTGTTGCGGTTT



ACTCCTTCACCAGAGGGATGGGTAGCAATCAAAGTATTTCCAACCTTGAAACAGCTTGGTGG



TGGTTTACATGTCGTTCACCTAGAATTCAGACTTTGTTGTATGAAGAGAGCCTTGATGCCAA



GATCATTCAAGAACCCACTCTCTTTCCTCCAGATAAAGATATAGGATAACACATCCGGGACC



GGGCCTTCCAGCAGAACTTGTCCAAGATCTGTTTGATAGATCACAGTGGGCCACACAAGAG



GGGGGTTGGACTAAGCATGTGCCGGAAACTTCTCAAATTAATGAATGGTGATGTGCAGTAC



ATAAGGGAATCAGGAATATGCTATTTCCTTGTGAATGTTGAATTTCCAATGGCACAAAGAGAA



GATGCAGCCAGTATAAAATAGACGTGGATTCCTTGTATCATGTTCTGCCAAACAACTCTAAG



GGTTCCTTTTCTTCAACTGTAGTGCCTCTCCAGATTTGGTGCAAGCACAGCAGAGAACTCCA



TGTATATCAATGGTATGAATGCAAGACTGAGCTTCTTTGGCTTCACAGAGGATTCCACTTGTA



ATGTATGCTCCATTTTTCTGCTTGGCTTTAATGCTGGAAACATCGAAAGCATTGTATCACTTG



ACTTGAGAATTCACGGCACTGGGACGGCTTTTGTAAAAGCTTCAAGTTGTTAAATCTAGTGA



CACAACCTCTCTACATGTTCCTCATGAATACTGGTAATCTGTGCTTCTGAAGGCTGGTAAAC



ATTATTATTGTGTAATCCATTAGCAAGGTCCTTGACAGCATTTTAAGCTGTAAGTTTAGAAGG



TTTCAAATTAACTGTTGTAAAACTAGCAGAGATCCATCATAGTTATAGATATATTAAGCACTGA



AAGGGATAAAAAACTGAACATGCAAAAACTCCAAGTTTTTGCACCCTCAAATTCTATTTAATA



AACAGAGGTTTGCACGGCAAAAAAAAAA





179
CGAGGCTCCACCCTTCAAAAAAACCACCATTTCTTTTGATTAGTAATTTTGGGGTGGAGTGC



AGGCATCGAATAATTGAATAGGAGTAAATCGATTTGGAGCGTGGCCGAACGGAAAACGATC



AATTTGGTTTCGTGAAGAGAACAGAAAGAGAAACGATTTGCCAGCCCATCCTCTCCGTAACT



TTTGACTTTTGGAATCCTGATCGGAGCATCTTCGGACGGACGTTAATGGCGACTGTGGGCA



ACAAGAATGTGCAGGCCAAACTTGTGCTTCTGGGTGATATGGGGGCTGGTAAATCTAGCCT



CGTTCTGAGATTCGTCAAAGGTCAATTTTTTGCCTATCAGGAATCGACAATAGGGGCAGCTT



TTTTCTCTCAGACACTAGCTGTGAATGAAACCAGTGTGAAATTGGAGATCTGGGACACTGCT



GGGCAGGAAAGATATCATAGCTTGGCTCCGATGTATTACCGTGGTGCTGCAGCAGCAATAA



TTGTTTACGACATTACAAATCTAGACTCATTCGTTCGAGCAAAGAAATGGGTTCAGGAACTTC



AAAGACAAGGTAATCCAAACATGGTGATAGCACTTGCAGGAAACAAGTCTGACATGATAGAG



AATAGCAAGGTTTCACCAGAGGAAGCTAAAGTTTATGCTCAAGAAAATGGGCTATTTTTCAT



GGAAACCTCAGCAAAGACTGCACAGAATGTGAATGAGCTGTTCTACGAAATAGCACGGAGA



TTACCGAAGGCCGAGCCAGTGCAGCATCCTGCTGGTATGGTGCTTGCTGACAGGTCTGCAG



AAAGAGCAAGAAGCAATTCTTGCTGCTCATAATATAAGGGACATAAATATCAATGATCAGAG



GCCTGGAAACCAAGCTGGGATAATATTTGTATTGTGCTATGCTTGAATTTAAGTAGATTGGA



GCTGTGAGACAGATGATTATATTCTCGACTTTTCTGTTGCTAGACTGGCTTTATTTTGGGGGA



AAATCATTACTATCTGCATATCTTTGCATTTTCCTTAGGTTACTATTTTTTCGTAGATCCTGGG



CACTGTTGAAGACTTGCCCCGAAGATCCCTGTAGTTAAACTGTACATAATGTATGCCAATGT



ATGTAAGAAATTGATTTTATCATTTGCAGCTTCTTTAATTTATGCATGTGAGTAAATGCTTGTA



ATAATAAAGTTTTGGTCAGTTCTGCTGCTTTCCAGGTTAATATTTTGGAACTGTGAAAAAAAA



AA





180
GTCGCGGGTTCGGATTCTTTTCCCTTTCGTCACAATGGCGGATTCCTCAGTGCGCAGCGAG



AGCGTGTACATGTCGAAGCTGGCGGAACAGGCCGAGCGGTACGACGAGATGGTGGAGTAC



ATGGGGAAGGTAGTGAAGGCCGCGGACGTCGAAGAGCTGGCGGTGGAGGAGAGAAATCT



GCTGTCTGTGTCGTACAAGAATGCCATTGGGTCACGTAGGGCCTCCTGGAGGATCGTCTCT



TCCATTGAACAGAAGGAGGAGAGCCGAGGGAACGAGGACCGCCTGCCCCTCATCAGGCAA



TACAGGCTCAAGGTGGAGGCCGAGCTGAGCGGCATTTGTGACAGCATCCTGGGGTTATTG



GATGGCTATCTCATTCCCTCTGCTTCTTGCGGGGAGGCCAAGGTCTTTTATCTCAAGATGAA



GGGAGATTACAATCGTTATCTCGCGGAGTTTAAGACCGGGGATGAGAGGAAAGAGGCAGC



GGATGGCACACTGGAGGCCTATAAGAATGCACAGGGTATTGCTCTGGTTGAGCTGGCCTCA



ACACATCCTATAAGGTTGGGACTTGCACTCAACTTTTCTGTGTTCTACTATGAGATCATGAAT



ATGCCAGAGAAAGCATGTGCCCTTGCTAAACAGGCTTTTGATGAGGCCATTGCTGAGCTGG



ATACATTAGGTGAAGAATCTTATAAGGATAGCACACTGATCATGCAGCTTTTGAGAGATAATC



TGACACTCTGGACTTCTGACATGCAAGAACAGTTGGATGATTCCTAGTGAAACAGATAACTA



AGAAGGTGCATGATCCTCTGGTTCAAGTTGAGATAGAGGTGCCGCACTCATTAGTAGGTTTA



TCATATGGAGGTGGACTCAATGACAGTTTGGTGGTTTTATTCATTTTAGTGAGTGGAAGGAG



AGGACATTTTTATGGGTCTGCCACAGAAATTGATGGTCCGGCCAATTGTTTGGATGATGTAT



TAGTGGTACATTGCTGCAATACTTTAATCCAGAAATTCATTACTAAATGATAACTAGACACAT



GTGGAAGGATTATCAGATTTTGTTGGATTACACTGGTTTCAGTGTAGTTTGAGACTTTGTGAT



CCAAATCAAGTTTTATAATATTCTTATTCATAGACAAAAAAAAAA





181
GGGAATTCCCATTCTGCACATGCAATGGACAATGGAATGATGGTATGGATAGTTTTAGCAGG



GGTAGTGGCAATGGCAGTGTGGTATCTTTTGGTACAGCACCAACAGCCTAAGCAGAGCCAC



AATGTTCCTTGGGAGACTCTTCCACCGGGGGCTGTGGGATGGCCCTTTCTCGGAGAGATCA



TCTCTTTCTATTTCCGAACACCGGATTTTGTGAAGCAGCGGCGGGGAAGGTATGGGAATTTG



TTTAGAACGTTCCTGATAGGATATCCAATGGTAATCTCAACAGATCCTGAGGTTAACAAGTTT



ATTCTGAATAATGATGGCCGGCTGTTCGTTCCTGCATATCCGTCGCATTGGTCACAGATAAT



CGGAGAGTGCAATATCTTTGCTGCTCGTGGAGACTTTCACAAGAGAATGCGGGGAGCTTTC



TTGCATTTCATCAGTATTTCGGTAGTCAAGAATCGGCTTCTTTCAGAAATACAAAATATCATA



ACTTTCTCTCTCGCAGGGTGGGAAGGTAGAAATGTGAATGTGTTGCATGAAGCGGAAGAGA



TGATATTTTCGGTCATGGCCAATCACATGTTAAGTCTTTCAGCGGGCACAGCACTGGAGAGT



ATGAAACGCGATTTTTTGGTTATGATGAAGGGACTTCGCAGCCTTCCGTTGAGAGTCCCTGG



CACAACGTTTTACAAAAGCTTGCAGAAAAAGCAGGTGTTGTTTAACCAAATCAAAAGCATTAT



TGAGGAGAGGAAATTGAATATGTCAGCCTATGATTCATATGACGACTTGTTATCATCCATACT



AAGAAGTGCATCAGAAAAAGAATTCACAACAACCCAGATCGTAGATTTAATTGTGCAGTCGG



TGATTGGTTCGCTTGAAACTACACCAAAGATAATGGCTTCAGTGGTGCGGCATCTATCTGAA



AATCCACATATCATTATATATCTCAAGGAAGAACACGAAACGATAATCCAAGCCAAAGAAAAC



AACCAGAGTCTATCATGGGATGACTATAAATCAATGGTCTTTACTAAAAGTGTGATCAAAGAG



ACTTTAAGATTTGGGATGCAACCTCTCAACAATATAATGTTTAAAAAGACTCTCCAGGATGTA



AAAATTGAAGGATATACAATTCCCAAAGGATGGACATGCATAATATATGATTTAGTCTCCGAC



ATGGATACCAAGTACTGCAAAGACCCTCTTTCCTTCAATCCTCAGCGGTGGCAGAGTAAGGA



AATGAATGAGGTGCCCTTTTTAGCATTTGGAGGTGGTCCTAGACTTTGTCCTGGATATGAGT



TGGCTATGTTGACTATGTCATTTTTCTTACATCATCTTGTGACAAAATTCAGATGGGAATATCT



TCCTTCGAAATCTGAGTTAAGGTGGTTTGATTCACCCTTGAACTCAGTATTCGATTGCAGGAT



CCACGTAGAGAATCGTTGAATCTAAAGTTAGTGAGATGAACAAGCACCAAAGTTTGGTAGTT



GGAAAGACTAAATGAAATCATTATGAGTATATTCTTTTTTTATTGATATTTTTAAATTAAAACTG



ATGAGATGAACCTTTGATACTCCTTTGTTGACATCAAAGAGTAGATTGAAATAATTGTCAATA



TTGTTTTATTATTTGTAGATAATTTTTTTGGTTAGCTGATATTTTAAAGCTAAAGTTAAAAAAAA



AA





182
CTTGAATCTGCCATAGCCTTATCTTCAGCTGCAGTTGAAGCTGGGGTTTTGCAGATTTGGGA



ATGGCGATATTATACGCATTGGTGGGGAGGGGAACAGTGGTTTTAGCCGAATTCAGCGCAG



TGGGTGGGAATGCAGGAACAGTTGCCAGACGAATCATGGAGAAGCTTCCTCTCCAAGATCG



CGGAGAAGGAGAAAGTCGCCTATGTTATTCTCAGGATCGCCACATCTTCCACATATTAAGAG



GATCCGATGGATTAACCTTCCTCTGCATGGCCAACGACACCTTTGGCAGACAAATTCCATTT



GCATATTTAGAGGATATTCAAATGAGATTTATGAAGACATATGGCCGTGTGGCTCAAAATGC



ACTTGCTTATGCAATGAATGATGAATTTTCTAGAGTTCTGCATCAGCAGATGGAGTATTTCTC



TAGCAACCCCAATGCAGACACCTTAACACGTGTTAGGGGGGAAATGAACGAGGTACGCACA



GTTATGGTTGAAAACATAGAAAAAATCCTAGAAAGAGGGGATAGAATTGAACTTCTGGTTGA



TAAAACATCAACTATTCAGGACAGCTCGTTTCATTTCAAGAAGCAGTCCAGGCGACTACGGC



AAGCACTTTGGATGAAGAATGCAAAGCTTTTGGCTTCATTGACTTGCTTGATTGTTGTGCTTC



TGTATATCATAATTGCTTTGTGTTGTGGTGGTATAACTCTTCCATCTTGTCGATCATGATTTTC



ACAAATCTTGGCCATGGAACTTTCGGATGATGTTCTGTTTGCTTGTCCGTCTTTCAAGGCTAT



CTATGAAAACATCATCAGTTGTGTGCCAGACCCAATCTACAGCTTATGATGGTGTAAAAAGG



CTGTTTTCTTGGAGATCAGTTAGACTGATGCAATGAAATTTTGCTCAAGAATCTCAGGCTACT



TGGAAGCTTGGTGTGTGGAGGAAGGCTTCTGTATTTATGAGAGATGTTTTCATTTGTAATGT



CTGCTCTTTTGCAGATTGGTATAGTGCACAAGGTATTAATACTGCACGCGCTTCTGATTCATT



GATTAACCCATGGATATAATTTTAATGGCATTGATAAAAACAACAATTTGATCGAGTTGTATG



GCTTAAATGGATAAACATATTCCGATAAATTGATTGAGTGTAATTTCTTATTTGAAGGAAATTC



TGTCTTAGAGGCCCCATATTCATTGTGTTTATCAAAAAAAAAA





183
GCCACGGTTGCGGTGGTGGGATGCTCTCCAGCGCTACCTGAGAAGTCTCTTCTTTACAGTA



TATTTAAGAGGGAAATCGCAAAATCTGGCATCCCATTATGCGGCGAAGGGTTTGAGCTGAG



AGCATGGGCATTCTGCCACGGATACTGAAGTCGTCCCGCCTTTTCTGAGATCAATTGATACA



CAGAAATTTTATTCGCCCCGTGTTGAAGGGTCTGGAGGAGCTTTATGTGGTAGGCAAGATTG



AATTCCGCATCAAAGCTACTGATCAGCAGGGTTTATTGGTTTCCAGAATTGGCAAAGAAATG



GGGGAATTTAAGAAATGGAAGCGGTGTAATTCACTTCCATCACCGATAAATTCCTTGGACGA



TGGGTGCCTAATGCGCATATTTTCTTTTCTCTCCCCTTTGCCAGATCGATATAGTGCTGCAA



GGGTTTGTTCTAGGTGGAGACATCTGGCATCTGACCCTCGAATGTGGTTACGTGTGGAAAA



ATCGTGCAATGCATTGGCTGAGTCGGGTATCTTTTCAACGATTGAAGATGCAGTTGTTGCTG



CAAGACCAGGAGATACCATATTAATTGCTACAGGAGTAGTTCATATGGCCTGTAATATTCAAA



TAGTCAAGCCCATTTGCCTGGTTGGTGGAGGTTCATCACCAGATGAAACTGTGCTTGTTTGT



CCGCGGGGCTTTGATAGTGCCCTAGAGTTTCTATCCACTGGAAAAGTTGCCAATCTTACCAT



AAAAGCAGAACTTGGAAGCTGCTTGCTACATAGAAATGGACGTCTTACAGTGGAAGGCTGT



GTACTACAGTGTGAAGAACATCCCTTGGAGCACTTATGTTGTCCAATTGTCAGCACTGCTGA



TGCTTTAGCCCCTCCTAGTACCTTGTCCTCTGTCATGAAGGGGGGAAGTTCCATGTCTGTTA



TACATACTCGAATTAAAGGTGGTGCTAAAGCAGTTTTAACCAATGGGAGCCTCACTCTGCAG



CAAGTCAGAGTTATATATTCACCGACTGCCCTGTTTTTCTGGTTTAATGTTTCACAAAAATCC



CTGACAGATATTGATTTGCCACCATTTATATGCAAAGCTTGAGTTGTCTGTGGAGGTTGTCA



GCATTTGCAGTTTCTAGCTTATTAGGTGCGACTTCATATTTGTAACATTAAATCCTGTTATCTT



ACAATTTACATAGTATCCTGGGAGTCTCTTTTAATTTCAAATATGGCTGTGGGCATGGAGGT



GTACAAAAAAGTTATGGATCTGAAACTTTTGTTTTCTTTGAATATACAAACTCTGAGTTGCCTT



TAAGCCCGGAGGCATAATTTGGGTGTCTCTGAGTTGGTAGATCATCAGGGCATAGCTTTCAT



AACCGGTAATGGAGTATATGTTCCATGCCTAACAGGTATTGAGATTCAGGTCTATGTAGTAG



TTTATCGTATACATCAATCTCTTTGGAAAAAAGAGATGCCAGACTTTAAATGATTCAAACGAG



CACTTTCATCAAGAAAAAAAAAA





184
GCCAACTTCTAACTTCTTGGAATCTTCTTGGAATGCCCTAGATGCGTTTTAGTTACCTTCCGC



CGCTATCTTTGGCGCCTTCCACTGTGGGTTTGCAGATACATTAATCTGTAGTGCTGGGGACG



AAGGATTGTTAGCGCTTGTATCCCTGAGAAGTTCGGATACCTTGCATCACTTCAGAGGCATT



ACTCTTTTGTAATTCCAACATCATGGGATCAACAAACAACCAGTCAGAGAGAGCATTCTCCAT



CAAGCTATGGCCTCCAAGTGAGAGTACACGCTTGATGCTGGTAGAACGCATGACTGATAAT



CTCTCTTCAGTTTCATTCTTTTCCAGAAAATATGGCCTTTTGAGCAAAGAAGAAGCTGCAGAA



AATGCAAAGAGAATCGAAGAGACAGCATTTCTTGCTGCAAATGATCATGAAGCCAAGGAAAC



CAATTCAGATGATAGCTCCGTAGTGCAGTTCTATGCAAGAGAAGCCAGTAGACTCATGCTAG



AGGCCCTTAAGCGAGGACCCACAAGCCAGAAACAAGAATCTGAGAAGGAACTAACGGCTGA



AACTGTTGAAGTGAAGGAGACCATTTTTGACATATCAAGAGGTGATCGAGGGTTTGTCGATG



GAACCCTTGCTGAGGAGCTCCTGAGACCATTGACAGAGGAAGGGAATAGTTATACCAAGAT



ATGCTTCAGCAACCGAAGCTTTGGTCTCGATGCTGCTCGTGTTGCAGAGAGGGCTTTGATG



GAAGTTCAGAGAAATCTGACTGATGTTGATCTTTCAGATTTTATTGCAGGAAGACCTGAGGT



CGAGGCCCTTGAGGTAATGACCATATTTGCGTCTGTTTTACAAGGGTGTGAGTTGAGGTCC



CTGAATCTTTCTGATAATGCACTGGGTGAGAAGGGTGTAAGGGCATTTGGGCCTCTGTTAAA



ATCTCAGAAAACGTTGGAGGAACTGTATTTTATGAACAATGGAATCTCTGTGGAGGCTGCTA



GAGCCATCTGTGAGCTTCTGCCCTCTGTTGAGAGGCTTAGGGTTCTGCATTTCCATAATAAT



ATGACAGGGGATGATGGAGCAGAGCCCCTTTCAGAGCTCGTTAGGAACTGCACTGCATTGG



AGGATTTCAGATGCTCATCTACTAGGGTTGGTGCTGTGGGTGGTATAGCTTTAGTAGGAGCT



CTAGGAGCAGGAAATAGATTAAAGAAGTTGGATTTAAGGGATAACATGTTTGGGAAGAAGTG



CGGGGTTGCTTTGAGCAGAGCCCTCTCACCGCATTTGGGTCTTACAGAGGCTTACTTGAGC



TATCTGGGTTTTCAGGATAAGGGGACAATAGCTCTTGCCAACAGCCTGAAGGAAGGGGCTC



CGTCCCTCAAGGTTCTGGAGCTTGCAGGCAATGAGATTACTGTGAAAGCAGCTACGGCGTT



GGCAGAGTGCCTTGGTTTGAAAAGAATGCTTACAAAGTTAGTTTTGTCAGAGAATGAACTCA



AGGACGAAGGATCAGTGTTGATCTGCAGAGCACTTGAGGAAGGTCACGAGCATCTGAAGGA



ACTTGATTTGAGTTCAAATTCTATCAGTGGAGTAGGGGCGAAGGTTGCAGCTGAGTTAGTTG



TCAATAAGCCTGACTTCGATCTGCTGAATATTGATGGAAATTGCATTTCGGAAGAAGGGATT



GATGCTGTCAAAGATGTCCTGAGAAGAGGTGACAAGGGTGTTACCGTGCTTGGGTCTCTGG



AAGATAATGATGCAGAGGGCGAAGGTAATGACTATGAGGACGGGGACGAGGATGATGATG



AAAATGAGAGCAGTGATAGTGATGGTGATTTAGTGGCCAAGGTTGAGGACCTGAAAATGCA



GTAGCGCCACGCATAGTCTTCGACATACATTACAAGGACAAATTTGGGTCTTCATTTGCTGT



GAAAACGCTGATCCCGTGAAGGCAAACTTTCAGAGTTTTAACTGCTGCAGATAAGTCCCTTT



ACATTAAATGATTGGAAATTCTATACCCGGCTAAATGTTGTTTTGTGAACAAATGAGAAATTT



GATTGTGCAGCTTTTGACTGCCCTAGCTTAAGTTCCGTTTCTAGTATTTCACGTTTAATTATG



GTTCAGTTAGAATATGTTTATCAAATTCTTCATCATTCCTAATGATGATGGTTTTGGGTATTCA



AATTCCTTTTAATTTTCTTGCTTAAAAAAAAAA





185
CGTTCTTTAGCCCTTTTGTTGATTGTATGTGTTGCACAGCCTTTCAGGAGGAGGAGAAGCTA



GCGGGAAAAGGCGCGCCGTTGCTGCCGAGGTTTGGCCTTTTGGAAACACGGATCTCTGCG



TCCCTTGACGGCATTGAGGATTTTGATCTTTCGGTTTAGGTTTTATTTTCAGGGAAAATGTCG



CCTGCGGAGTCTTCTCGTGAAGAAAGTGTGTATATGGCCAAGCTTGCTGAACAGGCAGAGC



GCTATGAGGAGATGGTAGAGTACATGGAGAAAGTTGCCAAGACAGTAGATGTGGAGGAACT



TACTGTCGAGGAAAGGAATCTGCTGTCAGTGGCTTATAAGAATGTAATTGGAGCTCGCCGG



GCTTCATGGAGGATAATTTCCTCCATTGAACAAAAGGAAGAGAGTAGGGGAAATGAAGAACA



CGTTACTATGATAAGAGAATACAGAGGCAAGGTTGAGTCTGAGCTCAGTAATATTTGTGATG



GCATTCTACGTCTTCTGGATACACATCTTATTCCGTCATCCACATCTGGTGAGTCCAAGGTAT



TTTATCTTAAGATGAAGGGTGATTACCATCGATATCTTGCAGAATTTAAAACTGGTGCTGAGA



GGAAGGAAGCTGCTGAAAGTACATTGCTTGCATACAAGGCAGCCCAGGACATCGCGACTGC



AGAGTTGGCTCCAACTCACCCTATCAGACTGGGACTGGCCCTTAACTTTTCTGTATTCTATTA



TGAGATTTTGAATTCACCAGATCGTGCCTGTACACTTGCCAAGCAGGCCTTTGACGAGGCAA



TTGCAGAGCTTGATACGTTAGGTGAAGAATCTTACAAGGATAGCACTTTGATCATGCAGCTC



CTTCGTGATAACCTCACGTTATGGACTTCAGACATGCAGGAGGAGACTGGAGGAGATGAAA



TCAAAGAAGCTCCGAAGAAAGAAGAAGGTGATGGACACTGAAGGTGATGGACGCTGACATC



TTTTTTATGAATGAAATCGATTAGGATGGTGAAGGGGATGAACGTCAATGTTTATCCGTAAAT



GACTGTCAAGTAGGTTAGATTCATGAGATATGGTCAAATATGTTGTATTAGAGGTTTTAGAGT



GTTTTTGTGGTTTTCTGCACGATTGTGTGCTAAGGGGGATTCAGCAAATTCTCCTATAAAATC



TGCTGCCCTGCAAGATTTTATTGTTGCAGGGTACTGCTTTGTACTCCAATCATACCATGGAG



GGCACACTTAAAGTTGTTATTTAAGTGTTATTGATGTCATTTGGAAGGATCCCTGCTTGTCAG



TGGATGGATATGGTACCCTGCAGACCTGGGATTGTAATAACATAGTGGATAAATTACTGCAA



GTTCTAATATTATACTGTGATGTGCACCAAAAAAAAAA





186
CAGATTTTGCATGCTCTGTCTTGATCTCTGTGCATTGGCCAACCCAAAGCCAGGCCATTTTC



ATCTGTATAGGTGTTGGGTGACGTGAAAGGGGCTTTCTCCGGTAAATCTTATATTTACCCTTT



GAAGGCCTAAACCTTTCGCACTCCTGTACTCAAATTTGATTTTTACCATTTGGGTCTGTAATG



GAGTGTCATTGATTCTGAAACCTTTGGGGGATTTACATTTTACAGTGCAATTTTACTGAGTTT



TGTGTGTGAGCGCTGGGTTAAGGTTACTGTGAGGATGGCACGCAAGGTTGATGATGAATAC



GATTTCTTGTTCAAAGTGGTGTTGATTGGAGATTCAGGAGTCGGGAAGTCGAATCTTCTTTC



CAGATTTACTCGAAATGAATTCTGCCTGGAGTCCAAATCTACCATCGGTGTGGAGTTTGCAA



CTCGAACAATCCAGGTAGATGGCAAGACAATCAAGGCACAGATATGGGATACAGCTGGCCA



AGAGAGGTATCGGGCAATCACAAGTGCTTATTACAGAGGTGCTGTGGGAGCTTTGTTGGTG



TATGATATTACAAAGAATGCTACTTTTGATAATGTGAAGCGGTGGCTCCGAGAATTGAGAGA



CCATGCAGATTCAAACATCGTTATCATGTTGGTTGGCAATAAATGTGACCTGAACCATCTGA



GAGCTGTGCCAATAGATGAGGCACAGGATTTTGCTGAAAAAGAGGGCCTTTCCTTCATGGA



AACATCCGCATTGGAGTCTACAAATGTGGAGAAAGCTTTTCAGTCAATTCTCGCTGAAATCT



ATCAGATTGTGAAAAGGAAATCTCTTGCAGCAGAAGAGGCAGCCTCTTCTGGGCCTAGTCA



GGGAACTCCAATTAATGTCACTGATGCTGAAGCAGTTGCAAAAAAGAGAAGTTGCTGCCTTT



AAGTTTATATGTGTTCCATGTAATCTAGACATTTTAAGTCCATCCAAGTTGTCTAGGATTAATT



GCTGTTTAGCCAAATATATGTTCTCCGAATTTCCTTGTGTGCTTTGGTTTGTGGTAACTTCTA



ACATTGGTGAGATTATTTTTATGTACTTTGAGTGTCTGACTAGAGAAGCATCATCGCTAGAAT



TAAGGAGGATGCCTTGTAAGCTCTGAAAGTTAT





187
GCAACATTAAAACCTCCGGCACAGGTGCCTCTGTTCAGTGAAGTTCTGTTGCATTCTGTTCG



CAGTGAAGAAAAATGAACGCGGGGCCTCTCATAGCAGCTCTAAGGGACTGCCCATTGCTGG



CATTTCCCTCATGGACCGCGGCCGGAATTATTTTGGCATATTTTTGTTATATGGCTTTAGCTC



AATTTATCCTTCCCGGAAAGCAGATTCCTGGGGTCGTGCTTGCTGATAAGACGAGGATTTAC



TATCGCTGTAATGGTTTTATCACTCTTTTTCTGCTGGTTACTCTTTTAGGAATCAGTATGGCA



GCAGGGATCTTGTCACTAGCAGTGGTGGCAGACAAAGGTGGGGAGCTACTTTCTACAACAC



TGATATTAAGTGCTTTGATTTCATTATTCTTATATGTTGCTGGTCACTTATCCCAAAGCAAAAT



GACTTCTTTAAAACCACATATTACGGGGAACTTTATTCATGATTGGTGGTTTGGGATACAATT



AAATCCACAATTCTTGGGCATTGACCTCAAATTCCTTCTCATTCGTTCTGGGATGATTGGTTG



GGCCGTCATAAATCTATCAGTTGCAGCAAAGGCCTTCCAACTGAAGGATTCATTAAACCTTT



CAATGATCCTTTATCAGATATTTTGTTTGTTATATGTGATGGATTACTTCTGGTATGAAGAATA



TATGACATCCACTTGGGACATAATTGCGGAGAATCTTGGTTTCATGTTGGTCTTTGGGGACT



TGGTTTGGATTCCATTCACTTTCAGTATTCAGGGTTGGTGGCTTTTAACACACAAACCTGACC



TTACAAAAGCTGCTGCCATCCTTGATGTTCTAATCTTTATAATTGGGTATGACAGTCTACGAG



GCTCAAATAAACAGAAGCATATTTTCAAAAAAGATCCAACAGCTTGTATATGGGGTGAGCCT



CCGAAGGTTATCGGGGGGAAATTGCTAGCTTCAGGTTATTGGGGCATATCCAGACACTGTA



ATTATCTTGGTGACTTACTTCTAGCCTTCTCTTTTAGTTTGCCTTGTGGAGCTAGCTCTTTCG



TTCCTTACTTTTATCCTATGTATCTGCTGTTCCTACTACTTTGGAGAGAGCGAAGAGATGAGG



CAAAATGTCGCGAAAAATACAAGGAAGATTGGGTTACATACTGCAAACTTGTACCGTGGAGA



ATAATACCATACTTGTATTAGTTGTCTCCGACTTTGAATTTTTCGTTATTCAATGCATGTTTTC



TCCTTACAGGAATTGCGAGCCTCTCGAGTCTTTGGAGAAATTTTCATCTTTATGGGCATTGTT



CTCTAGACTGTGGGGTTCCGACCTGGGTAACTCACAGTGGAGATTGAAATGTGTATGTAAAT



TTTGTCTTTTATCTAT





188
CTCAATGATCAGACAACAATCTCATCCAGCCGTTCTCACATCAAATCTTGCGAACTCGGAAA



TTAGCGTTCAATATACATTGAGTAAAAGCAGATACTAGATGATACTTTAAACGCTCGGTCCCG



AGTTCGATCACTGTCGGGTCACGCAACCAACTGCCAGAAGAATGCAGAGGCCGTCGAAGAC



GTCTGTGGGCTATGCGATTCCGGACGAGGTTTTGAAGTGCGTGATGGGGTACCTGGAGGA



GCCGTGCGATCGCAGTGCGGTTTCCCTGGTCTGCAAGAGGTGGAACCGTGTGGATGCGCT



CACTCGCAAGCACGTTACCATTGCGTTCTGTTACACCATAAGCCCCTCGGATCTCGGTGCA



CGGTTCCCCGAGCTTGAGTCGCTGAAATTGAAGGGAAAGCCCAGGGCTTCCATGTTTAATT



TGATTCCCCAGGACTGGGGCGGATACGCGGAGCCGTGGATTAATGAGATTTCCCAGACGTT



GCTCTGCTTAAAGGCTCTTCATTTGCGCAGAATGATCGTTACGGATGAGGATCTCAGGGCTT



TGGCTCGCGCCCGCGGCCACATTCTGCAGGTTCTTAAACTGGAGAAGTGCTCGGGGTTTTC



GACTCTCGGGCTTCTCGAAGTCGCACGGTCCTGCAGATCTCTTAGGGTCTTGTTTTTAGAG



GAAAGTACTATTGAAGATGAAGGTGGAGAATGGTTACATGAGCTTGCTCTTCATAATTCTTCA



TTGGAAGTTTTGAACTTCTACATGACAGGTTTGGAAAATGTTAATGTTAATGACCTTGAGATG



ATAGCAACAAACTGTCGATCTCTGACCTCATTCAAGATAAGTGAATGTGATATTCTGGATTTA



AGAAATGTATTCAAGAAGGCCACAGCATTGGAAGAGTTTGGCGGTGGGTCATTTAGTAGCA



GTGAAGAGCAGGCTGTAGAACCAAATATTTATGAAATGGTTAAATTCCCTACAAATTTGATGT



CATTGTCAGGACTGAATTACATGAGTGAGACTGAATTACCAGTTGTATTTCCACGAGCATCTT



CACTAAAGAAACTGGATTTGCAGTATACACTTTTGAGCACAGAAAACTATTGCCAGTTGTTAC



AGTCGTGCATTAATATTGAAATTCTTGAGGTTACGAATGCGATTGGAGATAGAGGGTTAGAA



GTAGCAGCTGAGAATTGTAAAAAATTAAGGCGACTTAGAGTGGAGCGTGGGGAAGATGAAG



CTGGTTTGGAGGGTCAGCAAAACTTTGTTTCTCACAAAGGGCTTTCAGTTATAGCTCAAGGC



TGTCCCAATCTAGAGTACATTGCTGTGTATGTTTCAGATATGACTAACTCAGCCTTAGAATCT



GTTGGTAAATTTTGCAAAAATCTGAGGGATTTTCGGCTAGTCTTGCTAGACAAGAAAGAACA



AGTGACTGACCTCCCACTAGACAATGGTGTCATGGCTCTGCTGCTTGGGTGCCAAAAGTTG



AAGAGGTTTGGATTTTACCTAAGGCCTGGAGGATTGACGGACATAGGCCTTGGTTACATTG



GAAAGTTTAGTAGCAATGTGAGGTGGATGCTTCTGGGTTATGTCGGAGAGACTGACTTTGG



GCTTCTTGAGTTCTCGAAGGGATGCCCAAATTTGGAGAAACTTGAATTAAGGGGTTGTTGCT



TCAGCGAATATGCATTATCTGTGGCAGCGCTTAGCTTGAGGTCTCTAAAATATATCTGGGTT



CAGGGCTACAATGCAACGCCATCTGGATTTGATCTTCTAGCTATGGAGCGCCCTTTCTGGAA



CATAGAGTTTACTCCAGCTTCTCAAGTGACAGTGGATGGTTTTAATTTGGAAGAAGAAATTAC



AGAGAAGCCAGCACAGATATTGGCTTATTATTCGCTTGCAGGAAGACGAACAGACCATCCA



GATTCAGTAATTCCTTTAAGCTTATCCTCATGGAATCGTCAGCTCCAGCATGTATATGAATAT



TCTCTTTTCCATGCATATGAATATTAAGTTGCTGTGTTATAGTTATTATTGGTGTGGATCTATG



TACATTTTAACCTTCTAAGGAGTGGAGCGTATAAATGGTTATGGTGTCAGTTATACTTCCTCG



GCATGCCTTTTGAAAACTATAAAGGCAAGAAGAATTAGCCACGCATGGCCCTTGTGCCTGTC



TTCCGCCTGCAAGCATGGATTTTATGCTGACTGCTTCAACGTTATATGGAGATGGATTCCTT



AATCTGTCGCATTTAAGAGGAAAGCCCTGCTTTGTCAAATCTTATGCCTGCTGTCTGTATATT



ACGCAGAGGATTTGTCCATCTATAACATGATCGTCGATCGTCACTACTTTACCACAGAAATG



AATGCAGGCAACTCCTTGAGGAGCTTCTAGATCTATTCTTTCTTGAGGCTATCACATTCTAGA



AGAAAATGGTGGCTTACTCGAAGCTGAGGACTCAGAATGTATTTATGCTTGAGATTACATCA



TATTAACATGTAAGTTTATTGGAATCTGAAAATTCCTGATGTATCCATTTGTGGGACTTTCGG



TCAGTACAAAAAGACTCAACATATGCCAAGGATTCCTGATTTGATTTGAGGTAGAGAAGGGT



TCGGAGTTCTCATTTGAGATTATGGCAAGTTAGAAAATCAGAAGGATGATTAAAAGCTGAAG



ATTCCTTGCATTTAGAATTGGGATCAGACTTCTAAAGCTAAGCCTGGTCTATCTGTATTTCTC



ATTTCACCATTGCGAGGTTTGCATCTTTAAATCATGGATTTCTTTCAATAATTTGTAGCTTTCT



CGTGCTAACAAGACAAATTTCTGCCTAGTGTGGAGAGTTCAAAGCCTACAGTTTGATTTCTTT



TTCTTTTCGCTAAAGAAAATTGATTCGCATAAAGACAAAGGACATACTGCTACTATGTTTGTA



GAATCCACAATTATTTGTACATATTCAATGTGTTTTATATAGCTTAATACAAGTAGTCTGTACG



TATCCTGTAAAAAAAAAA





189
GGTTGCAGCATGCTTCTCGATTCGATGATGAGATAGTGATATATGATTACCCATATTTTACTT



GGAGTGCAGACGCATGCCATGCTGGCATGCTCTGTGGACAACGTCGAGATTTAAGATACAC



CACTGGAGAAGATCTCGGGGATGACTACAAAGATCGGTGGTTAAGACCTCACATAGATAAA



GGATGGAGTAACGGCCATTCCGCAGATTGGAACCCGCGATTCTGCTATTCATTCTTCTTCTC



CTCGACTTAAATCTTCGCAGATTTGATAGATATTCATTTGCCCGAACGTTGCTAGGGCCCTG



ACCATCAATGGCGAAGTTATATCTTTTCGTTGCGGCTTTGCTTCTACTTTCTGCTTCATCAGC



TGCTTCCCAGTCGTTGAATACCTCCAGTGATGCGATCCCGGGGAAAGATTTCAGCACAGGC



AAACAAAGTGTCGAGTACTTGCGATTGTTTGCGGAAGATATCAGCTGGTCCAACAACCTGGT



GCTTGGGCTGCTAGTGCCCCGAAGCATTTGGTCGCCTCTGCCTAGGGTTTTGCAGACATGG



CTTCGTAACTATATTGCTGGAACTGTTGTGTATTTTGTATCCGGAAGCCTTTGGTCCTTTTAT



ATTTATTACTGGAAGCGCAATGTCTACATCCCGGCAGATAGTACACCTTCAAAGGAACCAAT



CTTCTTGCAAATAATGGTGACTATGAAAGCCATGCCTTTGTATTGTGCTCTTCCTACGCTGTC



AGAATACATGATTGAGAATGGTTGGACAAGGTGTTATGCCGCTATAAATGAAGTTGGGTGGC



CTTCTTATATTTTATTAACTATTCTATACTTACTGCTGGTCGAGTTTGGGATTTACTGGATGCA



CAGAGAGTTACATGACATAAAGGTTCTATATAAGTATCTCCATGCAACTCATCACATATACAA



CAAACAGAATACACTATCTCCTTTTGCAGGATTGGCTTTCAATCCACTGGATGGCATATTACA



GGCGATTCCCCATGTTATTGCTTTATTTATCATACCAACACATTTTTTAACCCATGAGCTGCT



TCTATTTTGTGAGGGAATCTGGACAACCAACATTCATGATTGCATACATGGTAAAGTTTGGC



CTATTATGGGAGCTGGGTATCATACTATCCATCACACAACATATCGACACAATTATGGCCATT



ATACAATTTGGATGGACTGGATGTTTGGAACACTTCGTGATCCAACAGCTGAAGCAAAGAGC



GTGAAAAATATGTGATTTCCAGCTTTTCTATGCAGCCGTTTCTCAAAAGATCTTTTAACTGGT



TGTGCTGTTTACTCGCCAAAGAAACTTTTTTCTACATTTAGGGCCATAGAATAATTTTTTTTGT



ATATTCCGTGTAGGCAGATGTTGTACTTCTCGAAGTTTATTTATTTGGGAGCAATCGGCTTTT



TATGTGTAAGTTGTAATTTGTGATATCAAGCTCTGGTTTAATGTTGTAAAGACTTGGTGAGAC



GGGCTGTGGAATTATTTTTATCAACATAATTAGGTGTACTTTCATATTTCATTTTAAATCTTGG



CTCAAATTATTGTGAAGGCATTTCGGTTCTGCTTTCTTTGTAACATTTGTAATAGGCGAAGTC



TGTCTGCTTTTTCGATGTATTTGAACTTAATTCTGTACAATAGAACATAACACATGTTTGCCAT



GTGTTTAAGATTTCCGCATGTATACCGGCACTATTAACATATGCAAGTATTCATTGAGGGTTT



TTACCACTATAGTTGGCATTGCTTTTAATGTCGGACAAAGTCCCTAATTATTTAAAAAAAAAA





190
GCTTTCTACTGCTTCCTTGGAATGTCTTCTTTCGGCTTTTTTCCATGGTAGCAGTCGTGCCTA



TCAGTTGAACCTTCTCTTCCTTACCTTTTCTTTCTTCTAACTTCTTCCATGTAATTCTTTCTTTG



GCTTTTATCCATGCTATCAGTTGTGGCTATCAGGAGTAGCTCGGTTACCTTCTGAAATTTGCT



TCTTGAACTGGTGAAGATATATGAACGCATGCATTCAATTTGCTAGAGATAAAACGTGGCCA



ATTTCTCTATATTTCAACGTTTTGGGATTGTCGGCATTGTCGTAATGGCTTATAAAACGGAGG



AGGACTACGATTATTTGTTTAAAGTTGTGCTAATCGGAGACTCAGGGGTTGGGAAGTCCAAT



TTACTTTCGAGATTTACTCGAAATGAGTTCAGTTTGGAGTCCAAATCAACAATAGGTGTGGA



GTTTGCGGCACGCAGCGTCAACGTGGACGGGAAAAGTATCAAAGCCCAAATCTGGGATACA



GCTGGTCAAGAAAGGTACAGGGCCATCACAAGTGCATATTACCGTGGAGCTGTGGGCGCC



CTGCTGGTGTATGACATTACTCGCCATGTGACATTTGAGAATGTTGAGAGGTGGTATAAAGA



GCTCAAGGATCATACAGATGTCAACATTGTGGTGATGCTAGTGGGAAACAAGTCTGATTTAC



TGCATCTGAGAGCTGTTTCTGTTGAAGAAGGGAAATCGTTTGCGGAGAGGGAGAGCCTCTA



CTTCATGGAAACATCTGCATTGGACTCAACAAATGTGGAGAACTCCTTCACACAGGTGTTAA



CGCAGATTTACAGAATAGTGAGTAAAAGGAGCTTGGATACTGCAGAGGAAGCTTTATCAACA



CTGCCAGGCAAGGGTCAGTCAATTTCTGTAAATGGCAAGGATGAGTTCACTACCAAGAAGG



CTGGATGCTGCTAGTTCTACCCATTGAATGCATTTTCTTTTTCTCCCCTCGTCAATATTTTTGT



TAATCAGGTGCCATATGTTATTCTTGTAATGTTCAATTTGATTCCATATGTTACTCTTGTAATG



CTCAATTTGATTTGATTCCAGTTGACTTGTTCGAAAACGTCCATTTTTCAAACTTCCATCAGTC



TCCAAAGGATTGATGTATGGCCATGCATTCGCTATAGCATAGTGAAGCTGGGTTTATACTCA



GAAGTGTAGAATCTTTGGTGTCGTATAGACGAACCATTTTGCACATTTTGAGATTGTTGTAAT



TTCTATACGTAGTACGTTTTTGAGATTTTGTGTGTTATAAAGCCACATGTTATGCTTTCCAAAA



AAAAAAAAAA





191
CCTTCTCAACCACAACCATCATCCCCTCGCACTCTCCACATCATCTCCAGTCCCCATTTCCT



GTTTCTATTCTTCTATATTAACTATGCCTGAAACTCGTGAAGATTCCGTCTACCTCGCCAAGC



TCGCTGAGCAGGCTGAGCGTTATGAAGAGATGGTTGAGAACATGAAGCGTGTGGCTTCTTC



TGACCAAGAACTCACTGTCGAGGAACGCAATCTGCTGTCTGTCGCGTACAAGAACGTTATTG



GTGCTCGCCGCGCGTCCTGGAGAATCGTTTCATCAATTGAGCAGAAGGAGGAATCTAAAGG



CAATGAGGCTCAGGTGTCAATGATCAAAGGATACAGGGAGAAAATTGAGAGTGAACTCGCC



AAAATCTGCGAAGATATTCTCGATGTCCTCGATAAGCACCTCATTCCCTCAGCTGCCTCTGG



GGAGTCCAAGGTCTTCTACCACAAGATGATGGGCGACTACCACCGCTACCTCGCAGAATTT



GCCACCGGTGATAAGCGGAAAGATAGCGCCGACAAGTCCCTCGAAGCCTACAAGGCCGCA



TCGGAGGTTGCCGTCACCGAATTACCACCTACACATCCCATTCGTCTTGGTCTCGCACTGAA



TTTCTCGGTATTCTACTATGAAATTCTCAATAGTCCCGACCGTGCATGCCACCTGGCCAAAC



AAGCGTTCGACGATGCTATTGCCGAGCTTGATACGCTCTCGGAGGAAAGCTACAAGGATTC



CACTCTCATCATGCAATTGCTTAGGGATAACTTGACGCTCTGGACTTCGGACATGCAAGACT



CTGCCGATAAGCCCGCCGACTCGAAGGATGAGCCCGCTGAGACACCTGCAGAGGATTAGA



TGTTTCCGTATGCATTTATTGTCTCGGAAGTCTTGTTATTTCTAGGCTTTTGTTCTTCAAATTT



TAATCAATCATTTGTTGAATTTGTCGTTCGTCTGTTTGCGCTCTCATTATATCTCTGCATTTGT



GTCATCCTCCATTCCTCTCATCACGTCCATGTGTCCCCTTCCCTTATTACTCCCTATCCCTTC



CCCTCCAGTATTATGCTCGAAATGGTTTCTTATACTCCTTACCTTCAATGATGATAGAGGCGG



TTCGAGAGCAAAAAAAAAAAAAAAAAAAAA





192
CCCACTCCCGCTCAATCCGACAACTTGTTTTGATAGTCCATGTCACGTGCGGGCTGTGTTTT



CCTGAGCGACCCAATTCTCCCTACAAGTCCCGCCCACGACTATCTTTGCTTTCAACGACCCC



CCTTCGACGCCAACATTACTCGAACTTGCTAGAATACCCTCTTTCCAACATCTATCACAATCT



TCCACAATAGAAATCATGGCAAACGAACGCGAGAGCAAAACCTTCCTCGCCCGGCTGTGCG



AACAGGCTGAGCGCTACGATGAGATGGTCACATACATGAAGGAAGTCGCAAAGATCGGCG



GTGAATTGACCGTGGACGAGCGCAACCTTCTCTCAGTCGCATACAAGAACGTAGTTGGCAC



ACGACGTGCGTCGTGGCGCATCATCTCCTCGATCGAGCAGAAAGAGGAGTCAAAAGGCAC



CGATAAGCACGTCGGCACCATCCGCGATTACCGTCAGAAGATCGAGACGGAGCTCGAGAA



GGTGTGCCAGGATGTCCTCGACGTTCTTGATGAGAGCTTGATTCCCAAAGCCGAGACTGGC



GAGTCTAAAGTATTTTACCACAAGATGAAGGGCGACTACCACCGCTATCTCGCCGAGTTTGC



CTCGGGAGAGAAGCGCAAGAATGCTGCGACCGCCGCCCATGAGGCCTACAAGAGCGCCAC



CGATGTTGCGCAGACTGAGCTCACTCCCACTCACCCCATCCGCCTCGGTCTGGCCCTGAAC



TTTTCTGTGTTCTACTACGAGATCCTCAACTCACCCGACCGCGCTTGCCATCTTGCAAAGCA



GGCATTCGACGACGCCATTGCCGAGCTCGACTCTTTGTCTGAGGAGTCTTACCGGGACAGC



ACCCTCATCATGCAGCTTCTGCGTGATAATCTCACCCTCTGGACATCTTCTGATGGTGCTGA



ACCAGCTGAGACTGGTGAGGCACCAAAGACCGAAGAGGCCAAGCCAGCTGAGACTGCCGA



AGCCGCACCCGCCGAGCCCGAGAGCAAGCCAGCCAAGGAGGAGGAGCCCGCCGCCCCAG



CTGCAGCTTAAATTATCAGCTGACATGGACAATGCATGCTGTTGCGAACCGATTGAAGCTTG



GTCCATCATGCCTCGAGACTGCCCAATCTATGTTCTCGAGACTCAGTCGCAATGGACATTTC



TTCAGTTCTTCGGGTTTATGCAGGTTAACGGGTTGATGCGGTGTTCTGCTTCTTATCATCAT



GCGAAAACTGGTTCATTATAGCAAGCGGGTTTACGAGTTCTCACACGTGTCATGTCTTATGG



GCCCCTTCTTCCCTTATCTCTCCGATCCTCCTTTGCTTTCCTGCTTTATAGCCCCGGTATACT



TTTGTTTTGTGCAATCTTTCTGGTGGGATACGCTGGTGGATGGATGTTTTGGCAGTTGTAAA



GTGAGTAGGTCTTCTATGGACTTACTCGCAAGCAGCTCGACCGTGATATCTGGGTATAACTA



ACTAGCTATAAATTGATCATATTCAATTTGAAAAAA





193
GTAGATAATCACTACCTTCTATTTGCAGACACCTATTTCTGTGCATCGTGCCTTTACCCTATC



CAGGGTTTCCAAATATTTATAAATTGTGTCTCCCAGGTTTCGGATAAATTCCAGTTCCACTGC



CTCCTACGAATCCGGAATCTTCATCAGTTGCCATGGACGCTCTTCTGAAGCAATTTGAAAGA



CTTCAGAGACCAATTGATCTGGTGCAGACGCTACATGAAACCCAAGTGAAGCAAGTCCCTG



CACGCTACATCCTTCCTTCGGAACAGAGACCATCTCGTCCTCTTCAAGTCCAGCAGTCTCTT



CCTGTCATTGATCTTGCAGGTCTGGAAGATACTGATCAACGCATCAAGATTGTCAGTCAAAT



AGCCCAAGCATCTCAGGAATGGGGTTTCTTTCAGATAATAAATCATGACATACCTGTGTCATT



GCTAGAGACTGTGAAGCGTGTTTCACAGGAGTTCTTTGATCTTCCTCTTGAAGAGAGACGGA



AACAGTGTCCTGTCAGGCCTGGTGTTCACATGCTTGAAGGCTATGGCCGGTTCTTTGACATC



TCTGATGACACGGTCCTGGACTGGGTTGATACCCTAGTTCATTATATTTCTCCAGAGTGGGC



CAAAGCAGTTGAGCACTGGCCCAAAAACCCCTCCACATACAGAGAAACATATGAAAAATACG



GTGAAGAGGTAATGAAGGTTATGGAGAAGTTGCTGGGTCTTCTTTCCCAGGGTTTGGGGCT



GGACCCAAAGTATATCCAAACCCTCAATAAGGAATCCCTGCTACAAGTCAGAATCAATTATTA



CCCTCCTTGCCCTCAGCCAGATATGGTGAATGGGTTTAAACCCCATTCAGATGTCGATATGC



TCACTGTTCTGCTGGATGATGGGGTGGACGGTCTCCAGGTTCGGAAAGATGAGGATTGGTT



CACTGTGCCCTCTATTCCTGGAGCTCTTATTATCAACATCGGGGATTTGTTACAGATAGTAA



GCAATGGGAAATACAAGAGTGCCGAGCACCGGGCAGTAGCGAATACAAAGCAGAGTCGCA



TGTCTATGGTCATGTTTTTGAGACCACAAGAGGATGTGTTGATTGATACTGCTCCCGAACTG



ATCGATGAAGCTCATCCCAGCTTGTACAAAGCCGTTAAAGCTGGGGAGTACGAAACTGAGT



ATAATAGCAAGGATTTTCGAGGAAAAGACGCTGTACATACTTTACGTATAGAACAGGCGTAG



GAAGTCAATGTCTAGTCCTTCAATTGCATTTTTATAAGATGTCTATCTAGAGAACTATTCAAG



GTATTTGAGTGGAAACTATAACTATAAGATAGCTGTAGGTGTTTTGAGTAAAAGATGTAATTT



GCTAGCATATTATATATGCAAAATAAACATAGGGGTATTTCATTGTTTTGAGTGGGTGTTTCA



GTGCCACGTGTTTGGGCATTTTGAGTGGGTATTTCATTGTTTTGAGTGGGTGTTTCATTGTC



ACTTGGTTGTGTGCGTTTTGAGTGGAAGATGTAATTTAGAGGTATAATATTTTGTTTGGAAGT



CCCTACTTATTAGATTTTTGGAAATTTGGTTAAATATTGATTTGTCTTGTTTAAATTGGTTTTTT



GATATATGGATTTAGCAAGCTTAAAACTTTTTGCGACAAAAAAAAAA





194
CTCGCGTTCAATTCTGCAAGTGGGCCATTTGAATTTTCCACAGAAACATAACCCTAGATTGG



TTTGGAAGGTCGAGTTCGATTCTCCAGGTCTGTATGCTTTCCTATATGTTTTTAGCCTTATCC



TTAAGATCATTTTTCGGGTCTCAGAAAGAGGTTGATTGGTTATAATAACCAGAATAAATGATG



GAGTCTCTGCGAAAACTGGTGTATTATGCTTGTGTTTCGAGAGGCCCAGTAATTGTTGCCGA



ATACAATGATTTAGGGGACGCGGAGCAACTGGCAATAGCTGTTGAGTGCTTAGGTAGAGCC



CCTCCATTCCACAGCAGATTCACACACACTATTAAAAACAGAAGATACAGTTTTCTCATGGAT



TCTGAGTTTGTATATTATGCAATAGTTGACGAGGCCCTTCCGAAAGTGAAAGTTTTTTCTTTC



TTAGAGCAGGTGAGGGATGAGTTCAAGAGACTGCTCAGGGCCAAGGGTTTGTCAAATAGTA



AGGACGAAATCCTGCAGGGTTGTGGCCTGGGTGATGATTTTGCCTCCACATTTAGACGCTT



GGTTGCCCCACTCGTTGGGATCCCCCAAACCGAAAAGCGCAGGATGGAGGAAGAAGAAGC



AAGTGCCCGCCGGCAAGAGGATGAGACCGAGACCGAGGTTTGCTCCCCCACTGCTTCGGC



ACCACTGTATGGGAAACCCCAACCTGATTCCAAACCTAAAAAGGATAAAAAGTCTCTCTGCT



CTATACCGCCTTTAATTTTGAAGACAAACAAACACGAAAAGAAGAAGGTGAGGGATCAAGTG



ACTCAGGTAAGAGAGATCATCATGGAGAGCAGTGGCAAGGCATTGGATAACGGTCAGAAGC



TCGAGGTTACGGTGGATGGAAATACTGGAGGTGCTGCAGCCCTTTCTTTGCAGAGGACTGC



TAGTATGAGAACTAAAGGTCAGCAGATTGCACAGAGAATGTGGTGGCGCAATGTTAGGGTT



GTTCTCCTTTTGGATTTCGTTGTTTGCACAATACTGTTTGTTGTGTGGCTCTGCATCTGTCGT



GGTTTTAAATGCGTTTCAGACTGATGGAGTACGTCTCTTGGATAAACCTTTTCAAGATGTGTA



GCTGTTTTCCTTTTAAGCTCCAATCGGCCGCTTTTCAACTGCAATCTAGTGAATCGAATAATA



TGACTCTTAAATATATACTGTAAATATAGATTTGTGGTGGCACGAAGAGGCTTCGAATAATGT



GACCTTCATGTTTTGGGTTCAGGAGGCCACTGTATTAGTATTGCTGTTGGTTAGCCAGTGTT



TCAGAGTGTAATAGATACAAATGGGCTATTGTATGGGTCCTGGGAAGATATAGGAGAATTTG



GTTTGATTCTTGTACATTCTTCAGATGCCATATAACATTAAAGGGTGCATTCGTTTGATCAAT



GAAGGAAAACTGGTGTTGAAACACGGAAAAAAAAAA





195
GCAAAACACTCCCCCCGCCCGCCCCCCCCGCCCGCAACTCGCTCCGCCCGGCTTTTTCTC



TCTCGCTCGCTCGCTCGCGATTCTTTTGCTCTTCCGCAAATCCCTAGTCGAGAGTTAGGTTT



CGTAACAGTACACGGAAGATGTCGCCCTCTGATTCTTCACGGGAGGAATATGTGTACATGG



CCAAGTTAGCTGAACAGGCTGAGCGGTACGAGGAGATGGTGGATTTCATGGAGAAAGTTGC



CAAGACTGTGGACGTCGAGGAGCTAACCGTTGAGGAACGTAACCTTTTGTCTGTGGCGTAC



AAGAATGTGATTGGGGCCAGGAGGGCATCGTGGAGGATCATTTCTTCCATTGAGCAGAAGG



AAGAGAGCAGGGGTAACACCGATCATGTCTCGATCATTAAGGACTACAGGGGAAAGATCGA



GTCCGAGCTCAGCAAGATCTGTGAAGGCATTCTCAGCCTTCTTGAGTCGCATCTCATTCCTT



CAGCCTCCTCTGCTGAGTCCAAGGTGTTTTACCTTAAAATGAAAGGTGATTACCACAGGTAT



CTGGCAGAGTTTAAGACTGCGACTGAAAGGAAAGAAGCTGCCGAGAGCACTTTATTGGCCT



ACAAATCTGCTCAGGATATTGCTGGGGCCGAACTGGCTTCTACTCACCCAATTAGGCTGGG



ACTTGCGCTGAACTTCTCTGTTTTCTACTATGAAATACTTAACTCTCCTGATCGGGCTTGCGC



TCTTGCAAAGCAGGCATTTGATGAGGCCATAGCTGAGTTGGATACGCTGGGCGAGGAATCA



TACAAGGACAGTACATTGATCATGCAACTTCTTCGAGATAACTTGACTCTGTGGACTTCTGAT



CTTACGGATGAAGCTGGGGATGACATTAAGGAAGCTTCGAAACTGGAGTCTGGAGAGGGG



CAGCAATGATTTGCTAGGATGATGTCAGTACTTTAATGATATTTTGCACCGTCGTAGATGCCT



TGTGGTTTGTCACAGTGAAGATTATTTATGAACTGAGAGTGCTATAAGTTGTTTCTCTAGTGT



TCCTTGATGAGATTCGGGTTGGTCTTTAGAGTGTTCTAATGGATATTACTATCTCAAATTGTC



GGTTCCCGTGTGCGCTCTTTCGTGCTGCCTAGTTTAAATTGCACGGACCCGTTGCATGTGAT



TATAGATTTCTTTCTTTATCAGTTAATGCTAAGACAGTTCAAGGAAAAAAAAAA





196
GATCGTCCATAGTGTGACCAGGATCAAGCGCTCTACATATCGTGCAACTATCACAATCAGGT



CACAACAATGACGGAAGGATCAAACTACGACTTCTTGTTCAAGGTTGTACTCATCGGAGACT



CTGGCGTCGGGAAATCAAACTTGCTCTCGCGGTTTACCAGGAATGAATTCAACCTGGACTC



CAAGTCTACCATCGGAGTCGAGTTCGCTACTAGATCTGTTCAAGTAGATTCCAAGACAGTCA



AAGCCCAGATCTGGGATACGGCGGGTCAGGAGCGATACCGTGCTATCACTTCAGCCTACTA



CCGAGGTGCTGTCGGGGCTCTTCTCGTATACGACATTGCCAAGCACCCCACATACCAGAAT



GTGCACCGGTGGTTGAAGGAGCTCCGTGATCACGCAGACTCCAACATTGTCATCATGCTTG



TCGGGAACAAGAGCGATCTCAAGCATTTGCGAGCTGTCCCTACAGACGAGGCGAAAGCCTT



TGCTACCGAGAACAACTTGTCGTTCATCGAGACGTCGGCATTGGACGCTTCCAACGTCGAG



GCCGCTTTTCAGAATATCCTGTCTGATATCTACCACATCGTAGCAAAGAAGAACCTCGAGAA



CTCGAGCGATGTGATTCAGCCGTTGGAAGGCCGCGGCATCGATATCGCAAAGTCGGAGGA



TGATGGCGGTGCCAAACAGGGCGGCAAATGCTGCTAAAGCGAGTCTCACCCCAGGGTTCTT



GATTTATGTGATCGGCTCGATTTATGCGGCGTCACTTGATTGCGCGCAGCCTGTCGGATGT



GATTCTCGTCTACATCCCGAATCCGACTATCTATCACGCTTTCCTTTCTTTTGTCACCATTCT



TGTATGACTTGTAAACAGTACGCAGATTCGATATCCTATTCGGCATAAAAAAAAAA





197
CTCAATGATCAGACAACAATCTCATCCAGCCGTTCTCACATCAAATCTTGCGAACTCGGAAA



TTAGCGTTCAATATACATTGAGTAAAAGCAGATACTAGATGATACTTTAAACGCTCGGTCCCG



AGTTCGATCACTGTCGGGTCACGCAACCAACTGCCAGAAGAATGCAGAGGCCGTCGAAGAC



GTCTGTGGGCTATGCGATTCCGGACGAGGTTTTGAAGTGCGTGATGGGGTACCTGGAGGA



GCCGTGCGATCGCAGTGCGGTTTCCCTGGTCTGCAAGAGGTGGAACCGTGTGGATGCGCT



CACTCGCAAGCACGTTACCATTGCGTTCTGTTACACCATAAGCCCCTCGGATCTCGGTGCA



CGGTTCCCCGAGCTTGAGTCGCTGAAATTGAAGGGAAAGCCCAGGGCTTCCATGTTTAATT



TGATTCCCCAGGACTGGGGCGGATACGCGGAGCCGTGGATTAATGAGATTTCCCAGACGTT



GCTCTGCTTAAAGGCTCTTCATTTGCGCAGAATGATCGTTACGGATGAGGATCTCAGGGCTT



TGGCTCGCGCCCGCGGCCACATTCTGCAGGTTCTTAAACTGGAGAAGTGCTCGGGGTTTTC



GACTCTCGGGCTTCTCGAAGTCGCACGGTCCTGCAGATCTCTTAGGGTCTTGTTTTTAGAG



GAAAGTACTATTGAAGATGAAGGTGGAGAATGGTTACATGAGCTTGCTCTTCATAATTCTTCA



TTGGAAGTTTTGAACTTCTACATGACAGGTTTGGAAAATGTTAATGTTAATGACCTTGAGATG



ATAGCAACAAACTGTCGATCTCTGACCTCATTCAAGATAAGTGAATGTGATATTCTGGATTTA



AGAAATGTATTCAAGAAGGCCACAGCATTGGAAGAGTTTGGCGGTGGGTCATTTAGTAGCA



GTGAAGAGCAGGCTGTAGAACCAAATATTTATGAAATGGTTAAATTCCCTACAAATTTGATGT



CATTGTCAGGACTGAATTACATGAGTGAGACTGAATTACCAGTTGTATTTCCACGAGCATCTT



CACTAAAGAAACTGGATTTGCAGTATACACTTTTGAGCACAGAAAACTATTGCCAGTTGTTAC



AGTCGTGCATTAATATTGAAATTCTTGAGGTTACGAATGCGATTGGAGATAGAGGGTTAGAA



GTAGCAGCTGAGAATTGTAAAAAATTAAGGCGACTTAGAGTGGAGCGTGGGGAAGATGAAG



CTGGTTTGGAGGGTCAGCAAAACTTTGTTTCTCACAAAGGGCTTTCAGTTATAGCTCAAGGC



TGTCCCAATCTAGAGTACATTGCTGTGTATGTTTCAGATATGACTAACTCAGCCTTAGAATCT



GTTGGTAAATTTTGCAAAAATCTGAGGGATTTTCGGCTAGTCTTGCTAGACAAGAAAGAACA



AGTGACTGACCTCCCACTAGACAATGGTGTCATGGCTCTGCTGCTTGGGTGCCAAAAGTTG



AAGAGGTTTGGATTTTACCTAAGGCCTGGAGGATTGACGGACATAGGCCTTGGTTACATTG



GAAAGTTTAGTAGCAATGTGAGGTGGATGCTTCTGGGTTATGTCGGAGAGACTGACTTTGG



GCTTCTTGAGTTCTCGAAGGGATGCCCAAATTTGGAGAAACTTGAATTAAGGGGTTGTTGCT



TCAGCGAATATGCATTATCTGTGGCAGCGCTTAGCTTGAGGTCTCTAAAATATATCTGGGTT



CAGGGCTACAATGCAACGCCATCTGGATTTGATCTTCTAGCTATGGAGCGCCCTTTCTGGAA



CATAGAGTTTACTCCAGCTTCTCAAGTGACAGTGGATGGTTTTAATTTGGAAGAAGAAATTAC



AGAGAAGCCAGCACAGATATTGGCTTATTATTCGCTTGCAGGAAGACGAACAGACCATCCA



GATTCAGTAATTCCTTTAAGCTTATCCTCATGGAATCGTCAGCTCCAGCATGTATATGAATAT



TCTCTTTTCCATGCATATGAATATTAAGTTGCTGTGTTATAGTTATTATTGGTGTGGATCTATG



TACATTTTAACCTTCTAAGGAGTGGAGCGTATAAATGGTTATGGTGTCAGTTATACTTCCTCG



GCATGCCTTTTGAAAACTATAAAGGCAAGAAGAATTAGCCACGCATGGCCCTTGTGCCTGTC



TTCCGCCTGCAAGCATGGATTTTATGCTGACTGCTTCAACGTTATATGGAGATGGATTCCTT



AATCTGTCGCATTTAAGAGGAAAGCCCTGCTTTGTCAAATCTTATGCCTGCTGTCTGTATATT



ACGCAGAGGATTTGTCCATCTATAACATGATCGTCGATCGTCACTACTTTACCACAGAAATG



AATGCAGGCAACTCCTTGAGGAGCTTCTAGATCTATTCTTTCTTGAGGCTATCACATTCTAGA



AGAAAATGGTGGCTTACTCGAAGCTGAGGACTCAGAATGTATTTATGCTTGAGATTACATCA



TATTAACATGTAAGTTTATTGGAATCTGAAAATTCCTGATGTATCCATTTGTGGGACTTTCGG



TCAGTACAAAAAGACTCAACATATGCCAAGGATTCCTGATTTGATTTGAGGTAGAGAAGGGT



TCGGAGTTCTCATTTGAGATTATGGCAAGTTAGAAAATCAGAAGGATGATTAAAAGCTGAAG



ATTCCTTGCATTTAGAATTGGGATCAGACTTCTAAAGCTAAGCCTGGTCTATCTGTATTTCTC



ATTTCACCATTGCGAGGTTTGCATCTTTAAATCATGGATTTCTTTCAATAATTTGTAGCTTTCT



CGTGCTAACAAGACAAATTTCTGCCTAGTGTGGAGAGTTCAAAGCCTACAGTTTGATTTCTTT



TTCTTTTCGCTAAAGAAAATTGATTCGCATAAAGACAAAGGACATACTGCTACTATGTTTGTA



GAATCCACAATTATTTGTACATATTCAATGTGTTTTATATAGCTTAATACAAGTAGTCTGTACG



TATCCTGTAAAAAAAAAA
















TABLE 3







Cell Signaling Protein Sequences








SEQ



ID



NO
Sequence





198
MEREREQQVYQARLAEQAERYDEMVESMKQVAKLDVELTVEERNVLSVGYKNVIGARRASWRI



LSSIEQKEGTKGNEQNVKRIKDYRQRVEDELAKICSDILSVIDKHLIPSSSSGESTVFYYKMKGDY



CRYLAEFKAGDDRKEAADQSLKAYEAASSTASTDLAPTHPIRLGLALNFSVFYYEIMNSPERACH



LAKQAFDEAIAELDSLNEDSYKDSTLIMQLLRDNLTLWTTDLPEEGGEQSKVDEPAAES





199
MSPSDSSREEYVYMAKLAEQAERYEEMVDFMEKVAKTVDVEELTVEERNLLSVAYKNVIGARR



ASWRIISSIEQKEESRGNTDHVSIIKDYRGKIESELSKICEGILSLLESHLIPSASSAESKVFYLKMK



GDYHRYLAEFKTATERKEAAESTLLAYKSAQDIAGAELASTHPIRLGLALNFSVFYYEILNSPDRA



CALAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSDLTDEAGDDIKEASKLESGEGQQ





200
MAAADSSREENVYMAKLAEQAERYEEMVEFMEKVAKTVDVEELTVEERNLLSVAYKNVIGARR



ASWRIISSIEQKEESRGNEDHVVIIKEYRGKIETELSKICDGILNLLESHLVPSASSAESKVFYLKMK



GDYHRYLAEFKAGTERKEAAESTLLAYKSAQDIALAELAPTHPIRLGLALNFSVFYYEILNSPDRA



CSLAKQAFDEAISELDTLGEESYKDSTLIMQLLRDNLTLWTSDVTDEAGDEIKESSKRESGEGQP



PQ





201
MASTKERDGYVYVAKLAEQAERYDEMVEAMKNVAKLDVELTVEERNLLSVGYKNVIGARRASW



RILSSIEQKEDSKGNEHNVKKIKEFRQKVEAELANICGDVMKVIDEHLIPSCAGGESTVFFYKMKG



DYYRYLAEFKAGDDRKEAADQSMKAYELASTTAEADLSPTHPIRLGLALNFSVFYYEIMNSPERA



CHLAKQAFDEAISELDTLSEESYKDSTLIMQLLRDNLTLWTSDIPEDGAEDAQKLDNAAKAAGGE



DAE





202
MAEHRSYGNVNLKTFDAHVPEIKFTKLFIDGEFVDSVKGRTFETKDPRNGQVVARVAEGDEEDV



ELAVIAARRAFDHGPWPRMPGYQRGRIMSKFADLIEENIDELAALDTIDAGKLFSVGKARDIPNAA



MLLRYYAGAVDKIHGEVLKMSRELHGYTLREPVGVIGHIIPWNFPTGVFFMKVAPTLAAGCTMIV



KPAEQTPLSALFYAHLAKKAGVPDGVINVVTGFGPTAGAAISSHMDIDMVSFTGSTKVGHMVMQ



AAATSNLKQVSLELGGKSPLIVFDDVDLDTATNLALTGILYNKGEVCVAGSRVYVQEAIYEEFEKK



LVAKAKAWPVGDPFDPNVRQGPQVDKKQFEKILSYIEHGKREGATLLIGGERLGTEGYYIQPTIF



TDVNEDNVIVKDEIFGPVMSLMKFKTMEEVIKRANDTRYGLAAGILTKNIDLANTVSRSIRAGMIWI



NCYLAVDNDCPYGGYKMSGFGKDLGLDALHKYLHVKSIVTPIYNSPWL





203
MAENQSDANGSLKTYDEHVPDIKFTKLFINGEFVDSVKGRTFETIDPRNGEVTARVAEGDKEDV



DLAVKAARQAFDHGPWPRMPGYQRGRIMSKFADLIEENIDELAALDTIDAGKIFSMGKAVDIPHA



ATCLRYYAGAADKIHGEVLKMSRELHGYTLLEPVGVVGHIIPWNFPTSMFFMKVAPALAAGCTMI



VKPAEQTPLSALYYAHLAKKAGVPNGVINVVTGFGPTAGAAITSHMDIDMVNFTGSTKVGRIVMQ



TAATSNLKQVSLELGGKSPIMIFDDADLDTATDLALIGIVHNKGEICVAGSRVYVQEGIYEEFEKKL



VAKAKAWPVGDPFDPKVQQGPQVDKKQFEKILSYIEHGKREGATLLTGGERLGTKGYYVQPTIF



TNVKEDNVIVKDEIFGPVMSLMKFICTVEEAIKRANDTRYGLAAGIVTKNIDVANTVSRSIRAGVIWI



NCYFAFDNDCPCGGYKTSGFGRDLGLDALHKCLHVKSIVTPLYNSPWL





204
MREREMAENQSNANGSLKTYDAHVPEIKFTKLFINGKFVDSVKGRTLETIDPRNGQATARVAEG



DKEDVDLAVKAARQAFDHGPWPRMPGYQRGRIMSKFADLIEENIDELAALDTIDAGKLFSVGKA



QDIPHAATMLRYYAGAADKIHGEVLKMSRELHGYTLREPVGVIAHIIPWNFPTAVFFMKVAPALA



AGCTMIVKPAEQTPLSALFYAHLAKKAGIPDGVINIVTGFGRTAGAAISNHMDIDMVSFTGSTEVG



RIVMQAAATSNLKQVSLELGGKSPLIIFDDVDLDTATDLALTGILHNKGEICVAGSRVYVQEGIYEE



FKNKLVAKAKAWPVGDPFDPNVRHGPQVDKKQFEKILAYIEHGKREGATLLTGGERLGTEGYYI



QPTIFINVKEDNMIVKDEIFGPIMSLMKFKTTEEVIKRANDTRYGLAAGVLTKNIDMANTVSRSIRA



GTIWINCYFAFDNDCPLGGYKMSGFGRDFGLDALHKYLQVKSVVTPIYKSPWL





205
MASRRRMLLKVIILGDSGVGKTSLMNQYVNRKFSNQYKATIGADFLTKEVQFEDRLFTLQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVMKSFDNLNNWREEFLLQASPSDPENFPFVVLGNKID



VDGGNSRVVSEKKAKAWCASKGNIPYFETSAKEGFNVEAAFECIAKNALKNEPEEEIYLPDTIDV



TGGGRQQRSTGCEC





206
MAVPENLGRDQYVYLAKLAEQAERYEEMVEFMHKLVVGWTPAAELTVEERNLLSVAYKNVIGSL



RAAWRIVSSIEQKEEGRKNEDHVVLVKEYRSKVENELSDVCASILRLLDTNLVPSAAASESKVFY



LKMKGDYHRYLAEFKVGDERKAAAEDTMLAYKAAQDIAQADLASTHPIRLGLALNFSVFYYEILN



QSDKACSMAKQAFEEAIAELDTLGEESYKDSTLIMQLLRDNFTLWTSDVQDQLDEP





207
MATAPSAREENVYMAKLAEQAERYEEMVEFMEKVAAAAAAADAEELTIEERNLLSVAYKNVIGA



RRASWRIISSIEQKEESRGNEDHVAAIRDYRSKIESELSGICAGILKLLDSRLIPAAASGDSKVFYL



KMKGDYHRYLAEFKTGAERKEAAESTLTAYKAAQDIANTELAPTHPIRLGLALNFSVFYYEILNSP



DRACSLAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSDMQEDGADEIKEAPKADEQ



Q





208
MAAAAPPPSSPREEYVYMAKLAEQAERYEEMVEFMEKVSAAAADAEELTVEERNLLSVAYKNVI



GARRASWRIISSIEQKEESRGNEDHVAAIRDYRAKIEAELSKICDGILGLLDTRLIPAASVGDSKVF



YLKMKGDYHRYLAEFKTGTERKEAAESTLTAYKAAQDIANSELAPTHPIRLGLALNFSVFYYEILN



SPDRACGLAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSDMQDDGVDEIKETAKADE



Q





209
MKKGGLNPILNLKLSLPPPDEDSIAKFLTQSGTFVDGDLLVNRDGVRVVQQTEVEVPPLIKPTDN



QLSLADIDTIKVIGKGNGGIVQLVQHKWTGQFFALKVIQMKVEESARKQIAQELKINQSSQCPYVV



VCYQSFYDNGTVSIILEYMDGGSLADFLRKVKTIPEPNLAVICKQVLKGLLYLHHEKHIIHRDLKPS



NLLINHRGEVKITDFGVSAIMASTSGQANTFVGTYNYMSPERIIGNNYGYKSDIWSLGLVLLECAT



GKFPYTPPDQQEGWTNFYELMEAIVDHPPPSAASDQFSSEFCSFISACVQQDPKKRWSANELM



GHPFISMYEDLNVDLASYFTNAGSPLATF





210
MEDDERGEEYLFKIVLIGDSAVGKSNLLSRFALDEFDINTKATIGVEFQTQVVEIDGKEVKAQIWD



TAGQERFRAVTSAYYRGAVGALIVYDITRRTTFESVKRWLDELDTHCDTAVARMLVGNKCDLNN



IREVSTEEGKALAEAEGLFFMETSALDSTNVQISFEIVIREIYKNISRKVLNSDSYKAELSVNRVTLA



KNGADSSGRSFYSCCAR





211
MSSSDEEGGEEYLFKIVIIGDSAVGKSNLLSRYARNEFNPHSKATIGVEFQTQSMDIDGKEVKAQI



WDTAGQERFRAVTSAYYRGAVGALVVYDITRRSTFDSVSRWLDELKTHSDTTVARMLVGNKCD



LESIRDVTVEEGKSLAESEGLFFMETSALDATNVKTAFEIVIKEIYNNVSRKVLNSDAYKAELSVN



RVTLAGNGADGSKRSQSFSCCSR





212
MALVPSDPINNGQSLPLIAEVNMSSDSSSAAAVVRATVVQASTVFYDTPATLDKAERLLAEAASY



GSQLVVFPEAFVGGYPRGSTFGVSIGNRTAKGKEEFRKYHASAIDVPGPEVDRLAAMAGKYKVF



LVMGVIERDGYTLYCTILFFDPQGHYLGKHRKVMPTALERVIWGFGDGSTIPVFDTPIGKIGAAIC



WENRMPLLRTAMYAKGVEIYCAPTADARDIWQASMTHIALEGGCFVLSANQFCRRKDYPPPPE



YVFAGTDDDLNPDSVVCAGGSVIISPSGNVLAGPNYDGEALISADLDLGEIARAKFDFDVVGHYS



RPEVLSLIVRDHPSNPVTFASTSGKPEGPYK





213
MDPSKSRDSAESTRVIQFPNDVLERILSLIDSHRDRNAVSLVSKAWYNAERWTRRHVFIGNCYA



VSPQIVARRFPNIRSVMLKGKPRFSDFNLVPPNWGADVHGWLAVFADQYPQLEELRLKRMTVT



DESLKFLARKFHNFRVLSLLSCDGFSTDGLEAIATDCRHLTELDIQENGIDDISGNWLSCFPENFT



SMEVLNFASLSSDVNFDALERLVSQCKSLKILKVNKSITLEQLQRLLVRAPQLTELGTGSFLQELT



AHQSEELERAFIGCKYLHALSGLWEATTLYLPVLYPACTNLTFLNLSYAALQSEELAKLVAHCPRL



QRLWVLDTVEDVGLEAVASSCPLLEELRVFPADPYDQDINRGVTESGFLAVSLGCRKLHYVLYF



CRQMTNAAVARIVQNCPGFTHFRLCIMKPGQPDYLTNEPMDEGFGAVVKTCTNLRRLGVSGLL



TDLTFEYIGRYAKNLETLSVAFAGGSDLGMKSILVGCPKLRKLEIRDCPFGNEALLSGLEKYESM



RSLWMSACKVTLHGCKTLATQRPRLNVEVMKDEEIDDGQSYKVYVYRTVAGPRTDAPSFVHTL





214
MESCNCVEPQWPADELLMKYQYLSDFFIALAYFSIPLELIYFVKKSAVFPYRWVLVQFGAFIVLCG



ATHLINLWTFAIHSRTVAYVMTIAKVLTAAVSCITALMLVHIIPDLLSVKTRELFLKNKAAELDREMG



LIRTQEETGRHVRMLTHEIRSTLDRHTILKTTLIELGRTLGLEECALWMPTRSGLELQLSYTLRQQ



QNPVGYTVPIHLPVINRVFSSNRALKISPNSPVARIRPLAGKYIPGEVVAVRVPLLHLSNFQINDW



PELSTKRYALMVLMLPSDSARQWHVHELELVEVVADQVAVALSHAAILEESMRARDLLMEQNVA



LDLARREAETAIRARNDFLAVMNHEMRTPMHAIIALSSLLQETELTPEQRLMVETIMKSSNLLATLI



NDVLDLSRLEDGSFQLNIATFNLHAVFREVLNLIKPVASVKKLLITLNLAPDLPEYAVGDEKRLMQ



VILNVVGNAVKFSKEGGISITAFVAKAEYLREARTPEFLPLPSDNHFYLRVQVRDSGSGVNPQDIP



KLFTKFAHNQSLATRNSGGSGLGLAICKRFVTLMDGHIWIESEGIGKGCTATFIVRLGIPEKLNES



KFPVLPRGSSNHVLANFSGLKVLVMDDNGVGRAATKGLLLHLGCDVTTVSSGDELLHAVSQEH



KVVLMDICTPGIDSYEVAVQIHRLYSQHHERPLLVAITGSTDKVTKENCMRVGMDGVIQKPVSLD



KMRNVLSELLECGHQMSSLARV





215
MASRRRMLLKVIILGDSGVGKTSLMNQYVNRKFSNQYKATIGADFLTKEVQFGDRLFTLQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVMKSFDNLNHWREEFLIQASPSDPENFPFVVLGNKIDI



DGGNSRVVSEKKAKAWCASKGNISYFETSAKEGFNVEAAFQCIAKNALKNEPEEELYLPDTIDVA



GGQQQRSSGCEC





216
MAGGYRADDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFATRSIRVDDKVVKA



QIWDTAGQERYRAITSAYYRGAVGALLVYDVTRHVTFENVERWLKELRDHTDSNIVIMLVGNKA



DLRHLRAVSTEDAKAFAERENTYFMETSALESMNVENSFTEVLTQIYHVVSRKALDVGEDPAAP



PKGQTISVGSKDDVSAVKKVGCCSA





217
MVDSFDEECDYLFKAVLTGDSAVGKSNLLSRFARKEFQLDSKPTIGVEFAYRNVKVADKLIKAQI



WDTAGQERFRAITSSYYRGALGALLVYDITRRVTFENVKKWLRELRDFGNPDMVVVLVGNKSDL



GSSREVDLEEGKDFAEAENLCFMETSALENLNVEEAFLEMITRIHEITSQKSLEAKNNEITSSLHG



PKQVIQIDEVTATKKPYCCSS





218
MAGYKADEEYDYLFKLVLIGDSGVGKSNLLSRFTRNEFNLESKSTIGVEFATKSLSIDGKVVKAQI



WDTAGQERYRAITSAYYRGAVGALLVYDVTRRATFENVARWLRELRDHTDPNIVVMLIGNKSDL



RHLVAVPLEDGKSFAEMSHYYFMQTSALDATNVEAAFAEVLSQIYRIVSKRAVEAGDNPSVSCV



PGQGQTINVKEEGSVFKRIGCCSS





219
MASGGGYGDGNQKIDYVFKVVLIGDSAVGKSQILSRFARNEFSLDSKATIGVEFQTRTLVIQHKS



VKAQIWDTAGQERYRAVTSAYYRGAVGAMLVYDITRRQSFDHIPRWLEELRSHADKNIVIILVGN



KTDLENQRAVPTEDAKEFAQKEGLFFLETSALDSTNVESAFLTVLTEIFNIVNKKSLVAGESQTNG



NPASLAGKKIIIPGPAQEIPAKNKMCCGT





220
MADAAAQNGQFSDFPAVPTHGGQFIQYNIFGNHFEITAKYRPPIMPIGRGAYGIVCSVLNSETNE



MVAIKKIANAFDNHMDAKRTLREIKLLRHLDHENVIGIRDVIPPPLRREFTDVYIAMELMDTDLHQII



RSNQGLSEEHCQYFLYQILRGLKYIHSANVIHRDLKPSNLLLNANCDLKIIDFGLARPTAENEFMT



EYVVTRWYRAPELLLNSSDYTAAIDVWSVGCIFMELMNRKPLFPGRDHVHQMRLLVELLGTPAD



ADLGFVRNEDARRYIRQLPQHPRQPLASVFPHVHPLAIDLVEKMLTFDPTKRITVEEALAHPYLT



RLHDIADEPVCRQPFSFEFEQQPLGEEQMKDMIYQEAIALNPEFA





221
MATLVEPPNGVHSEGKHYYSMWQTLFEIDTKYVPIKPIGRGAYGIVCSSVNRETNEKVAIKKIHN



AFENRVDALRTLREIKLLRHLRHENVIGLKDVMMPIQRKSFKDVYLVYELMDTDLHQIIKSSQTLT



NDHCQYFLFQLLRGLKYLHSANILHRDLKPGNLLINANCDLKICDFGLARASNGKGQFMTEYVVT



RWYRAPELLLCCDNYGTSIDVWSVGCIFAELLGRKPLFPGTECLNQLKLIINVLGSQREEDIEFID



NPKAKKFIKSVPYSPGTPLSRLYPNAHPLAIDLLQKMLIFDPSKRIGVTEALQHPYMSPLYDPNTN



PPAQVPIDLDVNEDLEEEMIREMMWKEMLHYHPEVAVGNLEVYS





222
MNYFPDEVIDHVFDFVTSNRDRNVISLVCKSWYRIERLSRQRVFIGNCYAISPERLIARFPGVRSL



TLKGKPHFADFNLVPPDWGGFVYPWIDALARSKVNLEELRLKRMVVTDDGLELISRSFVNFKSL



VLVSCEGFTTDGLAAIAANCRFLRELDLQENEVEDHRGQWLNCFPDSCTSLVSLNFACLKGDIN



LAALERLVARSPYLKSLRLSRAVPLDTLQKILVRAPQLVDLGVGSFVHDPDSETYNKLVTAIEKCK



SMRSLSGFLEVSAYCLPAIYPICSGLTSLNLSYAPGIPGSELTKLIRHCRKLQRLWILDCIGDKGLG



VVASSCKELQELRVFPSDPYGVGNAAVTEEGLVAISRGCPKLNSLLYFCQQMTNAALKIVAQNC



PNFIRFRLCILEPTKPDSSTNQPLDEGFGAIVQSCKGVRRLSLSGLLTDQVFNYIGTFAEQLEMLS



IAFAGDNDKGMLYVLNGCKKIRKLEIRDCPFGNIALLTDVGKYETMRSLWMSSCDITLGGCKTLA



KKMPRLNVEIINENNEMEDCIDDEQKVERMYLYRTLVGPRKDAPEHVWTL





223
MKRDHRDACSGGYGGGGGGEASGASKGEPPSSSSTHSLPGSGKAKMVMWGEDDQDPSGG



GGGGMDELLAVLGYKVRSSDMAEVAQKLEQLEMVMGSAQEDGISHLSYDAVHYNPSDLSSWV



QSMLFELNPPPPPQQVADAVLAAAESSSTIAQHHRSHLGSRSQTQTRTLSQTSAPTQTQSQVIF



NDDSEYDLRAIPGVAAFPQGDSDFESAARKKMKTLNGGSNSLSSSSSSSAAGAAPSESTRPVV



LVDTQETGVRLVHTLMACAEAVQQENLKLADALVKHIGLLAASQNGAMRKVATYFAEALARRIY



RIYPNDGSLDSSCNDILQMHFYETCPYLKFAHFTANQAILEAFATASRVHVIDFGLKQGMQWPAL



MQALALRPGGPPAFRLTGIGPPQPNNTDALQQVGWKLAQLADTIGVEFEFRGFVANSLADLEPA



MLDIRPPEVETVAVNSVFELHPLLARPGAIDKVLSSIKAMRPKIVTMVEQEANHNGPGFVDRFTE



ALHYYSSLFDSLEGSGVAPPNQDLVMSEVYLGRQICNVVACEGPDRVERHETLVQWQARMGS



AGFDPVHLGSNAFKQASMLLALFAGGEGYRVEENDGCLMLGWHTRPLIATSAWQLAAATQ





224
MSKVLRFTGGEDFYSGRSIYQSPKEVNLFLSLGNHVDVYFPPSKRSRISAPFVFSEDLFEQKRQ



DTIEVLPDECLFEIFRRLPGGQERSACACVSKRWLNLLSNICPNERSSGKSQNNLDPTCGGEEV



SSEDDGFLSRSLEGKKATDIRLAAIAVGTADRGGLGKLSIRGSKLSHVTSLGLGAIARSCPSLKAL



SLWHLPSVGDEGLLEVANGCHQLEKLDLCQCPNITNKFLVAVARNCPNLTDISIESCSSIGNEGL



AAVGQFCQNLKSISIKNCPSVGDQGIVGLISRAGSALTKFKLQALNITDVSLAVIGHYATAVTDLTL



ASLHNVTERGFWVMGNGHGLQRLRSLIVTACRGATDLGLESLGKGCPNLKQLCIRSSAFLSDG



GLVSFMKSARSLESLQLEECHRITLSGLYGLVVGCGDKLKSLALTNCWGFKDFDFGSPQVSPCK



SLRSFSVRNCPGFGDACLVALGKICPHLQQVELSGLTGITDEGLLRLLECCEAGLVKVNLSGCIN



LTDQVVSAMAKLHGRTLEVLILDGCTKVSDLGLLAIAENCQLLSDLDVSKCAISDFGLMALARSSQ



LSLQVLSVSGCSLVSDKCLPALKKVGRTLLGLNLQHCTAISTRSVDLLLEELWRCDILA





225
MGESRRGEMDGTTRGGSNADMYLPNYKLGKTLGIGSFGKVKIAEHVLTGHKVAIKILNRRKIKN



MEMEEKVRREIKILRLFMHPHIIRLYEVIETPTDIYVVMEYVKSGELFDYIVEKGRLQENEARNFFQ



QIISGVEYCHRNMVVHRDLKPENLLLDSKWNVKIADFGLSNIMRDGHFLKTSCGSPNYAAPEVIS



GKLYAGPEVDVWSCGVILYALLCGTLPFDDENIPNLFKKIKGGMYTLPSHLSAGSKDLIPRMLIVN



PMKRITIPEIRQHPWFQAHLPRYLAVPPPDTMQQAKKIDEEILQEVVNMGFERNQLVESLRNRIQ



NEATVAYYLLLDNRFRPSNGYLGDEFQETMECTFNRGNPGELTIPTVGPRYPLPGYMDYQGVN



SKPGYYGAEKKWALGLQSRAHPREIMTEVLKALRELNVCWKKIGHYNMKCMWNPCVPSHESM



VSNPVQSNYFGDESTIIENDGATKSRNVVKFEVQLYKTTEEKYLLDLQRVQGPQFLFLDLCAAFL



AQLRVL





226
MAGYRAEDDYDYLFKIVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFATRSLNVDGKVIKAQI



WDTAGQERYRAITSAYYRGAVGALLVYDVTRHSTFENVERWLRELRDHTDPNIVVMLVGNKSD



LRHLLAVSTEDGKSFAEREALVFMETSALEATNVENAFAEVLTQIYNIVSKKALETSEQANGSAV



PSQGEKIDVGKDVSAVKRGGCCSS





227
MDSSRESLVYVAKLAEQAERYEEMVDEMKKVAKLNVALTVEERNLLSVGYKNVIGARRASWRIL



TSIEQKEDARGNEISVKRIKEYRKKVESELSSICSDIMVILDEHVIPSASDGESKVFYYKMKGDYY



RYLAEFKSDDEKKEVAEQSMKAYEMATSIAESDLPYTHPIRLGLALNFSVFYYEILNSAERACHIA



KQAFDDAIAELDNLNEESYKDSTLIMQLLRDNLTLWTSDITEEGEDAQRINGSAKVGMEEGE





228
MEDRNVKRPDSPGLSDIVLTCVMPYIDDPKDRDAISLVCRRWYEIDALTRKHVTIALCYTTSPERL



RRRFRHLESLKLKGKPRAAMFNLIPENWGGYVTPWVTEIAQSFDCLKSLHFRRMIVEDSNLEVL



ATSRGRVLQVLKLDKCSGFSTDGLLHVGRLCKTLRTFFLEESTIIEKDGAWLHELAMNNTVLETL



NFYMTELSSFSVQDLQIIARNCRSLTSVKISDCEILDLVGFFQDAAALEEFGGGLFNEEPERYAAL



SFPARLCRLGLTYISENEMPIVFPIASRLRMLDLLYAFLSTDDLCLLIQQCPILEVLETRNVIGDRGL



EVLAHSCKRLKRLRIERGADEQGMGDEGGLVSQRGLMDLARGCLELEYLAVYVSDITNSSLECI



GTYSKNLCDFRLVLLDREEKITDLPLDNGVRAILRGCEKLRRFALYLRPGGLTDVGLGYIGQYSQ



NIRWMLLGYVGESDEGLREFSRGCPSLQKLEMRGCCFSEQALADAVMRLTSLRYVWVQGYRG



SDTGRDILAMVRPFWNIELIPARRIAVANQNGENVLNEDPAHILAYYSLAGPRNDCPDSVIPLAPA



RLLTL





229
MANRVDHEYDYLFKIVLIGDSGVGKSNILSRFTRNEFCLESKSTIGVEFATRTLQVEGKTVKAQIW



DTAGQERYRAITSAYYRGAVGALLVYDITKRQTFDNVQRWLRELRDHADSNIVIMMAGNKSDLN



HLRAVPGDDGQALAEKEGLSFLETSALDATNIEKAFQTILTEIYHIISKKALAAQEAAATTLPGQGT



TINVADATGNANKRGCCST





230
MESFPVINMENLNGEKRAITMDKIKDACENWGFFELVNHGIPPEFMDTIESMTKGHYKKCMEQR



FGELVASKGLECVQTEVHDLDWESTFHLKHLPVSNISQIPDLDDDYRRVMKEFALKLEKLAEELM



DLLCENLGLEKGYLKKAFYGSQGPNFGTKVSNYPPCPKPDLIKGLRAHTDAGGIILLFQDDKVSG



LQLLKDGQWVDVPPMRHSIVVNLGDQIEVITNGKYKSILHRVVAQTDGNRMSIASFYNPGSDAVI



YPAPALVESEAEEASKAVYPKFVFEDYMKLYAALKFQAKEPRFQAMKAMESSPSLGPIATA





231
MESFPVINMENLNGEKRAITMDKIKDACENWGFFELVNHGIPPEFMDTVERMTKGHYRKCMDQ



RFRELVASKGLENVQTEVHDLDWESTFHLKHLPLSNISQVPDLEDDYRKVMKEFAVKLEKLAEE



LMDLLCENLGLEKGYLKKAFHGSNGPNFGTKVSNYPPCPKPELIKGLRAHTDAGGVILLFQDDK



VSGLQLLKDGQWVDVPPMRHSIVVNLGDQIEVITNGKYKSVLHRVVAQTDGNRMSIASFYNPGS



DAAIYPAPALMESKAEEASKAAYPKFVFEDYMKLYAALKFQAKEPRFQAMKVMESSPNLEPIATA





232
MSGGSDLPEEILIQILLKLPVKSLVRFRCVSKSWDSLITHPSFVSLHLRHAMAGHDRSVILLRHYS



LTQRKERNTLYLDGESFLEHQELEFPLKTHDTYYLAGSCNGLLCFSDYIINNLQVILWNPSLRKCV



QLPIPRFIDTDLTHTYVLGFGFDTRRVDYKVVRLIYILGKNWSVIVPPEVEIYELKTNAWRGIQTAV



PYVIPESSSQAFVNGAIHWIGYNPADRRLKVASSPRSIVVLFDMQDEVFGEMELPKGGDYANRL



NLSLAVHQDLICLLHCHPMEEDGHQLYGVCWVWVMKEYGAADSWTKLFTINISEHGGIGRILGF



RKKGDALLVTHNDELVSYDLRGQRISRLGLYGVARSFEVIPYMDCLILV





233
MGCSSSLPDRASGRLGGLNSENGAVNDAKNLRVKLVLLGDSGVGKSCIVLRFVRGQFDPTSKV



TIGASFLSQTIALQDSTTVKFEIWDTAGQERYAALAPLYYRGAAVAVVVYDITSPESFQKAQYWV



KELQKHGSPDMVMALVGNKADLQENREVTVQDGIDYAEKNGMFFIETSAKTADNINQLFEEIAK



RLPRPTPS





234
MDGGAPQPADTVMSEAAPAQQQQQQPQQAQPQGIENIPATLSHGGRFIQYNIFGNIFEVTAKYK



PPIMPIGKGAYGIVCSALNSETNEHVAIKKIANAFDNKIDAKRTLREIKLLRHMDHENVVAIRDIIPP



PQREVFNDVYIAYELMDTDLHQIIRSNQALSEEHCQYFLYQILRGLKYIHSANVLHRDLKPSNLLL



NANCDLKICDFGLARVTSETDFMTEYVVTRWYRAPELLLNSSDYTAAIDVWSVGCIFMELMDRK



PLFPGRDHVQQLRLLMELIGTPSEAELGFLNENAKKYIRQLPLYRRQSFTEKFPHVHPLAIDLVEK



MLTFDPRLRLTVEEALAHPYLNSLHDISDEPTCMNPFNFDFEQHALTEEQMRELIYREALAFNPE



YLQ





235
MESSSSGGASAEHSVRGIPTHGGRYVQYNVYGNLFEVSRKYVPPIRPIGRGAYGLVCAAMNSE



TNEEVAIKKIGNAFDNRIDAKRTLREIKLLCHMDHENVIGLKDIIRPPSRENFNDVYIVYELMDTDL



HQIIRSNQPLTDDHCRYFLYQLLRGLKYVHSASVLHRDLKPSNLFLNSNCDLKIGDFGLARTTSET



DFMTEYVVTRWYRAPELLLNCSEYTAAIDIWSVGCILGEIMTRQPLFPGKDYVHQLRLITELIGSP



DDSSLGFLRSDNARRYVRQLPQYPRQQFSSRFQTMSPGAVDLLERMLVFDPIRRITVEEALCHP



YLAPLHDINEEPICPTPFIYDFEQPSFTEENIKELIWRETLRFNPDPMH





236
MGQVPSSASSSPEPSHRGGAISSSHRLDSLPSLEFVSSFEDEEDAAAADEGAAAGYDYTGDLP



DECLAHVFHFLGTGDRKRCSVVCRRWRRVDGESRHRLSLNAQADLLSSLPSVFSRFDAVTKLA



LRCDRKSVSLGDEALVLISLRCRGLARLKLRGCREVTDLGVAAFAENCRQLRKLSCGSCSFGAR



AINAVLDHCVNLEELSIKRLRGIHDGAEPIGPGAAAKSLRSICLKELINGQCFGPLLVGARKLSTLK



LIRCLGDWDNVLQTIGSSNPGLLEVHLERIQVSDGGLCGIANCKGIDSLHVVKVPECSNLGLSSIA



ENCRQLRKLHIDGWRINRIGDEGLVEVAKQCLQLQELVLIGVSVTHSSLAAIGSNCRKLERLAFC



GSDTVGDAEIACIAAKCEALKKLCIKNCPITDVGIESLAQGCPNLVKIKVRKCRGVSGQVVELLKE



RRGSLVFNLDACGIEALDDIRGVQESVMEFPPVNTSDAPSSSNERSMLFRAKLGLFAGRNLVAC



TFRRWSNGEHSTNGNL





237
MAYSFPEEVLEHVFSFIGSDRDRNAVSLVCKSWYEIERWCRRRVFVGNCYAVSPAAVVRRFPE



VRSVELKGKPHFADFNLVPEGWGGYVSPWITTLARAYPWLEEIRLKRMVVTDESLELIARSFKNF



KVLVLSSCEGFSTDGLAAVAANCRNLRELDLRESEVEDMSGHWLSHFPDSYTSLVSLNISCLGS



EVSFSALERLVSRCPDLRSLRLNRTVPLDRLANLLRRPPQLAELGTGVYSAELRSDDFSNLVGAL



AGCRELRSLSGFWDVVPAYLPAVYPLCSGLTSLNLSYATIQSSELTKLISQCHSLQRLWVLDYIE



DSGLEALAACCKDLRELRVFPSEPFNREGNVSLTEQGLVSVSEGCSKLQSVLYFCRQMSNAALL



TIARNRPNMTRFRLCIIEPRCPDYITHEPLDTGFGAIVQHCKDLQRLSLSGLLTDRVFEYIGTYAKK



LEMLSVAFAGDSDLGLHHVLSGCDSLRKLEIRDCPFGDKALLANAAKLETMRSLWMSSCSVSFG



ACKLLGQKMPRLNVEVIDERGHPDSRPESCPVEKLYIYRTVAGPRFDMPDFVWTMDEDSALRP



S





238
MAQYEEDNAEFYVRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDIMIRKEVWLTPAVL



RECRRIISESEIMKEDDSNWPEPDRVGRQELEIVMGNEHISFTTSKIGSLVDVQTSKDPDGLRIFY



YLVQDLKCFVFSLISLHFKIKPI





239
MARRAEEEYDYLFKVVLIGDSGVGKSNLLSRFTRNEFCLESKSTIGVEFATRTLQVEGRTVKAQI



WDTAGQERYRAITSAYYRGALGALLVYDVTKPTTFDNVSRWLKELRDHADSNIVIMLIGNKTDLK



HLRAVATEDAQSYAEKEGLSFIETSALEATNVEKAFQTILSEIYRIISKKPLSSEDAAPANIKEGKTI



VVGESEANTKKACCSSS





240
MAVDCLTSKTSPAMPPQHKDEAREDKKHLVFDASVIRHQPDIPKQFIWPDEEKPCANAPDLAVP



LIDLDGFLSKDPSASEEASRLVGDACQKHGFFLVVNHGVDAGLISDAHKYMDKFFGLPLSEKQR



AQRKLGEHCGYASSFTGRFSSKLPWKETLSFGYSAEKSSANVVEDYFKNTMGEEFEQSGRVY



QDYCEAMSRLSLGIMELLGMSLGIGRDHFREFFESNDSIMRLNYYPPCQKPDLTLGTGPHCDPT



SLTILHQDQVGGLQVFVDNEWRSISPNFNAFVVNIGDTFMALSNGLYKSCLHRAVVNSRTPRKS



LAFFLCPRSDKVVRPPSELVAMSCPRAYPDFTWPVLLEFTQKHYRADMNTLRAFTNWLQQRTS



EPVR





241
MASRRRMLLKVIILGDSGVGKTSLMNQYVNRKFSNQYKATIGADFLTKEVQFEDRLFTLQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVMKSFDNLNNWREEFLIQAGPSDPENFPFVVLGNKVD



VDNGNSRVVSEKKARAWCASKGNIPYFETSAKEGFNVEAAFECIAKNALKNEPEEEIYLPDTIDV



AGGARQQRSTGCEC





242
MLTISDEKLFHNCLLALYLIGPPTFISLRYIQAPYGKHHRSGWGPTISPALAWFLMESPTLWLTLLI



FPFGKNSSNARSLILISPFLFHYFHRTIIYPLRIRSSGGQRSTQPNAANRFPVTVAFMAFGFNLLNA



YVQARWVSNYESDGAAGGWWFWGRFLVGLVIFVSGMYMNMSSDMVLVGLKREGKGYRVPR



GGLFEFVSCPNYFGEIVEWLGWAVMTWSWAGFGFFLYTCANLVPRARANHRWYLDKFGEEYP



KSRKAVIPFLY





243
MAEAKTVHSPLVTYFSMLSLLTLCPPFVILLWYTMVHADGSIVQTFDYLRQHGLQGFLDIWPRPT



AVAWKIIAVYAAFEAALQLLLPGKTVKGPISPAGNQPVYKANGMAAYFVTLITYLGLWWFGIFNPT



VVYDHLGEIYSALIVGSFIFCIFLYIKGHVAPSSTDSGSSGNIIIDFYWGMELYPRIGKDFDIKVFTN



CRFGMMSWAVLALTYCIKQYEQNGKVADSMLVNTILMLVYVTKFFWWEAGYWNTMDIAHDRA



GFYICWGCLVWVPSIYTSPGMYLVNHPVNLGTQLALYILVAGILCIYINYDCDRQRQEFRRTNGK



CSVWGKAPSKISASYTTTSGENKTSLLLTSGWWGLSRHFHYVPEILGAFFWTVPALFNHFLPYF



YVIFLTILLFDRAKRDDDRCRSKYGKYWKLYCEKVRYRIIPGIY





244
MRSTKPLKPLKLAVPAPDAPIASFLTASGTFHDGDLLLNHKGLRLKSEEKESCLSNGKELDLDFS



LEDLETIKVIGKGSGGVVQLVRHKWVGKLFALKVIQMNIQEEIRKQIVQELKINQASQCPHVVICY



HSFYHNGAFSLVLEYMDRGSLADVIRQVKTILEPYLAVVCKQVLQGLVYLHNERHVIHRDIKPSNL



LVNHRGEVKITDFGVSAMLASSMGQRDTFVGTYNYMSPERISGSTYDYSSDIWSLGMVVLECAI



GRFPYMQSEDQQSWPSFYELLEAIVESPPPSAPADQFSPEFCSFVSSCIQKDPQQRSSSLDLLS



HAFIKKFEDKDIDLGILVGSLEPPVSFPRC





245
MDSTTHSFQRRPLSIKLWPPSQSTRIMLVERMTKNLIAPSVLSRKYGLLSKEEAEEDAKRIEESAF



AIANQHMEKEPDGDGSSAVQVYATQSSKLMLEVIKRGPRMKVDGEAILPAKAIAASETVFDISGG



RRAFIDAEEAEELLKPLKAPGNFYKKICFSNRSFGLDAARVAEPFLVSVKDKLTDVDLSDFVAGR



PEAEALEVMNIFSSALEGCNLRSLDLSNNALGEKGVRAFGALLKSQNNLEELYLMNDGISEEAAL



AVCELLPSTEKLRILHFHNNMTGDEGALAISEIVKHSPVLEDFRCSSTRVGSDGGVSLCDALSAC



SRIKKLDLRDNMFGVESGVALSKAIPSFADLTEVYFSYLNLEDEGTEALAIALKESAPSLEVLEMA



GNDITAKAGAVLAACIAAKQFLTKLNLSENELKDEGAILIGKALEEGHGQLVEVDLSTNSIRRVGA



RVLAQAVVQKPGFKMLNINANFISEEGLDEVKDIFKTSPNMLGPLDENDPEGEDFDEEADEEGA



GHEDELEAKLKDLEIKHEE





246
MVKLTMIARVIDGLPLAEGLDDGRDVKDAEFYKQQVKALFKNLSKGQNEPSRMSVETGPYYFH



YIIEGRVCYLTMCDRSYPKKLAFQYLEDLKNEFGRVNGAQIETAARPYAFIKFDTFIQKTKKLYQD



TRTQRNISKLNDELYEVHQIMTRNVQEVLGVGEKLDQVSEMSSRLTSESRIYADKARDLNRQALI



RKWAPVAIVLGVVFLLFWVKSKIW





247
MSYVSSNRKPLLSRKATNDGHAEKSPYFDGWKAYDKDPFHPTQNPSGVIQMGLAEHQLCFDLV



QEWLVSNPEASICTKKGVDKFRDIALFQDYHGLPAFRNAVAKFMGRVRGDKVKFDPDRIVMSG



GATGAHEMITFCLADPGDAFLVPTPYYAGFDRDLCWRTEARLLPVVCHSSNNFKVTRKALEEAY



AKAVEANISVKGLLLTNPSNPLGTILDRDTLREAMSFINEKNIHLICDEIYAATVFRQPDFISIAEIIEE



DQEYNRNLVHIIYSLSKDMGFPGFRVGIVYSYNDAVVECGRRMSSFGLVSSQTQYLIASMLSDD



QFIGKFLLESAERLETRHKNFTDGLHQVGIKCLNGNAGLFLWMDLRELLMESTVEAETALWRGII



NEFKLNVSPGSSFHCSEPGWFRVCIANMNEETMKVALARIREFVRRNGDKLNRKEKCRQSDLR



LRLSFRRMDDVLRSPCIMSPHSPIPQSPLVRTRT





248
MATLVEPPDGVRQRGKQYYSMWRTLFEVDAKYVPIKPIGRGAYGVVCSSINRETHEKVAIKKIHN



VFENRIDALRTLRELKLLRHIKHENVIALKDVMLPVHSASFREVYLVYELMDTDLHQLIKSPQPLSN



EHCRFFIFQLLKGLKYLHSANVLHRDLKPGNLLVNANCDLKICDFGLARTNQGDGQFMTEYVVT



RWYRAPELLLSCDNYGTSIDVWSVGCIFAEILGRKPLFPGTECLNQLRLIIDTLGSQGEEDIEFIDN



RKARRYIKALPFSRGTHFSQLYPQADPLAVDLLQRMLVFDPRKRITVTEALQHPYMAGLYDPRG



NPPAQYPINLDIDDSMEQHMIREMMWNEILHYHPHQYASLHG





249
MGQQSLIYSFVARGPVLLAEYTEFSGNFTSVASQCLQKLPATSNKFTYNCDGHTFNYLVDDGLT



YCVVAVESVGRQIPMAFLERIKEDFTHRYDAGKAATASANSLNREFGPKLKEHMQYCVDHPEEI



SKLAKVKAQVSEVKGVMMENIEKVLDRGEKIELLVDKTDNLRSQAQDFRQQGTKMRRKMWLQN



MKIKLIVLGIIIALILVIVLSVCHGFNCGHK





250
MADVAGLTEAAGSRFSSLELIGRGSFGDVYKAFDKELNKEVAIKVIDLEESEDEIEDIQKEISVLSQ



CRSPYITEYYGSYLHQTKLWIIMEYMAGGSVADLLQSGPPLDEMSIACILRDLLHAIEYLHTEGKIH



RDIKAANILLSENGDVKVADFGVSAQLTRTISRRKTFVGTPFWMAPEVIQNSDGYNEKADIWSLG



ITAIEMAKGEPPLADLHPMRVLFIIPRENPPQLDEHFSRSIKEFVSLCLKKVPAERPSAKELLKHRF



IRNARKSPRLLERIRERPKYPTVEDGETPMIGKGVVEGSDTVKIRRDIKGEETVRASNQGRGGKN



TGWDFSIGGVQGTGTVRTNLLPPQVRERKSENSHNQATPRRVADGGNSWLSASGNSPQAAEI



SLRKDARDLHYNNHHDDEDSSLSGSGTVVVRTPRESQPSPLLRDQSTLSSSSYSSVEDASTTG



TVVFRGQHDESDSPRTPKSRLGIQERSSSASLEDSAANLAEAKAAMQGAFKRGNAREKRSVLG



KFNDGQENGNREQLTKSPDSSRNSYEYFDAHKVLPRSRQASDDEDIAKILSSSAPLSVLLIPSLK



ETTGDDSDGPVVHAVSTSLTNLERMKPGSCEVLISKLLQRLASSKESSLKDLQDLATHTFSKGKI



SPEKSGNANTEADNRKKQQNKEFNSNANLSPLARFLLSRWQGQVSRDLNPT





251
MSQKGLIYSFVAKGTVVLAEHTQFSGNFSTIAVQCLQKLPSNSSKYTYSCDGHTFNFLTDSGFVF



LVVADESVGRSVPFVFLERVKDDFMQHYSASIASGDPHPLADDDEDDDLFQDRFSIAYNLDREF



GPRLKEHMQYCMSHPEEMSKLSKLKAQISEVKGIMVDNIEKVLDRGERIELLVDKTENLQFQADI



FQRQGRQLRRKMWFQNLQMKVVVAGAVVIVIFLLWLIAKWGSK





252
MEGEEEQKPAATKRRKPRSGAPSSAPINNLDDGCLMHIFSFLSPIPDRYNTALVCHRWCYLACH



PRLWLRVDRSVKDSSEPGVFPNIELAVSAARPGDTILIAAGGSHVASNIQIKKPLCLIGGGELPDE



TMLLCSRGSDSALEFLSTCKLSNLTVKAELGCCLLHRSGRLIIDGCILQCETDPLDYLSCPIVSTAT



GSKVVSSPNGCHGDGVSVSRTRIEGGAKAVLTSGDLALQRVRVICARTSMFFWFDVECPS





253
MGQSSSSTAPALGGRGADPDPDPDPDDGHSAAKSKAVIWPVLGEAAAEECAAPDLSLSISDLP



DECLACVFQYLGSGDRARCSLVCRRWLAVEGQSRQRLALHAQSELLEAVPALFARFDSVSKLA



LKCDRKALSIGDDALVLISLKCRNLTRLKLRGCRALTDTGIAVFTSNCRGLRKLSCGSCAFGAKGL



NAVIDHCASLEELSVKRLRSPTEGAAAEPIGPGAAAASLKTICLKELYNGQGFGPLIIGSKNLRTLK



LVKCYGDWDTVLQVMVERVAKLVEIHLERIQVSDFGIASLSNCSDLEILHLLKTPHCTNLGLISVA



ERCTLLRKLHIDGLKLNRIGDDGLIAVAKRCPNLRELVLIGVNPTELSLDLLGSNCLTLERLAFCGS



DTVGDAEIMCIAARCVALKKLCIKNCPVSDEGMKALASGCPNLVKLKVKKCGGVTSEGAAWLRM



RRGSLALNLDSSDQEQIDAFASDGGGEENHVEFPPVPSQTAGANIASSSGTSRSSSFKSRLGSL



RGKSLMACTFRRWSSGSKDS





254
MGEESFIYSFVARGTMILAEYTEFTGNFPAIAAQCLQKLPSSNNKFTYSCDHHTFNFLLEDGYAY



CVVAKESVAKQISIAFLERVKVDFKKRYGGGKADTAVAKSLNKEFGPIMKEHMKYIIEHAEEIDKLI



KVKAQVSEVKSIMLENIDKAIDRGENLTILADKTENLRDQAQAYKKQGTQIRRKMWYQNMKIKLV



VFGILLFLILVIWLSICHGFDCSN





255
MAGGYRADDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFATRSIRVDDKVVKA



QIWDTAGQERYRAITSAYYRGAVGALLVYDVTRHVTFENVERWLKELRDHTDSNIVIMLVGNKA



DLRHLRAVSTEDATAFAEKENTFFMETSALESMNVENAFTEVLTQIHRVVSRKALEAGNDPGAL



PKGQTINVGSKDDVSEVKKVGCCSS





256
MAELAGDLPGELVTEILDRLPVESLLRCRSVSKRWRGIIDSREFVRSHLARSFESTANLTLFFRHS



SSLYCIDLTSLLRHGGVAEMNYPLMCYSDQIRVLGSCNGLLCISNAADDVVVWNPATRKHKFLP



YSAVEVRRSSVFSVCVYGFGYDERRDDYVLLRLVQLVTEPIESEVSIYSLKDNAWRRLKDMPYS



LVYPRKMGVFVCGHLHWIMTRELVSDSANLLVAFDFRIEDFKVVDQPEGIDNKLDMDLSVLGGC



LCLSINGNHMGVHVWIMKEYGLRDSWTKLFSIPQSEVARPLGFVRPLAYASNGRQVLVRQDSK



NLILYDLETKGMERVDINGMPNSFEAEICLRTLVSVDDYGGYTKKKQQEAEEIENRTKRDDFLSV



GFKLVL





257
MADTATRAIPPRMEFSDEAAAGGAAAPAAAAAAAEEEEEEEEAPSPAAEISEVEKSKIGIMRAVV



ERDDPSAKDVDDFMIRRFLRARDLDIEKASKLFLKYLSWRRSFVPNGVISASEVPNNLAQRKLFM



QGLDKKGRPIIVVYGGRHNPSKGSLEEFKRMILLRMPGGQEKFMGIADLEGWGYKSSDIRGYLA



ALSILQDCYPERLGKLFLIHVPYIFMTAWKMVYPFIDPKTKKKIVFVDNKKLRTTLLGDIDESQLPD



VYGGRLPLVAIQDS





258
MAARLFSSLLSRSSSAASSSSSSSSARALLSRARKPLLGREIKSYSTAAAIEEPINPGVTVNHTQL



FINGQYVDSASGKTFPTFDPRTGEVIAHVAEGEAEDINRAVAAARKAFDEGPWPRMTAYERANV



LFRFADLLEKHNDEIAALETWDNGKPYEQAAKIELPMIVRQIRYYAGWADKIHGLTVPADGQYHV



QTLHEPIGVAGQIIPWNFPLLMYAWKVGPALATGNTVVLKTAEQTPLSALYATKLLHEAGLPPGV



LNVVSGFGPTAGAALSSHMDVDKLAFTGSTDTGKIVLELAAKSNLKPVTLELGGKSPFIVCEDAD



VDKAVELAHFALFFNQGQCCCAGSRTYVHESIYEEFVEKAKARATVRSVGDPFKSGIEQGPQID



SEQFQKILRYIRSGVEGGATLETGGERFGTKGHYIQPTVFSNVKDDMLIAKDEIFGPVQTILKFKD



LKEVIQRANNSRYGLAAGVFTQNIDTANTLTRALKVGIVWVNCFDVFDAAIPFGGYKMSGHGRE



KGVYSLSNYLQVKAVVTSLKNPAWL





259
MSSSSSSGGGGGGAKLPHDVAVEILKRLPARSLLRFRCVCRSWRSAIDDPRFVALHWSHSALH



ASSRHLACLDCGDDAVQNRCSLFPNAPLALPPPPSQIEIPFVAPPNRYALVGSCNGLICVSESSS



DGTERALYFWNLFTRKHKAVRLPRPERMPPFSVGGAHVVLGFCFDAKSNDYRVVRIIRYLGIRR



RRFRNKKPRVEVYSFRTDSWKTLECEVPLLCDSAVFLNGNLHWYSFNGEGDGYGSIVLFNVAD



EVFDEIALPEGISPHFVLSVTVLNESLAVFFSHREACFVWVMKDYGVPESWSKLYTFEVTEPVTG



FDGFTWNGELLMEINCEERVSWNPITAQLSILPLSARYKLVPVVESLVPP





260
MDAAPLTSQRRPFSVKLWPPSKNTRETLVERMTRNLTSESIFTRKYGSLSPEEAEENAKRIEDE



AFTTANQHYEKEPDGDGGSAVQLYAKECSKLILEVLKKGPKGKDEKPPTSDSAKAPRETFFDISK



GQRAFIEAEEAEELLRPLKEPENSFTKICFSNRSFGLGAAHVAEPILISLKQQLKEVDLSDFIAGRP



ETEALEVMSIFSAALEGSVLNSLNLSNNALGEKGVRAFSALLKSQSQLEELYLMNDGISEEAARA



VCELIPSTEKLRVLHFHNNMTGDEGAIAIAEVVKCSSLMEDFRCSSTRIGSDGGVALSEALENCIH



LKKLDLRDNMFGVDAGVALSKALSKHTNLTEVYLSYLNLEDEGAIAIANVLKETASSLTVLDMAG



NDITAEAAPTLSACIAAKNLLTKLNLAENELKDEGAIQIGKALQEGHEQLTEVDLNTNSIRRAGARF



LAQVVVQKPGFKLLNIDGNFISEDGIDEVKSIFKKSPEMLASLDENDPEGGDEDEEDEEGEAEGE



ADEGELESKLKNLEVGEE





261
MALVRERRQLNLRLPLTDLPNRRPLFPPPLSLPLPPSAAAAASATAAAGSGAAATSLSDLESLGV



LGHGNGGTVYKVRHRRTSAVYALKVVHAGCDATVRRQVLREMEILRRTDSPHVVRCHGIFEKP



NGDIAILMENMDAGSLQTLLEASGTFSEKQLAAVARHVLNGLHYLHSLKIIHRDIKPSNLLVNSAM



EVKIADFGVSKIMCRTLDACNSYVGTCAYMSPERFDPDSYGGNYDGYAGDIWSLGLTLLELYLG



HFPLLGPGQRPDWATLMCAICFGEPPKSPDGSSEEFRSFVECCLQKESSKRWSVAELLNHPFIA



GGKDPAGSL





262
MVSAAQAAGGSLSLSLSLRDREILTSVNSVASSFSLLGSGFIVLCYLLFKELRKFSFKLVFYLALS



DMLCSFFNIIGDPSIGFFCYAQGYTTHFFCVASFLWTTVIAFTLHRTVVRHKTDVEDLEAMFHLYV



WGTSVVMTIIRSIGNDHRHLGAWCWSQTGRTGKAVHFITFYAPLWGAILYNGFSYFQVIRMLNN



ATRMAVGMSDRAYHLDARPDMKALNRWGYYPLILIGSWTFGTINRIHDFIEPGHKIFWLSLLDVG



TAALMGLFNSIAYGLNSSVRRAIRERLDLVTWPETIRPWLPNSSRIRHQQQESELVSLKSQDPH





263
MAGLSDDLITKILDRFPKESLIPFRCVSKQWRRLIDDRFFRKSLLYLVPMYSSSLYRIGLRRLGDL



VEIENPFESEQIVLLGSCRGFLCIYNEIDGQIAIWNPSTRSCQLLPPADAEIAHRLGPPACVYGFG



YDYWNDEFVLLRLVQTMEDPILSVSIYRSRGSVWRRLQGIPPYSLVEPRTMGVFLRGRLHWIMR



RDPMQNSAIVLVAFDIHTENSVEVQQLNFIDNRLPMYLAILEGGLCLIINDERGGVSAWIASEYGS



EESWARLFSIADYSMGRVLLQPLAYSQNGRQVLLLYRETLVWYDLDTGDVENINSMLSISNTPIV



GDYLGSRRRRLQGAWRQLEGMSYSLGNACKRGIFLHGRLHWIMTLQLVLNSTKVLVAFDIRSD



KFMEVSELNFIDNRLNMDLTLLGGCLCLIIYGEQRGVHAWIMREYGLNRPWYMLFSMPGHSRPL



LAYSQNGRQVLVAVGGKTLVWYDRVWYDLHTGGVKKFGKRGMPSSYEAEIYLRTLVPVGKPPI





264
MAGGEAFSSNPPPPKPAILGNNSKTINAKLVLLGDMGAGKSSLVLRFVKDQFFDFQESTIGAAFF



SRTVGVNDASVKFEIWDTAGQERYHSLAPMYYRGAAAAIVVYDITSTESFERAKKWVEELHKQG



NPNLIITLAGNKTDMEDKRKVAAEEACMYAEERRLVFIETSAKTATNVSKLFYEIAKRLPRVQAMQ



NSAPAGMVLADTSSEETRSASCCS





265
MEIPMIDLSELDGKNRSKTMALLHHACEKWGCFKIKNHGVDPELMEKVKHFVNTHYEENLKASF



YESETAKCLENANGATSDLDWECTFFIWHRPKSNIEDFPNLSNDLRKTMDEYIAQLVKLAENLSE



LMCENLGLGKDHIKRAFSGKDGPSVGTKVAKYPECPYPEKVRGLREHTDAGGIILLLQDDQVPG



LEFLHDDQWVPIPPSTNDTIFVNTGDQLEVLSNGRYKSVWHRVMAVESGSRLSVATFYNPAGD



AIISPAPKLLYPEKYTFGEYLKLYATTKFQEKEPRFESMKSVMSNGYNGVV





266
MATVPQEAINELQALMDRVDEPLMRTFENIHQGYLKETLVRFLKAREGNVAKAHKMLLDCLKWR



VQNEIDIILSKPIIPDDLYRAVRDSQLIGLSGYSKEGLPVYAIGVGLSTFDKASVHYYVQSHIQINEY



RDRVILPSASKRYGRPITTCLKVLDMSGLRLSALSQIKLLTIISTVDDLNYPEKTNTYYIVNAPYVFS



ACWKVVKPLLQERTRKKVQVLPGCGRDDLLKIMDYSSLPHFCKGEGSGSGRHTSYGPENCYSL



DHPFHQQLYSYIKEQSQRRQPIQPIKQGSFHVALPEAAAEGTEIAKTIESELQKFENGSGMPDSL



DGLKINGE





267
MARAGNKNIQAKLVLLGDMGAGKTSLVLRFVKGQFHEYQESTIGAAFFTQVLSLNEATVKFDIW



DTAGQERYHSLAPMYYRGAAAAVVVYDLTSMDSFQRAKKWVLELQRQGNPKLIMFLVANKADL



EQKRQVLSEEGEQYAKENGLSFLETSAKTAQNVNELFYEIAKRIAKATPSRPTGMKLQRQESRR



SLFCCSG





268
MSTLSEDDETEILLRLPVKSLLKFKSVCKPWNSLISSPYFAKTHLQISASSPRILLATNPPLSVSCE



SLHDDDRAGHEGTPLTQLRPPVEAPDGCRPRIVGYCDGLVCLEYDDHRIVVLWNPATGESRNIP



NASCSYNRPTICGLGYDPSTDDYKILRHCSVADAYGFPEYSVPDVFALKTGSWRRVHDKHDEFN



YWPEAGTYANGFLHWLVVGRDPWEHKKIVSFSMSKEKFEDALLALPEANEGTGFRVLGVAGEC



LLIYKSMAEVDTFMAWMMSDYGVRSSSSWMELCSVTLPNQTLNTYFYMRPLCSTRAGKIAFSSI



GTTRLSMILRNVMTKWFVKEDKLDFVVYVESFVSPHGAKLQNQYVSRVKEPMERSDFIGDHSVF



KEGETSYKKANSHLSSKRRKAS





269
MEIFPVINLEKLNGEERGVTMEMIRDACENWGFFELVNHGISHELMDTVERLTKGHYKECMERK



FKEMVASKGLEAVQSEIGDIDWESTFFLRHLPVSNISEVPDLKEDYRKVMREFALEIEKLAEQLLD



LLCENLGLEKGYLKKVFYGSKGPTFGTKVSNYPPCPNPELFKGLRAHTDAGGIILLFQDDKVGGL



QLLKDGKWIDVPPLRHSIVINLGDQLEVITNGKYKSVEHRVIAQSDGNRMSIASFYNPGSDAVICP



APALLKKEAGEEGQAYPKFVFEDYMKLYARLKFQAKEPRFEAMKATESTIARGPIATA





270
MQVSQPARPSDPIYRRDDHLSQACKDLVSSLPSEEGWVATSFCLYQGFWFPTWLFNGVLACQ



NHFQAQPSDILLVTNPKSGTTWLKAILFALLNRAKYSDSDSKQRHPLLTQNPHDLVPFLEVKLYL



QQENPDLTTFESPRLFATHLPYSSLPGSVRDSRCKLVYLCRNPKDMFISLWHYVNKRRAEEKG



QIPLPKCLDKFCRGLSPYGPYWDHVMGYHKASLEMPEQVLFLMYEELKEDPRVHVSRLADFLG



CPFSDEELRDGTVEGIMRMCSFDNLSSLEVNKSGKLWTGQENQWFFRRGKVGDWVNYLSAE



MADKIDQVMEEKLRDSGLNFQYK





271
MDPTKKPRESSSSTASAAAAEFPDEVLERVLALLASHKDRSAASLVSKAWYHAERWSRTRVFIG



NCYSVTPEIVAGRFPKIRSVTLKGKPRFSDFNLVPQNWGADIRSWLTVFAERYPFLEELRLKRMT



VTDESLKFLALKFPNFKALSLMSCDGFSTDGLAAIATRCRNLTELDIQENGIDDISGDWLSCFPEN



FTSLEVLNFASLNSDVDFDALERLVSRCNSLKVLKVNRTISLDQLQRLLVRAPRLTELGTGSFLQE



LNAHQYSELERAFGGCKTLHTLSGLYEAMAPYLPVLYPACANLTFLNLNDAALQNEELAKLVVH



CPCLQRLWVLDTVGDEGLGAVARSCPLLEELRVFPANPFDEEVNHGVSESGFLAISYGCRRLHY



VLYFCRQMTNAAVATIVQNCPDFTHFRLCIMNPGQPDYLTNEPMDEAFGAVVKRCTKLQRLAVS



GLLTDQTFEYIGTYAKNLETLSVAFAGSSDRGMQCVLRGCPKLRKLEIRDCPFGNAALLSGLEKY



ESMRSLWMSACKVTMNGCAVLARERPRLNVEVMKDEESSDGQAYKVYVYRTVAGPRRDAPPF



VLTL





272
MSSSAVQFAAASRDGHENNGGGGGDSSGERLDPTAVLLPVDPGAPDLSLPRETFLRAALSLKD



QVVQATWREGGAADPTAYTGLLGTAFLCLRSYAATGDRGDLLLSAEIVDACASAARASTRHVTF



LCGKGGVFAVGAVVANLLGDHHKRDFFLNLFLEVAQERALPVGPEEGGFGMSYDLLYGRAGFL



WAALFLNKNLGEETVPNNVLMPIVDAVLAGGRAGASDIATCPLMYRWHGTRYLGAANGLAGILQ



VLLHFPLCEEYLEDVKGTLRYIMSKRFPHSGNYPSSEGNPRDKLVQWSHGATGMAITLCKASQV



FPHDRDFRDAAIEAGEVVWKNGLVKKVGLADGISGNAYAFLSLYRLTGERIYEDRARAFASFLYH



DANKPVGTGHGHVADYAFSLYQGLAGAACLWFDLVDAENSRFPGYEL





273
MQILPSPEESITCSGPHYDRAKEAKEFDETKAGVKGLIDSGMAKVPRLFIHPPQNLRDLSSDTEG



SATDLKVPIIDMMGCQDSQLRRDVVDDLRRASETWGFFQIINHGIPVDVMDGVLEAVKQFHEQP



EGVKGEWYSRDDARKFRYYSNGDLFWSKAATWKDTLLFDFPFGEPDREAVPLLFRETVFEYEK



HVEKLKGSLSELLSEALGLDSGYLGDIECMDSKRIVSHYYPTCPEPELTLGTINHSDATYLTLLLQ



NHNGGLQVRHQNQWVDVSPVPGAILVIIGDFMQLVSNDKFKSVEHRVLARRAGPRVSVLCFLFP



GETRKSKPYGPIKELLDENNPPMYRETSFTEYFGYYLSSGNGLNGESVLPHFRVSEPK





274
MLKKLASGIFISSLLITVSVADNGFPRCNCDDEGSLWSVESILECQRVSDFLIAVAYFSIPIELLYFI



SCSNIPFKWVLFQFIAFIVLCGLTHLINGWTYAHHPFQLMVALTVFKILTALVSCATAITLITLIPLLLK



VKVREFMLKKKAWDLGREVGIIMKQKEAGLHVRMLTQEIRKSLDRHTILDTTLVELSKTLGLQNC



AVWMPNNGKTEMNLTHERGRNYSGTYHIPIPITDPDVVSIKQSDQVHILRPDSELATASSVGPGE



SGPVAAIRMPMLRVSNFKGGTPELHPACYAILVLVLPGGEPRSWSNQELEIIKVVADQVAVALSH



AAILEESQLMREKLEEQNRALQQEKRNAMMASQARSSFQKVMNDGLKRPMHTISGLLSIMQDE



SLNADQKIIGNAMARTSAVLANLINDVVNMSTKNSGRFPLEVRSFSMHDMIREAACLAKCLCIYK



GFSFELDIDRSLPNNVMGDERRVFQVILHMIGNLLNDSNQGKLVTLRILREKASGSQGRYDRGW



VTWRSESTDRGVRIKFEVGISDDISLLERSVSTIQLGGRKYNSDGVEEDFSFSICKWLVQLMQGN



IWVVPNTQGFAQSMTLVLRFPLRESISVTISEPGPSPDYTLSNSVFTGLKVLLVDSDDANKAVTR



KLLEKLGCKVSTASSGFECLGALRPSESSFQIVLLDLHMPSLDGFEVANKIRQFHSSTNWPVIVA



LTTSGDDIWERCLQVGINGVIRKPVLLHGMANELRRVLLQPSKTLL





275
MAGYRAEDDYDYLYKVVLIGDSGVGKSNLLSRFTKNEFNLESKSTIGVEFATRTLTVDGKVVKAQ



IWDTAGQERYRAITSAYYRGAVGALLVYDVTRHATFENVDRWLKELRNHTDPSIVVMLVANKSD



LRHLIAVSTEDGKSYAERESLYFMETSALEATNVENAFAEVLTQIYRTTSKKTVEGDDGSAAAFP



SQGEKINIKDDVSALKKVGCCST





276
MQPSQPPPLNENYLRDDVKSQECEDLHSSLPSEEDWVPTSLPSEEDCVPSTLRLYQGFWFPS



WVLNSVVACQNHFQAHPSDILLVTSPKCGTTWLKAILFALLNRAKYSDSNSQKRHPLLTQNPHD



LVPFLEFRLYLQNKNPDLTAFASPRLLATHLPYSSLPRVRDSNCKLVYLCRNPKDTFISMWHYF



NKLRPEEKGQLPLPEGLDKFCRGVNWCGPYWDHVLGYHKASSEMPEKVLFVKYEEMKADPSV



QVRRLADFMGRPFSEEELRNGTVEGILRMCSFDNLSALEVNRSGKLPSGLEKKWFFRKGEVGD



WVNYMSAEMGEQIDGVMEEKLHGSGLKF





277
MAILYAVVARGTVVLAEFSAVTGNTGAVARRILEKLPSEADSRLCFSQDRYIFHILRSDGLSFLCM



ANDTFGRRIPFSYLEDIQMRFMKNYGKVAHFAPAYAMNDEFSRVLHQQMEFFSSNPSADTLNR



VRGEVSEMRTIMVDNIEKILDRGDRIELLVDKTATMQDGAFHFKKQSKRLRRALWMKNAKLLALL



TCLILVLLYIIIAACCGGITLPNCRS





278
MTGTMIGVTNANEQQALDRAQEVRQFEDSNLGVKGLLDSGLSTLPPMFIHPPDLLSSLKPVVGL



KTDSIPIIDLSGSNSDRRPSVIEEVARAAREFGFFQIVNHGVPTEVLGQTIAAVKAFHEQPAEVKA



RIYRRESETGVAFFASSVDLLHSNVACWRDSLRIRSGPVLPDEEEIPEVCRNEVMEWNQQTQHL



GVLLMGLLSEGLGLSPSKLQDMTCVEKRNMLGHYYPYCPQPDLTVGLKPHTDKGVITVLLQDQV



GGLQVKHGEAWLDVTPSPGVLIVNIGDLLQIMSNDEYKSVEHRVLANPGPEPRLSVAVFYYPLE



CENQIGPIPELVSPEKPAAFRQFKLGEYLKRFQTEVLDGKTLKNHFKT





279
MVVASPNPRRAEKIQAVELPAIDLSPSGRSAAPRLIVEACERYGFFKAVNHGVPAEIVSRMDEAS



AGFFARPASEKRLAGPADPFGYGSKSIGFNGDVGEVEYLLLESDPAFVSRRSASISDDPTRFSA



AVNVYIEAVKDLACDILDLMAEGLGVRDTSVFSRLIRAVDGDSVFRINHYPQCAVLHGEVGFGEH



SDPQILTVLRSNNVGGLQISLEDGVWTPVPPDPAAFWINVGDLLQAMTNGRFSSVRHRAVTNPF



RSRTSIAFFGAPPLDARIAPQRELVTPRRPRLYNPFTWAEYKKAAYSLRLGDKRLDLFKACREDG



GIDL





280
MYRIQAGSAAAAGVEPGYCVETDPTGRYARFEEILGKGATKTVYKAIDEVLGMEVAWNQVKLND



SFRSPDEYQRLISEVHLLSTLNHDSIMKFHTSWVDVDGTAFNFITEMFTSGTLRNYRKKYPRLHI



RAIKNWAVQILHGLVYLHSHDPPVIHRDLKCDNLFVNGHLGQVKIGDLGLAAILHGSRAAHSIIGT



PEFMAPELYDENYNELVDVYSFGMCVLEMLTCEYPYIECTNPAQIYKKVTSGKLPEAFYRIKDSK



ARKFIGKCLANVSCRVSARELLHDPFLLSDEGDRLPGLKFKMPEPFLNGRDVDNLRARDNPLRT



DMMITGKLNPEGDTIFLKVQIADRNSARNVYFPFDVLNDTPIDVAKEMVKELEIMDWEAEEIADMI



GGEISALVPNWTKQDMTDYNQENDDGFAPPFLSFSSGSSSQASPSGFTAYRENEIASDYGCLQ



DVPDDMSSPSSIHSGTYSHTSYFCPEDQEVNPGPSNPDQHLISRSNRHTRFCADDYQRPRQFK



DRSQTLQCQVLTGSDRDSSSVINRRMAGHRLSRNRSLVDVHSQLLHLSLLEEVSKRRLSRTVG



EVENIGFQAPFEISRNAPWIGGSSFISSSRNKKGHRIQNRRN





281
MDAGYLFKEETSLYNRIVLGSLLPASAWEPMPRLLQTWLRNYIGGTLIYFLSGFLWCFYIYYLKR



NVYVPKDEIPTRKAMLLQIYVAMKAMPWYCALPTLSEYMVENGWTKCFSRISDVGWLAYLVYLS



IYLVMAEFGIYWMHRELHDIKPLYKHLHATHHIYNKQNTLSPFAGLAFHPLDGILQAVPHVMALFL



VPTHFTTHIALLFLEAIWTANIHDCIHGKLWPVMGAGYHTIHHTTYRHNYGHYTIWMDWMFGTLR



DPIDDGSKKEM





282
MAHQQLCSQSAIAGTEEHERKETDELIASLPQRKGAVRPFQCLYQNFWSPIFVLPNVITFQRHFE



AKHKDIVLASQPKSGTTWLKALVFSIVNRFRFGISNTPLLTSNPHELVPFFEFQLYGSKLRPNLDG



LAEPRLFATHIPYPSLPECIKRSECQIIYICRNPLDTVVSSWHFFLEKARLEDQPEWSLEEHFETY



CQGTISFGPFWDHIMGYWKMSLEWPSKVLFLKYEDLKEDTVVHLNRVAEFVGLPFTEEEEEAG



VIEEIAKMCSLKTLKDLEVNKSGKVALTIEFEKRSFFRKGEVGDWVNHLTPSMVDRLNSIIQEKMS



PFGLEFKTC





283
MPESREDSVYLAKLAEQAERYEEMVENMKRVASSDQELTVEERNLLSVAYKNVIGARRASWRI



VSSIEQKEESKGNEAQVSMIKGYREKIEQELAKICEDILEVLDKHLIPSAASGESKVFYHKMMGDY



HRYLAEFATGDKRKDSADKSLEAYKAASDVAVTELPPTHPIRLGLALNFSVFYYEILNSPDRACH



LAKQAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQDSADKPADTKEEAGDAPAED





284
MSSSSSGGDGGGGPKLPHDVAVDILKRLPARSLLRFRCVCRSWRSAIDDPRFVALHLSHSALHA



SSRHLACLDCGEDAVQNRCSLFPNAPLALPPPPLQIEIPFVAPPNRYALVGSCNGLICVSESSSD



GTERALYFWNLFTRKHKAVRLPRPERMPPLSVGGAHVVLGFCFDAKSNDYRVVRIIRYLGIRRR



RFRNKKPRVEVYSFRTDSWKTLECEVPLLCDSAVFLNGNLHWYSFNGEGDGYGSIVLFNVADE



VFDEIALPEGISPHFVLSVAVLNDSLAVFFSDGEACFVWVMKDYGVPESWSKLYTFEVTGPVTAF



DGFTWNGELLMEINCEERVSWNPITAQLSILPLLARYELLPVVESLVPP





285
MPSRRRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLTKEVQLDDRLFTLQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVMKSFDNLNNWREEFLIQASPSDPENFPFVVIGNKIDV



DGGNSRVVSEKKARAWCASKGNIPYFETSAKEGVNVEEAFQCIAKNALKSGEEEEIYLPDTIDVA



NSSQPRPSGCEC





286
MAHLNQFVGRTANLCLCVQQNSRLPYLSGVPSVEDLKYRLMGPSDQIRVLGSCGRLCIIDVADEI



NVWDPSTRQSMPLPHSAVEIRRPSALPICVYGFGCDVRNGAFKLLRLIQLATGQRRSEVSIYNMI



DQNWRRLPEIAYNLVYPDKMGVFAYGRLHLTVTPERLACSPAKLLLAFDCHTEEFEEVELPDNID



KKRDMVVAVLDGRLCLSIDRIDMFADVWILRVYGSQESWAWVFSIPKYDDDRIPRFVWPLACSE



DHHHVLVRKDNKDVVWYDLHARYINRVDIRGMPSSFKDAYVM





287
MGAWLGCILGLIPLLGCCLWWWNEIRYVWPVKRRCSGTNAKLPPGHMGFPFFGELFTFLWYYK



ILRRPDEFINSKRKKYGDGVGMYRTHLFGSPSIIACVPSVNKFVFRAEDTFIAQWPNVDIMGTNSL



GAVHGKAHDRLRSFVLNAVNRPDALRRIAALVQPRLVSALELWAQKGRIVAFHETKKVTFENIGK



LFVSFEPGPQLEKIDGLFHDMLKGMRAQRLNFPGTAYRCALQARKKVEAIFRVELEERKSRSEE



TVTDLMDELRQIKDEEGRKLSDQEVLDNIVSFVFAGYESTSLASMWAIYYLAKSPNVLKKLREEN



TSVSQNKKGEFITSEDISNMKYTKKVVEETLRMANISHFLFRLVTKDIEYKGYRIPKGWKVILWLR



YLHTNPENFDDPMCFNPERWNDSVKPEAYQVFGGGSRICPGNMLARIQLAILLHHLSVEYKWEL



INSDAGFVYLPHPAPVDEVEVSFSKL





288
MVVPSKLAIEQFSYVMNSNALSSHQIPVVDLSKPDSKSLIIKACEECGFFKVVNHGVPLDFISRLE



EEAVKFFSLPLPEKERAGPPDPFGYGNKMIGRNGDVGWIEYLLLTTDPNFNYRKLPSAFNENPE



RFRSALSDYTSAVRYMACEILELMADGLRIQQRNIFSKLLMDEQSDSVFRLNHYPPCPELQSYVD



RNMIGFGEHTDPQIISVLRSNNTSGLQISMKDGTWVSVPPDQNSFFINVGDSLEVMTNGRFRSV



RHRVLANTSKSRVSMIYFGGPPLSEKIAPLPCLMKGKESLYKEFTWFEYKKSAYNTRLADNRLE



HFQRVAAS





289
MAVYIFLALGVVLVLCVCTALLRWNEVRYMKKGLPPGTMGWPVFGETTEFLKQGPNFMKNQSA



RYGSFFKSHILGCPTIVSMDPEVNRYILMNEAKGLVPGYPQSMLDILGKRNIAAVHGASHKHMRG



ALLSLVSPTMIRDQLLPKIDRFMRSHLARWDDGSIIDLQDKTKQMALLSSLMQIGIDSSSISQEFIP



EFFKLVLGTLSLPIDLPGTNYRRGFQARKNILGMLRKLIEERRASQEAHNDMLGCLMRSDDNKYK



LNDEEIIDQIITIMYSGYETVSTTSMMAVKYLHDNPSVLHELRKEHLGIRAKKRPEDPIEWDDLKA



MRFTRAVIFETSRLATVVNGVLRKTTKDMELNGFLIPKGWRIYVYTREINYNLRLYPDPLAFNPW



RWLDKSVECQNYNLIFGGGTRQCPGKELGIAEISTFLHYFVTRYRWEEIGGDKLMKFPRVEAPN



GLHIRVSPQC





290
MSAEKERESHVFMAKLAEQAERYDEMVQSMKDVAKLDLELSVEERNLLSVGYKNVIGARRASW



RIMSSIEQKEEAKGNEQNAKRIRDYRQKVEDELCRICNDILSIIDDHLLPSSTSGESTVFYYKMKG



DYYRYLAEFKSGNERKEIADQSLKAYEAASNTAATDLPPTHPIRLGLALNFSVFYYEIQNSPERAC



HLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWSSDLEDLGGDDQPKGEEAKVEDGEP





291
MSARRRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLTKEVQFEDRLFTLQERFQS



LGVAFYRGADCCVLVYDVNVLKSFDNLNNWRDEFLIQASPSDPENFPFVVLGNKIDVDGGNSRV,



VSEKKARAWCASKGNIPYFETSAKEGFNVEAAFQCIAKNALKNEPEEEIYLPDTIDVNAGRPQRT



SGCDC





292
MSARRRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLTKEVQFEDRLFTLQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVLKSFDNLNNWRDEFLIQASPSDPENFPFVVLGNKIDV



DGGNSRVVSEKKARAWCASKGNIPYFETSAKEGFNVEAAFQCIAKNALKNEPEEEIYLPDTIDVN



AGRPQRTSGCDC





293
MKRASYGCISDEALECVMGHLEDPRDRGSVSLVCKKWYDVDAFTRKHVTVAFCYSIHASDLTR



RFTRLESLTVKGKPFRAAMYNLLPHDWGGYAKPWIDQISFTCLCLKALHLRRMIVTDDDLTTLVRG



RGHMLQELKLEKCSGFSTRGLEEVAHGCRSLKILMLDESQIEEESGDWLHELALNNSSLEVLDF



YMTTLEMINTSDLELIVTNCPSLTSLKVGECDIVEMRGVLSKATALEEFGGGTFNNSEEHATETS



MITFPPKLTSLLGLNFMIEAEMPAIFPRASALKRLDLQYTFLSTENHCQLAGLCPNLEILEVRNVIG



DKGLEVVANTCKKLKRLRVERGADDPTLEDEQDKEEHIADLPLDNGVRALLRGCQKLSRFAFYI



RPGGLTDTGLGYIGEYSTNVRWMLLGFVGETDQGILEFSKGCPKLERLEIRGCCFSESALAAAVL



QLKSLKYIWVQGYNATVTGANLLAMARPYWNIEFSPALQSSDVFAEDMAEEKKQDQVAQLLAY



YSLAGRRTDHPESVIPLAPLFWNCHQVTVF





294
MKRASYGCISDGCISDEALECVMGHLEDPRDRGSVSLVCKKWYDVDAFTRKHVIVAFCYSIHAS



DLTRRFTRLESLTVKGKPRAAMYNLLPHDWGGYAKPWIDQISFTCLCLKALHLRRMIVTDDDLTT



LVRGRGHMLQELKLEKCSGFSTRGLEEVAHGCRSLKILMLDESQIEEESGDWLHELALNNSSLE



VLDFYMTTLEMINTSDLELIVINCPSLTSLKVGECDIVEMRGVLSKATALEEFGGGTFNNSEEHAT



ETSMITFPPKLTSLLGLNFMIEAEMPAIFPRASALKRLDLQYTFLSTENHCQLAGLCPNLEILEVRN



VIGDKGLEVVANTCKKLKRLRVERGADDPTLEDEQGWISHKGLSLVAQGCPLLEYIAVYVSDICN



STLETFGQCCKNLKDFRLVLLDKEEHIADLPLDNGVRALLRGCQKLSRFAFYIRPGGLTDTGLGYI



GEYSTNVRWMLLGFVGETDQGILEFSKGCPKLERLEIRGCCFSESALAAAVLQLKSLKYIWVVQG



YNATVTGANLLAMARPYWNIEFSPALQSSDVFAEDMAEEKKQDQVAQLLAYYSLAGRRTDHPE



SVIPLAPLFWNCHQVTVF





295
MFTISTCTTHAQSLIYSFVARGTVVLAEYTEFKGNFTGIAAQCLQKLPASNNKFTYNCDNHTFNYL



VEDGFAYCVVADESVGRQVPMAFLERVKEDFKRRYGGGRADTAVANSLNRDFGSKLKEHMQY



CIDHPEEISKLAKVKAQVSEVKGVMMDNIEKVLDRGEKIELLVDKTENLRFQAQDFQKKGTELRR



KMWFQNMKVKLIVLGIVVALILIIVLSVCHGFNCSKK





296
MTTEKERENHVYMAKLAEQAERYDEMVDSMKKVAKLDVELTVEERNLLSVGYKNVIGARRASW



RIMSSIEQKEEGKGNDVNAKRIKDYRHKVETELSRICGDILTIIDEHLIPSSSSGESMVFYYKMKGD



YYRYLAEFKSGSDRKETADQALKAYLAASTTATTDLPPTHPIRLGLILNFSVFYYEILNSPERACHL



AKQAFDEAIAELDSLSEESYKDSTLIMQLLRDNLTLWTSDLQEDGGEEQLKGEEIKPEDGEH





297
MSSRERKARVGLKLPIPAREDAFAKPMPLPLPLPKPPNMNGACKLPCVPLEEVTLEDLQKISTLG



CGSSGKVYKVKHAKTGKIYALKIIQEKHELAVRKQIMREMEILRRANSPHIVQCYGIFDRGGEISF



VLEYMDGGTLAQVLQAHKKIPEHYLAEVARQVLKGLHYLHQNKIVHRDIKPSNLLINKRREVKIAD



FGVSTVLAHTLAQCNSFVGTCAYMSPERFDPDGYGGKYDGCSADIWSLGLSLLECALGRFPCL



SPGQRPDWPTLMVAICLGDPPSPPPDASPEFQSFIRCCLQKDALLRHTAHRLLSHPFLKKYEQQ



SCDLAPLLQSLHL





298
MATTGTNNMQAKLVLLGDMGTGKSSLVLRFVKGQFLDYQESTIGAAFFSQTLAVNEVTVKFEIW



DTAGQERYHSLAPMYYRGAAAAIIVYDITNLDSFVRAKNWVLELQKQGNPNLVMALAGNKADMA



AKRKVEPEEAETYAKENGLFFMETSAKTAQNVNELFYEIARRLPKARPVQQPAGMVLTDRPAES



AKTYSCCS





299
METGAAAVDGHIQGILTHGGQYVQYNIFGNLFEVFSKYIPPIRPIGRGAYGIVCSAVNSETNEEVA



IKKIGNAFDNRIDAKRTLREIKLLCHMEHENIIAIKDIIRPPQREIFNDVYIVYELMDTDLYQIIRSTQP



LTEDHCQYFLYQLLRGLKYIHSANILHRDLKPSNLLLNANCDLKICDFGLARTTSETDFMTEYVVT



RWYRAPELLLNCSEYTAAIDIWSVGCIFMEILKREPLFPGKDYVQQLRLITELIGSPDDSDLGFLR



SDNARRYIRQLPQFPKQPFSQKFPNMAPAAVDLLEKMLVFDPSKRITVQEALSHPYLASLHDIND



EPSCPTPFNFDFEQPSFTEEHIKELIWRESLNFNPDMMQ





300
MRVTEQPEDYLFKIVLIGDSAVGKSNLLARYARNEFYPNSKSTIGVEFQTQTMEIDGKEIKAQIWD



TAGQERFRAVTSAYYRGAVGALVVYDISRRQTFDNISRWLDELHTHSDMNVVTVIVGNKTDLMD



AREVSTEEGAALAEAQNLYFVETSALDSTNVQVAFQTVVKEIYNILSRKVLSCQEQKLESKLTNG



KTVILHEAESESTTKQTGKFWCCSG





301
MMSYAGEEQPEDYLFKIVLIGDSAVGKSNLLARYARNEFYPNSKSTIGVEFQTQTMEIDGKEIKA



QIWDTAGQERFRAVTSAYYRGAVGALVVYDISRRQTFDNISRWLDELHTHSDMNVVTVIVGNKT



DLMDAREVSTEEGAALAEAQNLYFVETSALDSTNVQVAFQTVVKEIYNILSRKVLSCQEQKLESK



LTNGKTVILHEAESESTTKQTGKFWCCSG





302
MATRKRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLTKEVQVEDRLVTMQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVIKSFDNLDNWHQEFLIQANPNDPDNFPFVVLGNKTD



VDGGHSRVVSEKKAKMWCAAKGNIPYFETSAKEDMNVEEAFQCIAKNALKNEPDEEIYLPETID



VGHIGVQRPSACQC





303
MATRKRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIGADFLTKEVQVEDRLVTMQIWDTA



GQERFQSLGVAFYRGADCCVLVYDVNVIKSFDNLDNWRQEFLIQANPNDPDNFPFVVLGNKTD



VDGGHSRVVSEKKAKMWCAAKGNIPYFETSAKEDMNVEEAFQCIAKNALKNEPDEEIYLPETID



VGHIGVQRPSACQC





304
MVLRISELTIGYVYTGLKLKEAWIMATRKRTLLKVIILGDSGVGKTSLMNQYVNKKFSNQYKATIG



ADFLTKEVQVEDRLVTMQIWDTAGQERFQSLGVAFYRGADCCVLVYDVNVIKSFDNLDNWRQE



FLIQANPNDPDNFPFVVLGNKTDVDGGHSRVVSEKKAKMWCAAKGNIPYFETSAKEDMNVEEA



FQCIAKNALKNEPDEEIYLPETIDVGHIGVQRPSACQC





305
MGQGASSSSVVHALKREENDVNLGRDYSLSLPDECLACIFCTLSSGDRQRCSLVCKRWFLVEG



SSRQRLSLDARLDISAAIPGLFSRFDHVTKLALRCDRRMVSIKDEGLIKIGIHCKSLKKLKLKACRE



LSDVGIEDFAKLCTGLKKLSCGSCTFGAKGMNAVLKYCVGLEELSVKRLRGLADGSVDVIGPGC



AMLKSICLKELFNGQYFGPLIAGSKNLRTLKLFRCSGDWDKLLEVITDHVSGLVEVHLERLQVSD



RGLMAVSRCAGLEVLHLVKTPECTNVGLAAIANNCKNLRKLHIDGWKTNRIGDEGLIAVGKKCQ



NLQELVLIGLNLTATSLSPLASNCQVLERLALCGSETIGDTEISCIAAKCLSLKKLCIKGCPVSDDGI



ESLVSGCPKLVKVKVKKCRGVTWEGAERLRANRGSLAVNLDTPLPNPVVGPPSGAGAAEASAP



STSKSSIAKAKFSLFAGRNLVACAFLRLSNGSDGDHKRVSANA





306
MAYKVDDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFATRSINVDGKMIKAQI



WDTAGQERYRAITSAYYRGAVGALLVYDITRHVTFENVERWLKELRDHTEHNIVVMLVGNKSDL



RHLRAVSTEDAQTFAEREGLYFIETSALESTNVENAFKQVLTQIYRIVSKKALDVSEDNAAAPAQ



GQTINVKDDVTATKKVGCCSTS





307
MSSDKERENHVYMAKLAEQAERYDEMVEAMKRVAKLDVELTVEERNLLSVGYKNVIGARRASW



RIMSSIEQKEDAKGNDHNVKRIKEYRQKVEAELSKICHDIMTIIDEHLIPSSNIGESTVFYYKMKGD



YYRYLAEFKTGNERKEAADQSLKAYQTASSTAESDLAPTHPIRLGLALNFSVFYYEIMNSPERAC



HLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDLQEDGVEDQTKGDEPVVGMDEE



L





308
MSSDKERENHVYMAKLAEQAERYDEMVEAMKRVAKLDVELTVEERNLLSVGYKNVIGARRASW



RIMSSIEQKEDAKGNDHNVKRIKEYRQKVEAELSKICHDIMTIIDEHLIPSSNIGESTVFYYKMKGD



YYRYLAEFKTGNERKEAADQSLKAYQTASSTAESDLAPTHPIRLGLALNFSVFYYEIMNSPERAC



HLAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDLQEDGVEDQTKGDEPVVGMDEE



L





309
MVESSREENVYMAKLAEQAERYEEMVEFMEKVTKGVEVEELTVEERNLLSVAYKNVIGARRAS



WRIISSIEQKEESRGNDEHVVTIREYRAKVEAELSKICEGILRLLDSHLIPSSTAAESKVFYLKMKG



DYHRYLAEFKTGAERKEAAENTLLAYKSAQDIAAAELAPTHPIRLGLALNFSVFYYEILNSPDRAC



NLAKQAFDEAIAELDTLGEDSYKDSTLIMQLLRDNLTLWTSDMQEDAGEEIKETSKREDGEEQ





310
MDGMSTRGGSNFDMYLPNYKLGKTLGIGSFGKVKIAEHALTGHKVAIKILNRRKIRNMDMEEKV



RREIKILRLFMHPHIIRLYEVIETPSDIYVVMEYVKSGDLFDYIVEKGRLQEDEARCFFQQIISGVEY



CHRNMIVHRDLKPENLLLDSKCNVKIADFGLSNVMRDGHFLKTSCGSPNYAAPEVISGKLYAGP



EVDVWSCGVILYALLCGSLPFDDENIPNLFKKIKGGIYTLPSHLSSGARDLIPRMLVVDPMKRMTI



PEIRQHPWFLEKLPRYLAVPPPDTIQQAKKIDEEILQEVIKRNFDRNQLVESLRSRIQNEATVAYYL



NIDNRSRISNGYLGSEFQEAKDCIHHFVPTDRATPTGDHRLTGFINQGNASRSQFPIERKWALG



LQSQAHPREIMSEVLKALQELDVAWKKIGHYNMKCRWFPAVLRKVDSSMNKSLHGNHIIQDDST



AGINCRSPPNVVKFEVQLYKAREEKYLLDLQRVQGPHFLFLDLCADFLAQLRVL





311
MTIARRCSSLIVRGVRSAGSRSSAVGSPALSKQASTKNSRIQRFGTAASALEEPIAPPVQVKYTH



LLIDGQFVNAASGKTFPTFDPRTGDLIADVAEGDAEDVDRAVKAARKAFDEGPWPKMTAYERSC



IMYRFADLLEKHNDEIAALETWDNGKPYEQSSLVEVPMAIRVFRYYAGWADKIHGLTIPADGPYH



VQTLHEPIGVAGQIIPWNFPLLLFSWKVAPALACGNTIVLKSAEQTSLTAIYAAKLFHEAGLPSGVL



NIIPGYGRTAGVAIAKHMDIDKLAFTGSTETGKAVLELASKSNLKRVTLELGGKSPFIVCEDADVD



QAVELAHSALFFNQGQCCCAASRTYVHESIYDEFVEKTKARCLSRVVGDPFKKGVEQGPQIDQ



MQFNKIMSYIKAGKESGAKLVTGGEQIGTKGFYIMPTVFSEVQDDMPIATDEIFGPIQSILKFKDIN



EVIKRANGTDYGLAAGVFTKSMDTANTLTRALRAGSIWINCFHIFDAGVPFGGYKMSGTGRQKGI



YGLQSYLQVKAVVTPLKNPAWL





312
MAAMRAGRGFSSLLTRAVRSAGTRSPAVGLAALSQEASIKNTGIRSLGTAASALEEPIAPPVQVQ



YTQLLIDGQFVNAASGRTFPTLDPRTGDLIVDVAEGDAEDVDRAVKAARKAFDEGPWPKMTAYE



RSCIMLRFADLLEKHNDEIAALETWDNGKPYEQAALVEVPMVVRLFRYYAGWADKIHGLTVPAD



GPYHCQTLHEPIGVAGQIIPWNFPLLMFAWKVGPALACGNSIVLKSAEQTPLTALYAAKLFHEAG



LPPGVLNVISGYGPTAGAAIARHMDIDKVAFTGSTSTGQAVLELASKSNLKPVTLELGGKSPFIVC



KDADVDQAVELAHFALFFNQGQCCCAGSRTFVHESIHDEFVEKAKARCLSRVVGDPFRKGVEQ



GPQIDREQFNKVMGYIKSGRESGAKLVTGGDQIGTKGFYIMPTIFSEVKDDMGIATDEIFGPVQSI



IKFKTLDEVIKRANATRYGLAAGVFTKNIETANSLTRALRVGTVWVNCFDIFDAGIPFGGYKMSGT



GREKGIYSLNNYLQVKAVVSPLKNPAWL





313
MKRQHFQLQQQQQPQPNGHGRCCSTVPVHPNPVSMPGSGPPPQAPRTTATAPAAGAAAAGG



GGSSGSCKGKEVVLKDTCKQGVGVDMELASMGYSVKSSELEQVAHRLEQLEMMMCNGQEDG



IISHLSSEAVHYNPSDLGGWIESMLSELHVPILPPTDQPFQFPQAAADQSSTVREASNSVPESST



STSKGTRSVQNVEQDQQYRLNGSGAGLFEPPEVLDRSEFQLHGYPGQGGVRDNGIDRMFGNY



GGLFSQVLDVSDLLVDDPDVLQEPPPQEASPSTLLLQSSSNSSLEVQSGQDRLEEDVTGREQK



RYRVCDPELSERTVVVMGADPHESGVRLVHTLMACAEAVQRGNLAIAREMVKEVRILASAQGG



AMSKVATYFAEALARRIYGFLPQDTLRFNQNDPLSDFLQFHFYQTCPYLKFAHFIANQAILDAFS



GHQQVHVIDFNLKQGIQWPALIQALALRPGGPPAFRLTGIGPPQPDGTDALQEVGTRLHQFAES



VNVKFSFRGYVATSLADIKPWMLDARPELEAVAVNSILELHRLLEDPIPGRPSAIDRVLASIWSLK



PKILTVVEQEADHNRPVFLDRFTEALHYYSTVFDSLEARGLQAQSEEQVMSEVYLGREICNIVAC



ERSERVERHEPLLNWSVRLRNAGFWPIPLGSNAFKQASMLLSLFSGGEGYRVEENNGCLTLGW



HSRPLIAASAWQRC





314
MAYSGRARRPISFLLKQLKTSHSYSSWTRCNGFNGQSMFQSNAISRCKAPSFRPTAELGWVLG



FSHSCRGYSAEVGSTEQVGLIKQLRERTSAPMKDVKAALVDCNWDLEAAYTELRKKGIAGASKK



GARIAAEGILALAQDEKVAAVIELNCETDFVARNEIFQYLAHSVAKSALTMEALPELLSESATLDLK



LLGEMNIILDHPKLTREITVQDAIMEVAAIMGENVKLRRGFALSSANGVVSSYLHTSPQPGLGRIA



GLLTLESENGGAPTEVLQRVGSNLAMHVVAARPLFLSKDHVATKTLEAERDILKTQAAASGKPQ



AAIEKMVEGQLRKFVEEIALLEQKFVMNDKVNVKSVLEDLSKEVGQQIRVGSFLRVEVGEGIHRQ



ETSFASEVAAQVG





315
MEASAAAADGHIQGILTHGGRYVQYNIFGNLFEVSSKYVPPIRLIGQGAYGIVCAAVNSETNEQV



AIKKIGNSFANRIDAKRTLREIKLLCHMDHENIIAIKDVIRPPQRENFKDVYIVYELMDTDLCQIIHSK



QPLSVDHCQYFIYQLLRGLKYIHSANILHRDLKPGNLFLNEDCDLKIGDFGLARTTSDTDSMTEYV



VTRWYRAPELLLNCSEYTAAIDIWSVGCIFMEILKREPLFPGSNYVEQLKLITEFIGSPDDSDLGFL



RSDNTRRYIRQLPQVPKQPFAQKFPNMDEDALDLLEKMLVFDPSKRITVEEALSHRYLASLHGIN



EEPRCPAPFNFDFEQGTFTEEHIKELIWRESLNFNPDMME





316
MAVPVIDMKKMLNGEEREVTMAKIQNACQEWGFFQLLNHGIPHALLDRVKELFKEHYKNSMDA



EFQKSEIVGMLESAVSQGKNFGTTKIDDDWETGFFLQDETYDTVSPPLPTNLKETMKEFSEEVKI



LAERILDIICENLGLEKGYLKEAIAGGNGDGKAPFFGIKMAHYPPCPRPELVDGLRPHLDAGGVIL



LLQDDEVGGLQVLKDGTWFDVEPIRHAIVIDIGDQLEVMTNGKCKSMWHRVLSKKDANRMSVA



AFYNPSTNAEVFPAPQLIMKATEQNGNENDNNNMNAQSGYSYPKFVSKDYMKVYGEQKFLERE



PRFEAMRALCSLK





317
MPAKNGASLSSPFNIFFMSITGTAMKKMLNGEEREVTMAKIQNACQEWGFFQLLNHGIPHALLD



RVKELFKEHYKNSMDAEFQKSEIVGMLESATKIDDDWETGFFLQDETYDTVSPPLPTNLKETMK



EFSEEVKILAERILDIICENLGLEKGYLKEAIAGGNGDGKAPFFGIKMAHYPPCPRPELVDGLRPHL



DAGGVILLLQDDEVGGLQVLKDGTWFDVEPIRHAIVIDIGDQLEVMTNGKCKSMWHRVLSKTDA



NRMSVAAFYNPSTNAEVFPAPQLILKATEQNGNGNDNNNMNAQSGYSYPKFVSKDYMKVYGE



QKFLEREPRFEAMRALCSLK





318
MASPYGDYDQRIDYMFKVVVIGDSAVGKSQILSRFAKNEFSLDSKSTIGVEFQTRTVAIDNKTIKT



QIWDTAGQERYRAVTSAYYRGALGAMLVYDITKRQSFDHVARWLEELRGHADNNIVIMLIGNKC



DLRDMRAVPEEDAKEFAQREGLYFFETSALEAINVEMAFITALTEIYRIVSRKALTANEDERNGNA



AALTGTKISLSSPEQSVMAVKKKSCC





319
MDRLISGQTTCNSVEKQSNGDSNLDYSVSDAVRDKLRLMRDRIEKEDPASKVTDDGTLLRFLYA



RESNVEKACEMFAKYRKWRQTYVPLGYIPETMVGNELKHKFVYMQGYDKVGRPIMVLRLARHI



ASQSNMEDFKRFVVYAFDKMSASATKGQTKFSIIADFADWAYKNVNLRGTIAAVQTLQDFYPER



LGKVYLINRPYIFWAAWKIVSPFIDKVTRQKIVFTDDKYVKETLLKDIDENQLPEIYGGKLPLVAIDD



CVVPNWPPITSF





320
MTEKERENHVYMAKLAEQAERYDEMVDSMKKVAKLDVELTVEERNLLSVGYKNVIGARRASWR



IMSSIEQKEEAKGNELNVKRIKEYRHKVEDELSRICNDILTIIDEHLIPSSSTGESTVFYYKMKGDY



YRYLAEFKTGNERKEAADQSLKAYQAASNTATTDLAPTHPIRLGLALNFSVFYYEILNSPERACH



LAKQAFDEAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDLQEEGGEDQPKGEEDKIEEIEH





321
MVKLTMIARVTDGLPLAEGLIDDGREQRDLEFYKQQAKALFKKLSHGQHEPSRMSIETGPFIFHYII



EARVCYLTMCDRSYPKKLAFQYLEELKNEFEKLYQSQVETVARPYAFIKFDTFIQKTRKLYLDTR



TQRNLAKLNDDLYEVQQIMTRNVQEVLGVGEKLDQVSQMSSRLSSESRKYADKAKDLSRQAFIK



KWAPVAIVLGVVFVLLWMRWYIWQ





322
MARRTDDEYDYLFKVVLIGDSGVGKSNLLSRFTRNEFCLESKSTIGVEFATRIVQVEGKTIKAQI



WDTAGQERYRAITSAYYRGAVGALLVYDITKPTTFENVGRWLKELRDHADSNIVIMLVGNKSDLK



HLRGVSTEDAQSFAEKEGLSFLETSALEATNVERAFQTILAEIHRIISKKALASEEAAGAGIREGKT



ILVSEPDSNTKKACCS





323
MDQDQSICRFAAQKGKGEIQSSSFPDEVLEHVLVFLSSQKDRNSVSLVCKAWHRVEAWTRQQV



FIGNCYAVSPQIMIKRFPKIKSVSLKGKPRFADFNLVPPNWGAHLTPWVSAMATAYPLLERLYLK



RMTITDYDLTLLANSFLYFKELVMVCCDGFSTGGLASIASKCRQLTTLDLNEDEIHDNGEDWLAC



FPETLTSLRSLCFDCLEGPVNFDALERLVARCPSLKKLRLNRNVSIVQLQRLIIKAPQLTHLGTGS



FFYEFQLEQVADLLAAFSNCKQLQCLSGFREVVPEYLPAVYPVCSNLTSLNFSYAVIGSRELEGI



VCHCRKLQLLWVLDSVGDKGLEAAATTCKDLRDLRVFPVDAREDGEGCVSERGLVAISEGCPN



LESILYFCQRMTNKAVVTMSHNCSKLASFRLCIMGRHQPDHLTGEPMDEGFGAIVRNCKSLTRL



AVSGLLTDKAFQYFGAYGERLETLSVAFAGESDLSMKYVLDGCKNLRKLEIRDSPFGDVALLSGL



HHYENMRFLWMSDCRLTLQGCTELAKKMPGLNVEIIRENECNDSLVEKLYAYRTVAGPRKDMP



SFVTIL





324
MQQDQRRKNSSEIEFFTEYGGASRYKIQEVIGKGSYGVVCSAIDTHTGEKVAIKKITNIFEHLSDA



TRILREIKLLRLLRHPDIVEIKHIMLPPSQREFKDIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQ



LLRALKYIHTANVFHRDLKPKNVLANADCKLKICDFGLARVAFNDTPTAIFWTDYVATRWYRAPE



LCGSFFSKYTPAIDIWSIGCIFAEVLTGKPLFPGKNVVHQLDLMTDLLGTPSPETIARVRNEKARR



YLNSMRKKQPVPFTQKFVGADHLALKLLERLLAFDPKDRPTAEEALADPYFRGLAKVAREPVAQ



PITKMEFEFERRRVTKDDVRELIYREILEYHPQIMKEYLNGTDRTNFMYPSAVDQFKRQFAHLEE



HYGKGGSVPPLERQHASLPRPCVVYSNSGGPSSEQASSGPSRDRALEVREEAPRYSREGEKQ



HQDRSSGNVKVPLHASHKVLQGSTAKPGKVIGPVLPCENGSIKEAYNPRRLIRNAGVAPSQCPA



PIYSYPRRNSTAKTEVDDKREDGINQFNVSQHKTQYVGIGAARKVAALESRSSHLY





325
MADDLGEFYVRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTMIRKEVFLTQAVLREC



RRIIAESEIMKEDDNNWPEPDRVGRQELEIVMGNEHISFTTSKIGSLVDVQSSKDPEGLRIFYYLV



QDLKCFVFSLIGLHFKIKPI





326
MPPTSDRIPAMADDLGEFYVRYYVGHKGKFGHEFLEFEFRPDGKLRYANNSNYKNDTMIRKEV



FLTQAVLRECRRIIAESEIMKEDDNNWPEPDRVGRQELEIVMGNEHISFTTSKIGSLVDVQSSKD



PEGLRIFYYLVQDLKCFVFSLIGLHFKIKPI





327
MGHNTSEAIKQMTAFIDGVDEPLKKSFQTMHRGYAQQTLERFLKAREGNVQKANKMLLDCLSW



RVQNHIDNILAKPIEPREVYNAVRESQLMGMTGYCKKGRPVFAIGVGLSGYDKASADKYVQSHI



QINEYRTKFSLPNASKKYGSYIGPCLKILDMTGLKLSALNRIKILTTIATVDDLNYPAEXRSTYYIVN



APYVFSACWKVVKPLLQEGLDEKLQVLQGCGREELLKVMDYDVLPHFSRQEGSGSSKHHNGK



TIDCFSPDHPFHVELYNYIKQQAAIIKPVAPEKMRSFHVDVPEQDDEGTIIVQTLRICIT





328
MAETVTYSWPVGFVCNLTMLLLQLYRIVWREDSRGYNLPPGSSGWPLIGETLSFMRGINSISK



PRQFIQDREQRYGKIFRTNLFGRSRMIVSVDPEFNKYILQHEGRLVQSSYLRPFRKLIGKYGLLSV



YGDLQKKLHGTAVNFLRFERLSVHFMEDIQNLMHTTFAQWQAKGHIHLYHECHQFVLNLMAKQ



LLDLSPSKETEEIGKAFGDFSKSFVVLPIRIPGTAYWKGLKARDFLMKKIYASIKYRREHPEVVHN



DFLGELLKEDLHSEEIIADFVLFLLFAGHETSASTMAFAIKFLTDCPQALRELKAEHNALLKRKGSP



RNQNLTWDDYQSLKFTQCVINETHRLANVAPAVFREAIADIKIKGFVIPKGWSVLVLMNGIHLDDK



YHSSPLKFDPWRWQQILENNELYKNPSFMPFGGGLRLCPGMHLAKLELGLFLHHFITKFRWEPL



DDDKISYFPVSHLTKGFPIRLHPQEQMDD





329
MDRLSNGQTTCNSVEKGNDGGLNFDNSISDAVRTKLRQMRDVIEKEDPSSKVTDDDTLRRFLY



ARELNVEKASVMFSKYRKWRQTFVPLGYIPETMIRDELMKNSVHMQGFDKRGRPIAVIFLARHIP



CRKTIENLKCHFVYIFDKMSASSRGQTKFTIIADFDGWTYKNVDIRGAIAVLEILQDYYPERLGKVY



LIHRPYIFWAAWKIVSPFIDQVTREKIVFVEDKHLNETLLNDIDESQLPEIYGGKLPLVKIQDCVVPN



WPPITST





330
MTGVEYDASDKDREPFVEVDPTGRYGRYEDVLGRGAMKTVYRAFDQEDGIEVAWNKVSLQNL



DDVSLERIYSEVRLLKSLRNGNIIMFYNAWLDRKTGHVNFITEVCTSGTLRQYRQKHRHVSMKAV



KNWARQILDGLHYLHSHIPCIIHRDLNCSNIFVNGNTGILKIGDLGLAAALENDHAAHTIIGTPEFMA



PELYEEDYNELVDVYSFGMCLLEMVTLEIPYSECRSVAQIYKKVSSGIRPAALEKVTNQEVRQFIE



KCLAVTSARPSAAELLKDPFLSEVQSSS





331
MPYYVLQREVESEFLEVDPTGRYGRYNDVLGKGASKTVYRAFDEIEGIEVAWNQVKVNDILQSP



EDLERLYSEVHLLKTLKHKNIIKFFSSWIDTTTRNINFITEMFTSGTLRQYRQKHKRVDLRAVKNW



ARQILRGLLYLHSHDPPIIHRDLKCDNIFVNGNQGEVKIGDLGLAAILRKSHSAHTVIGTPEFMAPE



LYDEEYNELVDIYAFGMCLLEMLTFEYPYSECSNPAQIYKKVTSGKKPAALYKLKDPEVRQFVEK



CLVTVSRRLPARELLMDPFLQTDEHGLEYSFSRLDFCKDDVGELGPLLREPNIEAFQNGAHKLL



QSIHLVHPCSKNEISVHHENKKQQKVVPLPSYIREDSMSHNMDFTVKGKKREDDTIFLRLRIADT



EGRIRNIYFPFDVEEDTAMSVASEMVAELDLADQDVTKIAEMIDEEIMALVPDWKAGVAIDDHHS



FYDHYHSSNKTSETCWWNHNDHASSISSQSSLLEYLRSHYHVDNKSEIVPCTQVECAAMHGRF



EEVTFQFNATDFYSYVEEEAPTISSGSSDVLHHDWVNGEDPVSPISLISHGSGISNFEDPQTCLIS



SGTGNKEDVVPSKPAKPPETTGYVGNFEESWSNGLSEGFSPVTDSNCLSSVPKPMFHPQSPS



SVNILSDEDEDSTSRELRLLAVKHQKELMELQRKHEHSLLGIENELKNRTPLGTSLDMKNSSPGI



NFQDQKLNVNGQREQREDDSVRHGTTGRDKEFVAMKQLGSDARGTRLSSSPSHRLSPMEPAV



SSDLPGPSKLAMHSSTLPSVRPINRNIAPNQRLMKMHSFSGVDSQRSINSLAKEVSRQKNYQTI



GAFRTGNVDEKKHSLEGMRRFPSISQKSSSRNCKEGKTKIV





332
MGSGIMTETLTDSWLVGLLCLVLGFLLLQLYKLVWGASSRAYKLPPGSTGWPLIGETIGFFRGIN



STAQPRQFIQERERRYGEIFRSNLFGRSRIVVSVDPEFNKHVLQHEGRQFQANYPKPLRNLIGKY



GLLSVHGDLQRKLHGAAVNLLRFERLSVDFMEDIQNLLHITLAKWEAKRDIHLQEECHQLVLNLM



AKQLLDLSPSKDTEEICEAFGHFSEALLAVPIKIPGTKYARGFKAREFLIKKIYESIEDRRQHPEAV



HNDLLTKLLKEDTFSEEIIADFILFLLFAGHETSSRSMSFAIKFLTDCPRALEELKAEHDALLMRKG



NLKNQKLNWDDYQSLKFTQCVIHETLRVGNFGPGVFRETKEDIKTKGGFVIPRGWTVYVFLTGT



HLDEKYHSSALKFDPWRWQPHLQDQELLKNPSFMPFGGGARLCPGMHLAKMELALFLHNFVT



KFRWEALQDDKISYFPFPRLIKGLPIRLRLRE





333
MAIMGETLHSLLVGLVCFALGMLLLELYKLVWRVDSRSYKLPPGSTGLPLIGETISFFRGINSTDQ



PRRYIQEREKRYGEIFRSNLFGRSRIVVSVNPEFNKHVLQHEGRQFQANYPKPLRNLIGKFGLLA



VHGDLQKKLHGTAVNLLRFERLSVDFMTDIQNLLHTTLPKWQAKRDIHLQEECHQLVLNLMAKQ



LMDLSPSKETEEICEAFGHFSEALLAIPLRIPGTAYARGFKAREFLIKRIYEGIEDRRKHPQVVRND



LLTKLLKEDSFSEELIADFILFLLFAGHETSSRSMSFAIKFLTDCPKAYQELKAEHDALLQRKGNRR



NGNLTWDDYQSMKFTQCIINETLRLGNFAPGAFREAKEDVKTKGGFVIPKGWTVYVFLTGTHLD



EKYHSSALTFNPWRWQQLLQDQELSKNPSFMPFGGGARLCPGMHLAKLELALFLHNFVTKFR



WEALQDEKISYFPFPRLIKGLPIRLHPQERLGD





334
MGGTVVDSVRRWYQRRWSHSSSAHESGKEKQTVDSLSSSSVSPLPVETKAVEGRGLKPVRVQ



LRSKMTGPDRSRKSSLETEFFTEYGEANRYQIQEVVGKGSYGVVSSAIDTHTDIVEIKHIMLPPS



RREFKDIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQLLRALKYIHTANVFHRDLKPKNILANA



DCKLKICDFGLARVSFNDAPSAIFWTDYVATRWYRAPELCGSFFTKYTPAIDIWSIGCIFAEMLTG



KALFPGKNVVHQLDIMTDLLGTPSTETLSRIRNEKARRYLSNMRKKQPTPFSQKFPNVDPLALRL



LERMLAFDPKDRPTAEEALADPYFNGLAKVEREPSTQPISKLEFEFERRRLTKDDVRELIYREILE



YHPQMLQEYLCGGNNATFMYPSAVDMFKRQFAHLEEHYSKGENSTPLGRQHASLPRERVIEFR



ENPTKHSKDSEKQQERITASVTKATLQSPPRNQGIVIDSAVSLSNGPSRAVPDPRNLVKSASINA



SKCTVVVNSCQRRNSTMKPGDEKKEDLSSESSAVTYNTDSMVAGLTSKIAAMSSGVAHS





335
MAYRADDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFATRSITVDDKVIKAQIW



DTAGQERYRAITSAYYRGAVGALLVYDVTRHVTFENVERWLKELRDHTDANIVIMLVGNKADLR



HLRAVSIEDGKAFAERENTYFMETSALESTNVENAFTEVLSQIYRIVSKKALDVGEDPAAVPSKG



QTIHVGNKDDVTAMKKVGCCSL





336
MMKKRGDSSSSFPDEVLEHVLLFVVSIKDRSAVSLVCKAWYRAEAWSRRKVFIGNCYSVSPEIL



VRRFPKITGITLKGKPRFSDFNLVPPHWGADIHPWLLVIRGAYPWLRELRLKRMIVTDESLELIAR



SFSDFRALSLTTCEGFSTDGLAVIATHCRNLQELDLQESEVDDRGGYWLSCFPESCVSLVSLNF



ACLQSEVNFDALQRLVARCISLRSLKLNKTLSLEQLKRLLVIAPQLMELGTGSFFQELSGPQFTTD



LENAFKNCNKLRTLSGMWEVAPLYLPALYSVCSNLTFLNLSYAANIRSMELGRLVSHCPQLRRL



WVLDTVGDKGLETVSSNCKNLRELRVFPLDPFGQDRVGVTEKGILKISQGCPNLSYVLYFCRQM



TNAAIIEVAQNCPRLTHFRLCIMNPCQPDHLTDEPMDEAFGAIVKICKGLQRLAISGLLTDKAFEYI



GLYAKNLETLSVAFAGSSDLGMECVLRGCPKLRKLEIRDSPFGNAALLSGLEQYESMRSLWMSS



CKVTMSGCRYLAQNKPRLNVEIIKENDEDDNDADKLYVYRTIAGPRRDAPNFVLTL





337
MVDHSLIYSFVSRGTVILAEYTEFTGNFPTIAFQCLQKLPATSNKFTFDCQHHTFNYLVEDGFTYC



VVADESAGRQVPMAFLERIKDEFKKTYSDGRAEVAIANGLHQEFGPKLKEHMDYCAQHPEQINK



LAKTKAQVAEVKGVMMDNIEKILDRGEKIELMVDKTEQLQFQAQDFQNQGAKIRRKMWFRNTKV



KLICLSFLLFVVLMIWISLCRGFKCHV





338
MAILYALVARGSTVLAEFDAAHGNAKTIARQILEKIPGTGDSHVSYSQDRYIFHVKRTDGLTVLCM



ADDTAGRRIPFAFLEDIHGKFVKTYGRAVHTALAFTMNDEFSRVLSQQMEYYSSDPNADKINRIR



GEMSQVRNVMVENIDKVLERGDRLELLVDKTETIQGNTFKFKKQARRFKNTMWWRNIKLTVAVI



VVLLIVIYVILAIVCKGVTLPSCRK





339
MAVVASNSLQLQREEEAETMISDQQQEAGAEIMASEEESIMEPENPSLSHPNIVSSCGMRFQKY



QSVWIDANLVPAVNFIQNEFQPRPDDIFFASLPKTGTTWGKALLYTILEFTSTGNNPPASPNGNS



AADEKRFGVDEKNPHALVPTMETYLFNSSDSEQYDISCFSDFPSPRVLHTHLPIHTLPLLVRSSP



TCKIVYIARNPRDSFVSLWQFYARLRGAGSHYLDGDLGKETVFDAFCSGFYYGGPFAENVLSY



WHESRRNPNQVMFVTYEDLQADCVGWVKRMALFLGCSSPLLEDNAQIIAEKCSFDTLCNLQVN



RKGKVGTLKYGMKNAFFFREGKVGEWKKHFTPQMEERIYLEIEQKLSDQGLRFTNSL





340
MGQQSLIYSFVARGTVVLAEYTQFTGNFTTIANQCLQKIPASNNKFTYNCDRHTFNYLVEDGYTY



CVVADESVGRQLPIAFLERIKDDFKKRYGGGKADTAVAHSLNKDFGPKLKDHMQYCVDHPEEIN



KLAKVKAQVSEVKGVMMENIEKVLDRGEKIELLVDKTENLRFQAQDFQKQGTQLRRKMWFQNM



KVKLVVLGIVFVLILIIWLSICHGFKCH





341
MENMRKKLGPLFNSGQSFRPDISVDSCTSYKVTAGGTLHLLSNSCGEYNINELGLQKRTSAGID



EYDTNEKTYQCASHEMCIFGVIGRGASSVVQKAIHIPTHRILALKKINTFEKEKRHQLLNEIRTLCE



APHVKGLVEFHGAFYTPASGQISIALEYMDGGSLRDLVQSKKRIPEPILSVITHEILHGLIFLHHVR



HLVHRDIKPANLLINLNGEPKITDFGISVGLENTVAMCGTFVGTVTYMSPERIGNEYYSFPADIWS



LGLSIFECGTGEFPYNASKGPVNLMLQVIDDPSPSPSRDCFSEEFCSFVDVCLQKDPTARPTAE



QLLSHPFIKKYENAGVDLSAYVQSIFDPIDRLKDLADMLTVHYYMLFDGTDDQWHHMKTMYREN



SAFSYANQVAAGANDIFNTLSRIHSMLVGDSPDERLVHVVENLQCCVYGQHGVVIRVSGSFVLG



GQFIPTGGGVQVEGVSQGPLLDIASQRMGTFNEQFIMEPGEQIGCYYIYKQELCIQQ





342
MAQTAQPALDPNIPGVLTHGGRFVQYNIYGNMFEVTAKYVPPLFPIGRGAYGVVCSALNSETNE



QVALKKISNAFDNLIDARRTLREIKLLRHMQHENVISIKDIMLPPQREAFDDVYIALELMDTDLHQII



RSNQALSEQHCQYFLYQILRGLKYIHSANVLHRDLKPSNLLLSANCDLKIADFGLARTTSETDFMT



EYVVTRWYRAPELLLNSPDYTAAIDVWSVGCIFMELMNRKPLFPGKDHVHQLRLITELTGTPTDA



DLGFIRSENAKRLVQLLPQLPRQSLAEKFPHVHPSAIDICERMLTFDPNQRITVEEALNHPYLGSL



HDETDEPTCPVPFNFDFEQYALTEEQMRELIYMEALAFNPT





343
MKRCEGCFEVGRLEALGDDILLQVLDNINETRDRNSWSLVCKQFYRLESAYKRKIRLLRGEMLP



RILKRYRAVEHLDLSLCPQISDQCLGFVAAAAGSSLRSIDLSRLVRFSHLGLSVLAKGCENLVEID



VSYCARFGDMEAAAVSSAKNLQTLKLVRCQMVSDLGLSLIAVGCRKLQNLNLKWCVGVSDLGV



ELVAIKCKELRSLDVSYLQITNKCIASITQLFYLETFVSVGCVCIDDEGLALLKNGCKSLQRLDVSK



CQSMSSTGIISLANGCIALQQLNLAYCIPVTNALLASFDKYDSLQSIRFDGCEISSSGLKSIGKSCK



SLMELSLSKCTGVTDEGISALVGGCTGLKILDITCCRDLTDVAITAVATSCGNLSCLKMESCALVT



ERSLYMLGDSCPFLEVLDLTDCSVSNTGLKSISRCTGLTTLKLGLCENISNEGLTHIAAHCSNLQE



IDLYRSVGIGDTGLAALASGCPKLRMVNLSYCIGITDHGLKSLAQLEKLYNLEIRGCFLVTSAGISAI



ASGCKRLVELDIKRCYRVDDMGMMTVVQCCINLRQINVSYCPISDAAFLALVNLSCLQNVNLVHL



RNVSLDAFAYLLLACESLKKIKLLKQLKSLLSSNLIRHVENKGCRIRWVEKPLFI





344
MEAAAAPVQSTDTLMSDAPQAAGSNPMDSIPAVLSHGGRFVQYNIFGNIFEVTAKYKPPLLPIGK



GAYGIVCSAMNSETKEQVAIKKIANAFDNRIDAKRTLREIKLLRHMDHENVVAIRDIIPPPQREAFD



DVYIAYELMDTDLHQIIRSNQGLSEEHCQYFLYQILRGLKYIHSANVLHRDLKPSNLLLNANCDLKI



CDFGLARITSETDFMTEYVVTRWYRAPELLLNSADYTAAIDVWSVGCIFMELMNRQPLFPGRDH



VHQLRLLTELIGTPTEADLGFVRSDNARRFIRQLPQYPRQSFTQKFPHVHALAIDLCEKMLTFDP



NQRITVEEALAHPYLANLHDISDEPICAMPFSFDFEQHTLTEDQMKELIYREALVFNPEYAQ





345
MAKKQAGKSNDSTVNDSGSENETKKPAGSKEDGSIHSPLVAYASILSLLSCTPPFVIFLWYTMVH



LDGSASQFWDLCKEQGLQGFLRIWPKPTLIAWKLIASFAAFEAALQLLLPGERVTGPVSPAGNIP



VYKANGVLAYFVTLTTYIAIWWFGLFNPAIVYDHLGEIFSALIIGSFIFCIFLYIKGHVAPSSTDSGSS



GNVVIDFYWGMELYPRIGKNFDIKVFTNCRFGMMSWAVLAVTYSIKQYEEYGRVADSMLVSSIL



MVVYVTKFFLWESGYWNTMDIAHDRAGFYICWGCLVWVPSVYTSPAMYLVRHPISLGLKLSLGI



LIAGIACIFINYDCDRQRQLFRKTNGNCLIWGRPPSKIEAWYETMSGEKKSSLLLTSGWWSVSRH



FHYVPEILAAFFWTLPGLFNHFLPYFYVIFLTILLFDRAQRDDQRCRAKYGKYWDIYCKQVKYNIIP



GIY





346
MKFPAPARNLLIVLIVFLERILTRCMVSDSSNHEPPSSCTATRISPASSGIISNTKPADCSSLASLDL



HGSISLPGTAITTEDFGGIYHHKPLAIVHPASVEDIVKVVTMVNASPNLTLAAMGNGHSINGQAQA



LNGLVLDMRSLKGIEIFQGSPTEGPYVDACGDELWIDVLKATLRVGLAPRSWTDYLPLSVGGTLS



NGGVSGQTFKFGPQISNVLNLHVVSGKGESMTCYPETNQDLFYGALGGLGQFGIITKARIMLQR



APHMVRWIRAVYADFEEFRADQELLISLPEEGTFDYVEGFVLTNNDDPINGWPSVLLSPSNSSF



DFKLIPQTAGPMLYCLEVALHYDHDEDFVTLNKRIESMLAPLRFIKGLHFSFDLPYFDFLNRVHAA



EVAARSSGIWDAPHPWLNLFVPKSKISAFDAKVFREILKDGVGGPILVYPVTRNKWDSRMSAIIP



EEDTFYLVALLRFSPPYPSGPPIQSILAQNEQILHYCTTAGIDMKLYLPHYKTESDWKRHFGRKW



QQFLQRKSKYDPKAILAPGQRIFSRSTDSTAFTRLYSSS





347
MAGELTQAEKETLAAVNVGASALSFAGSAFIVLCYVLFRELRKFSFKLIFYLALSDMFCSLFNILG



DPGKGFFCYAQGYTTHFVCVASFLWTTTIAFTLHRTVVRHKTDVEELGAIFHLYVWGTSLVMTIIP



SIGDGYGQAGAWCLVKTTSRATKVLQFITFYAPLWGAILFNGFTYFQVSRMLNNATQMAAGMS



DRQQQTDSRVDMKAMNRWGYYPLILIGSWTFATVNRIHDFIEPQEKVFWLSFLDVGTAALMGLF



NSIAYGLNASVRRTLQQKIDLWWPEWFRKWLPGFIMLRDQAHESEMISLKIPVEQ





348
MAYKADDDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFATRSIIVDGKTIKAQIW



DTAGQERYRAITSAYYRGAVGALLVYDITRHTTFESVERWLKELQDHTDNNIVVMLVGNKADLR



HLRAVSTEDSQALAERESLYFMETSALESTNVENAFTQVLTQIYRIVVKKALDVSEEPSALPPQG



QAINIKDDVTATKKPMCCNF





349
MESCNCIDPPWSADDLLTKYQYISDFFIALAYFSIPLELIYFVKKSAVFPYRWVLVQFGAFIVLCGA



THMINLWTFHVHTKAVAMVMTISKILTAVVSCATALMLVHIIPDLLSVKTRELFLKNKAAELDREM



GIIRTQEETGRHVRMLTHEIRSTLDRHTILNTTLVELGRTLALEECALWMPTRTGLELQLSHTLRQ



QNPMTFTVPIQHPSINQVFSTNRAVMISPNSPVAMIRPRTGKYMIGDVVAVRVPLLHLSNFQIND



WPEPSKRWYALMVLMLPSDSARRWHVHELELVEVVADQVAVALSHAAILEESMRARDLLMEQN



VALEIARQEAETAIRARNDFLAVMNHEMRTPMHAIIALSSLLQETELTPEQRSMVETILRSSNLLAT



LINDVLDLSKLEDGSLELNIRIFNLRSMFREVHNLVKPIASVKKLCVSMNLASDLPEYAAGDDKRL



MQTVLNVLGNAVKFSKEGSVSVTVLLERPECLRDPRAEFYPVQGDRHFYLRVQVKDTGAGINP



PDIPKLFSKFVHSDTMTTRNYGGTGLGLAICKRFVNLMEGHIWLESEGLGKGSTCIFIVKLGIPDPI



HEMEHQYVFPIPSNSTRKDFPGLKVLVTDDNGVNRMVTRSLLARLGCDVTVVDSGHECLQAMS



QAGQNFKVLFLDVCMPGMDGYEVAIHIQEMFPNRHERPLLVALTGSADKATKEKCIKIGMDGVL



LKPVSLEKMRSVLVDLLEHGSVCDSIQRL





350
MSFRKRALFKVIVLGDSGVGKTSLVTQYVHKRFSSQYKATIGADFMSKELQVDDRLVTLQIWDT



AGQERFQSLGVAFYRGADCCVLVYDVNVLKSFDNLENWHKEFLNQASPTEPDTFPFMLLGNKI



DVDGGNSRVVSELKAMTWCKSKGIPYFETSAKDDYRIDAAFLSIARSALKNQPEQEIYFLGLPEA



LPESEPPSRSFCGC





351
MVVRRMSSFPDELLEHVLAFLSSHRDRNAVSLVCKSWFRIEAGSRQRVFIGNCYAVSPAILIRRF



PRIKSVALKGKPHFADFNMVPPGWGADIHPWLAAMAEAYPWLEELRLKRMVITDESLQLLARSF



PNFKVLVLTSCDGFSTDGLAAIAAHCRHITELDLQESDIDDRGGNWLSCFPDSCTSLVSLNFACL



TKEVNFEALERLVARCTSLRSLKLNRLVPLELLHRLLVRAPHLEDLGTGAFLHEPRTEQYSKLKV



ALQNCKRLQSLSGFWEVAPGYLPLVESLCSNLTSLNLSYATIQSAELTNLLGHCHKLQRLWVLD



YIEDKGLEVVASTCKDLQELRVFPLDPYGQGAVTEEGLVTISRGCPKLTSVLYFCCQMTNAALIT



VARNSPLLTCFRLCIFDPTSPDHLTKQPLDEGFGTVVQSCKSLRRLSMSGLLTDKVFQVIGTYGK



CLEMLSVAFAGDSDFGMQCVLSGCINLRKLEVRDSPFGDLALLAGSEKYESMRSLWMSSCSVT



VHGCKELAAKMRNLNVEVIHDRDQFEDISTMTQPVDGLYVYRSVAGHRKDTPHFIYTM





352
MAQQSLIYSFVARGNIVLAEHTSFSGNFSIIAVQCLQKLPSNSNKFTYTCDNHTFNYLVDDGFVFL



VVADEAAGRQVPFIFLERVKEDFKRRYGGRAETSMAHSLDKDYGPILRDHMQYCMDHPEELSK



FFKIKAQVSEVKGIMMDNIEKVLDRGEKIELLVDKTEGLQFQADNFQRQGRQLRRKMWLQNLKF



KLIVLGIVLVIMLIIWLSICKGFSCH





353
MSIISIPEVEVEMGSASPNARTLRATVVQASTVFYDTPATLDKAERLIAEGAAYGSQLLVFPEAFI



GGYPRGSNFGAVIGNRTFKGREEFRKYHASAIDVPGPEVERISAAAAKYKVHVIMGVIERAGFTL



YCTVLFFDSQGRFLGKHRKLMPTSLERVIWGFGDGSTLPVYDTSIGRVGALICWENRMPLLRTA



LYGKGVELYCAPTADARESWQASMLHIALEGGCFVLSANQFCRRKDYPPPPDYVFGGSEENMS



PESVVCAGGSVIISPTGTVLAGPNFEGEALITADLDFGEIVRAKFDFDVVGHYARPEVLKLTVNDY



PLNPVTFSSGIAASEKKDSENV





354
MEDDPGEDYLFKVVLIGDSAVGKSNLLSRYARNEFHMNSKATIGVEFQTQSMEFDGKEIKAQIW



DTAGQERFRAVTSAYYRGAVGALVVYDISRRHTFESVGRWLDELKMHSDMNVVTMLVGNKCD



LESLREVPVEESKALAEAEKLFFIETSALNATNVNDAFQIVIKEVYNNMSRKALNSGSYKSKLLSN



GSTSVNLVQNGDAATKTGLKKYGCC





355
MAVPVIDIKKLLDGEEREMTMDQIHKACQEWGFFQLVNHGIPYSLLDRVKVLFKEHYKNSMDAQ



FQDSAVVQMLESSNSQGMNLSATKIDADWETGFFLPLSSHKTETVTPPLPANFRETMEEFAEEV



KGLAERLLEIMCENLGLEKVYLKEALAGGNGDNNSPFFGIKMSHYPPCPRPDLIDGLRNHTDAG



GLILLLQDDEIDGLQVLMDGTWFDVQPIQHAIVIDIGDQLEVMTNGKYKSMWHRVLAKEDATRMS



VAAFYNPSSDAEVYPASQLMSAEQNGSNNVNAESGYDYPKFVSADYMTVYAAQKFLPKEPRFE



AMRSVGHAVN





356
MATKVDPPNGVAAEGKHYYSMWRNTFEIDTKYIPIKPIGKGAYGIVCSAKNTETNEKVAIKKIGNV



FENRIDAMRTLREIKLLRQLAHDNIITLKDIMTPVGRSNFRDVYLVYDLMDTDLHQIIKSSQALTDD



HYQYFIYQLLRGLKYLHSANVLHRDLKPSNLLLTANCDLKICDFGLARTNCETGQFMTEYVVTRW



YRAPELLLSCDEYGPSIDVWSVGCILAELLGRQPIFPGKDYINQLKLIINVIGSPAEDDLYFVQSQK



ACSYIKSLPHVPSASLQRLYPQANPTAIDLLDKMLVFDPYKRITVTEALEHPYFSALHDPRLEPSA



TAPFELDMPDEELRVQELREMVWKEMLYYHPEAANIL





357
MGIELEMDRPQEEGWVRGAILGAGAYGTVSLGVSRSNGQLFAIKSAAGFSVALENEYQILRCLD



CPYIVRCLGHNYSFENGAEVHNLFLEYMPGGSLVDLLGRFGGTLNETVIRAYTRGILRGLDYLHS



QGIVHCDIKGKNILVDSNGVKLADFGSAKRVDDEEKCEEAMQLRGTPQWMAPEVVNQVEQGPA



SDIWSLACTVLEMATGRPPWSHVSSPLAAMYRIGCTEELPGLPGCLSPQIRDFLEKCFRRDPKK



RWSSAELLNHPFLKKDCSVIEAEEAIRGPGSPTSHLDFRNHIWDSYCSQTTLIPSLSLPSPTRER



NAEVNRSVEQCPRRSPRDRLMALAAACKFEKVANRPNWITSLHGPWTVVKSSRSKSPTSDKPL



LKSDISNGSSIQELPFTEERCSTSFKAVNWKGLQPRGELDQCSQAMLSSAQSQHQPSSSTSSK



TPHHNLFSLAETSNLTGEAWESDGNSSQRIVGGD





358
MSGRRNPLLNIPIPARQQTQLYRLPLPPQSTSVSRDVSDLADLERIQILGHGSEGNVYKVRHRRT



SELYALKVIHGNHDETVRQQIIRQMEILKKTESPYVVKCHGIFERGEEIHFVLEYMDGGSLEQRRS



DTMSERFLAEVARQVLEGLKYLHRHKIVHRDIKPSNLLINRRQEVKIADFGVSRILSQTLDPCNTY



VGTCAYMSPERFDPETYGGRYDGYAGDIWSLGLSLLECYTGHFPFLAAGQKADWPALMCAICY



GDPPAPPPTASAHFRSFITCCLHKDARNRWTAAQLLGHPFVLSNPPQTPSIPMQRLSI





359
MATRVNPPNGVFVEGKHYYSMWRNIFELDAKYIPIKPIGKGAYGIVCSARNAETNEKIAIKKIINAF



ENQTDARRTLREIKLLRLFAHDNIIALKDIMTPVTRTNFNDVYLVYDLMDTDLHQIIKSSQVLTDDH



CQYFIYQLLRGLKYLHSANVLHRDLKPSNLLLNANCDLKICDFGLARTNCEKGQFMTEYVVTRW



YRAPELLLSCEEYGTSIDIWSVGCIFAELLGRKPIFPGKDYINQLKLIVNVLGSPDEDDLEFIESQK



ARSYIKSLPVTSHASVQRLYPRANPSAISLLDKMLAFDPRKRITVTEALEHPYFSALHDPSLERSA



TAPFDLDMPEEELKEEELKEMFWNEMLHYHPEAANTS





360
MRQEHSENPEEEEERVSFDLNSMCKFSSQSDTEPIETSFPDEVLEHVLVFLTAHKDRNAVSLVC



KSWYRVEAWTRHQVFIGNCYALSPGTMINRFPKIKSVTLKGKPRFADFNLVPPNWGAHLHPWV



LAMAPAYPWLEKLLLKRMTVTDEDLALLADSFPNFKDLVLLYCDGFSTKGLGIIASKCRQLRRLDL



NEDDIVDSGVDWLSCFPETTTTLECLSFECLEGPINIDALERLVARCLSLKELRLNRTISIVQLHRL



MLRAPQLTHLGTGCFSYDFIPEQATVLQVAFNNCKSLQCLSGFREVVPEYLPTIYSVCNNLLELN



LSYAVMGSRELEQIVCNCPKLQRLWVLDSVEDAGLRAAAATCKDLRDLRVFPMDAREDGNGCV



SDEGLVAISEGCPNLQSILYFCQRMTNAAVVTMSKNCQNLTSFRLCIMGRHKPDHITHKPMDEG



FGAIVMNCKKLTRLAVSGLLTNKAFEYIGTYGESLETLSVAFAGENDLGMKYVLDGCRRLRKLEI



RDSPFGDTALLSGLHHYEQMRFLWMSDCKVSIQGCMELARKMPWLNVEIIRENSYDDRLVEKL



YVYRSVAGPRKDMPPIVITL





361
MGSSSHRENGAVKAVSCSKEDKLEQSRVNLMRSIVEAKDSSAKATDDATLRRFLRARDLNVGK



ASELFLKYLKWKRAFVPLGYIPESEVSNELRKNKIFIQGLDKQRRPIGVILAARHNAFDRDLEEFK



RLVVYGFDKICACMPRGQEKFVMLADLEGWGYKNVDIRAYLMVLEIMQDCYPERLGKLFMIHVP



YLFWAAWKTVYPFIDKVTKKKIVFVEDKHLKETLLNDIDESQLPEIFGGKLPLVPTQDCVIPN





362
MENVGGEEYLFKIVVIGDSAVGKSNLLSRYARNEFNANSKATIGVEFQTQVMDIDGKEVKAQIWD



TAGQERFRAVTSAYYRGAVGALIVYDISRRLTFDNVARWLEELKMHADGNVVKMLVGNKSDLA



HIREVPVEDGKKLAESEGLFFIETSALDNTNVLPAFQIVVKEIYINVSKKMLNSDSYKSQLSLNRV



NITDAYGDGDGVDPPKTKNSCC





363
MGHAASVVIPPQETKQEDEDSQEGVDYTLNIPDECLAHVFHYLKPGDRKPCSLVCKRWHHAEG



QSRRRLSLDARAEIVPAIPSLFWRFNYVSRLALRGNRRTIGINDDGLLLIGIHCKNLKNLKLRSCRE



ITDIGMSRFAQLCGSLRKFSCGSCTFGTPGINAITTHCKSLEELTVKRLRSAGEVPSEPVGPGAG



NLKRICLKELYYGQFFVPLIAGSKKLQTLKLSKCSGDWDTLLDIITQDVISLVEVLLERLHVSDTGL



LAVSKLASLEILHLAKTPECSNTGLAAIANGCRKLRKLHVDGWRTNRIGDEGLIEIARKCHYLKEL



VLIGVNPTITSLSMLASNCHVLERLALCGSATIGDAELSCIAAKCYSLKKLCIKGCPVSDQGMESLI



SGCPMLVKVKVKRCRGVTSEGADLLRANKGSLDVSLDTITSPSLNGLSTQASSSVPRASAISSA



GKSTLSKARLTLIAGGSFLACAFLKLSNGS





364
MAGLDNGVVNGIVSVKFTKLFIDGKFVDAISGKTFETLDPRTGDLITRVAEGDKEDVDLAVKTARE



AFDKGPWPRMSGYERGRLLNRYADLVEQYIDELAALETLDNGQPLTLVRVIVTGCIQILRYYAGA



ADKIHGETLKMGGQYQAYTLHEPIGVVGQIIPWNFPLFMFFMKISPALACGCTIVIKPAEQTPLTAL



YCAHLAKEAGLPPGVLNVITGFGETAGAAISNHMDIDKVAFTGSTDIGRVIMVAAAHSNLKPVTLE



LGGKSPLIIMDDADIEEAVNLAHKAIFFGSGQVCCAGSRIYVQEGIHDKFVKRVVERAKKQVVGD



PFNPEVDHGPQIDKTQFEKILEYIEHGKREGAKLLTGGSRVGEKGFYIEPTIFSHVQEDMKIGKEE



IFGPVVSIFKFRTIEEAIELGNKTIYGLAAGIVSKNIDTVNRLSRSIRAGVIWVNCYHVVFPDAPFGG



YKMSGIGREQGLDVLKNYLAVKCVITPLHDSPWL





365
MRKKDLKKLKLAVPAPETPMSDFLTASGTFQDGDLLLNRQGLRLISQEDDESPSPIEPLDNQFTL



ADLETVSVIGKGSGGVVQLVRHKWTGQFFALKAIQMSIQESVRKQIVQELKINQASQCPNVVVC



YHAFYNNGVISIVLEYMDCGSLADVIKRVKTFTEPYLAVICKQVLKGLIYLHRDRHIIHRDIKPSNLL



VNHKGEVKITDFGVSATLANSMGQRDTFVGTYNYMSPERISGSTYGFSSDIWSLGLVVLECATG



RFTYLPPGQEEGWLNFYELLETIVEQPAPCASPDEFSPEFCSFISACVQKDPKDRMSATDLLNH



AFIRKYEDQNVDLAALLSSLSSPV





366
MALMMEFGDDAGIGEEWEDNESQRMEIDTGKGIETHFNDIPEVIMSNIFSAIKDTRSRNRMALVC



RKWHEMERATRVYLCIRGNISNNLYRLPMCFQSVTKLDLSLCSPWGYPPLDFTTPHGNFIGHRL



KQAFPRVNNIVIYVRSARNIEKLSSLWPCLEHVKLVRWHRRAMDPESAVGLGMELKLLMQNCTA



LKSLDLSQFYCWTEDIPLALQAEPHVSANLSSLNLLKLSAEGFRAQELAAISGACRNLEELLAVCV



FDPRYMDCVGDEALVVLARNCSRVRILHLVDATAFEALRGDPEDIFSSENAKITRQGLESMFWN



LPLLEDLVLDISHNVADSGPALEFLSSHCKNIKSLKLGQFQGICKGPEPDGVALCTNLEALFIKNC



SDLTDTGLAAIAAGCSRLGKLELQGCRQITEAGLKFCTSRLSKTLVEVRVSCCKYLDTAATLRAL



EPICESVRKLHIDCIWDKSILDQEIASPSRRLNPVGSSAISTREIASYGMGKNHLVSAGDCNVNR



WDQNPESAWGPSLQLAPPQFCPDLNCANFDFGSSPSDVPMTNWGLDLNLTASSCSGPLESSE



ERGCLPIENFFEEHEKPNSLGSDRYVPSDGVMFRGMDVNGKAPQMERLCHSNTGTVSDSSST



EFVDFLGINDKHQEWQKLGADINYGMEVMVNSSQIWGVTGEASKRTSSANLEGEQSWTEIPNQ



YSYSDSSSHIRSITWKNLQFLSLWIPVGELLSPLAAMGLKVCPLLEEISIQVEGDCRLCPKPRERA



CGLSSLACYPSLSKLELNCGEVIGFALSAPAGKMDLSLWERWYLNGLRELHLSELNYWPPQDK



DMNRRGLSLPAAGLLSECAALRKLFVHGTCHEHFMMMFIRIPDLRDIQLREDYYPAHEDDTSTE



MRTDSCRRFEEALASRGFTD





367
MQQDQRRKAPTEVEFFTEYGEASRYKIQEVIGKGSYGVVCSAIDTHTGEKVAIKKINDIFEHISDA



TRILREIKLLRLLRHPDIVEIKHIMLPPSRREFKDIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQ



LLRALKYIHTANVYHRDLKPKNVLANADCKLKICDFGLARVAFNDMPTTIFWTDYVATRWYRAPE



LCGSFFSKYTPAIDIWSIGCIFAEILTGKPLFPGKNVVHQLDLITDLFGTPPIEAISRVRNEKARRYL



SSMRKKQPVPLSQKFSTADPLALKLLERLLSFDPKDRPTAEEALADPYFKGLAKVEREPSAQQIS



KMEFEFERRRVTKEDVRELIFREILEYHPQMLKEYLNGSDRSNFMYPSAVDQFKKQFSHLEEHY



GKGAPVVPLERQHASLPRSSVVHSNTMPPLPEKTISGPSRDRTSESRDESSRYIRETEKLQHDR



SAGNALKAPLQPPQKILQGGAAKPGKVVGPLPYENGSTKEVYDPRRLIRNAVLTTSQYAAPIYSY



PRRTSNTKIEPNEKEDAESTLMPPKAQYVGIGAARKVAAVQSASSRLY





368
MGPCNGRFSALILISMTPPPSRVGVLISLFIMSLLLCISAPCMHSPAAALIGLSRSEKYNTDGQDP



CRLSFLDTAAAAIDFGRIYHHNPAAILRPVSAEEIARFLRAIYASRALATGYRQEYLTVAAKGAGH



SIHGQAQAPDGLVIEMSSLRGVRIHVADRAGGYSYADVAAGELWVDLLAEAMKLGLAPRSWTD



YLYLSVGGTLSNAGISGQTFRHGPQISNVLQLDIITGTGELVTCSPAENADLFYASMGGLGQFGII



TRARIILEPAPQKVKWVRALYSDFEQFTRDQELLVSMDDGAASVDYLEGFVVVNNEAMRSWSIS



FRTDTPLDDSVFNDAGTEILFCIEIAKYFTQSDDETADVDKVTGRIISRLSFIPGLIYSVEVPYADFL



NRVRVEELNLRSRGLWDVPHPWLNMFVPRRQIQRFTTSLLRIMSPDTVKGPILVYPVKRSKWNT



NMSAVIPEDKDEIFYAVGVLRSADPLCLAGSSCLNDLLSQNQQIIDVSTNANEIGNDKTEPGMGA



KQYLAHHSQQWQWKNHFGSKWGIFLQRKARYDPLNILAPGQRILNRNHRE





369
MDQDQSICRFAAQKGKGEIQSSSFPDEVLEHVLVFLSSQKDRNSVSLVCKAWHRVEAWTRQQV



FIGNCYAVSPQIMIKRFPKIKSVSLKGKPRFADFNLVPPNWGAHLTPWVSAMATAYPLLERLYLK



RMTITDYDLTLLANSFLYFKELVMVCCDGFSTGGLASIASKCRQLTTLDLNEDEIHDNGEDWLAC



FPETLTSLRSLCFDCLEGPVNFDALERLVARCPSLKKLRLNRNVSIVQLQRLIIKAPQLTHLGTGS



FFYEFQLEQVADLLAAFSNCKQLQCLSGFREVVPEYLPAVYPVCSNLTSLNFSYAVIGSRELEGI



VCHCRKLQLLWVLDSVGDKGLEAAATTCKDLRDLRVFPVDAREDGEGCVSERGLVAISEGCPN



LESILYFCQRMTNKAVVTMSHNCSKLASFRLCIMGRHQPDHLTGEPMDEGFGAIVRNCKSLTRL



AVSGLLTDKAFQYFGAYGERLETLSVAFAGESDLSMKYVLDGCKNLRKLEIRDSPFGDVALLSGL



HHYENMRFLWMSDCRLTLQGCTELAKKMPGLNVEIIRENECNDSLVEKLYAYRTVAGPRKDMP



SFVTIL





370
MASTPVSSSASQPNLLRHYTPTVTDCSSSGSSIPVVDLSAQKTSVVQALVKACEDYGFFKVVNH



GISQVLIDAMEAEAEKLFALPLSEKERAGPADPYGYGNRSIGRNGDVGWIEYLLFRSDFQYVQQ



RYKAISPDNYINFCNTASKYISATKKLACDILELLAEGLGLPENIFSSFLTAEGSDSAFRLNHYPPC



PDPSNIIGFGEHTDPQILTVLHSNDVGGLQVLSRDGKWVTVSPDPSSFSINIGDCMQVLTNGRFK



SVRHRAVTNTLRSRISMMFFGAPALDATIVTPSQLVDEDRPAQYMPFLWSQYKKSIYCLKLGQT



RGLLQKFQASMVGVGVA





371
MGSSGRHENEAEKVVSCYEGDTIEQNRVDLMRSIIEVKYPSAKVTDDATLRRFLRARDLNVEKA



SQLFLKYLKWRQALVPLGYIPESEVSNELRKKKVYIQGFDKQRRPIEVILTARHYASDRDLEEFKR



LIVYGFDKLCASMPTGLETFVVIADFEGWGYSNMDTRAYLAALEILQDCYPERLAKAFMIHVPYLF



QTAWKMISPFIDKVTKKKIIFVEDKHLRSTLLNDIDESQLPEIYGGALPLVPAQDFVIPNWS





372
MAIPVIEMGSLIGNDKERFMAEMGKACEEVGFFQLKGHGIPVELMERVKKVCSEHYNHVREPKF



KTESVPVKLLNKSLMEAELSSSEPKKVENVDWEDCIVLQYAQEDYPWPSDPSEFKETMMEFGK



EITKLAESLLELLSEILGLEKGYLKRTLSGGDGPDDKAFFGTKISHYPPCPRPDLVEGLRAHTDAG



GLILLFQDDEVGGLQVLDNTGRWIDAPPMKDTLVIDIGDQLEAISNGRYRSAWHRVLATDSGNR



MSVASFYNPSLDAVISPAPELLSQPKKGSELSLYPKFMFGDYMNVYAQQKFLPKEPRFQAVAAL



QY





373
MMEALPDQVVWEVLDRIKETRDRNTAALLCKRFYQIEKNQREYLRVGCGLSPAIEALSALCMRF



PNLVRVEIGYSGWMSKLGKQLDNEGLKILSQHCPNLTDLTLSFCTFITDGGLGYLGSCTGLKALR



LNFTPGITGCGILSVVVGCKKLSTLHLTRCLNVSSVEWLEYLGRLESLEDLAINNCRAIGEGDLAK



LGYGWRNLKRLQFEVDANYRYMKVYGRLAVERWQKQWVACEALEDLSLVNCLISPGRGLACV



LRKCQALQNLHLDMCVGVRDDDLISLAQQCPKLKTLSLRVPSDFSVPILMSNPLRLTDESLKAIA



QNCSELESVSISFSDGDFPSSSSFSLAGIVSLIEACPIRVLVLDHVYSFNDSGMEALCAAHFLEILE



LIQCQEVTDEGLQLVKHFPCLSVMRLCRCLGLTDIGLKPLVASHKLQKLKVEDCPQISEKGTQGA



AKVVSYKQDLSWIY





374
MDPMERAAKVLGSSPGHKNMMGCSSSGVKVEPEIDGLLANAGYTVKASDLAHVAQRLEQLESI



MGTVQDPGISHLASEAVHYNPSDLAGWIESMFGELNPGADMPVPFGDRGSLIDSSQVHKPIQD



DPSLSAMDLALIHEYGLQFNGSQASNPQGFSPDSDPSVRCNIFSGPPLRSGDSTTHTNFQARSF



SAQSSDEGSSLSTTRLGTAQQSIDNGAQESGIRVVHLLMGCAEAIQRNNLKVASNLVREIRMTV



NSAPCGAMGKVASHFVEALARRICGLNGAESNMSQADAQSEILYHHFYEVCPYLKFAHFTANQ



AILEAFEGHGSVHVIDLNLMHGLQWPALIQALALRPGGPPLLRLTAIGPRQPDGRDVLQEIGMKL



AQFAESVNVEFDFRGVMADKLEDIKPWMFQVKPGEVVAVNSVLQLHRLLYIDAPTGSSPIDVVL



KSIGSLRPKIVTVVEHEANHNGPVFLDRFVEALHYYSTMFDSLEACNVLPNSMEKFLAELYIQKEI



CNIVACEGRYRIERHETLSHWRIRLGRAGFRPSHLGSNAFKQARMLLTLFSGEGYTVEENNGSL



TLGWHSRPLIAASAWQGS





375
MASNSRYTQSQSTGSNNRRSSTNTNTTTNKATAMAQYNADARLLQVFEQSGESGKSFDYTRS



VKSTTESVPEQQITAYLSRIQRGGRIQPFGCVLAVEETTFRIIAYSENAVEMLDLAPQSVPSMEQP



QQDVLTIGTDVRTLFTAASAHSLEKAAVAQEISLMNPIWVHCKNSRKPFYAIVHRIDVGMVIDLEP



LRTGDAFMSAAGAVQSQKLAVRAISRLQSLPCGDVGLLCDSVVENVRELIGYDRVMVYKFHEDE



HGEVVAEIRRSDLEPYLGLHYPATDIPQASRFLFMQNRVRMICDCMATPVKVIQSEELMQPLCLV



GSTLRAPHGCHAQYMANMGSIASLVMAVIINGNDEEGGGSGRNSMKLWGLVVCHHTSPRAVP



FPLRYACEFLMQALGLQLNMELQLAAQLTEKHILKTQTLLCDMLLRDAPMGIVTQSPSIMDLVKC



DGAALYYGGMCWMLGVTPTEAQIKDIADWLLEHHGDSTGLSTDSLADAGYPGAASLGDAVCG



MASARITSKDFLFWFRSHTAKEMKWGGVKHHPDDKDDARRMHPRSSFKAFLEVVKRRSLPWD



NVEIDAIHSLQLILRGSFQDIDDSGTKTMVHSRLNDLRLQGIDELSSVASEMVRLIETTTAPILAVD



YNGLVNGWNAKVAELTGLPVGEAMGMSLVQDLVFEESVERVEKMLHNALRGEEEKNVEMMLK



TFGPQKEKEAVILVVNACSSRDFTDNIVGVCFVGQDVTSQKVVMDKFIRIQGDYRSIVQSPNPLIP



PIFASDEYACCSEWNAAMEKVTGWTHDEVIGKMLVGEIFGGCCRLKGQDAVTKFTIVLHSAIDG



QEIEKFPFAFFDKQGKYVEALLTANKRTDADGRITGSFCFLQIASSELQQALEVQRQQEKKCFAR



LKELAYIRQEIKNPLYGMMFTRKLLEETDLSDDQKQFVETSAVCERQMQKVMDDMDLESLEDGY



MELDTAEFILGTVIDAVVSQGMIVLREKGLQLIREIPGEVKTMRLYGDQVRLQQILADFLLNVLRFT



PSPEGWVAIKVFPTLKQLGGGLHVVHLEFRITHPGPGLPAELVQDLFDRSQWATQEGVGLSMC



RKLLKLMNGDVQYIRESGICYFLVNVEFPMAQREDAASIK





376
MATVGNKNVQAKLVLLGDMGAGKSSLVLRFVKGQFFAYQESTIGAAFFSQTLAVNETSVKLEIW



DTAGQERYHSLAPMYYRGAAAAIIVYDITNLDSFVRAKKWVQELQRQGNPNMVIALAGNKSDMI



ENSKVSPEEAKVYAQENGLFFMETSAKTAQNVNELFYEIARRLPMEPVQHPAGMVLADRSAER



ARSNSCCS





377
MADSSVRSESVYMSKLAEQAERYDEMVEYMGKVVKAADVEELAVEERNLLSVSYKNAIGSRRA



SWRIVSSIEQKEESRGNEDRLPLIRQYRLKVEAELSGICDSILGLLDGYLIPSASCGEAKVFYLKM



KGDYNRYLAEFKTGDERKEAADGTLEAYKNAQGIALVELASTHPIRLGLALNFSVFYYEIMNMPE



KACALAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSDMQEQLDDS





378
MDNGMMVWIVLAGVVAMAVWYLLVQHQQPKQSHNVPWETLPPGAVGWPFLGEIISFYFRTPD



FVKQRRGRYGNLFRTFLIGYPMVISTDPEVNKFILNNDGRLFVPAYPSHWSQIIGECNIFAARGDF



HKRMRGAFLHFISISVVKNRLLSEIQNIITFSLAGWEGRNVNVLHEAEEMIFSVMANHMLSLSAGT



ALESMKRDFLVMMKGLRSLPLRVPGTTFYKSLQKKQVLFNQIKSIIEERKLNMSAYDSYDDLLSSI



LRSASEKEFTTTQIVDLIVQSVIGSLETTPKIMASVVRHLSENPHIIIYLKEEHETIIQAKENNQSLSW



DDYKSMVFTKSVIKETLRFGMQPLNNIMFKKTLQDVKIEGYTIPKGWTCIIYDLVSDMDTKYCKDP



LSFNPQRWQSKEMNEVPFLAFGGGPRLCPGYELAMLTMSFFLHHLVTKFRWEYLPSKSELRWF



DSPLNSVFDCRIHVENR





379
MAILYALVGRGTVVLAEFSAVGGNAGIVARRIMEKLPLQDRGEGESRLCYSQDRHIFHILRGSD



GLTFLCMANDTFGRQIPFAYLEDIQMRFMKTYGRVAQNALAYAMNDEFSRVLHQQMEYFSSNP



NADTLTRVRGEMNEVRTVMVENIEKILERGDRIELLVDKTSTIQDSSFHFKKQSRRLRQALWMKN



AKLLASLTCLIVVLLYIIIALCCGGITLPSCRS





380
MGEFKKWKRCNSLPSPINSLDDGCLMRIFSFLSPLPDRYSAARVCSRWRHLASDPRMWLRVEK



SCNALAESGIFSTIEDAVVAARPGDTILIATGVVHMACNIQIVKPICLVGGGSSPDETVLVCPRGFD



SALEFLSTGKVANLTIKAELGSCLLHRNGRLTVEGCVLQCEEHPLEHLCCPIVSTADALAPPSTLS



SVMKGGSSMSVIHTRIKGGAKAVLTNGSLTLQQVRVIYSPTALFFWFNVSQKSLTDIDLPPFICKA





381
MGSTNNQSERAFSIKLWPPSESTRLMLVERMTDNLSSVSFFSRKYQLLSKEEAAENAKRIEETA



FLAANDHEAKETNSDDSSVVQFYAREASRLMLEALKRGPTSQKQESEKELTAETVEVKETIFDIS



RGDRGFVDGTLAEELLRPLTEEGNSYTKICFSNRSFGLDAARVAERALMEVQRNLTDVDLSDFIA



GRPEVEALEVMTIFASVLQGCELRSLNLSDNALGEKGVRAFGPLLKSQKTLEELYFMNNGISVEA



ARAICELLPSVERLRVLHFHNNMTGDDGAEPLSELVRNCTALEDFRCSSTRVGAVGGIALVGAL



GAGNRLKKLDLRDNMFGKKCGVALSRALSPHLGLTEAYLSYLGFQDKGTIALANSLKEGAPSLK



VLELAGNEITVKAATALAECLGLKRMLTKLVLSENELKDEGSVLICRALEEGHEHLKELDLSSNSIS



GVGAKVAAELVVNKPDFDLLNIDGNCISEEGIDAVKDVLRRGDKGVTVLGSLEDNDAEGEGNDY



EDGDEDDDENESSDSDGDLVAKVEDLKMQ





382
MSPAESSREESVYMAKLAEQAERYEEMVEYMEKVAKTVDVEELTVEERNLLSVAYKNVIGARR



ASWRIISSIEQKEESRGNEEHVTMIREYRGKVESELSNICDGILRLLDTHLIPSSTSGESKVFYLKM



KGDYHRYLAEFKTGAERKEAAESTLLAYKAAQDIATAELAPTHPIRLGLALNFSVFYYEILNSPDR



ACTLAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSDMQEETGGDEIKEAPKKEEGDG



H





383
MARKVDDEYDFLFKVVLIGDSGVGKSNLLSRFTRNEFCLESKSTIGVEFATRTIQVDGKTIKAQIW



DTAGQERYRAITSAYYRGAVGALLVYDITKNATFDNVKRWLRELRDHADSNIVIMLVGNKCDLNH



LRAVPIDEAQDFAEKEGLSFMETSALESTNVEKAFQSILAEIYQIVKRKSLAAEEAASSGPSQGTP



INVTDAEAVAKKRSCCL





384
MNAGPLIAALRDCPLLAFPSWTAAGIILAYFCYMALAQFILPGKQIPGVVLADKTRIYYRCNGFITL



FLLVTLLGISMAAGILSLAVVADKGGELLSTTLILSALISLFLYVAGHLSQSKMTSLKPHITGNFIHD



WWFGIQLNPQFLGIDLKFLLIRSGMIGWAVINLSVAAKAFQLKDSLNLSMILYQIFCLLYVMDYFW



YEEYMTSTWDIIAENLGFMLVFGDLVWIPFTFSIQGWWLLTHKPDLTKAAAILDVLIFIIGYDSLRG



SNKQKHIFKKDPTACIWGEPPKVIGGKLLASGYWGISRHCNYLGDLLLAFSFSLPCGASSFVPYF



YPMYLLFLLLWRERRDEAKCREKYKEDWVTYCKLVPWRIIPYLY





385
MQRPSKTSVGYAIPDEVLKCVMGYLEEPCDRSAVSLVCKRWNRVDALTRKHVTIAFCYTISPSD



LGARFPELESLKLKGKPRASMFNLIPQDWGGYAEPWINEISQTLLCLKALHLRRMIVTDEDLRAL



ARARGHILQVLKLEKCSGFSTLGLLEVARSCRSLRVLFLEESTIEDEGGEWLHELALHNSSLEVL



NFYMTGLENVNVNDLEMIATNCRSLTSFKISECDILDLRNVFKKATALEEFGGGSFSSSEEQAVE



PNIYEMVKFPTNLMSLSGLNYMSETELPVVFPRASSLKKLDLQYTLLSTENYCQLLQSCINIEILEV



TNAIGDRGLEVAAENCKKLRRLRVERGEDEAGLEGQQNFVSHKGLSVIAQGCPNLEYIAVYVSD



MTNSALESVGKFCKNLRDFRLVLLDKKEQVTDLPLDNGVMALLLGCQKLKRFGFYLRPGGLTDI



GLGYIGKFSSNVRWMLLGYVGETDFGLLEFSKGCPNLEKLELRGCCFSEYALSVAALSLRSLKYI



WVQGYNATPSGFDLLAMERPFWNIEFTPASQVTVDGFNLEEEITEKPAQILAYYSLAGRRTDHP



DSVIPLSLSSWNRQLQHVYEYSLFHAYEY





386
MAKLYLFVAALLLLSASSAASQSLNTSSDAIPGKDFSTGKQSVEYLRLFAEDISWSNNLVLGLLVP



RSIWSPLPRVLQTWLRNYIAGTVVYFVSGSLWSFYIYYWKRNVYIPADSTPSKEPIFLQIMVTMKA



MPLYCALPTLSEYMIENGWTRCYAAINEVGWPSYILLTILYLLLVEFGIYWMHRELHDIKVLYKYLH



ATHHIYNKQNTLSPFAGLAFNPLDGILQAIPHVIALFIIPTHFLTHELLLFCEGIWTTNIHDCIHGKVW



PIMGAGYHTIHHTTYRHNYGHYTIWMDWMFGTLRDPTAEAKSVKNM





387
MAYKTEEDYDYLFKVVLIGDSGVGKSNLLSRFTRNEFSLESKSTIGVEFAARSVNVDGKSIKAQI



WDTAGQERYRAITSAYYRGAVGALLVYDITRHVTFENVERWYKELKDHTDVNIVVMLVGNKSDL



LHLRAVSVEEGKSFAERESLYFMETSALDSTNVENSFTQVLTQIYRIVSKRSLDTAEEALSTLPGK



GQSISVNGKDEFTTKKAGCC





388
MPETREDSVYLAKLAEQAERYEEMVENMKRVASSDQELTVEERNLLSVAYKNVIGARRASWRIV



SSIEQKEESKGNEAQVSMIKGYREKIESELAKICEDILDVLDKHLIPSAASGESKVFYHKMMGDYH



RYLAEFATGDKRKDSADKSLEAYKAASEVAVTELPPTHPIRLGLALNFSVFYYEILNSPDRACHLA



KQAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDMQDSADKPADSKDEPAETPAED





389
MANERESKTFLARLCEQAERYDEMVTYMKEVAKIGGELTVDERNLLSVAYKNVVGTRRASWRII



SSIEQKEESKGTDKHVGTIRDYRQKIETELEKVCQDVLDVLDESLIPKAETGESKVFYHKMKGDY



HRYLAEFASGEKRKNAATAAHEAYKSATDVAQTELTPTHPIRLGLALNFSVFYYEILNSPDRACH



LAKQAFDDAIAELDSLSEESYRDSTLIMQLLRDNLTLWTSSDGAEPAETGEAPKTEEAKPAETAE



AAPAEPESKPAKEEEPAAPAAA





390
MDALLKQFERLQRPIDLVQTLHETQVKQVPARYILPSEQRPSRPLQVQQSLPVIDLAGLEDTDQR



IKIVSQIAQASQEWGFFQIINHDIPVSLLETVKRVSQEFFDLPLEERRKQCPVRPGVHMLEGYGRF



FDISDDTVLDWVDTLVHYISPEWAKAVEHWPKNPSTYRETYEKYGEEVMKVMEKLLGLLSQGL



GLDPKYIQTLNKESLLQVRINYYPPCPQPDMVNGFKPHSDVDMLTVLLDDGVDGLQVRKDEDW



FTVPSIPGALIINIGDLLQIVSNGKYKSAEHRAVANTKQSRMSMVMFLRPQEDVLIDTAPELIDEAH



PSLYKAVKAGEYETEYNSKDFRGKDAVHTLRIEQA





391
MMESLRKLVYYACVSRGPVIVAEYNDLGDAEQLAIAVECLGRAPPFHSRFTHTIKNRRYSFLMDS



EFVYYAIVDEALPKVKVFSFLEQVRDEFKRLLRAKGLSNSKDEILQGCGLGDDFASTFRRLVAPL



VGIPQTEKRRMEEEEASARRQEDETETEVCSPTASAPLYGKPQPDSKPKKDKKSLCSIPPLILKT



NKHEKKKVRDQVTQVREIIMESSGKALDNGQKLEVTVDGNTGGAAALSLQRTASMRTKGQQIA



QRMWWRNVRVVLLLDFVVCTILFVVWLCICRGFKCVSD





392
MSPSDSSREEYVYMAKLAEQAERYEEMVDFMEKVAKTVDVEELTVEERNLLSVAYKNVIGARR



ASWRIISSIEQKEESRGNTDHVSIIKDYRGKIESELSKICEGILSLLESHLIPSASSAESKVFYLKMK



GDYHRYLAEFKTATERKEAAESTLLAYKSAQDIAGAELASTHPIRLGLALNFSVFYYEILNSPDRA



CALAKQAFDEAIAELDTLGEESYKDSTLIMQLLRDNLTLWISDLTDEAGDDIKEASKLESGEGQQ





393
MTEGSNYDFLFKVVLIGDSGVGKSNLLSRFTRNEFNLDSKSTIGVEFATRSVQVDSKTVKAQIWD



TAGQERYRAITSAYYRGAVGALLVYDIAKHPTYQNVHRWLKELRDHADSNIVIMLVGNKSDLKHL



RAVPTDEAKAFATENNLSFIETSALDASNVEAAFQNILSDIYHIVAKKNLENSSDVIQPLEGRGIDIA



KSEDDGGAKQGGKCC





394
MQRPSKTSVGYAIPDEVLKCVMGYLEEPCDRSAVSLVCKRWNRVDALTRKHVTIAFCYTISPSD



LGARFPELESLKLKGKPRASMFNLIPQDWGGYAEPWINEISQTLLCLKALHLRRMIVTDEDLRAL



ARARGHILQVLKLEKCSGFSTLGLLEVARSCRSLRVLFLEESTIEDEGGEWLHELALHNSSLEVL



NFYMTGLENVNVNDLEMIATNCRSLTSFKISECDILDLRNVFKKATALEEFGGGSFSSSEEQAVE



PNIYEMVKFPTNLMSLSGLNYMSETELPVVFPRASSLKKLDLQYTLLSTENYCQLLQSCINIEILEV



TNAIGDRGLEVAAENCKKLRRLRVERGEDEAGLEGQQNFVSHKGLSVIAQGCPNLEYIAVYVSD



MTNSALESVGKFCKNLRDFRLVLLDKKEQVTDLPLDNGVMALLLGCQKLKRFGFYLRPGGLTDI



GLGYIGKFSSNVRWMLLGYVGETDFGLLEFSKGCPNLEKLELRGCCFSEYALSVAALSLRSLKYI



WVQGYNATPSGFDLLAMERPFWNIEFTPASQVTVDGFNLEEEITEKPAQILAYYSLAGRRTDHP



DSVIPLSLSSWNRQLQHVYEYSLFHAYEY
















TABLE 4







Cell Signaling Oligonucleotide Sequences








SEQ



ID



NO
Sequence





395
ATGGTCTTATGCGATGGTGCAGTTAGTAGACTGTTGGTCTGTATTTACTTATTTAACAGA





396
TTTACCTTAAGATGAAAGGTGATTACCACAGGTATCTGGCAGAGTTTAAGACTGCGACTG





397
AATAATTCTATAGACTCACACTACCAATGGTTCACAAAGTGATTGTGGTAGACATATGTC





398
ATTAATTATGCAGCTTCTAAGGGACAATCTGACATTATGGACTTCTGACATCCCTGAGGA





399
TCTTAGTGGGCGCTGGATTGCATCATCAGACGGGTCAAATAATATATAATTAGAAGTGTA





400
ATAATGTGTAATTCCAAATTATGAGGTATATTTGCAATAAACAAAATGCAGGTCATTTTG





401
GAACATAGACGAACTAGCTGCTCTGGACACTATAGATGCCGGGAAGCTATTTAGTGTCGG





402
GGTCGGGAAGACGTCTCTCATGAACCAGTACGTCAACCGCAAGTTCAGTAACCAGTACAA





403
AATTGGAAAACGCTCTTGGGTTTGTGAACGTGCTTCTCACTGCTTTAGTGTTGGTTTTCA





404
AATTCTGCATTGAGTGTAGCAGATCCCTTCTATTAGATTATTCATATGACTATGTGACTG





405
TTCAATATCTCAATTGAACACGATAAAAGGCCTCCATGTCTATGCAGATTGTTGCCTACT





406
GTGGTCTGCTACCAATCTTTCTATGATAATGGTACCGTTTCTATTATATTAGAGTATATG





407
TTGCACTGTCTTATTTTATCAATTTGTATCCTAATACGTGGCCAATGAACTTTACGGTTT





408
AAGAAATATATAACAATGTGAGCAGGAAGGTTCTAAATTCAGATGCTTATAAAGCAGAGC





409
TTCAGTTGCACAGTAAACATGTCTGTATCCTGTGCAGTAGGACTCTTGTAACTAGTCTGT





410
TTTTGAAGGTTAATAAAAGTATTACGCTAGAACAATTACAGAGGCTGCTTGTCCGTGCTC





411
CTCAAGAACTGTAGCATATGTTATGACCATTGCAAAGGTTTTAACTGCTGCGGTATCATG





412
AAATCGTGCGTTGTGAAATTGGTTGTGTATAATCTCTAGAATCCAAAGGCTTACGGGTCA





413
GAACTGTCTTCGGGCGAGTTTAATCATGTATCTGATTTACGATCGGTGTTGTGAACGTCG





414
TCCCAACCGTTGGGGGATTTTTTGACGAGTCAGTACCAAATTTATAGTTGCCTACTGACC





415
TATATTTTTCTCTTACACAAAATGTCGTCAGATATAAATTGGTCTGGGAATTGTCGATGC





416
TGCATTGGATTCTACCAATGTCGAGAGTGCATTCTTGACTGTCTTGACCGAGATATTCAA





417
TGTATCAGATTCTACGTGGACTGAAGTATATCCACTCTGCGAATGTTATTCATAGAGACT





418
TCCATGTACTAGGTTTCCTATCTAACCTGTAAATAGCCTTATTGCTATGAGACTTCAGGC





419
TTGAATCTTAGTTATGCTCCTGGGATCCCTGGAAGTGAGCTAACTAAGTTAATCCGTCAT





420
TATGTAGATCTTTGTGGCTGTAACATGTACTTCTTGCTTACCTGTTCGATGCTATATAAT





421
GAGTGCCACAGGATTACCCTGTCAGGACTATATGGTCTTGTCGTTGGTTGTGGGGATAAA





422
CAACTTGTCGAATCACTTCGCAACCGGATTCAAAATGAGGCTACTGTTGCATACTACTTG





423
TGTTTTTAGGACACAATGTATTAGGTGCTTGATGCTAGCGCGGACACATTGTATTATTTT





424
CATCAGACGGTGAATCCAAAGTATTTTACTATAAGATGAAGGGAGACTACTACCGTTATC





425
AAAGATAACTGATTTACCCCTGGACAATGGTGTCAGGGCTATTTTAAGGGGATGTGAAAA





426
AGATTCTAACATAGTTATTATGATGGCTGGGAACAAGTCTGATTTGAACCACCTAAGAGC





427
TATTTGAACTCTGTCCCAATATGTACTTTGATTTATGGATTGTAACGATGTACTCAATTG





428
GTCATTGTGACTCATGTTAGTATTTGACATGATTCGTGTTAAATTATTTATGAAATATTG





429
AGAATTGGTCCGTGATAGTGCCACCGGAGGTTGAGATCTATGAGCTTAAAACTAATGCTT





430
GGAGTCTTCAACGGCGGTGATGTAAAATATCTATCCCAATGTATACCTCCTGTCCTGGAA





431
ATGAGGGAGTTAATTTATAGGGAAGCGCTTGCATTTAATCCCGAGTATCTACAGTAATGG





432
TTTTTAAGAAGTGATAATGCACGAAGATATGTAAGACAGCTTCCACAGTACCCAAGACAG





433
TGCAAGGGTATCGACAGTCTGCATGTCGTGAAGGTCCCCGAGTGTTCGAATTTAGGTCTT





434
GCCAGATGTCTAATGCGGCCTTACTTACCATAGCTCGGAACCGTCCTAACATGACTCGAT





435
ATGATAGTAACTGGCCAGAACCTGACCGTGTGGGACGGCAAGAACTTGAGATTGTAATGG





436
TTTCCAGACTATTCTCTCAGAGATATACAGGATAATTAGTAAGAAGCCTCTGTCCTCAGA





437
AATCCGGGAGGGTGTACCAGGACTATTGTGAGGCCATGAGCAGACTGTCTCTAGGAATAA





438
CCCTTGGGATGCGTATACGATGCGGCTCAAGGTGTATCAATTCGTGTTACAGATACCATT





439
TTTGTAATCCCCCTGAATAATGGAGTTACTATTGATCAGTGGATATTGCTTACTATGTTG





440
GATTTTTAACCCCACGGTTGTTTATGATCACTTGGGCGAAATATACTCCGCACTCATTGT





441
GACAAGTTAAGACTATTCTAGAACCATATTTAGCAGTGGTCTGTAAGCAGGTCTTACAAG





442
CAGCGTCGGCCACTCTCGATAAAACTCTGGCCGCCTAGTCAAAGTACTAGGATTATGCTT





443
TCATTCCTTATGCAGTTGTGGCAATAGATTTGCCATGTTAAGTAGTGAATAGAGAACCCT





444
TGATCCTGGCGATGCGTTCTTGGTGCCAACCCCTTACTATGCAGGATTTGATCGAGATTT





445
TTCTTGTTGGTTCCTGCATTGAGAGAGACCTAATTGCTTGATGTCCTGTAATTTGTAAAA





446
CTTTACATGGTCCTTCATTATACTATAGCCTATAGAAGAAATACATTTGCATGTATAGTT





447
TCTCTAGATCCTTAGATTAAGGTTTGATCTGTGTATATGCTGTGTCGTTGCCTGAGAATG





448
GGATGACGATTTGTTTCAAGATCGTTTTAGCATTGCATACAACCTTGACCGAGAGTTTGG





449
CTTGACTCGATATCTTTGTGCTGTTGTCTGTAGTATATATCAGTACCAGTTAGTTTTACT





450
TTGGATTTGCTAGGATCTAACTGCCTCACGTTGGAGAGACTGGCGTTTTGCGGTAGCGAT





451
CAAAGCAGATACAGCTGTTGCCAAAAGTCTGAATAAGGAGTTCGGGCCAATTATGAAGGA





452
CGACTCTAACATTGTTATAATGCTTGTGGGGAATAAGGCTGATTTGCGACATTTACGTGC





453
CTGCCTTAGCATTAACGGGAACCACATGGGTGTCCATGTGTGGATTATGAAAGAGTATGG





454
TTCTTTTGAATTCGCTATCCAGTGTTGGTCAAATTTTAGCCAATAATTTAAGTTGTTTCT





455
ATGGAGCTAGTCGTTTGACTAGTACCTGTATGTAGATCTAATGGAAGCTACAGAGTTCTG





456
TTCGATGCGAAGTCTAATGACTATCGTGTTGTCAGGATTATCCGATACCTAGGTATTCGC





457
AAGAATCTTGAAGTAGGTGAAGAGTAGGATATGTTCTTTCTAGTTTAAGGTAATTTGAAT





458
GATGCTTCGGGCAGTGAAATTGCTGTTCGAGAACTAATGAAGGAACCTTCTTGACTAGTT





459
GTTCACTTCATTACGTTTTATGCGCCACTCTGGGGAGCAATCCTTTATAACGGTTTTTCA





460
GTTTTGCTCCTGTACCGTGAGACTCTCGTTTGGTACGATTTAGATACCGGTGACGTTGAG





461
AAAGGCGACTCGTGTTCATAGAAACATCTGCTAAGACTGCCACTAATGTTAGCAAACTGT





462
GGTCTTGTGGTTATATATGCCAGTTGTCTCTTTTACAGTGAGTTTTGTGTAACTCCTAAA





463
GACAGAGATCGCTAAAACCATAGAATCCGAGCTACAGAAGTTTGAAAACGGAAGTGGGAT





464
GAATCTCATTCTGACCCTGGCTCGTGAATACTTTCATATGTACACAGTATTTCACCGGAC





465
GGAGTTGTGTAGTGTTACTCTCCCGAATCAGACATTAAACACTTACTTCTACATGAGGCC





466
TGTTACTAAGAATAGGGTCTTGTTTCATGGTCTACTAATGTAATGAATCTCGCTCTTTAT





467
ACTTTCAGTACAAATAACTCACTCGTTCAATAATTTCCGTGGGCTGTGTTAATTTTAAAG





468
AGAGCAGTGATGGTCAGGCATATAAAGTTTATGTTTACCGCACTGTTGCTGGACCAAGGA





469
GATTAATTAAATCGGATTCCCCGAAATGGGATGACGTGCTATAAGGACGTAGCCACTGCC





470
GAACAATCCGCCCATGTACAGGGAGACCTCTTTCACAGAGTATTTTGGGTATTACCTCTC





471
TCTCTGCTCATTACCGTTTCAGTGGCTGATAATGGATTCCCACGATGCAATTGCGATGAC





472
TAGAAAATGCCTTTGCAGAAGTGCTAACGCAGATCTACCGTACCACTAGTAAGAAGACAG





473
GTTTTGTACTATTGGCGTTTGGCAGAAGTTATTTGGCCAGTACGTAGCTGGCTAAACAAG





474
TTTCAGGGGGCATCTCTACACTGATGTAAATAATGTACTTATTTATAGCTGACAGTCGAG





475
AATTATTAAAGTGGACATCGTTTGTTTTATGTGACACACCTGACACTAATATTCGTAATT





476
TCTCCTAGTGTTGGTGTACTGTTGTAATCAATGGAAAGGTATGTTAGGCGACGATATTAT





477
CTTGGAAATGCTTACTTGCGAGTATCCTTACATTGAATGCACCAATCCGGCTCAAATTTA





478
TTCCTCTGGTGCTTCTACATTTATTACCTCAAGCGCAATGTTTACGTCCCGAAGGATGAG





479
TGGTAGCATCGGTAGACTACATCTATGCTGTAAACTATTCCTATCCTATAATAGTTGCAT





480
CCAATCCAATGTTATTTCTTATTAGCGCTAAGACCTTACCTCTGGATCCCTTCGTTGAAA





481
TAGATTGATCGATTTGAAGGCTATCTACTTTCAAAAGGATACATGTTGTGCTTATGATTA





482
AATCAAATGCATTCTTGAGTGATGTCCTACTTAATTTGTCTTTCATGACGCGGCTTTTCT





483
GATGTCGTTTGGTATGATTTACATGCTAGGTACATCAATAGGGTAGATATAAGGGGCATG





484
AGTTTATTAATGTAGGATTTCCCTTTTATAGTTAAAAGAGTGATTAGGTGGGGTTAGACC





4B5
ATATCACAGAGCGTCCATGGTCTGCCACTATCTCTATTTGACAATTTGTAATATGTAATT





486
ATATACGTTTACACGAGAGAAATAAATTACAATCTGCGATTATATCCCGATCCACTAGCT





487
GGTCCTTCAAAGTACGTGGGCTCAAATAAAGCGTTAATATGTATGGTAACTGGTACTTCA





488
GGGGTGTTAATCAAACGTTTACTTGTGTAACCAGTGTAGAGATAGAATTGTACTCTAGTA





489
GAAGGGCTGACAGATACAGGTCTTGGTTATATTGGCGAGTACAGCACTAATGTAAGGTGG





490
GAAATACCAAGGGCACTAGAGTTCAAGTAGACGTTTATAATTTAACCGGCCATTCAACAT





491
TTCAGTGGGGCAGAGACTCTGATTGCGTACAGCAACTTTAGTGTATTATATCAAGGTCAT





492
AGAACGAGTTTATGCATGAGAAGCTATGATCCCATGGTTATTAGGGTGTAGGTCATTATT





493
TGAATATTGTACCTGAGAGCATTCATTGACTTGTAATGAATGTACACTCTCTTGGTCTCT





494
TTGTACTAGACTATACTATGGGACGCCTAACCTGTCATTTAAAAATGTGAGACTGTTCGT





495
ATTGTGTATTCCTAATCTGAGCCAACTATTGGCCTCTACTTTATTATCATTGGACATTAA





496
TCAATACTTTCCAAGGGGTTCGCAAGGTCTTTTGCAATGTCTAGCCAGATTATTCCATGT





497
AGAAGCCCTTCCGTGTCTTCGATATACGTGCCCGATCTTGTAGACAATCTTTAGTATATG





498
TCTTTTGGCATAGTGTTTCCTGATGCACGGTGCAGATATATGACTTGGCATCTAGATCAG





499
GGAAAAACTTTGACCGATTTCTGGAATCACTTATAGTTGAATTCGAGCAGGTTCTCATTT





500
ACAAAAGACCAGTAGGACATTATGGGGTCTTAACTTGGTGTGTATACCATGGCTATTAAA





501
TTGGCGAATCTACTGTTTTCTACTATAAAATGAAAGGAGACTACTACCGTTATCTGGCTG





502
GTGAAATGTGATAATCTTATAGTGTATTAGGATTAGGATTAGATTACCAGGCTTTCCTGC





503
ATGGTAGTTTACCAGATTATATGGTTACTATCAACTGTTCGATTGTTCTAGTGTGCAGTA





504
TCAGACGTTAGAACTCTGGTTAGCTGTGCATCCTATAGTAACGTCTCTGTAATACGGTGT





505
AATTTGGAACTCAATTATCATGGCCATATCAAATGCGAAATGAAGGGTGTCATTGTTTCT





506
TTTGTGCACCCTGTTACAACTCGCCAGTATAGGTCTAAATCTGCATTTACACAACCCACT





507
AGATTGGAGTTGTGTATTCTAAATCGAGGCCAGCTATTGGGCCTTATGCGATTATTATTA





508
GGTTCTGGTTATAAACTTATGTTCAATAAAGAATTAGAATTAGATTAATCTATATAGGAA





509
TTCAGTCATCCTAAACTGCAGGTCTACTTCCGAGAGTTGTTGAAACCCGTTTAGATTCTA





510
ATTCGAACCTCGACTATTCAGTTTCCGATGCGGTCAGAGACAAGCTGCGGCTTATGAGAG





511
GGTTTAAGTTAGGTTGGAACTTTGAAGTACATTAGTGTTCTGCACTTTATATCCTAAGTT





512
TTATTACATTACCTGGGTAAGAAGTGGAGTTTAGCTGCTCAGAGGCAGATAGTAACAAGC





513
AGCTATTATTTGTTTGAGGAGCAATGGACATGACACCTACATATTTATTTAAGGTAGGGA





514
GAATTTCCGTGGTTATGGCTCTGCTACATATGGGCAACCTGTTAGGGCTATCCTACTAAA





515
AATAAGGTGGATTATTAAATCGCGTATTTTTAACTTATCTAATATCTATTTACTGACTCG





516
GACATCTCCGCTCTTTAGTTAATGGGTCTCTCATTTCCTGAACGTCTAGGCAGGCCTATC





517
GCCTTTCTAATCGAGCAGATATTGATGGACTGAACACGATGTGTATATGGAGCGTGCTTT





518
TTAAAGGGCTGAAGAGAAGTCGATCGGTGTACGTTGTTGTCGTCAGGTTGCAGGTTCGAA





519
TAATTGCCCCGCTGTGGACATATAAATATCATGTCCGTTGGTGTGAGTAGATATCATGTC





520
TTTCGATAATTCAATTTCCGACGCGGTCAGAACCAAGCTGAGGCAAATGCGAGATGTCAT





521
ACTGTTGGTGGAAATATGTGATGCCAAATGCTAGGAAAAATTATTTAGATATTATTGCAT





522
ATTTTACGGAGAGCATAAGCTATAAAAGCAAATCGGTCTGCAGTGTATTATCGACATCCC





523
CTTCTTACTGCTTCAGCTCTACAAATTAGTGTGGGGGGCGAGCAGTCGAGCCTATAAGTT





524
CACTTGGCACCCTGCGGACACAAGTCCTAGGTTTAATCGCATATGTTGGCGTGACTAGAT





525
TGACTGATTTGCTTGGCACTCCGTCAACAGAAACACTTTCTAGGATCCGCAATGAGAAGG





526
GCATGTCAGTTTTAAGAGACAAGCACCCTGCTATTGCTCTGTATGATTTATTAGTGAACC





527
AGCTTGCACCAACGTAGGTCACCAGTTAATATGCATTCTTCTTTCAGAAATTCAAGGAAG





528
ATAAGTTTGTAGCTATCAACATGACTAAGCTTTAGTGAAGGGCTATACAATGCATCTTTA





529
GGAGGCTATTGGTTAATACATATAAAGGGTGGTAAAGCGCTGTTCATATTTTTCCTAGAA





530
GGAAGAACTTTGCGTTTCCCTGCATTTCTACTTGTACCCTTATTCATTCATTCAAGAAAA





531
ATCTTGATTACTTGGCAGTCCTTTCTAGATACAATCCTTTCGAGGCATTTATATTCATTT





532
GTGCTGTAGATATGTTCAAGAGACAATTTGCTCATCTAGAGGAACACTATAGTAAAGGTG





533
CCAGAACCTACTAAACTGGATGCTAAATGAGCCAGACGTTCCAAATAATAGACAGTTAAC





534
AGACCTCTTAATCCATGGTGAGAGCATGAGGTCTAATAAGTTCGGAACCGTGTATTCATC





535
AAGTAACATTTTGTGCAGACAGTGGTTACAACTTTGAAAATTGGAAGCTGGGCTATTTTC





536
TTTTCGAAAGCTCATCGAGCAGCTATAGAAACATTAATGCATGAAAGAGATCTAAATATT





537
TGCAAATTAGTACCATTCGACAGTGCCACCTGCCCATTGTTTGATTCCACGTGGCACAG





538
TTTGAAGTGAGTAACACCTAGACATGACATTGTACAACTTAAAGAACAATAGAAATTTGC





539
TTTACAGTTGTAGTTGTTTGCACGAATTGTTGAGTAACTTCTTTACTCATTTGAGGGTTT





540
TTGATCTTATGGATCTGACAAACAATGCACTGATTTATTCGTATGAGACCAAAAAATCTC





541
GATGATCCAAGGTATCTCGTCATGTCCTTAAGAGCTTGGTTTCTCTTTCTATCCCAGTTT





542
GCAAATGAACAGCCTGGCAGATTCCTAGTCTGGAATTAGGCAGTAAATAGTTATTTAATT





543
ACATCTAAGTGGTTTTATGTACATATAAGAAACTGGCATGTTTATGAGTGGAACAACTTT





544
CTGTAAAACTTATCTTTGTATATAACAAGATTGAGCATGCCTAGAATAGAAAGAACAATT





545
TTAATCAAATCTGCAGTGTTAACCACCTGTTATCTACATGGGATTCTTACAAGCTATTCT





546
AAGTGGTTATGATTATCCAAAGTTCGTATCCGCAGATTACATGACAGTGTATGCTGCGCA





547
AAGATGAGATGTAGAGATGGATAAAGTTTGAATATATCTCAAAGCACGGCCTTGAGTTTT





548
AATTAATACCGGTTGAGTTTGTTCGGTTACACAATATATGACTTCATGATTAGCCATTTA





549
AAATGTCGGGTCGCAGAAATCCGCTGTTGAATATCCCAATTCCTGCTCGGCAACAGACTC





550
AGAGCGAGTCTTTTATAACAGGTTATTTTATTGTAAGAAAGCACACTTGTTTATGTGTAA





551
TCCACATGCACGGTCCAGTCCTCAGTGTTCACCCATAAGGACACCCCATGTTTGTTAATG





552
AATGCTCGGACACAGTAAATTAAATTCACTCGAGAATAAGTTCCTCGCCATTCACAATAA





553
CTTAGGCTTGAGCCCTAGATGCTGTACACAGAGCAGAATAATAGTGATGTATTAAGTAAT





554
GGATATCTGAGGTATTGATGTTGTACGATCCTCAGATCTACCTTTGATGCGTTATGCTGA





555
GAACTATGCTTTAACCTCTTTCAAATGTGTTTGTCAAATGCTTTCATAGCTTTATATATT





556
ATCATAATAGACATTCAAGTGATGACACCCTATGGTAAAACAATGGTTTCCAGATTCCAT





557
AAATAAAGTATAGAATATTACAGTATGTCCACTCACTCTTCCAGGGTTTCCCCGATGGAT





558
TATGGTTCAGTATCAAGCCCAAAAGGGACAACAACCATGCAGTCCCTCTGTACTGTAAGA





559
CAGTGTAGAGCATCTTCAGGCACAAGGACTACAGTATTACGGCGGATGATCAGTATAGCT





560
CAAAAAGTTTTGGAGTAATTGAGTAAATTATCCAATATGGTATTTGACCTCCTAAACAAA





561
GTTTTCTCAAAGTCGTAATAAATTTGTTTAGAAATTGTTGTACTGTTAATGCCCAACCGG





562
CATTTTATCAATTAGAAGGACAACTTTTATGAAAGCAGGATAATTCTAGGTGTAGTGCTA





563
TTTTCAAGTTTTTAAGACAGTTAAATACTCCTATCCTGTGGTGTCTGGATAAACATACCA





564
TGTGTAATCCATTAGCAAGGTCCTTGACAGCATTTTAAGCTGTAAGTTTAGAAGGTTTCA





565
TATGCTTGAATTTAAGTAGATTGGAGCTGTGAGACAGATGATTATATTCTCGACTTTTCT





566
TTTATTCATTTTAGTGAGTGGAAGGAGAGGACATTTTTATGGGTCTGCCACAGAAATTGA





567
TGAACAAGCACCAAAGTTTGGTAGTTGGAAAGACTAAATGAAATCATTATGAGTATATTC





568
CATTTGCATATTTAGAGGATATTCAAATGAGATTTATGAAGACATATGGCCGTGTGGCTC





569
ATGTTCCATGCCTAACAGGTATTGAGATTCAGGTCTATGTAGTAGTTTATCGTATACATC





570
GCTGCAGATAAGTCCCTTTACATTAAATGATTGGAAATTCTATACCCGGCTAAATGTTGT





571
TATTTTCAGGGAAAATGTCGCCTGCGGAGTCTTCTCGTGAAGAAAGTGTGTATATGGCCA





572
TTTATGTACTTTGAGTGTCTGACTAGAGAAGCATCATCGCTAGAATTAAGGAGGATGCCT





573
AATTTTTCGTTATTCAATGCATGTTTTCTCCTTACAGGAATTGCGAGCCTCTCGAGTCTT





574
AATCTCATCCAGCCGTTCTCACATCAAATCTTGCGAACTCGGAAATTAGCGTTCAATATA





575
TGCCATGTGTTTAAGATTTCCGCATGTATACCGGCACTATTAACATATGCAAGTATTCAT





576
TAATTTCTATACGTAGTACGTTTTTGAGATTTTGTGTGTTATAAAGCCACATGTTATGCT





577
GATGTTTCCGTATGCATTTATTGTCTCGGAAGTCTTGTTATTTCTAGGCTTTTGTTCTTC





578
TATGGACTTACTCGCAAGCAGCTCGACCGTGATATCTGGGTATAACTAACTAGCTATAAA





579
TCTAGAGAACTATTCAAGGTATTTGAGTGGAAACTATAACTATAAGATAGCTGTAGGTGT





580
CTGTAAATATAGATTTGTGGTGGCACGAAGAGGCTTCGAATAATGTGACCTTCATGTTTT





581
GGATATTACTATCTCAAATTGTCGGTTCCCGTGTGCGCTCTTTCGTGCTGCCTAGTTTAA





582
CTTTTGTCACCATTCTTGTATGACTTGTAAACAGTACGCAGATTCGATATCCTATTCGGC





583
TGTATATTACGCAGAGGATTTGTCCATCTATAACATGATCGTCGATCGTCACTACTTTAC
















TABLE 7







Nucleotide Sequence of the DNA Construct pWVR202








SEQ



ID



NO
Sequence





584
CGCCGGCGTTGTGGATACCTCGCGGAAAACTTGGCCCTCACTGACAGATGAGGGGCGGAC






GTTGACACTTGAGGGGCCGACTCACCCGGCGCGGCGTTGACAGATGAGGGGCAGGCTCG






ATTTCGGCCGGCGACGTGGAGCTGGCCAGCCTCGCAAATCGGCGAAAACGCCTGATTTTA






CGCGAGTTTCCCACAGATGATGTGGACAAGCCTGGGGATAAGTGCCCTGCGGTATTGACAC






TTGAGGGGCGCGACTACTGACAGATGAGGGGCGCGATCCTTGACACTTGAGGGGCAGAGT






GCTGACAGATGAGGGGCGCACCTATTGACATTTGAGGGGCTGTCCACAGGCAGAAAATCCA






GCATTTGCAAGGGTTTCCGCCCGTTTTTCGGCCACCGCTAACCTGTCTTTTAACCTGCTTTT






AAACCAATATTTATAAACCTTGTTTTTAACCAGGGCTGCGCCCTGTGCGCGTGACCGCGCAC






GCCGAAGGGGGGTGCCCCCCCTTCTCGAACCCTCCCGGCCCGCTAACGCGGGCCTCCCA






TCCCCCCAGGGGCTGCGCCCCTCGGCCGCGAACGGCCTCACCCCAAAAATGGCAGCGCT






GGCAGTCCATAATTGTGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGCCAACTTTG






AAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTTTTAGAATGCAAGGAACAGTGAAT






TGGAGTTCGTCTTGTTATAATTAGCTTCTTGGGGTATCTTTAAATACTGTAGAAAAGAGGAAG






GAAATAATAAATGGCTAAAATGAGAATATCACCGGAATTGAAAAAACTGATCGAAAAATACC






GCTGCGTAAAAGATACGGAAGGAATGTCTCCTGCTAAGGTATATAAGCTGGTGGGAGAAAA






TGAAAACCTATATTTAAAAATGACGGACAGCCGGTATAAAGGGACCACCTATGATGTGGAAC






GGGAAAAGGACATGATGCTATGGCTGGAAGGAAAGCTGCCTGTTCCAAAGGTCCTGCACTT






TGAACGGCATGATGGCTGGAGCAATCTGCTCATGAGTGAGGCCGATGGCGTCCTTTGCTCG






GAAGAGTATGAAGATGAACAAAGCCCTGAAAAGATTATCGAGCTGTATGCGGAGTGCATCA






GGCTCTTTCACTCCATCGACATATCGGATTGTCCCTATACGAATAGCTTAGACAGCCGCTTA






GCCGAATTGGATTACTTACTGAATAACGATCTGGCCGATGTGGATTGCGAAAACTGGGAAG






AAGACACTCCATTTAAAGATCCGCGCGAGCTGTATGATTTTTTAAAGACGGAAAAGCCCGAA






GAGGAACTTGTCTTTTCCCACGGCGACCTGGGAGACAGCAACATCTTTGTGAAAGATGGCA






AAGTAAGTGGCTTTATTGATCTTGGGAGAAGCGGCAGGGCGGACAAGTGGTATGACATTGC






CTTCTGCGTCCGGTCGATCAGGGAGGATATCGGGGAAGAACAGTATGTCGAGCTATTTTTT






GACTTACTGGGGATCAAGCCTGATTGGGAGAAAATAAAATATTATATTTTACTGGATGAATTG






TTTTAGTACCTAGATGTGGCGCAACGATGCCGGCGACAAGCAGGAGCGCACCGACTTCTTC






CGCATCAAGTGTTTTGGCTCTCAGGCCGAGGCCCACGGCAAGTATTTGGGCAAGGGGTCG






CTGGTATTCGTGCAGGGCAAGATTCGGAATACCAAGTACGAGAAGGACGGCCAGACGGTC






TACGGGACCGACTTCATTGCCGATAAGGTGGATTATCTGGACACCAAGGCACCAGGCGGGT






CAAATCAGGAATAAGGGCACATTGCCCCGGCGTGAGTCGGGGCAATCCCGCAAGGAGGGT






GAATGAATCGGACGTTTGACCGGAAGGCATACAGGCAAGAACTGATCGACGCGGGGTTTTC






CGCCGAGGATGCCGAAACCATCGCAAGCCGCACCGTCATGCGTGCGCCCCGCGAAACCTT






CCAGTCCGTCGGCTCGATGGTCCAGCAAGCTACGGCCAAGATCGAGCGCGACAGCGTGCA






ACTGGCTCCCCCTGCCCTGCCCGCGCCATCGGCCGCCGTGGAGCGTTCGCGTCGTCTCGA






ACAGGAGGCGGCAGGTTTGGCGAAGTCGATGACCATCGACACGCGAGGAACTATGACGAC






CAAGAAGCGAAAAACCGCCGGCGAGGACCTGGCAAAACAGGTCAGCGAGGCCAAGCAGG






CCGCGTTGCTGAAACACACGAAGCAGCAGATCAAGGAAATGCAGCTTTCCTTGTTCGATATT






GCGCCGTGGCCGGACACGATGCGAGCGATGCCAAACGACACGGCCCGCTCTGCCCTGTTC






ACCACGCGCAACAAGAAAATCCCGCGCGAGGCGCTGCAAAACAAGGTCATTTTCCACGTCA






ACAAGGACGTGAAGATCACCTACACCGGCGTCGAGCTGCGGGCCGACGATGACGAACTGG






TGTGGCAGCAGGTGTTGGAGTACGCGAAGCGCACCCCTATCGGCGAGCCGATCACCTTCA






CGTTCTACGAGCTTTGCCAGGACCTGGGCTGGTCGATCAATGGCCGGTATTACACGAAGGC






CGAGGAATGCCTGTCGCGCCTACAGGCGACGGCGATGGGCTTCACGTCCGACCGCGTTGG






GCACCTGGAATCGGTGTCGCTGCTGCACCGCTTCCGCGTCCTGGACCGTGGCAAGAAAAC






GTCCCGTTGCCAGGTCCTGATCGACGAGGAAATCGTCGTGCTGTTTGCTGGCGACCACTAC






ACGAAATTCATATGGGAGAAGTACCGCAAGCTGTCGCCGACGGCCCGACGGATGTTCGACT






ATTTCAGCTCGCACCGGGAGCCGTACCCGCTCAAGCTGGAAACCTTCCGCCTCA






TGTGCGGATCGGATTCCACCCGCGTGAAGAAGTGGCGCGAGCAGGTCGGCGAAGCCTGC






GAAGAGTTGCGAGGCAGCGGCCTGGTGGAACACGCCTGGGTCAATGATGACCTGGTGCAT






TGCAAACGCTAGGGCCTTGTGGGGTCAGTTCCGGCTGGGGGTTCAGCAGCCAGCGCTTTA






CAAAGGAGTCTAGAAGATCCTGGCATTTCAGGAACAAGCGGGCACTGCTCGACGCACTTGC






TTCGCTCAGTATCGCTCGGGACGCACGGCGCGCTCTACGAACTGCCGATAGACAACTGTCA






CGGTTAAGCGAGAAATGAATAAGAAGGCTGATAATTCGGATCTCTGCGAGGGAGATGATAT






TTGATCACAGGCAGCAACGCTCTGTCATCGTTACAATCAACATGCTACCCTCCGCGAGATCA






TCCGTGTTTCAAACCCGGCAGCTTAGTTGCCGTTCTTCCGAATAGCATCGGTAACATGAGCA






AAGTCTGCCGCCTTACAACGGCTCTCCCGCTGACGCCGTCCCGGACTGATGGGCTGCCTG






TATCGAGTGGTGATTTTGTGCCGAGCTGCCGGTCGGGGAGCTGTTGGCTGGCTGGTGGCA






GGATATATTGTGGTGTAAACAAATTGACGCTTAGACAACTTAATAACACATTGCGGACGTTTT






TAATGTACTGGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCAC






CGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAA






ATCCTGTTTGATGGTGGTTCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGCCCGA






GATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCA






ACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACGGCCGCTCTAGAACTAGT






GGATCCCCCCTACGTGCGATCTAGTAACATAGATGACACCGCGCGCGATAATTTATCCTAGT






TTGCGCGCTATATTTTGTTTTCTATCGCGTATTAAATGTATAATTGCGGGACTCTAATCATAA






AAACCCATCTCATAAATAACGTCATGCATTACATGTTAATTATTACATGCTTAACGTAATTCAA






CAGAAATTATATGATAATCATCGCAAGACCGGCAACAGGATTCAATCTTAAGAAACTTTATTG






CCAAATGTTTGAACGATCCCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCT






GCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAA






GCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGGGGTCCGCCACACCCAG






CCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAG






GCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCG






AACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGAC






CGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCA






GGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCG






GCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAATAGCAGCCAG






TCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCC






AGCCACGATAGCCGCGCTGCCTCGTCCTGGAGTTCATTCAGGGCACCGGACAGGTCGGTC






TTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAG






CCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAAC






CTGCGTGCAATCCATCTTGTTCAATCATCTGTTAATCAGAAAAACTCAGATTAATCGACAAAT






TCGATCGCACAAACTAGAAACTAACACCAGATCTAGATAGAAATCACAAATCGAAGAGTAAT






TATTCGACAAAACTCAAATTATTTGAACAAATCGGATGATATTTATGAAACCCTAATCGAGAA






TTAAGATGATATCTAACGATCAAACCCAGAAAATCGTCTTCGATCTAAGATTAACAGAATCTA






AACCAAAGAACATATACGAAATTGGGATCGAACGAAAACAAAATCGAAGATTTTGAGAGAAT






AAGGAACACAGAAATTTACCTTGATCACGGTAGAGAGAATTGAGAGAAAGTTTTTAAGATTTT






GAGAAATTGAAATCTGAATTGTGAAGAAGAAGAGCTCTTTGGGTATTGTTTTATAGAAGAAG






AAGAAGAAAAGACGAGGACGACTAGGTCACGAGAAAGCTAAGGCGGTGAAGCAATAGCTAA






TAATAAAATGACACGTGTATTGAGCGTTGTTTACACGCAAAGTTGTTTTTGGCTAATTGCCTT






ATTTTTAGGTTGAGGAAAAGTATTTGTGCTTTGAGTTGATAAACACGACTCGTGTGTGCCGG






CTGCAACCACTTTGACGCCGTTTATTACTGACTCGTCGACAACCACAATTTCTAACGGTCGT






CATAAGATCCAGCCGTTGAGATTTAACGATCGTTACGATTTATATTTTTTTAGCATTATCGTTT






TATTTTTTAAATATACGGTGGAGCTGAAAATTGGCAATAATTGAACCGTGGGTCCCACTGCA






TTGAAGCGTATTTCGTATTTTCTAGAATTCTTCGTGCTTTATTTCTTTTCCTTTTTGTTTTTTTT






TGCCATTTATCTAATGCAAGTGGGCTTATAAAATCAGTGAATTTCTTGGAAAAGTAACTTCTT






TATCGTATAACATATTGTGAAATTATCCATTTCTTTTAATTTTTTAGTGTTATTGGATATTTTTG






TATGATTATTGATTTGCATAGGATAATGACTTTTGTATCAAGTTGGTGAACAAGTCTCGTTAA






AAAAGGCAAGTGGTTTGGTGACTCGATTTATTCTTGTTATTTAATTCATATATCAATGGATCTT






ATTTGGGGCCTGGTCCATATTTAACACTCGTGTTCAGTCCAATGACCAATAATATTTTTTCAT






TAATAACAATGTAACAAGAATGATACACAAAACATTCTTTGAATAAGTTCGCTATGAAGAAGG






GAACTTATCCGGTCCTAGATCATCAGTTCATACAAACCTCCATAGAGTTCAACATCTTAAACA






AGGATATCCTGATCCGTTGACGGCGCGCCAAGCGGCCGCAAAACCCCTCACAAATACATAA






AAAAAATTCTTTATTTAATTATCAAACTCTCCACTACCTTTCCCACCAACCGTTACAATCCTGA






ATGTTGGAAAAAACTAACTACATTGATATAAAAAAACTACATTACTTCCTAAATCATATCAAAA






TTGTATAAATATATCCACTCACTTGGACAAATTGCCCATAGTTGGAAAGATGTTCACCAAGTC






AACAAGATTTATCAATGGAAAAATCCATCTACCAAACTTACTTTCAAGAAAATCCAAGGATTA






TAGAGTAAAAAATCTATGTATTATTAAGTCAAAAAGAAAACCAAAGTGAACAAATATTGATGT






ACAAGTTTGAGAGGATAAGACATTGGAATCGTCTAACCAGGAGGCGGAGGAATTCCCTAGA






CAGTTAAAAGTGGCCGGAATCCCGGTAAAAAAGATTAAAATTTTTTTGTAGAGGGAGTGCTT






GAATCATGTTTTTTATGATGGAAATAGATTCAGCACCATCAAAAACATTCAGGACACCTAAAA






TTTTGAAGTTTAACAAAAATAACTTGGATCTACAAAAATCCGTATCGGATTTTCTCTAAATATA






ACTAGAATTTTCATAACTTTCAAAGCAACTCCTCCCCTAACCGTAAAACTTTTCCTACTTCAC






CGTTAATTACATTCCTTAAGAGTAGATAAAGAAATAAAGTAAATAAAAGTATTCACAAACCAA






CAATTTATTTCTTTTATTTACTTAAAAAAACAAAAAGTTTATTTATTTTACTTAAATGGCATAAT






GACATATCGGAGATCCCTCGAACGAGAATCTTTTATCTCCCTGGTTTTGTATTAAAAAGTAAT






TTATTGTGGGGTCCACGCGGAGTTGGAATCCTACAGACGCGCTTTACATACGTCTCGAGAA






GCGTGACGGATGTGCGACCGGATGACCCTGTATAACCCACCGACACAGCCAGCGCACAGT






ATACACGTGTCATTTCTCTATTGGAAAATGTCGTTGTTATCCCCGCTGGTACGCAACCACCG






ATGGTGACAGGTCGTCTGTTGTCGTGTCGCGTAGCGGGAGAAGGGTCTCATCCAACGCTAT






TAAATACTCGCCTTCACCGCGTTACTTCTCATCTTTTCTCTTGCGTTGTATAATCAGTGCGAT






ATTCTCAGAGAGCTTTTCATTCAAAGGTATGGAGTTTTGAAGGGCTTTACTCTTAACATTTGT






TTTTCTTTGTAAATTGTTAATGGTGGTTTCTGTGGGGGAAGAATCTTTTGCCAGGTCCTTTTG






GGTTTCGCATGTTTATTTGGGTTATTTTTCTCGACTATGGCTGACATTACTAGGGCTTTCGTG






CTTTCATCTGTGTTTTCTTCCCTTAATAGGTCTGTCTCTCTGGAATATTTAATTTTCGTATGTA






AGTTATGAGTAGTCGCTGTTTGTAATAGGCTCTTGTCTGTAAAGGTTTCAGCAGGTGTTTGC






GTTTTATTGCGTCATGTGTTTCAGAAGGCCTTTGCAGATTATTGCGTTGTACTTTAATATTTT






GTCTCCAACCTTGTTATAGTTTCCCTCCTTTGATCTCACAGGAACCCTTTCTTCTTTGAGCAT






TTTCTTGTGGCGTTCTGTAGTAATATTTTAATTTTGGGCCCGGGTTCTGAGGGTAGGTGATT






ATTCACAGTGATGTGCTTTCCCTATAAGGTCCTCTATGTGTAAGCTGTTAGGGTTTGTGCGT






TACTATTGACATGTCACATGTCACATATTTTCTTCCTCTTATCCTTCGAACTGATGGTTCTTTT






TCTAATTCGTGGATTGCTGGTGCCATATTTTATTTCTATTGCAACTGTATTTTAGGGTGTCTC






TTTCTTTTTGATTTCTTGTTAATATTTGTGTTCAGGTTGTAACTATGGGTTGCTAGGGTGTCTG






CCCTCTTCTTTTGTGCTTCTTTCGCAGAATCTGTCCGTTGGTCTGTATTTGGGTGATGAATTA






TTTATTCCTTGAAGTATCTGTCTAATTAGCTTGTGATGATGTGCAGGTATATTCGTTAGTCAT






ATTTCAATTTCAAGCGATCCCCCGGGCTGCAGGCTAGCTAAAAGTACTTTTCCTAGGATCGA






TGGGTGTTATTTGTGGATAATAAATTCGGGTGATGTTCAGTGTTTGTCGTATTTCTCACGAAT






AAATTGTGTTTATGTATGTGTTAGTGTTGTTTGTCTGTTTCAGACCCTCTTATGTTATATTTTT






CTTTTCGTCGGTCAGTTGAAGCCAATACTGGTGTCCTGGCCGGCACTGCAATACCATTTCGT






TTAATATAAAGACTCTGTTATCCGTGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAAT






AAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGA






ATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTAT






GATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACT






AGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCGCGGCCGCATTTAAATGGG






CCCTGTTAACTGGTACCTTAATTAAAAGTTTAAACTATCAGTGTTTGACAGGATATATTGGCG






GGTAAACCTAAGAGAAAAGAGCGTTTATTAGAATAATCGGATATTTAAAAGGGCGTGAAAAG






GTTTATCCGTTCGTCCATTTGTATGTGCATGCCAACCACAGGGTTCCCCAGATC
















TABLE 15







Summary of results for cell signaling genes in transformants




















Increased
Increase in


E. grandis ×


P. taeda plants








regenerative
regenerative

P. deltoids


E. europhylia plants

with growth






ability of
ability of
plants
with mean growth
increases when







P. deltoids


P. deltoids

displaying
increases when
compared to




Putative

transformants
transformants
growth
compared to
controls and with




Cell
SEQ
after 12 weeks
after 5 months
increases
controls and with
increases of >



DNA
Signaling
ID
(example 16,
(Example 16,
of >50%
increases of >50%
50% (example
Other



Construct
Gene
NO
table 10)
table 11)
(example 20)
(example 23)
25)
observations




















1
pGrowth1
Polyphospho-
130
NT
NT
NT
NT
yes
Patterned




inositide






necrosis in




binding protein







P. deltoids












(example 21)


2
pGrowth2
Polyphospho-
132
NT
NT

NT

Patterned




inositide






necrosis in




binding protein







P. deltoids












(example 21)


3
pGrowth3
Polyphospho-
122
NT
NT

NT
yes




inositide




binding protein


4
pGrowth11
Ethylene-responsive
117

yes
yes
NT
yes




elongation factor


5
pGrowth21
G-protein
150

yes
yes
NT
yes




coupled receptor


6
pGrowth22
14-3-3 protein
180
yes
yes

yes
NT


7
pGrowth23
14-3-3 protein
195



NT



8
pGrowth24
14-3-3 protein
192
yes
yes
yes
NT
NT
Increased











leaf surface











area in












P. deltoids












(example 17)


9
pGrowth25
Synaptobrevin-like
98

yes
yes
NT

Longer











internodes in












P. deltoids












(example 18)


10
pGrowth26
Synaptobrevin-like
140

yes
yes
NT
NT


11
pGrowth27
Synaptobrevin-like
155

yes
yes
yes
NT


12
pGrowth28
Synaptobrevin-like
124

yes

NT
NT


13
pGrowth29
SNF1-related
113

yes
NT
NT
NT




protein kinase


14
pGrowtn30
Ethylene Receptor
152
yes
yes
yes
NT
yes


15
pGrowth49
Synaptobrevin like
141
NT
NT
NT
NT
NT


16
pGrowth51
Polyphospho-
164
NT
NT
NT
NT
NT




inositide




binding protein





NT = not tested


— No effect observed





Claims
  • 1. An isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof.
  • 2. The isolated polynucleotide of claim 1, wherein the polynucleotide has a sequence comprised in a gene expressed in a wild-type plant of a species of Eucalyptus or Pinus.
  • 3. The isolated polynucleotide of claim 1, wherein the variant has a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60% to any one of SEQ ID NOs: 1-197.
  • 4. The isolated polynucleotide of claim 1, wherein the polynucleotide encodes a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein.
  • 5. The isolated polynucleotide of claim 4, wherein the variant has a sequence identity that is greater than 60%, 65%, 70%, 75%, 80%, 85% or 90% to any one of SEQ ID NOs: 1-197, and wherein the protein encoded by the polynucleotide possesses the activity of the protein encoded by said any one of SEQ ID NOs: 1-197.
  • 6. A plant cell transformed with the isolated polynucleotide of claim 1.
  • 7. A transgenic plant comprising the isolated polynucleotide of claim 1.
  • 8. A DNA construct comprising at least one polynucleotide having the sequence of any one of SEQ ID NOs: 1-197 and conservative variants thereof.
  • 9. The DNA construct of claim 8, further comprising a promoter, wherein the promoter and the polynucleotide are operably linked.
  • 10. The DNA construct of claim 9, wherein the promoter is selected from the group consisting of a constitutive promoter, a strong promoter, an inducible promoter, a regulatable promoter, a temporally regulated promoter, and a tissue-preferred promoter.
  • 11. The DNA construct of claim 8, wherein the polynucleotide encodes an RNA transcript.
  • 12. The DNA construct of claim 11, wherein the polynucleotide is in a sense or antisense orientation relative to the promoter.
  • 13. The DNA construct of claim 11, wherein the RNA transcript induces RNA interference of a polynucleotide having a nucleic acid sequence selected from the group consisting of 1-197.
  • 14. A method of making a transformed plant comprising: transforming a plant cell with the DNA construct of claim 8; andculturing the transformed plant cell under conditions that promote growth of a plant.
  • 15. A plant cell transformed with the DNA construct of claim 8.
  • 16. A transgenic plant comprising the plant cell of claim 15.
  • 17. The transgenic plant of claim 16, wherein a phenotype of the plant is different from a phenotype of a plant of the same species that has not been transformed with the DNA construct.
  • 18. The transgenic plant of claim 17, wherein a phenotype that is different in the transgenic plant is selected from the group consisting of lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape.
  • 19. The transgenic plant of claim 16, wherein the plant is a woody plant.
  • 20. The transgenic plant of claim 19, wherein the plant is a tree.
  • 21. The transgenic plant of claim 20, wherein the plant is of a species of Eucalyptus or Pinus.
  • 22. The transgenic plant of claim 16, wherein the plant exhibits one or more traits selected from the group consisting of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, as increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct.
  • 23. The transgenic plant of claim 16, wherein the plant exhibits one or more traits selected from the group consisting of a reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, and accelerated regeneration, as compared to a plant of the same species that has not been transformed with the DNA construct.
  • 24. An isolated polynucleotide comprising a nucleic acid sequence goo encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 198-394, wherein the polynucleotide encodes a polypeptide having the activity of said polypeptide selected from any one of SEQ ID NOs: 198-394.
  • 25. A method of making a transformed plant comprising: transforming a plant cell with a DNA construct comprising at least one polynucleotide encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 198-394; andculturing the transformed plant cell under conditions that promote growth of a plant.
  • 26. The method of claim 25, wherein the DNA construct further comprises a promoter, wherein the polynucleotide and the promoter are operably linked.
  • 27. The method of claim 25, wherein the at least one polynucleotide encodes a protein that is selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein.
  • 28. The method of claim 25, wherein the plant cell is located within a plant explant tissue.
  • 29. The method of claim 25, wherein the transgenic plant exhibits a phenotype that is different from a plant of the same species that has not been transformed with the DNA construct.
  • 30. The method of claim 25, wherein a phenotype that is different in the transgenic plant is selected from the group consisting lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape.
  • 31. The method of claim 25, wherein the transgenic plant exhibits one or more traits selected from the group consisting of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct.
  • 32. Wood obtained from a transgenic tree which has been transformed with the DNA construct of claim 8.
  • 33. Wood pulp obtained from a transgenic tree which has been transformed with the DNA construct of claim 8.
  • 34. The wood pulp of claim 33, wherein the DNA construct comprises a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of any one of SEQ ID NOs: 198-394.
  • 35. A method of making wood, comprising: transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof;culturing the transformed plant under conditions that promote growth of a plant; andobtaining wood from the plant.
  • 36. A method of making wood pulp, comprising: transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof;culturing the transformed plant under conditions that promote growth of a plant; andobtaining wood pulp from the plant.
  • 37. An isolated polypeptide comprising an amino acid sequence encoded by the isolated polynucleotide of claim 1.
  • 38. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 198-394.
  • 39. A method of altering a plant phenotype of a plant, comprising altering expression in the plant of a polypeptide encoded by any one of SEQ ID NOs: 1-197.
  • 40. The method of claim 39, wherein the expression is up-regulated, down-regulated, silenced, or developmentally regulated.
  • 41. The method of claim 39, wherein the plant phenotype is selected from the group consisting of lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, proportion of rays, proportion of vessel elements, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, proportion of nonlignin cell wall phenolics, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape.
  • 42. The method of claim 39, wherein the plant exhibits one or more traits selected from the group consisting of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, increased or decreased cellulose content, increased or decreased lignin content, increased or decreased nonlignin cell wall phenolics and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct.
  • 43. A polynucleotide comprising a nucleic acid selected from the group comprising of SEQ ID NOs: 395-583.
  • 44. The polynucleotide of claim 43, wherein said polynucleotide is comprised of less than about 100 nucleotide bases.
  • 45. A method of correlating gene expression in two different samples, comprising: detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof in a first sample;detecting a level of expression of the one or more genes in a second sample;comparing the level of expression of the one or more genes in the first sample to the level of expression of the one or more genes in the second sample; andcorrelating a difference in expression level of the one or more genes between the first and second samples.
  • 46. The method of claim 45, wherein the first sample and the second sample are each from a different type of plant tissue.
  • 47. The method of claim 45, wherein the first sample and the second sample are from the same tissue, and wherein the first sample and the second sample are each harvested during a different season of the year.
  • 48. The method of 45, wherein the first sample and the second sample are obtained from plants in different stages of development.
  • 49. The method of claim 45, wherein the first sample is obtained from a plant not exposed to an environmental stimulus, and wherein the second samples is obtained from a plant exposed to an environmental stimulus.
  • 50. The method of claim 49, wherein the environmental stimulus is selected from the group consisting of change in temperature, change in amount of light, change in availability of water, change in availability of nutrients, change in availability of atmospheric gases, frost, wounding from mechanical injury, and wounding from attack by an insect, fungus, bacteria or virus.
  • 51. A method of correlating the possession of a plant phenotype to the level of gene expression in the plant of one or more genes comprising: detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof in a first plant possessing a phenotype;detecting a level of expression of the one or more genes in a second plant lacking the phenotype;comparing the level of expression of the one or more genes in the first plant to the level of expression of the one or more genes in the second plant; andcorrelating a difference in expression level of the one or more genes between the first and second plants to possession of the phenotype.
  • 52. A method of correlating gene expression to a response to an external stimulus or environmental condition, comprising: detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 and conservative variants thereof in a first plant cell in the absence of the external stimulus or environmental condition;detecting a level of expression of the one or more genes in a second plant cell in the presence of the external stimulus or environmental condition;comparing the level of the expression of the one or more genes in the first plant cells to the level of expression of the one or more genes in the second plants cells; andcorrelating a difference in expression level of the one or more genes between the first and second samples to presence of the external stimulus or environmental condition.
  • 53. The method of claim 45 wherein the first and second samples are both obtained from a plant tissue selected from the group consisting of vascular tissue, apical meristem, vascular cambium, xylem, phloem, root, flower, cone, fruit, and seed.
  • 54. The method of claim 53, wherein the plant tissue of the first sample and second samples are each obtained from a different type of tissues.
  • 55. The method of claim 53, wherein the first and second samples are each obtained from a plant tissue in a different stage of development.
  • 56. The method of claim 52 wherein the external stimulus is selected from the group consisting of change in temperature, change in amount of light, change in availability of water, change in availability of nutrients, wounding from mechanical injury, and wounding from attack by pathogens.
  • 57. The method of any one of claim 51 or 52, wherein the first and second plants or plant cells are of a species selected from Eucalyptus and Pinus species.
  • 58. The method of any one of claim 51 or 52, wherein the first and second plants or plant cells are of a species selected from Eucalyptus grandis or Pinus radiata.
  • 59. The method of any one of claim 45, 51 or 52, wherein the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions.
  • 60. The method of any one of claim 45, 51 or 52, wherein the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions.
  • 61. The method of any one of claim 45, 51 or 52, wherein the step of detecting is effected by hybridization to a labeled nucleic acid.
  • 62. The method of claim 59, wherein the one or more polynucleotides are labeled with a detectable label.
  • 63. The method of claim 59, wherein at least one of the one or more polynucleotides hybridizes to a 3′ untranslated region of one of the one or more genes.
  • 64. The method of claim 60, wherein at least one of the one or more polynucleotides hybridizes to the 3′ untranslated region of one of the one or more genes.
  • 65. The method of claim 59, wherein the one or more polynucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 395-583.
  • 66. The method of claim 60, wherein the one or more polynucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 395-583.
  • 67. The method of claim 59, wherein the one or more polynucleotides is selected from the group consisting of DNA or RNA.
  • 68. The method of claim 60, wherein the one or more polynucleotides is selected from the group consisting of DNA or RNA.
  • 69. The method of any one of claim 45, 51 or 52, further comprising, prior to the detecting steps, the step of amplifying the one or more genes in the first and second plant or plant cells.
  • 70. The method according to any one of claim 45, 51 or 52, further comprising, prior to the detecting steps, the step of labeling the one or more genes in the first and second plant or plant cells with a detectable label.
  • 71. A combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197.
  • 72. A combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197.
  • 73. The combination of claim 71, wherein each of the two or more oligonucleotides hybridizes to a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1-197.
  • 74. The combination of claim 72, wherein each of the two or more oligonucleotides hybridizes to a nucleotide sequence encoded by a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1-197.
  • 75. The combination of claim 71, wherein at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197.
  • 76. The combination of claim 72, wherein at least one of the two or more oligonucleotides hybridizes to nucleic acid sequence that is complementary to a 3′ untranslated region of a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197.
  • 77. The combination of any one of claim 71 or 72, wherein each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases.
  • 78. The combination of claim 71, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 395-583.
  • 79. The combination of claim 72, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583.
  • 80. The combination of claim 71, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding-protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein.
  • 81. The combination of claim 72, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein.
  • 82. The combination of claim 80, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins.
  • 83. The combination of claim 81, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins.
  • 84. The combination of claim 80, wherein each of the two or more oligonucleotides hybridizes to a different gene.
  • 85. The combination of claim 81, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a different gene.
  • 86. The combination of any one of claim 71 or 72, comprising from about 2 to about 5000 of the two or more oligonucleotides.
  • 87. The combination of any one of claim 71 or 72, wherein each of the two or more oligonucleotides is labeled with a detectable label.
  • 88. A microarray comprising the combination of any one of claims 71-87 provided on a solid support, wherein each of said two or more oligonucleotides occupies a unique location on said solid support.
  • 89. A method for detecting one or more genes in a sample comprising: contacting the sample with two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions; anddetecting the one or more genes of interest which are hybridized to the one or more oligonucleotides.
  • 90. A method for detecting one or more nucleic acid sequences encoded by one or more genes in a sample, comprising: contacting the sample with two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197 under standard hybridization conditions; anddetecting the one or more nucleic acid sequences which are hybridized to the one or more oligonucleotides.
  • 91. The method of claim 89, wherein each of the two or more oligonucleotides hybridizes to a gene comprising a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1-197.
  • 92. The method of claim 90, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene comprising a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1-197.
  • 93. The method of claim 89, wherein at least one of the two or more oligonucleotides hybridizes to a 3′ untranslated region of a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197.
  • 94. The method of claim 90, wherein at least one of the two or more oligonucleotides hybridizes to a nucleic acid sequence that is complementary to a 3′ untranslated region of a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-197.
  • 95. The method of any one of claim 89 or 90, wherein each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases.
  • 96. The method of claim 89, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583.
  • 97. The method of claim 90, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 395-583.
  • 98. The method of claim 89, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein.
  • 99. The method of claim 90, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a protein selected from the group consisting of a 14-3-3 protein, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, cyclin-dependant kinase inhibitor, cytokinin oxidase, ethylene receptor, ethylene-responsive elongation factor (EF-TS), F-box family protein, G protein-coupled receptor, GA20-oxidase, giberellic acid insensitive (GAI), gibberellin 2-oxidase, indole-3-acetaldehyde reductase, indole-3-acetonitrilase, Mago Nashi protein, MAP kinase, MAP kinase kinase, MAP kinase kinase kinase, polyphosphoinositide binding protein SSH2P, RAB11G, RAB11J, RAB5B, RAB7, RAN (GTPase activating protein), RAS-like GTP-binding protein, SNF1-related protein kinase, steroid reductase, steroid sulfotransferase, and synaptobrevin-like protein.
  • 100. The method of claim 98, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins.
  • 101. The method of claim 99, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins.
  • 102. The method of any one of claim 89 or 90, wherein the two or more oligonucleotides are provided on a solid support, wherein each of the two of more oligonucleotides occupy a unique location on the solid support.
  • 103. The method of claim 102, wherein the solid support comprises from about 2 to about 5000 of the two or more oligonucleotides.
  • 104. The method of any one of claim 89 or 90, further comprising, prior to the contacting step, the step of amplifying the one or more genes or nucleic acid sequences in the sample.
  • 105. The method of any one of claim 89 or 90, further comprising, prior to the contacting step, the step of labeling the one or more genes or nucleic acid sequences in the sample with a detectable label.
  • 106. A kit for detecting gene expression comprising the microarray of claim 88 together with one or more buffers or reagents for a nucleotide hybridization reaction.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US06/23561 6/16/2006 WO 00 12/8/2010
Provisional Applications (1)
Number Date Country
60691398 Jun 2005 US